# Classification of epileptic seizures using accelerometers

Chalmers university of technology

Anders Hildeman hildeman@student.chalmers.se

### Abstract

Epilepsy is a neurological disorder that affects a large group of people around the world. The research institute IMEGO has developed a hardware setup for measuring and logging acceleration of limbs on patients suffering from epilepsy. Signal analysis methods are applied to the acceleration data to register when a seizure occurs. In this thesis, the existing seizure classification methods are enhanced by studying the time evolution of the acceleration data over time spans of several minutes around each discrete sample point in time. This is achieved by clustering data and examining the cluster transitions between data points that are close in time.

In this work several clustering, classification and dimension reduction techniques are presented. Moreover, a pilot study that assesses the performance of the proposed classification method under a wide variety of parameters, input data and data transformations, is implemented. The old classification method that was used prior to this thesis is also evaluated and compared against the new method developed in this thesis.

The pilot study shows that the proposed classification method performs better than the method implemented prior to this work. The proposed method performs well on tonicclonic epileptic seizures even with a sporty and active movement background during the measurements. For strictly tonic seizures, however, the pilot study gives no promising results. It seems like the classification methods are not able to distinguish a tonic seizure from normal activity.

The optimal parameters of the proposed method seems to differ depending on the kind of seizure and background data that is studied. In a real application, tuning the parameter model for the appropriate patient behavior seems to be necessary for adequate classification performance.

During the measurements, acceleration on three limbs were analyzed. The pilot study reveals that in many cases not all three acceleration points are necessary. Which ones are, depends on the patients seizure behavior.

# Contents

| 1        | Intr               | roduction                             | 1  |  |  |
|----------|--------------------|---------------------------------------|----|--|--|
|          | 1.1                | Background                            | 1  |  |  |
|          | 1.2                | Epilepsy                              | 1  |  |  |
|          | 1.3                | Prior work                            | 4  |  |  |
|          | 1.4                | Purpose                               | 5  |  |  |
| 2        | Data acquisition 6 |                                       |    |  |  |
|          | 2.1                | Hardware                              | 6  |  |  |
|          | 2.2                | Data                                  | 8  |  |  |
|          | 2.3                | Features                              | 9  |  |  |
| 3        | Theory 13          |                                       |    |  |  |
|          | 3.1                | Clustering                            | 13 |  |  |
|          | 3.2                | Classification                        | 20 |  |  |
|          | 3.3                | Transition matrix                     | 26 |  |  |
|          | 3.4                | Dimension reduction                   | 29 |  |  |
|          | 3.5                | Model assessment                      | 33 |  |  |
| 4        | Proposed method 36 |                                       |    |  |  |
|          | 4.1                | Preprocessing                         | 37 |  |  |
|          | 4.2                | Clustering                            | 39 |  |  |
|          | 4.3                | Transition matrix extraction          | 41 |  |  |
|          | 4.4                | Classification of transition matrices | 42 |  |  |
|          | 4.5                | Post-processing                       | 43 |  |  |
| <b>5</b> | Res                | sults                                 | 45 |  |  |
|          | 5.1                | Evaluation method                     | 45 |  |  |
|          | 5.2                | Patient 7                             | 50 |  |  |
|          | 5.3                | Patient 14                            | 58 |  |  |
|          | 5.4                | Patient F1                            | 65 |  |  |
|          | 5.5                | Patient F2                            | 72 |  |  |
| 6        | Discussion 78      |                                       |    |  |  |
|          | 6.1                | General interpretation                | 78 |  |  |
|          | 6.2                | Future work                           | 81 |  |  |
|          | 6.3                | Conclusion                            | 82 |  |  |

| $\mathbf{A}$ | Complete results              | Ι      |
|--------------|-------------------------------|--------|
|              | A.1 Patient 7                 | Ι      |
|              | A.2 Patient 14                | VII    |
|              | A.3 Patient F1                | XIV    |
|              | A.4 Patient F2                | XIX    |
| В            | Optimal sets for old method X | XV     |
|              | B.1 Patient 7                 | XXVI   |
|              | B.2 Patient 14                | XXVII  |
|              | B.3 Patient F1                | XXVIII |
|              | B.4 Patient F2                | XXIX   |

# Chapter 1

# Introduction

In this chapter an introduction to the subjects, ideas and prior research of this master thesis is presented.

## 1.1 Background

IMEGO is a research institute that performs research and develop solutions in the fields of micro electronics, biotechnology and sensor systems. Since 2008, they have been coordinating a project aimed at recognizing epileptic seizures in patients wearing wireless accelerometers. IMEGO has developed both the electronics and software for this purpose. As part of this project and in collaboration with Chalmers Mathematical Center, the purpose of this thesis is to further develop the signal analysis algorithms as well as to conduct a pilot study that assesses the performance of such algorithm.

# 1.2 Epilepsy

Epilepsy is an umbrella term used for neurological disorders characterized by seizures. Since the seizures might originate in different locations of the brain, the symptoms can differ greatly between patients all diagnosed with epilepsy. The usual symptoms of a seizure might be: uncontrolled motoric movements or spasms, convulsions, emotional or psychological sensations, loss of consciousness and more. These are usually caused by signal feedback oscillations between neurons.

Epilepsy is the most common neurological disorder and it is estimated that around 50 million people all over the world suffer from recurrent epileptic seizures. About 1% of the Swedish population is affected. Moreover, about 10% of the worlds total population will some time in their life experience a grand epileptic seizure.

Some known causes of epilepsy are genetic abnormalities, strokes, brain tumors, brain defects, head trauma and infectious diseases. However, for about half of all the epileptic

seizures, their causes are still not completely understood. These are known as idiopathic seizures. [1] [2]

## 1.2.1 Seizures by origin

Epileptic seizures are divided into two major classes depending on the initiation. The partial-onset and generalized-onset seizures.

#### Partial seizures

Partial-onset seizures start in a specific area of the brain. The symptoms depend on the function of that specific area. If the seizure does not alter consciousness it is known as a *simple* partial seizure. Partial seizures that cloud consciousness and cause abnormal repetitious movements are known as *complex* partial seizures. Partial seizures are usually associated with some kind of damage to a part of the brain.

#### Generalized seizures

Generalized seizures are those seizures where the whole or large parts of the brain experience abnormal electrical activity. This kind of seizure is usually much more dramatic given that many of the brain functions are affected at the same time. In many of these types of seizures, the subject will not have any recollection of the seizure afterwards. Generalized seizures occur without evident damage to the brain but they might sometimes be initiated by a partial-onset seizure. If they are caused by a partial-onset seizure they are known as secondary generalized seizures.

## **1.2.2** Seizures by motoric symptoms

Seizures that affect motoric functions are usually classified by its symptoms. Often a seizure will exhibit more than one of these symptoms and the seizure can then be divided into symptomatic episodes.

#### **Tonic seizures**

A tonic episode of a seizure is the phase of constant muscle contraction. If a tonic seizure affects the heart (which is quite common in generalized seizures) the heart will stop beating due to the contraction of the heart muscle. Contractions are caused by oscillations of neuro-electrical signals with frequencies so high that the muscle fibers will not have time to relax in between each pulse. This causes the muscles to experience a constant contraction. Since the oscillations of the neuro-electrical signals during a seizure usually start at high frequencies that gradually decrease, the tonic episode is seen in the beginning of a seizure.

One typical position that in many cases is associated with tonic seizures is the so called "fencing position". Here, the upper body simulates a fencer with one arm stretched out to the side and the other one tucked in while the head is rotated to look in the direction of the stretched arm.

#### Atonic seizures

This is the opposite of tonic seizures. During an atonic phase the affected muscles relax instead of contract.

#### **Clonic seizures**

A clonic seizure, or phase of a seizure, is the phase where a part of the body is shaking.

#### Absences

These are sudden moments of absence with vacant stare and loss of attention. This kind of seizure does not usually occur after the age of 20.

## 1.2.3 Treatment

A large number of epileptic disorders can be controlled with medication. These pharmaceuticals usually decrease neural activity in the brain. Some types of epilepsy can be treated with brain surgery. There are also special diets, behavioral therapy and nerve stimulation techniques that inhibit certain kinds of epileptic seizures.

## 1.2.4 Diagnosis and evaluation

To be able to perform a reliable diagnosis and assessment of treatments the medical society needs constant quantitative and reliable data of patients experiencing seizures. The most reliable instrument today is the EEG analysis which measure electrical activity in the brain.

In an EEG analysis, electrodes are either attached to the scalp or surgically attached to the walls of the brain. These electrodes can sense when many neurons close to them fire at the same time. In other words, it is a macroscopic view of the neural activity at the brains surface. Neurons dedicated to similar tasks are located close to each other in the brain, i.e. neurons dedicated to muscular activity of a certain body part are located close to each other in the brain. This makes it possible to see when a certain physical, psychological or sensory function is very active by studying the electrical activity in that part of the brain. The areas in the brain that are close to the surface are generally associated with muscular activity. This makes seizures that affects muscular activity much more suitable for EEG diagnosis. By EEG it is often possible to distinguish between a true epileptic seizure as compared to non seizure activity or a seizure caused by psychological effects.

However, the electrodes placement on the scalp makes EEG analysis hard to implement in every day life situations. Therefore, currently the most diagnosis and medical evaluation is based on a manual log where patients fill in and describe their seizures. A problem with this system is that patients are not always aware of their seizures given that these are sometimes associated with memory loss or clouded consciousness. The patient might also mistake another sensation for a seizure, or the seizure might occur in a sleeping or semi-awake state of mind. Furthermore, the description of the seizures are qualitative and highly subjective in nature.

Because of this, there is a strong and justified demand for a measuring device that can be used by the patients around the clock in normal situations and that give quantitative and reliable information about seizures.

For further reading see [1] [2].

## 1.3 Prior work

Some prior work has been done on the subject of classifying seizures from background data using accelerometer data and the current hardware setup (see sec.2.1). Johan Stigwall at IMEGO has developed a signal processing framework for extracting and inspecting accelerometer data. He has also done some analysis of the measurements taken from the first patients observed at Sahlgrenska (see section 2.2). Also, a prior master thesis has been written by Johan Wipenmyr [3] 2010 where he developed 51 summary statistics to use for discrimination (see section 2.3). Those statistics has been adopted in this thesis and act as the feature space of data for the proposed method (see chapter 4) to work on. The prior work has treated each sample in feature space as an independent sample. For patients with very strong seizures this method has been adequate but for the more subtle seizures it has not yielded satisfactory results.

Below follow a brief introduction to the classification method as it were prior to the initiation of this thesis. For more information about the prior work see [4].

## **1.3.1** Prior classifier

The classifier used prior to this thesis (For a more complete explanation see [3]) are in general terms defined as:

- 1. Extract feature values from the raw accelerometer data.
- 2. Cluster all observations in the training set marked as seizures using a k-means cluster analysis with three clusters (see section 3.1.1).
- 3. Fit a Gaussian distribution to the samples of each of these three clusters as well as a Gaussian for all non seizure samples in the training set.

- 4. Use quadratic discriminant analysis to classify samples in the test set as belonging to one of the estimated Gaussian. Weight with the "prior" probability of each Gaussian estimated from the training set.
- 5. Classify the samples of the test set as being a seizure if it is classified as a cluster which belongs to a seizure.
- 6. Post process by removing all samples in the test set that are classified as belonging to a seizure but do not have large number of samples in their neighborhood that are also classified as seizures.
- 7. Fill in the "holes" in between those remaining samples that are too close to each other and classified as seizures. In this way samples close to each other are registered as part of the same seizure instead of many small seizures.

## 1.4 Purpose

For this thesis, the aim from the start has been to make use of the time evolution of seizure acceleration data. The idea are that the movements characterizing a seizure will cause acceleration of the limbs in a certain order. Looking solely at a specific time instance to draw a conclusion on whether a seizure is occurring or not might not yield great classification. Instead, analyzing the acceleration at a certain time instance in the context of several time instances both before and after will give much more information to base a classification decision on. The prior classifier did only infer time evolutionary acceleration behavior from a very near future (the range of one second). This thesis does connect accelerations at time instances as far away from each other as several minutes when making a classification decision.

The main purposes of this thesis are:

- Include time evolutionary information into the decision process of the seizure classifier.
- Enhance the performance of the current classifier method.
- Perform a pilot study, assessing the performance of the proposed classification method.
- Investigate possibilities of decreasing the number of sensors and decreasing the computational complexity of the classifier.

# Chapter 2

# Data acquisition

In this chapter, information regarding the nature of the input to the classifier are presented. This includes the movements recorded (sec. 2.2), the recording equipment (sec. 2.1) and the data transformation (sec. 2.3).

## 2.1 Hardware

The task of gathering accelerometer data from a human being in every day life demands some special equipment. IMEGO has developed hardware for this purpose. The hardware consists of the following components:

## 2.1.1 Accelerometer sensor

A small box containing the actual accelerometers in 3 dimensions as well as some other needed electronics, this box is named IDM20. Such a sensor box contains:

- one three-dimensional accelerometer
- A small microcontroller for controlling analog to digital conversion, sampling and packeting of data.
- A radio module for sending the packeted data to a logging unit.

These boxes should be attached to the limbs one wants to measure the acceleration on.

## 2.1.2 Logging unit

This is the unit that receives packeted accelerometer data from all the sensors, sorts it out and stores it on a media. For some of the measures, this unit has been an ordinary laptop computer equipped with an USB radio module. With data being stored on the



Figure 2.1: Equipment used for measuring accelerometer data of epileptic seizures. Three accelerometer sensors, wrist bands for fixation of sensors to wrists and a portable logger unit for reception and storage of accelerometer data.

pc's hard drive. Also, a portable logging unit based on a Primer 2 development kit has been developed and used for some measurements. [5] The portable Primer 2 based unit being better suited for real life measurements since it is no larger than a cellular phone and lightweight with a battery time of at least one day. Here the data are stored on a regular microSD card.

## 2.1.3 Fixation

For the wrist sensors, special wrist bands similar to those used on arm watches have been developed. The chest sensors has so far been attached by medical tape. In the final product a smart attachment solution using textiles will probably be used. For women specially designed bras might be another good option. Overall, ideas involving designing clothes to accommodate the sensors are being investigated.

## 2.1.4 Radio communication

The data is transferred between the sensor boxes and the logging unit using a radio protocol called "ANT" from Dynastream Innovations Inc. This radio protocol is designed for low power, short distance and relatively low baud rate communication. It operates in the 2.4 GHz frequency band, which is the ISM band open for unlicensed use in the most countries worldwide. It has an operational range of about 10 meters (personal experience) and is considered a PAN or "personal area network". This means that the logging unit must be close to the patient at all times of data gathering, preferably carried by the patient or located in the same room (if a relatively small room). The baud rate of "ANT"

is at most 19 kb/s if using a certain mode of communication known as burst[6]. However this mode has its disadvantages, with the communication mode currently used, known as broadcast, the maximum baud rate is about 12.8 kb/s. This puts the epilepsy application close to the maximum communication speed of the protocol.

## 2.1.5 Sampling procedure

The microcontroller in the sensor box sample acceleration in three dimensions about 50 times per second. This accelerometer data as well as battery voltage and sensor temperature are then packeted and sent to the logging unit at appropriate intervals. The logging unit receives data from several sensor boxes at the same time. It merges the data and stores it in to a single data file. This data file is in later stages used for signal processing and classification.

## 2.2 Data

For evaluating the method, data have been gathered in two ways:

## 2.2.1 Sahlgrenska data

At Sahlgrenska university hospital, patients are held for observation and EEG analysis for a couple of consecutive days with the purpose of properly diagnosing their state and evaluating treatment. Under the supervision of a neurologist, IMEGO has had the opportunity to carry out accelerometer measurements on epilepsy patients which have given their consent. Patients are supervised by nurses around the clock and the EEGdata is analyzed by neurologists after the observations. In such an controlled environment, it is possible to record exactly when a patient is having a seizure. The advantage of this procedure is that the seizure accelerometer data is recorded and then confirmed by experts and patients themselves. The disadvantage is that the measurements are done in an unnatural setting. Because the patients movements are restricted by the length of the cords for the electrodes connected to their scalps (the most they are able to do is eat, sleep, watch tv, etc) day-to-day activities such as walking, cleaning, performing manual labor, etc, are never recorded into these data sets. Furthermore, certain procedures performed on a patient after a seizure might interfere with the actual seizure behavior or become discriminatory themselves. For example, the nurse needs to confirm the seizure and awakening from the seizure by communicating and touching the patient each time. The classifier might accidentally be trained to recognize the movements associated with such procedures. If a classifier is trained for this behavior it will not be able to find the seizures in real life when no nurse is there to perform the procedure during each seizure. Finally, the fact that the patient is constrained to a bed might also remove seizures that occur at standing posture. This could be problematic if the classifier is trained on a patient who lies on a bed but is used on the same patient in every day life.

## 2.2.2 Simulated seizures

This data are gathered by performing measures on individuals who are not experiencing true epileptic seizures. However, the individual performs a certain choreographed movement pattern (which is believed to resemble an epileptic seizure) at specific times. The advantage of this way of measuring is that the patient can be measured during normal life activities as well as during some more active tasks. Consequently, there is no risk at all of missing a seizure reference point because of uncertainties in EEG data analysis or other problems that might occur in the data recorded on real patients. The disadvantage is though, that the movement pattern might not resemble a true epileptic seizure or that there might be small differences in each "seizure" movements due to the fact that these "seizures" are actually cognitively controlled actions.

## 2.3 Features

In the prior master thesis [3] a number of summary statistics were derived from the accelerometer data. These statistics (henceforth referred to as "features") serve the purpose of presenting the accelerometer data in ways believed to hold greater discriminatory power between seizures and non-seizures, compared to the raw acceleration values. In this thesis, such features serve as the data space on which the proposed method performs the classification.

The features are calculated each second and are comprised of accelerometer values gathered at 50 Hz from one or several sensors and dimensions during a time span of one or four seconds (depending on feature). The wider four second time intervals are used for the "DC" values (see sec. 2.3.1). Since the features are extracted each second the wider time interval will make the DC components from neighboring time instances dependent. In most cases the features from different time instances might be regarded as independent samples but one should be aware of this DC dependence of neighboring time instances.

For each second the information is gathered in a neighborhood using a hanning window. The reason for this is to avoid "edge effects" and reduce frequency aliasing. See figure (2.2) for further understanding.

## 2.3.1 DC-values

The DC-values are calculated for each accelerometer, i.e. each sensor and dimension separately. It is a measure of the average acceleration during the time interval defined by the window function (A four second wide window). Since most of the movements have a shorter time span than 4 seconds, these measures will mostly capture the gravitational acceleration which makes them good indicators of orientation for each of the sensors.

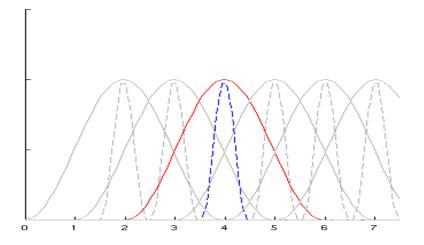



Figure 2.2: Feature extraction windows for neighboring time instances. The overlap of the wide windows (solid lines) as well as the mutual exclusiveness of the thinner windows (dashed lines) are clearly seen.

## 2.3.2 Signal magnitude area

Signal magnitude area (SMA) is a measure of the overall activity of a sensor during the windowing interval [3][7]. It includes acceleration in all directions to distinguish those time instances where there is a lot of movement, i.e.

$$SMA = \frac{\sum_{i} \left( \frac{|x_i| + |y_i| + |z_i|}{3} \cdot w_i \right)}{\sum_{i} w_i}, \qquad (2.1)$$

where  $w_i$  is the weight for time instance *i*. and defined by the windowing function used. *x*,*y* and *z* are directions in the three dimensional acceleration space. SMA features are calculated for each sensor separately. Therefore the SMA measure will have larger values for acceleration in several basis directions compared to acceleration in only one dimension.

### 2.3.3 Vector magnitude

Vector magnitude (VM) is also a measure of the overall activity of a sensor. It is basically the same as SMA but uses the vector magnitude instead of the sum of the absolute values [3], i.e.

$$VM = \frac{\sum_{i} \left( \sqrt{x_i^2 + y_i^2 + z_i^2} \cdot w_i \right)}{\sum_{i} w_i}.$$
(2.2)

Due to the presence of gravitational acceleration which will affect a still accelerometer, acceleration in directions perpendicular to g will be underestimated by the VM value.

It is not obvious which measure will discriminate a seizure from a non-seizure best, since placement of the basis directions in a smart way might cause SMA to be more or less discriminatory than the slightly less biased measure of VM. Therefore both are included even though it is believed that one of them can be excluded later on. VM features are calculated for each sensor separately.

### 2.3.4 Mean absolute magnitude difference

Mean absolute magnitude difference is the third of the overall activity measures. It is defined as

MAMD = 
$$\frac{\sum_{i} \left( \left| \sqrt{x_{i}^{2} + y_{i}^{2} + z_{i}^{2}} - 1 \right| \cdot w_{i} \right)}{\sum_{i} w_{i}}.$$
 (2.3)

Mean absolute magnitude difference works like vector magnitude but subtracts the gravitational acceleration from the measure [3]. Here the acceleration are normalized to 1G, i.e. an accelerometer in a still environment on earth will register only the gravitational acceleration of magnitude 1. Therefore the MAMD measurement yield a value of 0 when the accelerometer are still (contrary to VM which will register a value of 1). MAMD features are calculated for each sensor separately.

## 2.3.5 Periodicity

The periodicity values (PER) measure how periodic the movements are around a time instance. These features are based on the FFT transform (fast fourier transform) and compare the magnitude of the largest frequency component to the average frequency magnitude, i.e. when one particular frequency is prevalent it is an indication of a periodic movement.

$$PER = \sum_{s=x,y,z} \frac{\max_{\omega \in \Omega}(|F_s(\omega)|)}{\operatorname{mean}_{\omega \in \Omega}(|F_s(\omega)|)},$$
(2.4)

where  $F_s$  are the fourier transformation of the acceleration in the s direction during a time window  $\omega$ .

Periodicity are calculated for each sensor separately.

## 2.3.6 Frequency bands

The frequency band features are also based on the FFT transform and are calculated for some mutually exclusive frequency intervals. The idea here is to identify movements of a certain frequency that might be typical of a seizure.

The spectrum is divided among the frequency bands 0.75-2.25, 2.25-3.75, 3.75-5.25, 5.25-8.25, 8.25-13.25 and 13.25-25 Hz

Since the accelerometer data is gathered at 50 Hz the Nyquist frequency is 25 Hz (Shannon sampling theorem: No frequency component larger than half the sampling frequency can be identified [8]) and a frequency higher than that can not be extracted from the data. In the case where data have been gathered using radio transmission, there is a possibility of

data loss. In such cases the missing samples are estimated by interpolation. This might make the highest frequency band less reliable. Frequency band features are calculated as a sum for each sensor module.

### 2.3.7 Correlation

While all the other features have been calculated separately for each sensor. The correlation features measure the correlation between different sensors. There are one definition for the linear correlation (see eq.2.5) and one for the circular correlation (see eq.2.6).

The correlation measures how similar two sensors move compared to each other. If both the left and right arm perform the same movement this will give a high response in the correlation features that compares the arm sensors with each other.

The linear correlation,

$$\operatorname{lincorr}(f,g) = \sum_{k=\kappa} \sum_{i=\{x_f, y_f, z_f\}} \sum_{j=\{x_g, y_g, z_g\}} \frac{\mathbf{a}_{\mathbf{i}}[k] \mathbf{a}_{\mathbf{j}}[k]}{|\mathbf{a}_{\mathbf{i}}[k]| |\mathbf{a}_{\mathbf{j}}[k]|},$$
(2.5)

measures similarity if two sensors move in phase, i.e. the acceleration is more or less identical on both sensors such as linear spasms. The circular correlation,

$$\operatorname{circorr}(f,g) = \sum_{k=\kappa} \sum_{i=\{x_f, y_f, z_f\}} \sum_{j=\{x_g, y_g, z_g\}} \frac{\mathbf{a}_{\mathbf{i}}[k] \alpha_{\mathbf{j}}[k]}{|\mathbf{a}_{\mathbf{i}}[k]| |\alpha_{\mathbf{j}}[k]|},$$
(2.6)

- . -

. . .

measures the similarity if two sensors move with a 90° phase shift such as in a circular movement. Here f and g are sensors,  $\mathbf{a_i}[k]$  are the acceleration at the **i** direction and sensor at time instance k and  $\alpha_i$  are the same as  $\mathbf{a_i}$  but with a 90° phase shift.  $\kappa$  are the set of sample points inside the window of the current time instance.

# Chapter 3

# Theory

In this chapter, general methods and concepts used in this thesis are explained. The actual implementation of the concepts introduced in this chapter are later presented in chapter 4.

## 3.1 Clustering

Clustering or cluster analysis is the task of dividing a data set into subsets where members of a subset share some common characteristics. Clustering is a form of unsupervised learning and the subsets ("clusters") retrieved are usually not known a priori. Compared to the related field of classification, where the subsets are known in advance and the task is to find discriminatory properties, clustering is used more as an exploratory analysis tool.

#### Examples of usage

- In high dimensional data (higher than 3 dimensions) it is difficult to visualize the data distribution. Cluster analysis is a way of extracting information from a data set that is not possible to evaluate by eye.
- Cluster analysis can be used as a form of dimension reduction when the number of clusters are fewer than the dimension of the data. The membership values are then the new dimensions. This application of cluster analysis is probably more useful when using a "fuzzy" cluster algorithm, i.e. the membership values are continuous instead of discrete or dichotomous.
- Taxonomy, using cluster analysis as a tool for defining different classes of data.

#### Overview

A cluster algorithm strives to minimize a cost function, using some kind of similarity measure. Choice of algorithm and cost function depends on the application. The subject of cluster analysis and measures are vast and in this section only theory relevant for the thesis and overall understanding will be presented.

There are basically three types of cluster algorithms [9]:

- The *combinatorial algorithms* cluster data without any assumption of an underlying probability model.
- The *mixture modelling* algorithms assume that the data are distributed according to a parameterized probability model consisting of component density functions, where a component density function can be any parameterized probability density function. These algorithms try to fit the parameters of the presumed probability model to some training data. This is usually done by maximum likelihood or corresponding Bayesian methods or estimates thereof.
- The *mode seeking* algorithms also assume an underlying probability model but use a non parametric approach.

A human being is very well adept at recognizing clusters in 1-,2- or 3-dimensional data. Take a look at the data set in figure 3.1. Intuitively a human will find 2 separate clusters in this image. A smaller circular shaped cluster on the left and a larger more vertically outspread cluster on the right. However to accomplish this clustering with computer algorithms might not be so obvious. First of all, the algorithm can not presume a certain shape, since the two clusters have different shapes. Secondly, the algorithm can not presume a specific number of clusters since it could have been a different number of clusters in the figure but a human would still recognize them.

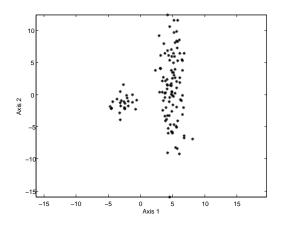



Figure 3.1: A 2 dimensional data set generated by two different Gaussian.

Data are usually vast, therefore, clustering algorithms need to work with huge amounts of data and the computational complexity will rapidly increase. It is usually important to use some heuristics to implement a computational simple algorithm that in general would not have worked so well, but because of information known a priori about the problem might be possible to tune for better performance.

### 3.1.1 K-means

This is one of the simplest algorithms and a standard method for clustering. It is a combinatorial and iterative algorithm with a fixed number of clusters specified in advance. Each cluster is characterized only by a centroid. Sample points are members of only one cluster which is the cluster with the closest centroid to their location.

The k-means algorithm is generally defined as follows[9][10]:

1. Perform some normalization on the data such that all dimensions of the data have the same scaling. Usually the data is normalized with the z-score.

$$\hat{X}_i = \frac{X_i - \mu}{\sigma},\tag{3.1}$$

where X is the original observation and  $\hat{X}_i$  is the z-score for the same observation.

2. Choose initial values for the k centroids. The choice of initial points might be random, based on prior knowledge or both.

$$C_i = \varpi_i, i = 1, \dots, k, \tag{3.2}$$

where  $\varpi_i$  is a, possibly random, process for choosing the starting location of the *i*:th cluster.

3. Assign all observations to their respective closest centroid.

$$m_j = \underset{i}{\operatorname{argmin}} \|X_j - C_i\|_{l^2}^2, j = 1, \dots, N,$$
(3.3)

where N is the number of observations.

4. Calculate the mean of all observations belonging to each cluster. Assign the centroids the new values of these means.

$$C_{i} = \frac{1}{J_{i}} \sum_{i=1}^{k} X_{j} \omega\{m_{j} = i\}, \qquad (3.4)$$

where  $J_i$  is the number of observations that are currently members of the *i*:th cluster, k are the number of clusters,  $\omega$  is 1 if the statement inside the curly brackets are true and 0 if false,  $m_j$  is the membership function of the *j*:th observation (assuming a value in between 1 and k).

5. Steps 3 and 4 are iterated until  $m_j$  values do not change anymore.

As can be seen from the algorithm this clustering method might not actually find the global minimum and can be sensitive to the initial values  $\Phi_i$ . However, it is a relatively

fast algorithm that does not assume any probability distribution. Therefore it is widely popular and usually regarded as the standard method.

It uses the Euclidean distance measure from the cluster centers. This creates linear borders that are not adapting to a special shape of a cluster. This can clearly be seen in figure (3.2) which is a k-means clustering of the data set from figure (3.1).

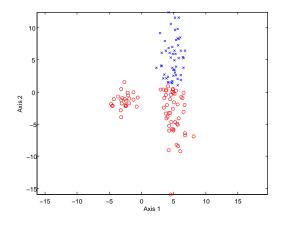



Figure 3.2: K-means clustering with k = 2 on the data set of fig.3.1.

## 3.1.2 Gaussian mixture

Gaussian mixture clustering is an example of a *mixture modelling* method. As the name suggests it assumes an underlying probability model of k Gaussian distributions.

$$f_{gm}(x) = \sum_{i=1}^{k} \pi_i f_i(x)$$
(3.5)

where  $f_i$  is the probability density function of a Gaussian distribution and  $f_{gm}$  is the probability density function of the Gaussian mixture distribution.  $\pi_i$  is the mixture coefficient. The mixture coefficients are all positive and sum up to unity.

Just as the k-means algorithm the general implementation of Gaussian mixture clustering has the drawback of performing a fit of exactly k clusters even though the data might be better suited for another value of k. However, the shape of the clusters are adapted to Gaussian shapes, which in many applications is a satisfactory shape adaption.

A Gaussian mixture clustering of the data in data set figure (3.1) can be seen in figure (3.3). The figure portray a perfect fit. This is a little misleading since the original data set was actually derived from two Gaussian distributions, the figure does nonetheless show a great advantage of Gaussian mixture clustering over k-means clustering.

#### Maximum likelihood estimate

Usually the fit of Gaussian distributions to the data given is performed by maximum likelihood estimation. The maximum likelihood estimate  $(\hat{\theta}_{MLE})$  of a parameter  $(\theta)$  is

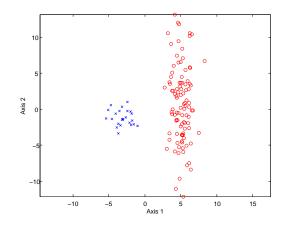



Figure 3.3: Gaussian mixture clustering with k = 2 on the data set of fig.3.1.

defined as the parameter value for which the likelihood function

$$L(\theta, \mathbf{x}) = \prod_{i=1}^{N} f(x_i | \theta)$$
(3.6)

of the given data set  $(\mathbf{x})$  reaches its maximum. Where  $f(x|\theta)$  is the density or mass probability function of a distribution with the presumed probability model and  $\theta$  is the parameter vector.

The likelihood of a parameter set  $(\theta)$  from the study of a sample  $(\mathbf{x})$  is defined by the likelihood function (eq. 3.6)[9]. It is a measure of how likely it is that  $\mathbf{x}$  was the outcome of samples of a random variable with an assumed probability model with parameters  $\theta$ . The likelihood function is thought of as a function of  $\theta$  with the data  $\mathbf{x}$  being fixed. The maximum likelihood estimator for  $\Theta$  is then

$$\hat{\theta}_{MLE} = \operatorname*{argmax}_{\theta} L(\theta, \mathbf{x}) \tag{3.7}$$

Assuming that the likelihood function is the best measure to assess the fit of parameters to a sample, the  $\hat{\theta}_{MLE}$  is the best fit of any parameters to the given sample.

Often it is easier to calculate the log-likelihood function due to the sum instead of products, i.e.

$$l(\theta, \mathbf{x}) = \log L(\theta, \mathbf{x}) = \sum_{i=1}^{N} \log f(x_i | \theta)$$
(3.8)

Since the likelihood function is positive and argmax is the same for both functions it is satisfactory to maximize the log likelihood instead.

In the case of a Gaussian mixture model the log-likelihood function would be defined as eq. 3.9.

$$l_{GM}(\theta, \mathbf{x}) = \sum_{i=1}^{N} \log \left( \sum_{j=1}^{k} \pi_j f_{\theta_j}(x_i) \right)$$
(3.9)

Where  $\theta = (\pi_1, \theta_1, ..., \pi_k, \theta_k)$  and  $f_{\theta_j}$  is the probability density function of a Gaussian with parameters  $\theta_j = (\mu_j, \sigma_j)$ .

To find the MLE (maximum likelihood estimate,  $\operatorname{argmax} l(\theta, \mathbf{x})$ ) the usual analytical way would be to differentiate the log likelihood function. Set derivatives to zero as well as some additional constraints to prevent local maximas or minimas and saddle points to be detected. Solve the system of equations. For mixture models these equations usually turn out to be highly non linear and impossible to solve analytically. In reality numerical methods are used to find MLE estimates.

#### EM algorithm

A popular algorithm for estimating  $\hat{\theta}_{MLE}$  is the EM algorithm. This is an iterative algorithm which is proven to converge towards a global maximum likelihood. It also has the advantages of low cost per iteration, low storage demand and relative ease of programming. It is known however to converge very slowly in some situations[11].

The algorithm is in a more generalized setting a method for acquiring the MLE from missing data. In the case of a mixture probability model the missing data are which observations that are derived from which component probability distribution. Here each observation from the mixture distribution is seen as being derived from one and only one particular component distribution. Let  $\Delta_i^{(j)}$  denote the source of the observation ( where  $\Delta_i^{(j)} = 1$ , if the *j*:th component distribution is the source of the *i*:th sample and  $\Delta_i^{(j)} = 0$ , otherwise). Then the dichotomous  $\Delta$ -matrix is the missing data and equation eq.(3.9) can be written as:

$$l_{GM}(\theta, \mathbf{x}) = \sum_{i=1}^{N} \log \left( \sum_{j=1}^{k} \Delta_{i}^{(j)} \pi_{j} f_{\theta_{j}}(x_{i}) \right) = \sum_{i=1}^{N} \sum_{j=1}^{k} \Delta_{i}^{(j)} \left( \log \pi_{j} + \log f_{\theta_{j}}(x_{i}) \right), \quad (3.10)$$

where the last equality comes from the fact that  $\Delta_i^{(j)}$  can only be 1 for one j for each i value. If the  $\Delta$ -matrix was known the parameters would be quite easy to estimate.  $\pi_j$  would simply be the number of i values for which  $\Delta_i^{(j)} = 1$  divided by N. The  $\mu_j$  would be the sample mean of all  $x_i$  for which  $\Delta_i^{(j)} = 1$  and  $\sigma_j$  would be the corresponding standard deviation. Therefore the problem would be solved if the  $\Delta$ -matrix was known. The EM algorithm searches for  $\Delta$ .

EM stands for Expectation and Maximization. The algorithm consists of an expectation step and a maximization step which is successively performed in each iteration step. To start, some initial values are chosen for the parameters ( $\theta$ ). If no prior information is known the  $\mu_j$ -values can be set to  $x_i$  for some *i*:s chosen at random. The  $\sigma_j$  values can all be set to the standard deviation of the entire sample set. The component coefficients  $\pi_j$  can all be set to 1/k.

In the algorithm a "soft" membership matrix values with nonzero values for all component distributions are used ( $\psi$ ) instead of the "hard" membership matrix ( $\Delta$ ) of the ideal scenario. The algorithm is defined as[9]:

- 1. Choose initial values of the parameters  $(\tilde{\theta})$ .
- 2. Expectation step: Compute the membership matrix

$$\psi_i^{(j)} = \frac{\tilde{\pi}_j f_{\tilde{\theta}_j}(x_i)}{\sum_{l=1}^k \tilde{\pi}_l f_{\tilde{\theta}_l}(x_i)}$$
(3.11)

3. Maximization step: Maximize likelihood

$$\tilde{\mu}_j = \frac{\sum_{i=1}^k \psi_i^{(j)} x_i}{\sum_{i=1}^k \psi_i^{(j)}}, \quad \tilde{\sigma}_j^2 = \frac{\sum_{i=1}^k \psi_i^{(j)} (x_i - \tilde{\mu}_j)^2}{\sum_{i=1}^k \psi_i^{(j)}}, \quad \tilde{\pi}_j = \frac{1}{N} \sum_{i=1}^N \psi_i^{(j)} \quad (3.12)$$

4. Iterate step 2 and 3 until convergence.

# 3.2 Classification

There is a demand for robust classifiers in a large and growing number of applications: Recognizing cancer tumors from moles, radar echoes from electronic noise, sad faces from happy faces, etc. In this thesis classification is the main core of the problem, classifying accelerometer values as belonging to seizure movements or not.

For the subject of the thesis let us make a distinction between cluster analysis and classification. Even though cluster analysis (see section 3.1) can be used for classifying data and therefore can be viewed as a method of classification it does not infer some prior knowledge in to the classification. In this thesis "classification" refers to methods of "supervised learning". In this concept some prior information, usually a data set with known class memberships, is used to train the classifier to classify new data (contrary to cluster analysis which is often referred to as "unsupervised learning"). The classifier will then draw conclusions from the training data and use this to classify new data.

Usually a classifier needs to make a choice if an observation belongs to a class or not. The null hypothesis being that the observation does not belong to the class. Such problems occur when having only two classes or when having several classes but with a strong background class so that the other classes do not generally compete with each other. In such cases, classifying a sample with respect to a particular class can yield four outcomes.

- A True positive. A correct classification of the observation as belonging to the class of interest. Correctly rejecting a false null hypothesis.
- A False positive. An incorrect classification of the observation as belonging to the class of interest when it do not. This is also known as a type I error and occurs when incorrectly reject a true null hypothesis.
- A True negative. A correct classification of an observation as not belonging to the class of interest or a correctly accepting the null hypothesis.
- A False negative. An incorrect classification of an observation as not belonging to the class of interest when it actually does. This is usually known as a type II error and occurs when incorrectly accepting the null hypothesis.

Usually a classifier will not perform a completely accurate classification on a given problem. Depending on the application there is usually an asymmetric severeness of the type I error to the type II error. Therefore it is common in many implementations to weigh the classifier parameters to decrease the risk of one type of error on the cost of an increase of the other kind of error.

## 3.2.1 Quadratic discriminant analysis

Quadratic discriminant analysis is a parametric classification method based on normal theory. It approximates all classes with Gaussian distributions. This does not say that the samples from the classes need to be Gaussian distributed. The method can work well on non Gaussian data as well but is not guaranteed to do so. Quadratic discriminant analysis (QDA) is based on Bayes theorem.

#### **Theorem 3.1** Bayes theorem

If  $H_1, ..., H_n$  are exclusive and exhaustive events on a sample space  $\Omega$  and K are some event in the same sample space. Then

$$\mathbb{P}(H_i|K) = \frac{\mathbb{P}(H_i)\mathbb{P}(K|H_i)}{\mathbb{P}(K)}$$
(3.13)

[12] Since each observation in the data is considered sampled from one and only one class, the classes are considered exclusive events. It is further assumed that the amount of classes in existence are known so the classes are also exhaustive (an observation must be a member of one of the known classes). The event that an observation belongs to the *i*:th class can then be denoted by  $H_i$ , using the notation from theorem 3.1.

Having a sample  $\mathbf{x}$ , the best classification would be the class with the maximum conditional probability. The class which under the condition of sample  $\mathbf{x}$  has the largest probability of all classes. This is known as the maximum a posteriori probability (MAP) decision [13], where the "a posteriori" comes from viewing the probability after the sample was observed, i.e.

$$\operatorname*{argmax}_{i} \mathbb{P}(H_{i}|\mathbf{x}) = \operatorname*{argmax}_{i} \frac{\mathbb{P}(H_{i})\mathbb{P}(\mathbf{x}|H_{i})}{\mathbb{P}(\mathbf{x})}$$
(3.14)

Since the denominator is constant for every choice of i, it can be omitted. Since the nominator is always positive and the maximum of the logarithm has the same argmax as eq.(3.14) the maximization can be expressed as:

$$\operatorname*{argmax}_{i} \left[ \mathbb{P}(H_{i})\mathbb{P}(\mathbf{x}|H_{i}) \right] = \operatorname*{argmax}_{i} \left[ \log\left(\mathbb{P}(H_{i})\right) + \log\left(\mathbb{P}(\mathbf{x}|H_{i})\right) \right]$$
(3.15)

Since the classes are assumed to have Gaussian distributions the rightmost logarithm can be written as:

$$\log \mathbb{P}(\mathbf{x}|H_i) = \log f_{\theta_i}(\mathbf{x}) = -\frac{1}{2} \log \left[ (2\pi)^d |\Sigma_i| \right] - \frac{(\mathbf{x} - \mu_i)^T \Sigma_i^{-1} (\mathbf{x} - \mu_i)}{2}, \qquad (3.16)$$

where  $\theta_i = (\mu_i, \sigma_i)$  are the parameters of the *i*:th class Gaussian distribution.  $\mathbb{P}(H_i)$  is the prior probability of an observation belonging to the class *i*, let us denote it by  $\pi_i$ .

The quadratic discriminant is defined as

$$g_i(\mathbf{x}) = \log(\pi_i) - \frac{1}{2} \log\left[ (2\pi)^d |\Sigma_i| \right] - \frac{(\mathbf{x} - \mu_i)^T \Sigma_i^{-1} (\mathbf{x} - \mu_i)}{2}$$
(3.17)

and the maximum discriminant corresponds to the same class as implied by the Bayes classification (eq. 3.14).

The reason why it is called quadratic is because of the quadratic term as opposed to linear discriminant (see section 3.2.1). Because of the quadratic terms the decision boundaries of a QDA classifier can be described by quadratic functions.

For training a QDA classifier the training data are used to estimate the parameters  $\theta = (\pi_1, \mu_1, \Sigma_1, ...)$ . The  $\pi_i$  is estimated by the number of observations belonging to the *i*:th class divided by the total number of samples in the training data. However the  $\pi_i$ -values are often simply used as weights for weighing false negatives to false positives. The  $\mu_i$  and  $\Sigma_i$  are estimated using only the observations belonging to the *i*:th class in the training data. It is important to have enough observations in every class in the training data. If there are too few observations in a class the covariance matrix  $\Sigma$  might be ill posed.

When classifying a new sample  $(\mathbf{x})$ , the quadratic discriminants  $g_i(\mathbf{x})$  are calculated and the *i* corresponding to the largest discriminant value is chosen as the class of origin.

Compared to more advanced parametric classifiers the QDA usually behaves surprisingly well. According to [9] this can be explained by the more reliable parameter estimates. While the quadratic constraint gives a bias to the model the comparably stable parameter estimates make up for this bias. Especially when using training sets which are small or unreliable.

#### Linear discriminant analysis

Linear discriminant analysis uses basically the same theoretical construction as QDA but assumes a common covariance matrix for all the classes. When comparing two discriminants with each other, using the same covariance matrix we obtain:

$$g_{i}(\mathbf{x}) > g_{j}(\mathbf{x}) \Leftrightarrow \log f_{\theta_{i}}(\mathbf{x}) + \log \pi_{i} > \log f_{\theta_{j}}(\mathbf{x}) + \log \pi_{j} \Leftrightarrow$$

$$\Leftrightarrow \mathbf{x}^{T} \Sigma^{-1}(\mu_{i} - \mu_{j}) > \frac{(\mu_{i} + \mu_{j})^{T} \Sigma^{-1}(\mu_{i} - \mu_{j})}{2} - \log(\frac{\pi_{i}}{\pi_{j}})$$

$$(3.18)$$

As can be seen, there is a linear decision boundary between the two classes. Therefore the name "linear discriminant analysis", the decision boundaries are hyperplanes. The LDA classifier, even though it seems like an extreme simplification, is known to generally perform well on a large set of diverse classification problems [9]. This is believed to derive from the stable estimation of the parameters. The linearity constraint introduces a bias but the low variance of the parameters are known to make up for the bias compared to more advanced classifiers [9]. Just as LDA, QDA is considered a very simple classifier and QDA and LDA share the same pros and cons. The greatest reason for choosing LDA instead of QDA is that the amount of training data compared to the number of dimensions makes the covariance matrix estimation unreliable. Pooling all the data from all classes together can then increase the stability of the covariance matrix considerably.

An interesting note is the fact that the LDA arises automatically in a two class least square regression without any assumption of Gaussian distributions [9].

#### 3.2.2 K-nearest neighbors

The k-nearest neighbor (KNN) classifier is a non parametric classifier that can accommodate arbitrary decision boundaries. It is a simple and relatively intuitive algorithm that makes very mild assumptions on the structure of the classes. The downsides are that the classification can, for certain data sets, exhibit unstable classification and usually the classifier requires comparable large storage space and computational complexity compared to parametric classifiers [9].

In KNN a new data sample is compared with the training data. The k-number of training data samples that are closest to the new sample (a distance measure, often Euclidean distance) is used to classify it. Usually a simple majority vote among those k training samples decide which class the new sample is assigned to (see eq. 3.19). It is also possible to have fuzzy membership functions, meaning that more than one membership function might be nonzero and the observations are to some degree part of several classes at the same time. In such a case, the amount of the k neighbors that belongs to a certain class can be used as the membership value for that class and observation.

$$l = \underset{j}{\operatorname{argmax}} \sum_{i \in \{i; \mathbf{y}_i \in N_k(\mathbf{x})\}} m_j(\mathbf{y}_i),$$
$$m_j(\mathbf{x}) = \begin{cases} 1, & j = l\\ 0, & \text{otherwise} \end{cases},$$
(3.19)

where  $\mathbf{x}$  is a new observation of unknown origin,  $\mathbf{y}_i$  is the *i*:th observation with known origin,  $m_j(\mathbf{x})$  is the membership function of class *j* for observation  $\mathbf{x}$ ,  $m_j(\mathbf{y}_i)$  is the membership function of class *j* for observation  $\mathbf{y}_i$  and  $N_k(\mathbf{x})$  is the neighborhood hypersphere of  $\mathbf{x}$  large enough to include exactly k of the nearest neighbors in the training set.

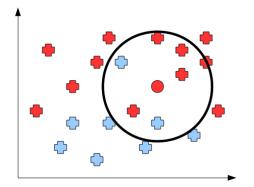



Figure 3.4: Test sample (circle) classified using k-nearest neighbor classification with majority decision and k = 7. Training set (cross)

#### Curse of dimensionality

An effect that occurs when increasing the dimensionality of a classification problem while maintaining the same number of observations is the so called "curse of dimensionality". This effect causes a reduction in classification performance under such circumstances. Since adding dimensions to a data set will add additional information, it might seem strange that the classification performance would decrease. One way of explaining this in the KNN sense is by imagining a scenario in one dimension with x number of training observations inside a line of length unity. The Euclidean distance between a new observation of unknown origin and its nearest neighbour in the training set, let us call the distance y, which is simply the absolute difference in between their one dimensional coordinates. If we would keep the same x number of training observations but have two dimensions, the observations forced to be inside a box with borders of unit length. If we would insert a new observation of unknown origin into this box somewhere, than on average the Euclidean distance to the nearest training data would be further (assuming the new observation was sampled from a uniform distribution). This is realized by studying the Euclidean distance measure between two points in a d-dimensional space.

$$l(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^{d} (x_i - y_i)^2}$$
(3.20)

Increasing d will always increase the measure by extra terms inside the square root.

This shows that with higher dimensions the average space between new points and training points increases as well as average space between the training points themselves. With further distance between the new sample and the training data the uncertainty increases. With those extra dimensions the actual classification boundary might be more complex and might require more training data to account for. This is called "curse of dimensionality".

This explanation gives an understanding of why it is attractive to work in low dimensions and vast training data with KNN. The curse of dimensionality is, however, present for all kinds of classification and regression techniques. For a parametric classifier the effect can be understood by the following explanation: The parameters of a multidimensional parametric classification model are dependent on the number of dimensions. By increasing the dimensionality, the number of parameters of the model increases as well. Keeping the training data size constant while increasing the parameters will decrease the quality of the estimated parameters. A lower estimation quality of the parameters will reduce the classification performance. [14]

#### Computer complexity

As mentioned above the KNN algorithm has a comparably higher memory usage and is computationally more complex than most of the parametric classifiers. The straightforward way presented above requires calculation of the distance from each new sample point to all sample points in the training set. The computational complexity of this is of the order O(MNd), i.e.

$$\sum_{j=1}^{M} \sum_{k=1}^{N} \sum_{i=1}^{d} (x_{ki} - y_{ji})^2 \Rightarrow O(M \cdot N \cdot d), \qquad (3.21)$$

where  $y_{ji}$  are the *i*:th dimension of the *j*:th observation in the training set, which has M number of observations.  $x_{ki}$  are the *i*:th dimension of the *k*:th observation in the test set, which has N number of observations.

Since M is usually needed to be quite large to give a satisfying classification performance, the algorithm will be quite computationally complex. Also M will be dependent on d because of the curse of dimensionality so a larger d will increase the complexity more than is obvious from the equation.

Moreover the M training observations need to be stored in memory and accessed quite frequently during the classification. Since M might be very large and/or the classifier might be realized on a small embedded system this is a big drawback of the straightforward KNN algorithm. Some reduction techniques exist but the KNN algorithm is still quite computational and memory demanding compared with parametric classifiers.

Computational reduction can often be achieved due to redundancy in training data information. Often the decision boundaries are defined by only a few samples around the borders while the bulk of the samples are present deep inside, far from the decision boundaries. Removal of such inner points would not affect the classification performance while reducing the computational complexity and storage demand heavily. Another method of reducing the computational complexity is to divide the sample space in to mutually exclusive domains. When testing a new sample, the k nearest neighbors would only need to be evaluated among the training data inside the same domain and neighboring domains of the test observation.

## 3.3 Transition matrix

For this thesis the aim is to find epileptic seizures using accelerometers. For the more subtle seizures, the feature value at a certain time instance in itself might not be discriminatory of a seizure. Also, some time instances in what is marked as a seizure is normal behavior prior or after the actual seizure. Here, the key idea is that a seizure is made up of certain episodes in a specific order. Each episode might be recognizable through the feature values for those time instance. The discriminatory information then lies in the order and duration of such episodes (see fig. 3.5).

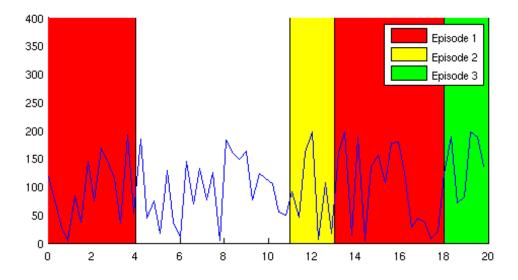



Figure 3.5: Example of how a seizure might be characterize by a certain order and duration of its episodes.

In this thesis, we have developed a "transition matrix" extraction technique. These "transition matrices" has been developed to represent the duration and order of episodes during a fixed time interval. Each transition matrix represent the order and duration of episodes during the interval between two points in time  $(t_1 \text{ and } t_2)$ . There is a fixed time length, k, between  $t_1$  and  $t_2$ . The time interval is then moved one discrete time step for every extracted transition matrix. In this way there is a transition matrix representing the order and duration of episodes during any time interval of length k amongs the data.

Prior to the extraction of the transition matrices, the episode memberships of each time instance are assumed to be known. The diagonal of the transition matrix simply holds the sum of all membership values for a certain episode during the specified time interval. The diagonal of the first row is the sum of the episode enumerated as '1' etc. The summation is carried out through a convolution with the sum kernel  $K_s$ ,

$$K_s = [1, ..., 1, 0, ..., 0].$$
(3.22)

The amount of '1': in the  $K_s$  kernel is equal to the k-value, i.e. it sums the k number of time instances membership value forward in time from the base of the transition matrix.

The amount of '0': is one less than number of '1':s. The diagonal values are calculated using

$$T_{ii}[n] = \{f_i * K_s\}[n] = \sum_{m=n}^{N-1} f_i[m] K_s[n-m], \qquad (3.23)$$

where  $f_i[m]$  is the membership value of the *i*:th cluster and *m*:th time instance,  $T_{ii}[n]$  is the value of the *i*:th diagonal element of the *n*:th transition matrix. The Kernel index  $K_s[x]$  is from the middle of the kernel, i.e. index values x > 0 are zero valued and index values  $x \leq 0$  have the value of one.

The non diagonal elements of the transition matrix hold measures of the transition from one episode to another. These measures are extracted by iterating through all time instances in the time interval k similarly to how the diagonal was acquired. However, instead of just summing the membership values of each cluster it sums up transition probabilities between two episodes.

The probability values are represented by the  $G_j[n]$ -values. These values are the difference between the number of *j*-episodes that exist in a small neighbourhood, *l*, after the *n*:th time instance as compared with the number of *j*-episodes that exist in the neighbourhood with length *l* prior to the *n*:th time instance. If the value is negative, i.e. there are more *j*-episodes present prior than after *n*, the value will be thresholded to a zero value.

The G values are then multiplied with the membership functions  $f_i[n]$  to register a probability of a transition from episode *i* to episode *j*. One might think that it would be easier to present a transition as  $f_i[n]$  multiplied with  $f_j[n+1] - f_j[n]$  but due to the presence of noise, this would not have been a robust measure of transitions. The G values works by averaging in some sense.

 $G_j[n]$  is defined as

$$G_j[n] = \max\left(\{f_j * K_t\}[n], 0\right), \tag{3.24}$$

(3.25)

where  $K_t$  is the smaller convolution kernel, referred to as the "transition kernel" (in comparison with the "summation kernel"  $K_s$ ):

$$K_t = [1, ..., 1, -1, ..., -1], (3.26)$$

with the length of two times l number of time instances. The length of l should be longer than 1 second but not much larger. A value around 10 seconds should give relatively stable transition estimates.

The actual values on the non diagonal of the *n*:th transition matrix,  $T_{ij}$ , for the *i*:th row and *j*:th column is the transitions between episode *i* to episode *j* summed up over the same time interval *k* as was used in the diagonal. This is simply defined as the sum of all  $G_j[n]f_i[n]$  values for all  $n \in [t_1, t_2]$ . The summation is performed by a convolution with the  $K_s$  kernel just as in the case with the diagonal.

$$T_{ij}[n] = \{ (G_j f_i) * K_s \} [n], \quad i \neq j$$
(3.27)

See figure 3.6 for a simple sketch of the fields in the matrix, also see figure 3.7 for further understanding on the summation and transition kernels.

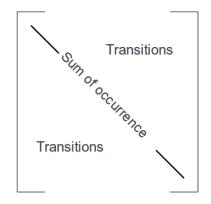



Figure 3.6: Explanatory sketch of a transition matrix.

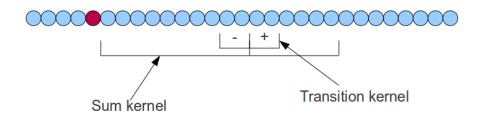



Figure 3.7: Explanatory sketch of the kernels summing up values at different time instances. The colored time instance show the base of the current transition matrix. The time interval of the sum kernel is marked. Also the time interval for one *n*-value of  $G_j$  is marked.

## 3.3.1 Extreme value characterization

Logging extreme values in a specific time interval is an alternative to the regular transition matrix. It is mainly implemented for working on feature space data directly without a prior clustering analysis. The idea is that some seizures might have high extreme values in different dimensions inside them. By gathering the extreme values for each dimension during a specified time interval a typical seizure behavior might be found. This idea was developed to mimic the way I (the author) was searching for seizures in the data using graphs of the feature space.

There is no matrix notation associated with this use. Instead there are the original dimensions of the features. Where each time instance will have the value of the chosen extreme value for each dimensions. The extreme values are found in a neighborhood of k number of time instances forward in time from the base instance.

## **3.4** Dimension reduction

Since classifiers perform worse if the dimensionality of a system increases while the number of samples are constant (see sec 3.2.2), reducing the dimensionality while still keeping the discriminatory information is useful. This section recalls two techniques that can be used for reducing dimensionality while minimizing loss of important information.

Beside these two techniques there are many other ways of performing dimension reduction. The cluster analysis techniques described in section 3.1 can for instance be used as ways of reducing dimensionality, as long as the number of clusters are lower than the number of dimensions. One can also look at the way that cluster analysis is used in this thesis as a way of performing dimension reduction as well (see sec 4), even though the cluster analysis in this thesis also serves other purposes. For a more exhaustive introduction to dimension reduction in general the interested reader should have a look at [13] and the other related articles in the same issue of the journal.

## 3.4.1 Principal component analysis

Principal component analysis (PCA) is a popular dimension reduction technique that does not infer any prior knowledge of what kind of information that is important. It is in this aspect a blind technique that only reduces dimensions based on the variation of data itself.

The principal component analysis will find an orthogonal basis of the data with basis vectors sorted by the overall variance present in their direction. By this technique the linear subspace that accounts for a certain amount of the overall variance can be extracted. PCA can be very effective when some of the sample variables are linearly dependent of each other which usually occurs in real life applications with many dimensions. Typically for an implementation a variance threshold or a maximum number of dimensions are stated. The linear subspace which accounts for the variance threshold are then extracted using PCA.

Assuming that the data has been normalized in advance such that each dimension is of the same order (z-score), the subspace of lower variance will represent the information which are not changing as much as the others inside the data set. Information that do not change might not be as important in an implementation. Beside from the fact that this is probably an indication of that less important data are present in this subspace, this subspace will be more affected by noise since the actual data themselves do not differ so much. Therefore, in applications it is customary to regard the low variance subspace as noise or at least disturbed by noise. In fact the reduction of this "noise" might actually enhance the classification due to greater disparity at low variances [13]. Except from reducing dimensions and suppressing noise, PCA, by removing linear dependence among the data dimensions in itself might be an attractive feature since some analysis methods are based on inversion of covariance matrices. With linear dependence among the dimensions of data, this will cause ill conditioned matrices and thereby decrease stability and usefulness of such methods. How to determine the threshold between useful data and noise is up to the implementation. Usually some information are known or believed in advance that might help to set a proper threshold.

In a problem such as in this thesis, where the amount of data belonging to seizures and non-seizures are asymmetric and the possibility for non-seizure data to be of very different nature, it is not necessarily that discriminatory information is located in a subspace of high variance. The variance between the non seizure data alone might be much higher than that of seizure to non seizure data. Therefore a quite high variance threshold is recommended in such problems to make sure that the discriminatory information is included.

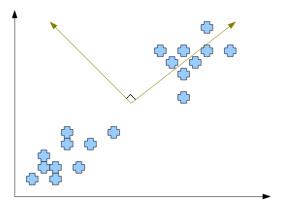



Figure 3.8: Data mainly occupies the diagonal insinuating that the two variables correlate. PCA spans the data space with a new basis with the first basis vector parallel to the diagonal of most variance. In this example the first basis vector is probably sufficient for representing the data in most cases.

#### Algorithm

Principal component analysis is based on estimation of the covariance matrix. Before estimating the covariance matrix the data need to be normalized so that each dimension have the same magnitude (if same unit/magnitude is not guaranteed implicitly).

The covariance matrix is estimated from the data.

Since a covariance matrix is real valued and symmetric it is possible to diagonalize it by a orthogonal matrix (Spectral theorem [15]). The new representation of the covariance matrix

$$C = VDV^T, (3.28)$$

where C are any covariance matrix, D are a diagonal matrix of eigenvalues and V are an orthogonal matrix with columns being eigenvectors corresponding to the eigenvalues of D, , first maps the data in to the eigenspace with,  $V^T$ , and then represents the covariance matrix in the eigenspace where the data is obviously uncorrelated as seen by the diagonal covariance matrix, D. The variances can be seen as the diagonals of D and can be sorted from largest to smallest, make sure to keep track of which eigenvalue corresponds to which eigenvector.

Once D and V are sorted in descending order the total variance of the subspace including eigenvectors  $\{v_1, ..., v_n\}$  can be calculated by:

$$T_n = \frac{1}{N} \sum_{i=1}^n D_i,$$
(3.29)

where N is the dimensionality of the original data space,  $D_i$  the *i*:th eigenvalue after the eigenvalues have been sorted and  $T_n$  the total variance of the linear subspace accounting for the largest amount of variance using n dimensions.

The principal component space is then chosen as  $\tilde{V}_n$ , which is the space spanned by the n first eigenvectors after they have been sorted by the eigenvalues in descending order. n is either chosen by a threshold on the number of dimensions to be used or by a variance threshold fulfilled by  $T_n$ .

## 3.4.2 Partial least squares discriminant analysis

Partial least squares discriminant analysis (PLS-DA) is one way of performing a goal oriented dimension reduction. Here the linear subspace with best discriminatory power between classes known a priori are extracted. It can be compared with PCA (see sec.3.4.1) where the variance is no longer the regular variance among data but instead the variance between data values of different classes. A basis direction with high variance is characterized by large difference in overall values between data samples corresponding to one class compared to the other classes.

By applying PLS-DA to a training set with known class memberships it is possible to reduce the dimensionality while retaining the discriminatory information from the data. Since fewer dimensions increases performance of a classifier the contribution of a PLS-DA based dimension reduction can be substantial.

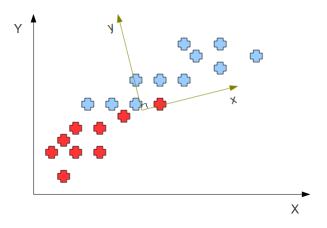



Figure 3.9: A new basis is extracted where the new x-axis have the best discriminatory properties between the red and blue data of all single directions possible.

#### Partial least square regression

PLS-DA is based on partial least squares regression (PLS-R). PLS-R can be thought of as a mixture of principal component analysis and multiple linear regression. It both transforms the dependent and independent variables to orthogonal subspaces and fits a linear model to the data at the same time. In addition, the algorithms are iterative and the user control the error bound with power to stop the algorithm when the desired precision has been fulfilled.

The PLS model has a PCA style linear subspace dependence of the dependent variables (Y) to their subspace Q and independent variables (X) to their subspace T. These dependences are known as the outer relations,

$$X = TP^T + \tilde{E} \tag{3.30}$$

$$Y = UQ^T + F. ag{3.31}$$

Moreover a linear relation is assumed between T and Q just as in multiple linear regression,

$$U = T\beta + \epsilon. \tag{3.32}$$

This linear assumption is known as the inner relation. [16]

Here T is the subspace of X, P the basis of the subspace and  $\tilde{E}$  the error term introduced by the dimension reduction. Similarly U is the subspace of Y with the basis Q and error term  $\tilde{F}$ ,  $\beta$  the linear models coefficient vector and  $\epsilon$  the error term from the linearization.

By successively increasing the number of components to use in T and performing the analysis of variance on the least squares regression defined in eq.(3.32) it is possible to compare the current variance measure with a threshold value. In this way the PLS regression can stop when demanded precision has been fulfilled. For each new principal component the problem is deflated by the prior principal components and therefore the algorithms scale well and there is very little overhead in checking variance before continuing with next principal component.

When working with categorical data such as in PLS-DA the same regression model is used but here the dependent variables have discrete values. In the case of PLS-DA one dependent variable vector for each class is needed, i.e. Y has as many columns as classes. If there is only two classes present or if there is one "mother" class outside of the smaller classes, one column can be omitted in Y. Hence PLS-DA is just using partial least squares regression on categorical data.

The name "partial least squares" derives from the fact that a least squares solution is solved in each iteration of the original algorithm.

In the PLS model, the observed variables X and Y are regarded as observations of some underlying true variables referred to as latent variables. Hence neither X or Y are assumed to be independent. In many applications of PLS modelling the aim is to find the number of those latent variables. This model is therefore popular in areas such as chemometrics and econometrics where an exploratory analysis of latent variables might be the real goal (and not necessarily discriminant analysis or regression in their own right). [17]

# 3.5 Model assessment

Evaluating the model is not a trivial task and depends on the data and the system one wants to model. A very simple model might assume too much about the system and therefore have a strong bias. This will cause the model to perform badly. On the other side of the spectrum there are models that are too complex. These models will learn to classify the training set very well but might discover tendencies that are not general for the system but exclusive for the training set itself. These models therefore have a large variance. This is known as over fitting and will cause the model to perform badly on new data.

There is always a bias-variance tradeoff when modelling a system. In a setting with vast amount of data the ideal procedure is to divide data into a training set, a validation set and a test set. The training set is used to fit the model. The validation set is compared with the fitted model to recognize over fitting, see fig.(3.10). Finally when the model is fitted with optimal parameters to approximate the validation set a test set is classified to assess the performance of the model.

Here the idea is to have the test set completely separated from the two other sets until the complete model with the optimal parameters has been fitted. In this way the test set performs like the model is expected to perform in reality. It is a good idea to perform the assessment several times with the training, validation and test sets randomly and exclusively sampled from the data. In this way a more stable assessment will emerge since which samples belonging to which set will change the prediction result somewhat, [9].

In the setting of this thesis the data are not that vast. An accelerometer measurement usually have less than 20 seizures and always fewer than 40. Since the time dependence is included transition matrices covering the same seizure will be closely related and can not be considered as independent observations. Therefore the data are too sparse to be able to do a proper training/validation/test division for assessment. Instead, here the validation set is skipped altogether and the assessment uses some sporadic enumerations of parameters together with the sparse data technique "cross-validation" (see sec.3.5.3) for assessing the models.

When fitting a model and assessing it against a test set (or validation set) there are different ways of dividing up these sets. Each method has its advantages and disadvantages. Below, we give a brief introduction to the four most common and useful methods.

# 3.5.1 Data separation

The most intuitive way of dividing the data sets for assessment is the data separation method. This involves separating the data from the start and using one training set, one test set and one validation set. If performing the analysis several times new data are used in every run.

This method is best suited for data rich environments since it uses much more data

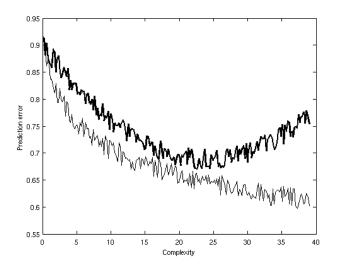



Figure 3.10: Prediction error as a function of model complexity. The training set (thin line) monotonically decreasing since it is used for fitting the model. The validation set (thick line) having a global minimum at a point where the bias-variance tradeoff is optimal.

than the other methods. It is advantageous in the aspect that it is the most realistic assessment since each assessment analysis will use data which were not present in the other ones.

## 3.5.2 Resubstitution

This method uses the same data for both training and testing. Since it reuses the information the assessment is positively biased and will always give an optimistic prediction. How optimistic the prediction is depends on the general system, model, parameters and sample size. It might be hard to estimate the bias but one should always regard the assessment some at least somewhat optimistic. The advantage of this method is that it can work with sparse data and is fast to compute.

## 3.5.3 Cross validation

Cross validation reuses data to be able to perform unbiased assessments without having vast data. The idea here is to divide the data set into several mutually exclusive and exhaustive subgroups known as "folds". An analysis is then performed where all but one fold is used for training and the leftover fold is used for evaluation (see figure 3.11). This analysis is performed with a new fold acting as the evaluation fold until every single one of the folds have been used for evaluation. In this way all of the data has been used as a test set without introduction of a positive bias and the training set is as large as all but one fold. The tradeoff is that training and classification is performed several times. The size of the folds will control the computational complexity-variance tradeoff. When using few folds, the variance will be high since the prediction depends on in which fold

the samples were assigned. When using a large number of folds the variance will be lower since more of the data are used for training. On the other hand there will be much more computations performed since the analysis needs to be rerun for each fold.

The disadvantage of this method is that it is computationally very demanding when using a large number of folds and might have a high variance when using a small number of folds.



Figure 3.11: Sketch of how a data set can be divided into "folds". The red fold are left out of the training set and used for evaluation instead. For each iteration of the crossvalidation loop, a different fold is left out.

# Chapter 4

# Proposed method

In this chapter, the proposed classification method developed in this thesis work is presented. The chapter provides instructions on how to apply the methods described in chapter 3 to the data described in chapter 2.

The chapter is divided in to several steps, which should be performed in consecutive order. Most of these steps are represented for both the training and test sets. The training set is used to fit the parameters of the steps and the test set is later subjected to the algorithm in each step.

These steps follow the flow chart in figure (4.1) which are as following.

- 1. **Preprocessing** The preprocessing stage loads the selected features and uses the training set to perform a principal component analysis in order to reduce the dimensionality. The test set are later reduced using the principal components acquired by the training set.
- 2. Clustering During the clustering stage the seizures in the training set are clustered to find typical seizure behaviors. The test set is later categorized into those clusters.
- 3. **Transition matrix** In this stage transition matrices are extracted to account for the presence and transitions between different clusters during a fixed time length. This stage is the same for the training and test sets.
- 4. **PLS-DA** The dimensions of the transition matrices of the training set are reduced by partial least squares discriminant analysis. In this way a goal oriented dimension reduction is performed. The test sets transition matrices can later be reduced into the same linear subspace as was discovered in the training set.
- 5. Classification The classification are performed after the PLS-DA dimension reduction on the transition matrices. The classifiers parameters are fitted by the training data and the classification is later performed on the test data.
- 6. **Post-processing** The post-processing step is only for the test sets. It involves melting together points close in time which are classified as seizures. After this, the points classified as seizures but located too far away in time from other seizure classifications are removed.

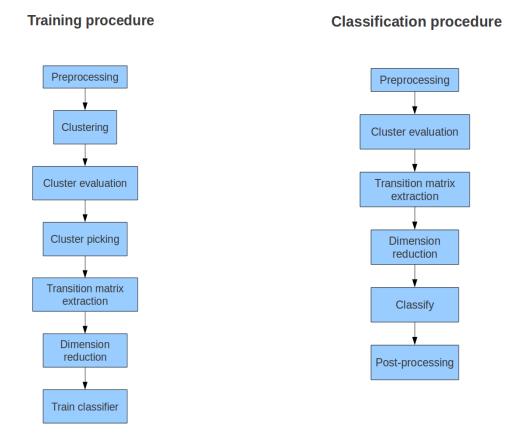



Figure 4.1: Block diagram depicting the different stages of training and classification of seizures.

Before these stages can commence the actual data have been sampled and stored by a suitable hardware configuration. Depending on how and where the signal processing is performed the implementation of the method might vary. For instance if the signal processing is performed on all gathered data at a powerful workstation offline, there might be different requirements than if it is performed in real time on an embedded system. Even though the implementation might be quite different between those diverse systems, the instructions in this chapter are written in general terms so it will apply to them both.

# 4.1 Preprocessing

# 4.1.1 Data transformation

The accelerometer data are originally delivered as 16 bit scalar numbers, one for each axis and sensor, sampled 50 times a second. This raw data is then to be transformed in to

51 summary statistics for each second (51 if using 3 sensors). These summary statistics are defined and explained in section 2.3. Let us refer to the new data space from this transformation as the "feature space" compared to the original raw data space that we might refer to as simply the "data space". The reason for this data transformation is to extract a feature space that should respond more clearly to differences in motorical movements from seizures and none seizures. Also, this transformation introduces some concept of time into the feature space even though the time dependence is in the range of a second.

As explained in section 2.3, there are some dependence of observations from neighboring time instances in the feature space. More than this dependence the biomechanical movements that the accelerometer data are derived from introduces inherent dependencies between samples close to each other. This last dependency can be explained by a simple example: For an accelerometer attached to a wrist to register downward acceleration compared to an accelerometer at the chest, the arm needs to be raised somewhat above the lowest position prior to the downward acceleration to be able to perform a downward motion. Here, the constraint originates from the fact that the wrist is connected to the torso by an arm.

These dependencies show that the samples in the feature space are not fully independent of each other, therefore one has to be careful in applying any method that assumes independent observations.

The features that should be extracted are chosen based on some prior knowledge or all might be included. The classifier might work better on some specific feature sets compared to using all features together (see section 3.2.2.

# 4.1.2 Principal component analysis

After the data have been transformed into feature space the dimensions are normalized. This is done by computing the sample mean and variance for all dimensions separately (51 dimensions if using all sensors and features) from a training set. The features are then first translated by the sample mean and then divided by the sample standard deviation. These normalizations are performed since different features will have different magnitudes and units. When analyzing the feature space later on the features with larger values will usually be weighted heavier even though their discriminatory power is not necessarily better than other features. By forcing the dimensions to be of the same order of magnitude, these problems are avoided. It is however important that the training data are representable of later data so that the normalization works well on new data as well (the normalization parameters mean and standard variations will be estimated from the training data).

It is expected that some of the features might be correlated and that their is some noise introduced in the measures. Therefore a principal component analysis is performed (see section 3.4.1). This is a first step to reduce the dimensionality while keeping the most of the relevant data. A relevant threshold is chosen such that the subspace used accounts for a certain percentage of the total variance. The complement to this subspace might be regarded as noise since it accounts for low variance. Another positive side effect of removing low variance subspaces is that the risk of ill conditioned covariance matrices is greatly reduced in the clustering stage in the case of a covariance based clustering method. Using a high value of the variance parameter reduces the risk of removing the discriminatory important subspaces while still eliminating the obviously linear dependence among features and removing some noise and those features that hardly react at all. In this thesis, the variance threshold has been 90% which has worked well and usually reduced the dimensionality to about half.

# 4.2 Clustering

When having pre-processed all data the next task is to find typical "episodes" of the seizures. Here several options can be chosen.

First of all the most suiting clustering algorithm might depend on the type of seizure and the type of background data. For some data there might exist a clustering setting which identifies a cluster which in itself is completely discriminatory between a seizure and none seizure (this is the ideal situation). In other cases there might be nothing out of the ordinary found in the seizures and the clusters will be present everywhere in the data. The most data however will have certain behaviors that are typical but not exclusive for seizures. Here the discriminatory information might lie in the order and duration of such behavior. The cluster analysis is performed to find such behavior that in a later stage can be analyzed for discriminatory classification.

The clustering techniques that are implemented and tested are listed below. Each one have its advantages and disadvantages.

## 4.2.1 Fuzzy Gaussian mixture

The fuzzy Gaussian mixture option uses Gaussian mixture clustering (see sec 3.1.2). The word "fuzzy" refers to the membership function allowing for partial membership in several clusters at the same time. Therefore, samples located in between two clusters might be equal members of both clusters.

Using this option k number of Gaussian distributions will be estimated from the seizure data exclusively (k being a parameter). The reason for using the seizure data exclusively is to find clusters typical to seizures. The Gaussian mixture model is acquired by using training data to estimate the mean and covariance matrices of the Gaussian distributions using the EM algorithm (see sec 3.1.2). Choosing a too large k compared to the number of dimensions and training seizure data will yield unstable estimates. Therefore one can choose to use only diagonal covariance matrices to increase the stability of the estimates on the expense of the adaptivity of the model. Choosing a small enough k the most attractive attribute of this clustering algorithm is the shape adaptivity of the clusters. The clusters will adapt their shape to the actual data.

# 4.2.2 Hard Gaussian mixture

The hard Gaussian mixture is basically identical to the fuzzy one but the samples get classified only to one cluster each, i.e. the membership functions are dichotomous. The algorithm works exactly like the fuzzy one but the last stage is introduced where membership are awarded solely to the cluster with highest membership value for each sample.

The advantage of this hard membership will be that the next stage in the proposed method (transition matrix stage) might yield more robust transition matrices due to the dichotomous membership values. The drawbacks are that information will be lost on observations that are in the middle close to several clusters at the same time.

# 4.2.3 Hard K-means

The K-means option uses the regular k-means algorithm (see sec 3.1.1). A fast combinatorial algorithm that do not assume any probability model. Here k number of clusters are chosen in advance and searched for in the seizure data. K-means uses hard dichotomous membership values for each sample and a hyperspherical shape.

## 4.2.4 Seizure separated K-means

The seizure separated K-means option performs clustering on each seizure separately. These clusters are then compared with non seizure data and the other seizures. Here there are k number of clusters to search for in each seizure. Of those k, the n number of best clusters are chosen. Since it is hard to compare clusters from different clusterings. The chosen clusters are all derived from the one seizure that gave the best seizure clusterings.

The clusters that are present in as many seizures as possible and not so common outside the seizures are chosen as the clusters. With this option there is a possibility to really find good behavior that is typical for seizures and uncommon otherwise. However, this is computationally more complex since there are so many k-means clusterings to perform and evaluation of them as well. Also seizure separation might not work with Gaussian mixture since there might be too few data observations to acquire stable estimates.

# 4.2.5 No clustering

There is also the possibility of choosing no clustering and work with the feature space in the next step instead.

# 4.3 Transition matrix extraction

In the clustering stage all samples were assigned a membership value to each of the extracted clusters. These membership values are used to compute transition matrices for all time instance in the data (see sec 3.3). The idea is that these transition matrices will have discriminatory properties since they hold information of the time evolution of cluster memberships during a time interval.

When computing transition matrices there are basically two options. One option is the regular transition matrices defined in section 3.3, these are the true transition matrices. An alternative is to search for extreme values inside the time intervals. This choice is suited for handling feature data without clustering but it might give some valuable information when working with fuzzy membership functions as well.

## 4.3.1 Extreme value characterization

Logging extreme values in a specific time interval is an alternative to the regular transition matrix (see sec.3.3.1).

The extreme values to search for might be minimum, maximum or maximum absolute value. The dimensionality of the extreme value "transition matrix" will be equal to the dimensionality of the feature space (4.2).

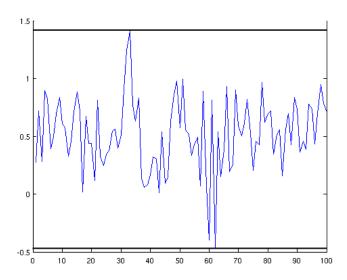



Figure 4.2: Example of how the maximum value and minimum value are identified with the black horizontal lines.

# 4.4 Classification of transition matrices

This is the stage where actual supervised learning will occur. In the training phase a PLS-DA dimension reduction will first reduce the dimensionality.

# 4.4.1 Dimension reduction

A linear dimension reduction is performed using partial least squares discriminant analysis (PLS-DA, see sec 3.4.2). This reduction is similar to the principal component analysis but instead of extracting a subspace according to the variance of the data itself, the partial least square algorithm extracts the subspace which accounts for variances of the data compared to the result (result in this case being either part of seizure or not part of seizure). In this way a subspace which holds the important discriminating information is extracted. Just as with the principal component analysis the variance threshold is an adjustable parameter with optimal values being different depending on the data.

When the dimension reduction has been trained on the training data the linear transformation matrix is stored and used to transform new data.

# 4.4.2 Classification

The reduced data are now ready for classification. In this thesis two different kinds of classifiers have been implemented. The first one being the quadratic discriminant analysis (see sec 3.2.1) and the other being K-nearest neighbors (see sec 3.2.2).

#### QDA

Choosing the QDA classifier, multivariate Gaussian distributions are estimated to the seizure and non seizure transition matrices of the training data. The new transition matrix data are then classified to belong to the distribution with highest a priori probability (see sec 3.2.1).

The parameters for this classifier are the prior probabilities of seizure and non-seizure. Originally the method uses the occurrence of seizures and non seizures in the training data to estimate the prior probabilities. However if one does not believe that this is a correct estimation or one wants to decrease one type of misclassification error on the cost of the other one (type I or II) it is possible to adjust these values.

#### KNN

In order to choose the KNN classifier, the training data are used to outline the decision boundaries. A new sample is classified to belong to a seizure if k of its nearest neighbors fulfill some logical statement (see sec 3.2.2). Which logical statement is a parameter in itself. the choices are either a majority vote among the k nearest neighbors, the presence of at least one seizure in those k neighbors or if all should be.

Here the parameters are the k-value, being the number of nearest neighbors to examine and which logical statement that should be fulfilled (in the evaluation, only majority decision has been used).

# 4.5 Post-processing

When new unknown data have gone through all the stages up and including the classifications stage, some post-processing needs to be performed to remove single classifications far from others. Since the seizure behavior should (theoretically) be recognized in all transition matrices that include the seizure in their time span, some single classification points alone in their neighborhood should not occur. If such classifications have occurred they have to be misclassifications and should therefore be removed. This is performed by using morphological operators.

First a morphological close operation is performed on the data to close gaps in between points close to each other that are all classified as seizures. This needs to be done since noise might yield that a few points in the middle of a seizure segment are not classified as a seizure. After this a morphological open operation is performed to remove those stray seizure classifications that after the "close" operation are not part of a larger seizure segment.

The morphological operations "close" and "open" are based on two other morphological operation, "dilate" and "erode" [8]. These operations are explained below, see figure (4.3) for further understanding.

# 4.5.1 Dilate

Morphological dilate in the setting of one dimensional binary data works by adding ones around already existing ones by a defined radius. This causes those "islands" of ones to grow or dilate by the given radius.

## 4.5.2 Erode

Erode is the opposite of dilate. Here the zeros will "dilate" by a radius causing the "islands" of ones to shrink or erode by given radius.

# 4.5.3 Open

Morphological open is an operation that removes small stray blocks that are not connected to other blocks. This is done by first performing a "erode" operation which will remove

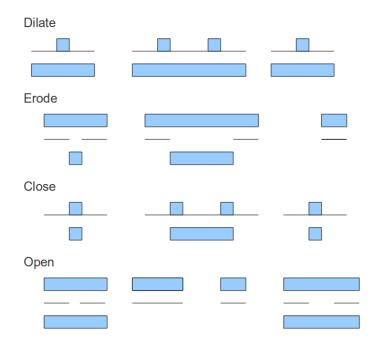



Figure 4.3: Explanatory sketch of binary morphological operations in one dimension. The top blocks in each operation sketch show the distributions of seizures before the operation. The bottom blocks show the distribution of seizures after the operation. The lines in between the top and bottom blocks show the radius of the operation.

too small segments completely. After this a "dilate" operation restores the shape of the segment that was large enough to survive the erosion.

#### 4.5.4 Close

The morphological close operation is used to close small gaps between ones. This is done by first performing an "dilate" operation which will increase all segments by a certain radius. An "erode" operation is thereafter performed to shrink the segments by the same radius. After these two operations small gaps have been filled in or closed.

# Chapter 5

# Results

# 5.1 Evaluation method

In this chapter, results from the evaluations of the proposed classification method (see chapter 4) are presented in order to establish assess the classification performance. Since there was an abundance of both, features and parameters to choose from, the aim of the evaluation is to establish:

- Best performance of the proposed method on each of the data sets used in the analysis. These data sets are the acceleration measurements made on real persons (see sec. 2.2).
- Best parameters for each of the data sets used in the analysis
- Which features holds discriminatory information and which do not.
- How well the proposed method perform compared to the already existing method (see sec. 1.3).

The two main measurements used to assess the results in this chapter are "sensitivity" and "selectivity".

Sensitivity being defined as:

Sensitivity 
$$= \frac{Y_{tp}}{Y_{ap}},$$
 (5.1)

where  $Y_{tp}$  are the number of true positives (actual seizures classified as seizures) and  $Y_{ap}$  are the number of actual seizures. In words, true positives divided by actual positives or the amount of existing seizures that was found.

Selectivity being defined as:

Selectivity = 
$$\frac{Y_{tp}}{Y_{tp} + Y_{fp}}$$
, (5.2)

where  $Y_{fp}$  are the number of false positives (number of sequences wrongfully classified as seizures). In words, the amount of areas classified as seizures that actually were seizures.

Both measurements assumes values between 0 and 1 and large values characterizes good classification for both measurements.

# 5.1.1 Data limitations

Since the proposed method incorporate time evolutionary information from the measured data it means that each seizure can only be measured with one sample point (transition matrix), if sample points are supposed to be completely independent. This means that the setting is extremely sparse in data associated with seizures. The available seizure logs from Sahlgrenska does usually contain less than 10 seizures each, with the most numerous being 22 seizures. During the measurements, experts (doctors and nurses) witnessed actual seizures and have provided their opinion after analyzing EEG data scans. Also, video recordings has been available to view the actual movements recorded by the accelerometers.

Inconsistencies are common among the measurements with confirmed seizures, meaning that some seizures show a behavior inconsistent with other seizures. Since data are sparse it is even more important that all seizures are consistent. This means that from the available data, only some seizures can be included while the rest needs to be marked as "don't care regions", i.e. regions neither regarded as seizures or non seizures. Thus the data useful for training the classifier is actually less than it were like originally.

From this background, only two data sets from the Sahlgrenska measurements were satisfactory for evaluating the performance of the proposed method, see sec.5.2 and 5.3. Two sets of non authentic, enacted seizures have been included to assess the performance of the proposed method without the restrictions inherent with the authentic Sahlgrenska data, see sec.5.4 and 5.5.

# 5.1.2 Assessment

All results have been assessed through cross validation (see sec.3.5.3).

Here, the folds of the cross validation are divided such that all seizures are represented mutually exclusive by different folds. There might be some folds with only background data in them as to make all folds comparable in size.

After the extraction of transition matrices, matrices that do not span a time interval including seizures are chosen so that there is no overlap between those matrices chosen for the training data.

The transition matrices accounting for seizure data on the other hand are chosen such that 30 different transition matrices accounts for each seizure. These matrices are aligned such that, except for the seizure itself, they account for slightly different amounts of data before and after (see fig.5.1). Thus the transition matrices accounting for the same seizure are not independent but accounts for different variances of matrices depicting the same seizure. All transition matrices depicting the same seizure are sorted in to the same cross validation fold so that no bias will be introduced.



Figure 5.1: A sketch of how several transition matrices are chosen that accounts for the same seizure but including different parts of the background prior and after the actual seizure.

Due to stochastic elements in the evaluation process (choices of folds, clustering analysis, choices of background transition matrices to incorporate), different runs of the algorithm might yield different results. Therefore several runs using the same parameters are done to evaluate the expected performance of that particular model.

The need of repeating evaluations several times together with cross-validation, clustering analysis and transition matrix extraction of large amounts of data, make model assessment a computationally demanding task. This eliminates the possibility of enumerating through all combinations of parameter- and feature-sets. Instead, some parameter set is chosen at start that works quite well (with all features present). From this base, small variation in parameters are performed. Such variations might be to change the clustering algorithm, change the clustering parameters slightly, change amount of variances accounted for in PLS-DA dimension reduction, change classification method or change parameters to the classification method slightly. In this way, a hint on what yields better results are acquired.

For each parameter set, 5 evaluations are performed to assess the stability of the result. From the assessment of the parameters, the best parameter set is later chosen to evaluate the feature sets. Here the idea is to divide the features in to different subgroups. These groups are then excluded one at a time to assess the discriminatory information extracted from that particular group. The aim of this is to draw conclusions of which features that are unnecessary.

As mentioned earlier (see sec. 3.2.2), reducing the dimensionality is in itself attractive, the dimension reduction methods in the proposed method do, however, somewhat take care of this problem. The main reason for reducing the features used are that acquiring them comes with a cost. For an embedded battery powered system, more computations mean a shorter battery operation time. Also, excluding all features from a sensor means that the sensor itself can be excluded, which is cheaper and more comfortable for the user.

Furthermore, the method used in the prior master thesis (see sec. 1.3) has been evaluated using the same evaluation procedure as the method proposed in chapter 4. This is done in order to make direct comparison between the new and older classification method as well as to evaluate the older method with an unbiased evaluation procedure (re-substitution was used in the prior evaluation). For the old method, the choice of feature and parameter sets are based on the analysis used in the prior thesis, see sec. B.

Since the parameter- and feature-sets evaluated in this thesis are not exhaustive, there is no guarantee that the found results are optimal. Moreover, data with more number of seizures would improve classification further. These results should therefore be seen as a pilot study showing tendencies more than assessing the optimal performance and parameter-/feature-sets. However, if a model yields satisfactory results in this evaluation they are very likely to perform at least as well on sets with more seizures (as long as the seizures are consistent).

## 5.1.3 Feature groups

The feature groups (see sec.2.3 for detailed explanation of the features) that are excluded one at a time for each run are as follows:

- VM and MAMD All VM and MAMD values are excluded to assess if SMA alone contain the same information. This three measures are all ways of measuring general activity. Therefore they are believed to hold similar information. For further understanding see the definitions at sec.2.3.
- VM and SMA Similarly but to assess if MAMD alone contains the same information.
- SMA and MAMD Similarly but to assess if VM alone contains the same information.
- **DC** To assess if DC values are needed for discrimination. If orientation is an important feature, this means that different models need to be used depending on whether the subject is standing/sitting or lying down, and maybe also in which direction they are lying down.
- **CORR** All correlation values (both linear and circular) to assess if these are important features.
- **PER** All periodicity values to assess if these are important.
- **FREQ** All frequency values to assess if these are important.
- **Highest FREQ** The frequency band of 13.5 25 Hz is excluded. If some sample points are lost in the radio transmission, the highest frequency band will be most heavily influenced by the loss.
- Sensor 1 All features derived from sensor 1, which is the sensor attached to the chest.
- Sensor 2 All features derived from sensor 2, which is the sensor attached to the left arm.
- Sensor 3 All features derived from sensor 3, which is the sensor attached to the right arm.

• **Differentials** This is not actually a separate feature group but a transformation of all features. Instead of using the actual feature values, the difference between feature values neighboring each other are chosen. It is in this aspect an approximation of the feature space partial derivatives.

One idea was that these differentials might be more obviously discriminatory than the actual feature values. This transformation is used to test this idea.

# 5.2 Patient 7

Patient 7 refers to the data measured at Sahlgrenska from a patient suffering from epilepsy with tonic-clonic seizures (see sec. 2.2). This patient experienced powerful tonic-clonic seizures 11 times during the 44 hours when the measurement was conducted. The seizures seem (according to the video) to be consistent. There was one more seizure confirmed by the experts from EEG data. This seizure did not, however, create movements that was recognizable as anything out of the ordinary when studied on the video. Therefore it was marked as a "don't care"-region, i.e., a region that is excluded from training data since it belongs neither to the seizure or non seizure category.

#### 5.2.1 Parameter evaluation results

Figure (5.2) show the results from the parameter set evaluations (to see the complete results see appendix sec. A.1).

Since there is often a trade off between sensitivity and selectivity, it is hard to objectively judge which parameter set is the most accurate.

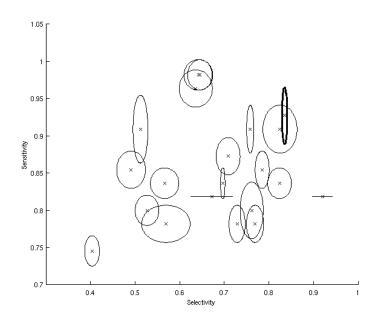



Figure 5.2: Plot of the results using all evaluated parameter sets. The x marking the means of each parameter set and the ellipses marking the standard deviation in sensitivity and selectivity directions. The standard deviation ring of the parameter set that was interpreted as the best result is shown with thick lines.

# 5.2.2 Best performance

How well do the proposed classification method perform on patient 7 as its best? There are two effects that need to be included in the concept of performance. As many of the

| Features          | used:       | All features                                 |              |                                    |       |
|-------------------|-------------|----------------------------------------------|--------------|------------------------------------|-------|
| Cluster analysis: |             | Kmeans seiz                                  | zure separat | ed, $3 \text{ of } 7 \text{ clus}$ | sters |
| PLS-DA            | variance:   | 80%                                          |              |                                    |       |
| Classifier        | •           | KNN, $k = 5$                                 |              |                                    |       |
|                   | Sensitivity | Selectivity Num seiz Found seiz Found non se |              |                                    |       |
|                   | 100%        | 85%                                          | 11           | 11                                 | 2     |
|                   | 100%        | 85%                                          | 11           | 11                                 | 2     |
|                   | 91%         | 83%                                          | 11           | 10                                 | 2     |
|                   | 91%         | 83%                                          | 11           | 10                                 | 2     |
|                   | 82%         | 82%                                          | 11           | 9                                  | 2     |
| Mean              | 92.8%       | 83.6%                                        | 11           | 10.2                               | 2.0   |
| Median            | 91.0%       | 83.0%                                        | 11           | 10.0                               | 2.0   |
| STD               | 7.5%        | 1.3%                                         | 0            | 0.8                                | 0.0   |

Table 5.1: Results from the parameter set that showed overall the best results and was later used to evaluate feature sets.

seizures as possible should be found and as few non seizures should be classified as seizures. It is not obvious how to choose the best performance since some models perform better in sensitivity but worse than others in selectivity. For a real application, both of them need to be relatively good. What "relatively good" is, depends on the application.

Here, a high sensitivity are attractive since the patient might experience clouded consciousness during the seizure or be insecure about if it actually was a seizure or not. It is therefore important that as many seizures as possible are found. Having a functionality that makes it possible for the patient to mark when he/she thinks he/she have seizures might be a good complement.

A high selectivity is important for an accurate diagnosis and/or treatment evaluation. With a system that alarms, in real-time, each time it discovers a seizure, it would be possible for the patient to mark when he/she thinks that he/she experienced a seizure. Even though a patient might have a hard time knowing when he/she actually experienced a seizure he/she might be more convinced on when he/she does not have one (for example if they do some activity that causes seizure classifications). So, as long as the selectivity is quite high it might be possible to reject those false alarms on the basis of the patient's judgement. With this reasoning, a high sensitivity is more important than a high selectivity. How much more important it is, is still subjective and depends on the application.

Several parameter sets are candidates as the best parameter set depending on how the sensitivity/selectivity tradeoff is weighted. The set that was considered optimal is presented in table (5.1). This parameter set had a reasonably high and consistent selectivity while having a high sensitivity. This parameter set was later used in the evaluation of the feature sets.

Since the measurements were performed on Sahlgrenska during the EEG observation, the patient was restricted to activities close to the bed and with some restrictions on movements due to the electrodes connected to the scalp and their cords. The patient suffered from very powerful clonic-tonic seizures. The places with false alarms were probably places were the patient stood up from the bed quite fast e.g. This is not so similar to

| Clustering method                         | Sensitiv | vity | Selectivity |       |
|-------------------------------------------|----------|------|-------------|-------|
| Clustering method                         | Mean     | STD  | Mean        | STD   |
| Kmeans, 4 clusters                        | 78.2%    | 5.0% | 72.9%       | 3.6%  |
| Kmeans, 5 clusters                        | 78.2%    | 5.0% | 76.9%       | 3.8%  |
| Kmeans, 3 clusters                        | 80.0%    | 7.6% | 76.1%       | 5.2%  |
| Gm hard, 4 clusters                       | 81.8%    | 0.0% | 67.2%       | 9.4%  |
| Gm hard, 3 clusters                       | 90.9%    | 9.1% | 51.2%       | 3.3%  |
| Gm fuzzy, 3 clusters                      | 85.5%    | 5.0% | 49.1%       | 6.4%  |
| Gm fuzzy, 4 clusters                      | 78.2%    | 5.0% | 56.9%       | 10.9% |
| Kmeans seizure separated, 3 of 7 clusters | 90.9%    | 6.4% | 82.5%       | 7.6%  |
| Kmeans seizure separated, 3 of 7 clusters | 83.6%    | 4.1% | 82.4%       | 5.3%  |
| Kmeans seizure separated, 3 of 7 clusters | 92.7%    | 7.6% | 83.5%       | 1.2%  |
| Kmeans seizure separated, 3 of 7 clusters | 81.8%    | 0.0% | 92.0%       | 4.5%  |
| Kmeans seizure separated, 3 of 7 clusters | 98.2%    | 4.1% | 64.2%       | 6.5%  |
| Kmeans seizure separated, 3 of 7 clusters | 96.4%    | 5.0% | 63.6%       | 7.4%  |
| Kmeans seizure separated, 3 of 7 clusters | 98.2%    | 4.1% | 64.5%       | 5.5%  |
| Kmeans seizure separated, 4 of 7 clusters | 85.5%    | 5.0% | 78.5%       | 3.1%  |
| Max values                                | 90.9%    | 6.4% | 75.8%       | 1.6%  |
| Max values                                | 83.6%    | 4.1% | 69.7%       | 1.0%  |
| Min values                                | 74.5%    | 4.1% | 40.4%       | 3.3%  |
| Min values                                | 80.0%    | 4.1% | 52.7%       | 5.3%  |
| Max absolute values                       | 83.6%    | 4.1% | 56.6%       | 6.4%  |
| Max absolute values                       | 87.3%    | 5.0% | 70.9%       | 5.4%  |

Table 5.2: Performance compared to clustering method for patient 7. For some of the methods one sees different results for the same clustering method. This is due to other changes such as the classifier or PLS-DA variance.

a seizure in actual movements but since the background data contain so little powerful movements, it might have been more similar to a seizure than to the rest of the data in the measurement.

#### 5.2.3 Best parameter set

Which parameters played an important role in increasing the performance of the classifier? The parameter set that yielded the best performance can be seen in table 5.1. When comparing the complete evaluation data (see appendix A.1) several conclusions can be drawn. First of all the seizure separated K-means clustering methods seems to perform better than the other ones (see table 5.2).

The regular K-means clustering works quite well but has low selectivity. The non clustering extreme-value-searching methods work surprisingly well, showing a 90% sensitivity and 75% selectivity for max-value-searching with pls variance 70% and KNN with k = 3. A possible reason why the extreme-value-searching methods perform well might be due to the tranquil background data in the measurement. A real life measurement on a normally active patient during their every day life would probably show worse results for those methods.

The Gaussian mixture based clustering methods had quite good sensitivity but were not able to generate a good selectivity.

| Clustering: Kmeans seiz. sep., 3 of 7 |                |            |                                                                      |       |  |  |
|---------------------------------------|----------------|------------|----------------------------------------------------------------------|-------|--|--|
| Classification: KNN, $k = 3$          |                |            |                                                                      |       |  |  |
| Variance                              | Sensitivity    |            | Selectivity                                                          |       |  |  |
|                                       | Mean           | STD        | Mean                                                                 | STD   |  |  |
| 70%                                   | 91.0%          |            | 82.6%                                                                | 7.7%  |  |  |
| 80%                                   | 83.8%          | 4.0%       | 82.4%                                                                | 5.3%  |  |  |
| Clustering                            | g: Max va      | lues       |                                                                      |       |  |  |
| Classificat                           | ion: KNI       | N, $k = 3$ | 3                                                                    |       |  |  |
| Variance Sensitivity                  |                |            | Select                                                               | v     |  |  |
| Variance                              | Mean           | STD        | Mean                                                                 | STD   |  |  |
| 70%                                   | 91.0%          | 6.4%       | 75.8%                                                                | 1.8%  |  |  |
| 80%                                   | 83.8%          | 4.0%       | 69.4%                                                                | 0.9%  |  |  |
| Clustering                            | g: Min va      | lues       |                                                                      |       |  |  |
| Classificat                           | ion: KNI       | N, $k = 3$ | 3                                                                    |       |  |  |
| Variance                              | Sensitivity    |            | Selectivity                                                          |       |  |  |
| variance                              | Mean           | STD        | Mean                                                                 | STD   |  |  |
| 70%                                   | 74.8%          | 4.0%       | 40.2%                                                                | 3.3%  |  |  |
| 80%                                   | 80.2%          | 4.0%       | 52.6%                                                                | 5.3%  |  |  |
| Clustering                            | : Max al       | osolute '  | values                                                               |       |  |  |
| Classificat                           | ion: KNI       | N, $k = 3$ | 3                                                                    |       |  |  |
| Variance                              | Sensit         | ivity      | Select                                                               | ivity |  |  |
| variance                              | Mean           | STD        | Mean                                                                 | STD   |  |  |
| <b>HO</b> 07                          | 02 007         | 1 00%      | 56.6%                                                                | 6.3%  |  |  |
| 70%                                   | 83.8%<br>87.4% |            | $\begin{array}{c cccc} 56.6\% & 6.3\% \\ 70.8\% & 5.4\% \end{array}$ |       |  |  |

Table 5.3: Comparison between accounting for 70% or 80% in the PLS-DA dimension reduction. There are slightly smaller variances with 80% but the sensitivity is larger when accounting for only 70% of the variance.

Generally, almost all of the clustering algorithms generated good sensitivity values. The selectivity performance on the other hand were quite bad on almost all parameter setups except the seizure separated K-means with KNN classifier.

When assessing how much variance to account for in the PLS-DA dimension reduction, depends on the clustering method used. In the result evaluation for patient 7 the results can be compared in Table 5.3. These results do not show a clear advantage or disadvantage of using 70% over 80%. In the case of using seizure separated K-means it might be slightly better to account for only 70% but it is hard to draw a general conclusion, the variance seems slightly larger as well when using 70% variance.

When it comes to classification, QDA seems to yield very high sensitivity but with a tradeoff on selectivity. In cases where selectivity is not so crucial, QDA might be a good alternative. The probability weight did not seem to change the results of QDA classification, a sign of large separation between the seizure and non seizure Gaussian.

If selectivity is quite important, KNN would be regarded as a better classifier. It seemed like using 5 nearest neighbors gave better sensitivity while choosing 1 nearest neighbor gave better selectivity. Usually in literature, choosing 1 nearest neighbor will yield higher variance in the result, in this analysis however it gave more stable results than both 3 and 5 nearest neighbors. 3 nearest neighbor does not seem to have a specific advantage but the results do not show such bad results that it is possible to conclude that choosing 3 nearest

| Clustering: Kmeans seiz. sep. , 3 of 7<br>PLS-DA variance: 80% |        |        |             |     |  |
|----------------------------------------------------------------|--------|--------|-------------|-----|--|
| Classifier                                                     | Sensit | tivity | Selectivity |     |  |
| Classifier                                                     | Mean   | STD    | Mean        | STD |  |
| QDA, Prior prob. weights [10 1]                                | 98.2   | 4.0    | 64.6        | 5.4 |  |
| QDA, Prior prob. weights [1 10]                                | 96.4   | 4.9    | 63.8        | 7.2 |  |
| QDA, Prior prob. weights [1 1]                                 | 98.2   | 4.0    | 64.2        | 6.4 |  |
| KNN, $k = 1$                                                   | 82.0   | 0.0    | 92.0        | 4.5 |  |
| KNN, $k = 5$                                                   | 92.8   | 7.5    | 83.6        | 1.3 |  |
| KNN, $k = 3$                                                   | 83.8   | 4.0    | 82.4        | 5.3 |  |

Table 5.4: Comparison between classifiers on patient 7 data set.

neighbors is actually worse. All three choices give quite good results (both sensitivity and selectivity higher than 80%).

# 5.2.4 Feature evaluation results

The statistics of the feature group exclusions can be seen in table 5.5. This is to be compared with the results from table 5.1. There might be variations in the results due to the stochastic elements of the classification method (see chapter 4), therefore only large changes in performance can be attributed to the feature reduction.

For further information of the feature set evaluation results, see appendix sec. A.1.

| Feature set                 | Sensi  | Sensitivity |        | tivity |
|-----------------------------|--------|-------------|--------|--------|
|                             | Mean   | STD         | Mean   | STD    |
| Without VM and MAMD         | 91.0 % | 6.4~%       | 84.8 % | 3.6~%  |
| Without SMA and MAMD        | 96.4~% | $4.9 \ \%$  | 83.0~% | 2.4~%  |
| Without SMA and VM          | 85.6~% | 10.3~%      | 82.4~% | 1.8~%  |
| Without DC                  | 89.2 % | 7.5~%       | 81.8~% | 1.6~%  |
| Without CORR                | 89.2 % | 9.9~%       | 86.4~% | 3.5~%  |
| Without PER                 | 91.0~% | 6.4~%       | 86.4~% | 4.3~%  |
| Without FREQ                | 91.0~% | 6.4~%       | 72.4~% | 5.9~%  |
| Without highest FREQ        | 94.6~% | $4.9 \ \%$  | 84.2~% | 4.4~%  |
| Without sensor 1            | 89.2~% | $4.0 \ \%$  | 84.4~% | 3.7~%  |
| Without sensor 2            | 91.0~% | 0.0~%       | 83.0~% | 0.0~%  |
| Without sensor 3            | 71.2~% | $4.0 \ \%$  | 50.6~% | 22.4~% |
| Without sensor 1 and 2      | 89.2~% | $4.0 \ \%$  | 72.2~% | 16.0~% |
| Without sensor 2 and 3      | 74.8~% | $4.0 \ \%$  | 65.4~% | 2.3~%  |
| Without sensor 1 and 3      | 78.4~% | 8.0~%       | 48.6~% | 6.9~%  |
| Using feature differentials | 92.8~% | 7.5~%       | 59.2~% | 6.1~%  |

Table 5.5: Results from feature set evaluation of patient 7 using the parameter set in table 5.1.

# 5.2.5 Best feature set

Which feature groups were important and which were not? When looking at Table 5.5 one can clearly draw some conclusions.

The first three rows assess if the three measurements for overall activity are exchangeable. Exclusion of vector magnitude or signal magnitude area did not seem to affect the result. The measure of mean absolute magnitude difference on the other hand decreased the sensitivity significantly. Both the variance and the average of the sensitivity values were lower without MAMD, a sign that mean absolute magnitude difference actually hold discriminatory information not included in either vector magnitude or signal magnitude area.

The exclusion of DC values did not significantly affect the result. The orientation of the patient during seizures might not be as important when the seizures are powerful jerkings.

Neither correlation, periodicity of the highest frequency band (13.25-25Hz) seemed to affect the results.

Excluding all frequency bands decreased the selectivity from around 80% to 70%. A surprisingly small effect considering the seizures for patient 7 were strong tonic-clonic jerkings.

Since the evaluation was performed by removing one feature group at a time and the result did not show any dramatic decrease in performance, this implies that there are redundancy in the total feature set. However, bear in mind that the patient was mostly still on the bed and some strong movements can easily be registered in several features in such case.

Analyzing the sensors, it seems like excluding sensor 1 or 2 (chest and left arm) did not affect the results significantly. Excluding sensor 3 (right arm) on the other hand did decrease the performance considerably. By this the conclusion can be drawn that the right hand (sensor 3 mounted at the right wrist) plays an important role in discriminating between seizures.

Removing sensor 1 and 2 did decrease the selectivity to about 70%. This shows that sensor 1 and 2 hold redundant information important for increased selectivity. The redundancy being derived from the fact that removing one of them at a time did not change the result.

Removing sensor 3 together with one of the other two did reduce the performance considerably. However the sensitivity is still above 70% and the selectivity above 40%. Keeping such a good classification can probably be assessed largely to the few occasions where the patient actually performs strong movements at all during the measurements.

Finally, analyzing the feature differentials did not show a reduction in sensitivity but did show a significant reduction in selectivity to about 60%. It is not possible to completely rule out the use of feature differentials but in the current setting it was not better than using the regular feature values.

# 5.2.6 Old classification method evaluation

We also evaluated the old classification method, used prior to this master thesis (see sec. 1.3). The old method is very sensitive to which features that has been included. The features used for evaluation can be seen in table 5.7, which were analyzed to be the optimal features for patient 7 using the evaluation procedure from [3], see sec. B.1. The old classification method has been evaluated with the same cross validation procedure as the other results in this thesis. There are two evaluated parameter sets, the first being exactly the same parameter set as suggested by the evaluation procedure from the prior thesis [3], the second evaluation having basically the same parameters apart from the weighting of prior probabilities set much higher for non seizures than seizures. This causes a small decay in sensitivity but a large gain in selectivity (see table 5.6).

| Classifier                                                        | Classifier:       |                           | Old method, Prior prob. weights [1 1] |                |                                     |  |
|-------------------------------------------------------------------|-------------------|---------------------------|---------------------------------------|----------------|-------------------------------------|--|
|                                                                   | Sensitivity       | Selectivity               | Num seiz                              | Found seiz     | Found non seiz                      |  |
| Mean                                                              | 82.0%             | 41.8%                     | 11                                    | 9.0            | 12.6                                |  |
| Median                                                            | 82.0%             | 41.0%                     | 11                                    | 9.0            | 13.0                                |  |
| STD                                                               | 0.0%              | 1.1%                      | 0                                     | 0.0            | 0.5                                 |  |
| Classifier: Old method, Prior prob. weights [1 10 <sup>15</sup> ] |                   |                           |                                       |                |                                     |  |
| Classifier                                                        |                   | Old method                | l, Prior prob                         | . weights [1 1 | $0^{15}$ ]                          |  |
| Classifier                                                        | ::<br>Sensitivity | Old method<br>Selectivity |                                       | - ·            | 0 <sup>15</sup> ]<br>Found non seiz |  |
| Classifier<br>Mean                                                |                   |                           |                                       | - ·            | -                                   |  |
|                                                                   | Sensitivity       | Selectivity               | Num seiz                              | Found seiz     | Found non seiz                      |  |

Table 5.6: Results using the old classification method that existed prior to this thesis.

# 5.2.7 Performance of old method

The old classification method used prior to this thesis did not incorporate the evolution in time when classifying seizures. For this thesis, the evaluation procedure used on the proposed classification method was also used for evaluating the old classification method. The reason for this was to make a direct comparison between the two methods. The results from the old classification method can be seen in table 5.6.

Using the exact model that yielded optimal results by the prior evaluation procedure, see appendix B.1, the old classification model got a very stable result with sensitivity of 82% and selectivity of about 41%. Since the selectivity was inadequate, the prior probability

| Feat # | Feature name                            |
|--------|-----------------------------------------|
| 24     | Frequency band 3.75 - 5.25 Hz, Sensor 1 |
| 3      | DC, Z axis, Sensor 1                    |
| 1      | DC, X axis, Sensor 1                    |
| 5      | DC, Y axis, Sensor 2                    |
| 40     | Linear correlation, Sensors 1 & 2       |

Table 5.7: The optimal feature set for the old method according to sec. B.1

weight was changed to reduce type II errors. The results with weights of  $[1 \ 10^{15}]$  increased the selectivity to 63% while reducing the sensitivity to 78%. However, with this change in prior weights the stability was reduced and the variance of the sensitivity was increased from 0 to 4.9%.

# 5.3 Patient 14

Patient 14 refers to the data measured on a person suffering from epilepsy with tonic seizures. The measurement was performed on Sahlgrenska, in the setting described in sec. 2.2. The patient experiencing subtle tonic seizures characterized by holding a "fencing position" (see sec.1.2) for a couple of seconds and then returning to normal. For a few of the seizures, small vibrations are visible in the videos.

This data set includes 22 seizures during a time span of about 6 days.

## 5.3.1 Parameter evaluation results

Figure 5.3 show the results of all parameter set evaluations (to see more details see appendix sec. A.2).

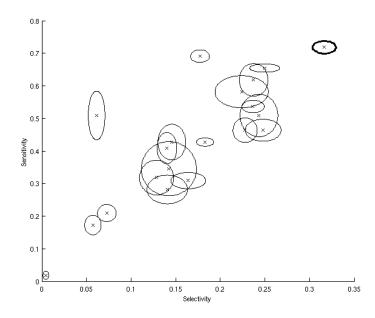



Figure 5.3: Plot of the results for patient 14 using all evaluated parameter sets.

There is one parameter set that perform clearly better than the others. This one can be seen in table 5.8

#### 5.3.2 Best performance

With this patient there was one parameter set superior in both sensitivity and selectivity to the others (see table 5.8). However, even for that parameter set the result was unsatisfactory, only about 70% of the seizures were found and the selectivity was only around 30%.

| Features   | used:       | All features                        |                    |      |                |  |
|------------|-------------|-------------------------------------|--------------------|------|----------------|--|
| Cluster a  | analysis:   | Kmeans, 5 clusters                  |                    |      |                |  |
| PLS-DA     | variance:   | 70%                                 |                    |      |                |  |
| Classifier | •           | QDA, Prior prob. weights $[1 \ 10]$ |                    |      |                |  |
|            | Sensitivity | •                                   |                    |      | Found non seiz |  |
|            | 77%         | 33%                                 | 22                 | 17   | 34             |  |
|            | 73%         | 33%                                 | 22                 | 16   | 33             |  |
|            | 73%         | 28%                                 | 22                 | 16   | 42             |  |
|            | 68%         | 34%                                 | 22                 | 15   | 29             |  |
|            | 68%         | 31%                                 | 22                 | 15   | 34             |  |
| Mean       | 71.8%       | 31.8%                               | 22                 | 15.8 | 34.4           |  |
| Median     | 73.0%       | 33.0%                               | 33.0% 22 16.0 34.0 |      |                |  |
| STD        | 3.8%        | 2.4%                                | 0                  | 0.8  | 4.7            |  |

Table 5.8: Results from the parameter set that showed overall best results and was later used to evaluate the feature sets.

The performance on this data set is not adequate for a real life application. The patient studied did have a large amount of seizures, which all resulted in the patient assuming a fencing position. It was quite obvious from the videos when the patient experienced a seizure but these kinds of seizures do not have an original acceleration pattern. Assuming the fencing position (which was assumed in a moderate arm speed) is not much different from stretching the arms for any other reason. Once the fencing position was assumed, no further acceleration was performed for any of the sensors. When regarding merely the acceleration at wrists and chest, there are no real difference between sitting still and stretching your arms as compared to having a seizure. The conclusion drawn is that these kinds of seizures are probably not possible to classify correctly by this proposed classification method. If they are possible at all using only accelerometers are left unsaid.

However, any device able to identify the orientation of the limbs would be able to find these kinds of seizures. If using accelerometers, these together with gyroscopes and/or magnetometers might make it possible to derive orientation of the limbs at all times by integration in time. This might however put a considerable demand for high resolutions on the sensors as well as on the numerical integration method. Another solution would be to attach cords to the pivot points of the limbs. These cords could change resistance when bended. This would make it possible to know the orientation of the limbs at all times.

## 5.3.3 Best parameter set

The parameter set that yielded the best performance can be seen in table 5.8. A comparison between the clustering methods and the results from the evaluation can be seen in table 5.9).

Basically the extreme-value-searching non clustering methods show the worst results. These methods give selectivity results below 10% and sensitivity results at most 20%. The maximum-absolute-value-searching method have a performance comparable to randomly

| Clustering method                         | Sensitiv | Sensitivity |       | Selectivity |  |
|-------------------------------------------|----------|-------------|-------|-------------|--|
| Clustering method                         | Mean     | STD         | Mean  | STD         |  |
| Kmeans, 4 clusters                        | 61.8%    | 10.0%       | 23.7% | 3.2%        |  |
| Kmeans, 4 clusters                        | 58.2%    | 9.9%        | 22.4% | 6.0%        |  |
| Kmeans, 5 clusters                        | 50.9%    | 13.0%       | 24.3% | 4.2%        |  |
| Kmeans, 5 clusters                        | 53.6%    | 3.8%        | 23.7% | 2.5%        |  |
| Kmeans, 5 clusters                        | 65.5%    | 2.5%        | 25.0% | 3.3%        |  |
| Kmeans, 5 clusters                        | 71.8%    | 3.8%        | 31.7% | 2.6%        |  |
| Kmeans, 5 clusters                        | 69.1%    | 3.8%        | 17.7% | 2.1%        |  |
| Kmeans, 6 clusters                        | 46.4%    | 7.5%        | 22.8% | 2.7%        |  |
| Kmeans, 6 clusters                        | 46.4%    | 6.7%        | 24.8% | 4.0%        |  |
| Gm fuzzy, 5 clusters                      | 30.9%    | 5.0%        | 16.4% | 3.9%        |  |
| Gm fuzzy, 4 clusters                      | 34.5%    | 16.6%       | 14.2% | 6.2%        |  |
| Gm fuzzy, 4 clusters                      | 42.7%    | 2.5%        | 18.3% | 1.9%        |  |
| Gm fuzzy, 4 clusters                      | 28.2%    | 8.7%        | 14.1% | 4.5%        |  |
| Gm fuzzy, 3 clusters                      | 42.7%    | 10.9%       | 14.6% | 3.1%        |  |
| Gm fuzzy, 3 clusters                      | 40.9%    | 9.6%        | 14.0% | 2.2%        |  |
| Gm hard, 4 clusters                       | 31.8%    | 10.7%       | 12.9% | 3.8%        |  |
| Kmeans seizure separated, 3 of 7 clusters | 50.9%    | 14.9%       | 6.1%  | 1.8%        |  |
| Max value                                 | 20.9%    | 5.2%        | 7.3%  | 2.1%        |  |
| Min value                                 | 17.3%    | 5.9%        | 5.7%  | 1.8%        |  |
| Max absolute value                        | 1.8%     | 2.5%        | 0.4%  | 0.6%        |  |

Table 5.9: Performance compared to clustering method for patient 14.

placing the seizure classifications anywhere in the time span.

The seizure separated K-means method shows a surprisingly bad performance as well. One interpretation for this is that there are no discriminatory information caught in the clusters from only one of the seizures that can be generalized to all seizures present.

The K-means and Gaussian mixture based clustering methods seem to yield similar sensitivity values but the K-means algorithm has slightly larger selectivity. One explanation for this is that K-means clustering is able to search for more clusters since the stability of the covariance matrix introduces numerical problems for Gaussian mixture clustering with too few observations compared so number of clusters.

Here the explanation why the K-means method performs slightly better than the other methods is that it might find information similar between a certain subgroup of the seizures but that do not generalize to all of the seizures. Since it can have more clusters than the Gaussian mixture based method it might find more behaviors to use for classification. In this way it will have found clusters that together find all of the seizures. The seizure separated method did not find these since it was based on the assumption that all seizures have something in common.

Assessing the variance threshold for PLS-DA, the same models have been evaluated but with 70% and 80% variance thresholds. The result can be seen in table 5.10. The amount of PLS-DA variance is highly dependent on the clustering method used. As can be seen in the table, using 80% instead of 70% PLS-DA variance for the K-means algorithm does seem to increase the variance of the results, especially for selectivity, where it is doubled in all three cases. However the changes are so small and tested with so few evaluations that it is not an obvious conclusion.

| Clustering                       | : Kmear     | ns, 4 clu | sters       |     |  |  |
|----------------------------------|-------------|-----------|-------------|-----|--|--|
| Classification: KNN, $k = 3$     |             |           |             |     |  |  |
| Variance                         | Sensitivity |           | Selectivity |     |  |  |
| variance                         | Mean        | STD       | Mean        | STD |  |  |
| 70%                              | 61.8        | 9.9       | 23.8        | 3.0 |  |  |
| 80%                              | 58.2        | 10.1      | 22.6        | 6.0 |  |  |
| Clustering: Kmeans, 5 clusters   |             |           |             |     |  |  |
| Classificat                      | ion: KN     | N, $k =$  | 3           |     |  |  |
| Variance Sensitivity Selectivity |             |           |             |     |  |  |
|                                  | Mean        | STD       | Mean        | STD |  |  |
| 70%                              | 53.8        | 3.8       | 23.8        | 2.7 |  |  |
| 80%                              | 51.0        | 12.9      | 24.2        | 4.4 |  |  |
| Clustering                       | : Kmear     | ns, 6 clu | sters       |     |  |  |
| Classificat                      | ion: KN     | N, k =    | 3           |     |  |  |
| Variance                         | Sensitivity |           | Selectivity |     |  |  |
|                                  | Mean        | STD       | Mean        | STD |  |  |
| 70%                              | 46.2        | 7.4       | 22.8        | 2.7 |  |  |
| 80%                              | 46.2        | 7.0       | 24.8        | 4.1 |  |  |
| Clustering                       |             |           |             |     |  |  |
| Classificat                      |             |           |             |     |  |  |
| Variance                         | Sensit      |           | Select      |     |  |  |
|                                  | Mean        | STD       | Mean        | STD |  |  |
| 70%                              | 42.6        | 11.2      | 14.6        | 3.0 |  |  |
| 80%                              | 41.0        | 9.7       | 14.0        | 2.3 |  |  |
| Clustering                       |             |           |             |     |  |  |
| Classificat                      |             |           |             |     |  |  |
| Variance                         | Sensit      | •         | Select      |     |  |  |
|                                  | Mean        | STD       | Mean        | STD |  |  |
| 70%                              | 28.2        | 8.8       | 14.0        | 4.7 |  |  |
| 80%                              | 42.6        | 2.2       | 18.4        | 1.7 |  |  |

Table 5.10: Comparison between accounting for different amounts of variance in the PLS-DA dimension reduction for patient 14.

| Clustering: K-means, 5 clusters  |        |             |             |       |  |  |
|----------------------------------|--------|-------------|-------------|-------|--|--|
| PLS-DA variance: 70%             |        |             |             |       |  |  |
| Classifier                       | Sensit | Sensitivity |             | ivity |  |  |
| Classifier                       | Mean   | STD         | Mean        | STD   |  |  |
| KNN, $k = 3$                     | 53.8   | 3.8         | 23.8        | 2.7   |  |  |
| QDA, Prior prob. weight [1 1]    | 65.6   | 2.2         | 25.2        | 3.5   |  |  |
| QDA, Prior prob. weight [1 10]   | 71.8   | 3.8         | 31.8        | 2.4   |  |  |
| QDA, Prior prob. weight [10 1]   | 69.2   | 3.8         | 17.8        | 2.3   |  |  |
| Clustering: GM fuzzy, 4 clusters |        |             |             |       |  |  |
| PLS-DA variance: 70%             |        |             |             |       |  |  |
| Classifier                       | Sensit | tivity      | Selectivity |       |  |  |
|                                  | Mean   | STD         | Mean        | STD   |  |  |
| KNN, $k = 3$                     | 34.6   | 16.7        | 14.4        | 6.3   |  |  |
| KNN, $k = 1$                     | 28.2   | 8.8         | 14.0        | 4.7   |  |  |

Table 5.11: Comparison between classifiers on patient 14 data set.

Using 80% instead of 70% on the Gaussian mixture clustering yields no significant difference when using only 3 clusters. Using 4 clusters however increases performance dramatically. Both averages increases while the variances decrease.

Studying the performance of different classifier parameters, see table 5.11. Here QDA has a definite advantage over KNN. An explanation for this might be that, since the changes comparing a seizure to a non seizure are so small, the KNN method might be too unstable to be useful. Using a parametric model with relatively few parameters might yield slightly more stable classifications.

## 5.3.4 Feature evaluation results

The statistics of the evaluations when excluding certain feature groups can be seen in table 5.12. This is to be compared with the results from table 5.8.

For further information on the feature set evaluation result see appendix sec. A.2.

#### 5.3.5 Best feature set

From table 5.12 some remarkable discoveries can be extracted. First of all, removing sensor 3 did increase selectivity from around 30% to 40% but doubled the variance. This could be explained by at least one but possibly two of the following causes. Sensor 3 might be unimportant for classification of patient 14. The curse of dimensionality (see sec. 3.2.2) might influence this model heavily. By reducing the dimensionality a better classification is possible.

If the curse of dimensionality plays an important role, one reason for the bad performance on this patient might actually be that the dimensions are not reduced that well. This in turn would indicate no linear subspace which holds the most of the discriminatory power.

| Feature set                 | Sensi  | Sensitivity |        | ivity |
|-----------------------------|--------|-------------|--------|-------|
|                             | Mean   | STD         | Mean   | STD   |
| Without VM and MAMD         | 64.4~% | 8.0 %       | 27.8 % | 2.5~% |
| Without SMA and MAMD        | 70.8~% | $5.9 \ \%$  | 34.0~% | 4.2 % |
| Without SMA and VM          | 75.4~% | 2.2~%       | 32.2~% | 3.3 % |
| Without DC                  | 45.4~% | 7.4~%       | 21.0~% | 7.9 % |
| Without CORR                | 63.8~% | 8.6~%       | 33.6~% | 3.5 % |
| Without PER                 | 64.8~% | 5.1~%       | 25.0~% | 3.1 % |
| Without FREQ                | 51.0~% | 6.7~%       | 31.2~% | 5.4 % |
| Without highest FREQ        | 68.4~% | 7.8~%       | 28.0~% | 4.8 % |
| Without sensor 1            | 52.8~% | 5.4~%       | 18.2~% | 4.5 % |
| Without sensor 2            | 29.0~% | 5.0~%       | 16.6~% | 2.9 % |
| Without sensor 3            | 74.6~% | 2.2~%       | 40.4~% | 4.5 % |
| Without sensor 1 and 2      | 70.0~% | 10.3~%      | 13.2~% | 0.8 % |
| Without sensor 2 and 3      | 57.4~% | 2.2~%       | 27.2~% | 1.1 % |
| Without sensor 1 and 3      | 48.2~% | 9.6~%       | 23.6~% | 1.3 % |
| Using feature differentials | 96.0~% | 2.2~%       | 38.2~% | 7.2~% |

Table 5.12: Results from feature set evaluation of patient 14.

Secondly, the feature differentials show a very high sensitivity and with a slight increase in selectivity as well. Here it certainly seems like the differentials between neighbouring observations in time do hold more discriminatory information than the original features, or alternatively that the discriminatory information are compressed into smaller subspaces easier when using feature differentials (therefore reducing the influence of the curse of dimensionality). It is quite extraordinary that the feature differentials perform so much better than all the others but the selectivity is still unsatisfactory, so no real use of the proposed classification method is expected on patients with similar seizures as patient 14.

## 5.3.6 Old method evaluation

The features used for evaluation of the old method can be seen in table 5.14. This feature set was analyzed to be the optimal feature set for patient 14 using the evaluation procedure from [3], see sec. B.2. There are two evaluated parameter sets, the first being exactly the same as suggested by the prior thesis [3], the second evaluation having the same parameters apart from the weighting of prior probabilities set to twice as high for non seizures compared to seizures and with the morphological open radius increased by 10. This causes a small decay in sensitivity but a large gain in selectivity (see table 5.13).

# 5.3.7 Performance of old method

The results from the old classification method evaluation for patient 14 can be seen in table 5.13.

The old method have a high sensitivity and a very low selectivity. When increasing the probability weight for non seizures by 2 and increasing the morphological open radius

| Classifier     | Classifier: Old method, Prior prob. weights [1 1]                |             |                |                    |                         |  |  |
|----------------|------------------------------------------------------------------|-------------|----------------|--------------------|-------------------------|--|--|
|                | Sensitivity                                                      | Selectivity | Num seiz       | Found seiz         | Found non seiz          |  |  |
| Mean           | 82.0%                                                            | 4.0%        | 22             | 18.0               | 464.2                   |  |  |
| Median         | 82.0%                                                            | 4.0%        | 22             | 18.0               | 463.0                   |  |  |
| STD            | 0.0%                                                             | 0.0%        | 0              | 0.0                | 12.0                    |  |  |
| Classifier     | Classifier: Old method, Prior prob. weights [1 2] open radius 10 |             |                |                    |                         |  |  |
|                | Sensitivity                                                      | Selectivity | NT ·           | T 1 ·              | <b>T</b> 1 1            |  |  |
|                | Sensitivity                                                      | Selectivity | Num seiz       | Found seiz         | Found non seiz          |  |  |
| Mean           | 74.8%                                                            | 11.0%       | Num seiz<br>22 | Found seiz<br>16.4 | Found non seiz<br>132.8 |  |  |
| Mean<br>Median | v v                                                              |             |                |                    |                         |  |  |

|  | Table 5.13: Results | using the old | classification n | nethod that | existed r | prior to this thesis. |
|--|---------------------|---------------|------------------|-------------|-----------|-----------------------|
|--|---------------------|---------------|------------------|-------------|-----------|-----------------------|

| Feat $\#$ | Feature name                        |
|-----------|-------------------------------------|
| 11        | SMA, Sensor 2                       |
| 2         | DC, Y axis, Sensor 1                |
| 45        | Circular correlation, Sensors 2 & 3 |
| 9         | DC, Z axis, Sensor 3                |
| 6         | DC, Z axis, Sensor 2                |
| 19        | Periodicity, Sensor 1               |
| 7         | DC, X axis, Sensor 3                |
| 15        | VM, Sensor 3                        |
| 44        | Linear correlation, Sensors 2 & 3   |

Table 5.14: The optimal feature set for the old method according to sec. B.2

by 10, the selectivity increases substantially. The sensitivity does however decrease from 82% to 75%. On this patient, the old method performs similarly to the new one. Both classifiers show classification results that are good enough to be non random but not so good that they could be of any use in a real application.

# 5.4 Patient F1

This F1 data set are measured on two subjects not actually experiencing authentic epileptic seizures. Instead they have been instructed to enact a sequence of movements at some occasions and logging the exact times of these "seizures". The "seizures" are very strong movements and should be regarded as more extreme than the average real epileptic seizures. The background data, i.e. the movements not associated with "seizures", are also quite extreme. Activities such as running, climbing and walking around in the woods are included as well as normal every day chores. The data set includes 28 seizures over a time span of 50 hours.

This data set is mainly included to assess the performance of the proposed classification method in a quite extreme background environment. It is also interesting since the data set is actually a fusion of four different measurements by two different persons, performed during different times. Therefore, it will give a hint on the possibility of transferring seizure models between patients suffering from similar forms of epilepsy.

#### Seizure sequence

The seizure sequence consists of indian jumps followed by swinging of arms from side to side and finally rotating the arms around a horizontal axis. The seizures lasts for about 20-30 seconds.

# 5.4.1 Parameter evaluation results

Figure 5.4 show the result of all parameter set evaluations (to see more details see appendix sec. A.3).

| Features used: All features |             |                    |          |            |                |  |  |
|-----------------------------|-------------|--------------------|----------|------------|----------------|--|--|
| Cluster a                   | analysis:   | Kmeans, 3 clusters |          |            |                |  |  |
| PLS-DA                      | variance:   | 70%                |          |            |                |  |  |
| Classifier                  | •           | KNN, $k = 3$       | 3        |            |                |  |  |
|                             | Sensitivity | Selectivity        | Num seiz | Found seiz | Found non seiz |  |  |
|                             | 96%         | 90%                | 28       | 27         | 3              |  |  |
|                             | 96%         | 90%                | 28       | 27         | 3              |  |  |
|                             | 96%         | 84%                | 28       | 27         | 5              |  |  |
|                             | 96%         | 93%                | 28       | 27         | 2              |  |  |
|                             | 96%         | 93%                | 28       | 27         | 2              |  |  |
| Mean                        | 96.0%       | 90.0%              | 28       | 27.0       | 3.0            |  |  |
| Median                      | 96.0%       | 90.0%              | 28       | 27.0       | 3.0            |  |  |
| STD                         | 0.0%        | 3.7%               | 0        | 0.0        | 1.2            |  |  |

Table 5.15: Results of the parameter set that showed overall best results and was later used to evaluate the feature sets.

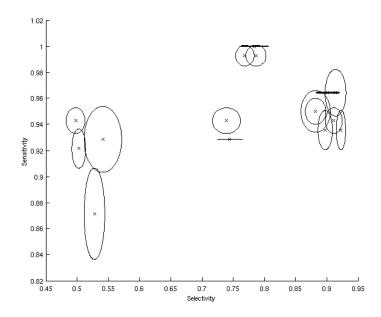



Figure 5.4: Plot of the results using all evaluated parameter sets.

#### 5.4.2 Best performance

For this data set, many parameter sets generated good results. The overall best model can be seen in table 5.15. This is a good and very convincing result that shows two things: First of all, the proposed method is able to identify various reasonably distinct movements against an active background. Secondly; seizure behavior can be generalized over different persons, as long as the movements are similar.

#### 5.4.3 Best parameter set

The parameter set that yielded the best performance can be seen in table 5.15. A comparison between the clustering methods and the results from the evaluation can be seen in table 5.16. It can be seen that the K-means clustering algorithm reaches highest performance among the clustering methods evaluated. The Gaussian mixture based methods show very low selectivity even though they are able to find the real seizures comparably well. It is not yet understood why the Gaussian mixture methods obtain so low selectivity. For some reason they seem unable to filter out the non seizures (remember that the background data are very active in this data set).

The maximum- and minimum-searching, non clustering methods perform very well on this data set as well. They obtain a sensitivity higher than 90% while having selectivity of about 75%. This result is so good that the extreme-value-searching methods might be useful in applications in the future. They do not rely on the clustering of data which have computational advantages as well as a greater transparency for users to assess their behavior. Compared to the clustering methods the extreme-value-searching methods look for obvious patterns and have no random elements which cause less variance in the results.

|                      | Sensitivi | Sensitivity |       | Selectivity |  |  |
|----------------------|-----------|-------------|-------|-------------|--|--|
| Clustering method    | Mean      | STD         | Mean  | STD         |  |  |
| Kmeans, 3 clusters   | 96.4%     | 0.0%        | 90.1% | 3.6%        |  |  |
| Kmeans, 4 clusters   | 93.6%     | 3.0%        | 92.3% | 1.5%        |  |  |
| Kmeans, 4 clusters   | 96.4%     | 3.6%        | 91.4% | 3.3%        |  |  |
| Kmeans, 4 clusters   | 95.0%     | 3.2%        | 88.2% | 4.7%        |  |  |
| Kmeans, 4 clusters   | 93.6%     | 3.0%        | 89.7% | 2.3%        |  |  |
| Kmeans, 4 clusters   | 95.0%     | 2.0%        | 88.2% | 3.3%        |  |  |
| Kmeans, 4 clusters   | 100.0%    | 0.0%        | 78.4% | 4.3%        |  |  |
| Kmeans, 4 clusters   | 99.3%     | 1.6%        | 76.9% | 2.9%        |  |  |
| Kmeans, 4 clusters   | 99.3%     | 1.6%        | 78.6% | 3.2%        |  |  |
| Kmeans, 5 clusters   | 94.3%     | 2.0%        | 91.1% | 2.7%        |  |  |
| Gm fuzzy, 3 clusters | 92.1%     | 3.0%        | 50.3% | 2.2%        |  |  |
| Gm fuzzy, 4 clusters | 87.1%     | 7.0%        | 52.8% | 3.3%        |  |  |
| Gm hard, 3 clusters  | 94.3%     | 2.0%        | 49.8% | 3.0%        |  |  |
| Gm hard, 4 clusters  | 92.9%     | 5.1%        | 54.1% | 6.0%        |  |  |
| Max value            | 92.9%     | 0.0%        | 74.4% | 3.9%        |  |  |
| Min value            | 94.3%     | 2.0%        | 73.9% | 4.5%        |  |  |

Table 5.16: Performance compared to clustering method for patient F1.

| Clustering: K-means, 4 clusters<br>Classification: KNN, $k = 3$ |        |       |             |     |  |  |
|-----------------------------------------------------------------|--------|-------|-------------|-----|--|--|
| Variance                                                        | Sensit | ivity | Selectivity |     |  |  |
| variance                                                        | Mean   | STD   | Mean        | STD |  |  |
| 50%                                                             | 96.4   | 3.5   | 91.4        | 3.1 |  |  |
| 70%                                                             | 93.4   | 2.9   | 92.4        | 1.3 |  |  |
| 80%                                                             | 94.6   | 3.1   | 88.0        | 4.8 |  |  |

Table 5.17: Comparison between accounting for different amounts of variance in the PLS-DA dimension reduction for patient F1.

| Clustering: K-means, 4 clusters<br>PLS-DA variance: 70% |             |     |             |     |  |  |
|---------------------------------------------------------|-------------|-----|-------------|-----|--|--|
| Classifier                                              | Sensitivity |     | Selectivity |     |  |  |
| Classifier                                              | Mean        | STD | Mean        | STD |  |  |
| KNN, $k = 1$                                            | 93.4        | 2.9 | 89.8        | 2.2 |  |  |
| KNN, $k = 3$                                            | 93.4        | 2.9 | 92.4        | 1.3 |  |  |
| KNN, $k = 5$                                            | 94.8        | 1.6 | 88.2        | 3.4 |  |  |
| QDA, Prior prob. weights [1 1]                          | 100.0       | 0.0 | 78.4        | 4.1 |  |  |
| QDA, Prior prob. weights [10 1]                         | 99.2        | 1.8 | 77.0        | 2.8 |  |  |
| QDA, Prior prob. weights [1 10]                         | 99.2        | 1.8 | 78.6        | 3.0 |  |  |

Table 5.18: Comparison between classifiers on patient F1 data set.

Only one model was evaluated with different amounts of variance in the PLS-DA step. The result of this evaluation can be seen in table 5.17. The differences are not so significant that one can say that one of them works better than the others. It does not, however, seem like reducing the dimensions to only account for 50% of the variance decreases performance, which means that the discriminatory information exist in a subspace with only half of the PLS-DA variance of the original space.

A comparison between classifiers is shown in table 5.18. The QDA classifiers generate lower selectivity values than the K-nearest neighbor classifiers but with the tradeoff that they have a slightly higher sensitivity.

No real difference can be seen depending on the prior probability weight for the QDA classifiers. This indicates that the Gaussian are well separated (see sec. 3.2.1).

For the KNN classifiers, no real difference in performance can be seen depending on choosing 1, 3 or 5 nearest neighbors.

# 5.4.4 Feature evaluation results

The statistics of the feature set combinations can be seen in table 5.19. This is to compare with the results from table 5.15.

For further information of the feature set evaluation result see appendix sec. A.3.

### 5.4.5 Best feature set

Which features hold discriminatory information? Results can be viewed in table 5.19. The general activity measurements signal magnitude area, vector magnitude and mean absolute magnitude difference seem to hold similar information. No apparent decrease in performance is visible when excluding two of them at a time.

When removing the DC features a slight decrease in selectivity is noticed. If this is due to discriminatory power of the DC values or simply due to randomness is hard to say. In any case, there is no big drawback in performance when removing the DC values. The same

| Feature set                 | Sensiti | ivity      | Select | ivity |
|-----------------------------|---------|------------|--------|-------|
|                             | Mean    | STD        | Mean   | STD   |
| Without VM and MAMD         | 96.0~%  | 0.0~%      | 91.2~% | 2.7 % |
| Without SMA and MAMD        | 100.0~% | 0.0~%      | 90.8~% | 2.2 % |
| Without SMA and VM          | 95.4~%  | 1.3~%      | 90.6~% | 1.3 % |
| Without DC                  | 96.8~%  | 1.8~%      | 87.8~% | 2.5 % |
| Without CORR                | 96.0~%  | 0.0~%      | 92.4~% | 1.3 % |
| Without PER                 | 96.0~%  | 0.0~%      | 91.8~% | 3.4 % |
| Without FREQ                | 96.8~%  | 1.8~%      | 86.0~% | 1.4 % |
| Without highest FREQ        | 96.0~%  | 0.0~%      | 93.0~% | 0.0 % |
| Without sensor 1            | 96.2~%  | $2.5 \ \%$ | 88.8~% | 2.7 % |
| Without sensor 2            | 94.2~%  | 1.6~%      | 91.8~% | 1.6 % |
| Without sensor 3            | 100.0~% | 0.0~%      | 93.0~% | 0.0 % |
| Without sensor 1 and 2      | 96.0~%  | 0.0~%      | 84.2~% | 1.8 % |
| Without sensor 2 and 3      | 93.6~%  | 1.3~%      | 89.4~% | 1.3 % |
| Without sensor 1 and 3      | 96.2~%  | $2.5 \ \%$ | 88.8~% | 1.6 % |
| Using feature differentials | 89.2~%  | 4.1~%      | 68.0~% | 4.2~% |

Table 5.19: Results from feature set evaluation of patient F1.

is true when removing the frequency components. Since the frequency bands and DC values are the groups with most components and two groups that seems very typical for seizures, this result is quite interesting. However, these groups might contain information present in some other feature groups as well ( at least for the seizure behavior present in data set F1).

Excluding correlation, periodicity and the highest frequency band (13.25-25Hz), one at a time, does not affect the classification performance.

Removing one of the sensors does not render a significant decrease in classification performance. Removing sensor 1 and 2 simultaneously does, however, decrease the selectivity a little bit to about 84%.

Using feature differentials decreases selectivity to only 68% while decreasing the sensitivity to about 90%. This is the only significant decrease in performance noticed on all of the feature sets analyzed (and feature differentials are not really a group of features but a transformation of the original features).

It seems like all groups tested have redundant information with the complement feature set. Therefore, no real conclusion can be drawn from this analysis except that feature differentials do not perform well in this setting and that probably a large part of the features can be removed. For this kind of "seizures", it would work to only use one sensor, even with diverse background activity.

#### 5.4.6 Old method evaluation

The features used for evaluation of the old method can be seen in table 5.21. These features were analyzed to be the optimal feature set set for patient F1 using the evaluation procedure from [3], see sec. B.3. There are two evaluated parameter sets, the first being exactly the same parameter set as suggested by the prior thesis [3], the second evaluated

with the same parameters apart from the weighting of prior probabilities set much higher for non seizures compared to seizures. This causes a small decay in sensitivity but a large gain in selectivity (see table 5.20).

| Classifier | :           | Old method  | with prior   | prob. weight | [1 1]           |
|------------|-------------|-------------|--------------|--------------|-----------------|
|            | Sensitivity | Selectivity | Num seiz     | Found seiz   | Found non seiz  |
| Mean       | 93.0%       | 42.4%       | 28           | 26.0         | 35.4            |
| Median     | 93.0%       | 43.0%       | 28           | 26.0         | 35.0            |
| STD        | 0.0%        | 1.5%        | 0            | 0.0          | 2.3             |
|            |             |             |              |              | 22              |
| Classifier | r:          | Old method  | l with prior | prob. weight | $[1 \ 10^{20}]$ |
|            | Sensitivity | Selectivity | Num seiz     | Found seiz   | Found non seiz  |
| Mean       | 86.6%       | 71.0%       | 28           | 24.2         | 10.0            |
| Median     | 86.0%       | 71.0%       | 28           | 24.0         | 10.0            |
| STD        | 1.3%        | 0.0%        | 0            | 0.4          | 0.0             |

Table 5.20: Results using the old classification method that existed prior to this thesis.

#### 5.4.7 Performance of old method

The results from the old method evaluation for patient F1 can be seen in table 5.20.

With the original model used prior to this thesis, the average sensitivity is 93% with a selectivity of 42.4%. Increasing the prior probability weight from [1 1] to [1  $10^{20}$ ], the sensitivity decreases to 86.6% but with a drastic increase in selectivity up to 71%. These values are almost good enough to be used in an application (at least if the selectivity is not that important, such as if the patient are able to reject false alarms when using the classifier hardware). The huge amount of change in prior probability weights that was needed to change the result show that the Gaussian are well separated.

| Foot # | Fosturo namo                                  |
|--------|-----------------------------------------------|
| Feat # | Feature name                                  |
| 29     | Frequency band 2.25 - 3.75 Hz, Sensor 2       |
| 47     | Circular correlation, Sensor 1 with itself    |
| 46     | Linear correlation, Sensors 1 with itself & 3 |
| 5      | DC, Y axis, Sensor 2                          |
| 3      | DC, Z axis, Sensor 1                          |
| 8      | DC, Y axis, Sensor 3                          |
| 20     | Periodicity, Sensor 3                         |
| 40     | Linear correlation, Sensor 1 % 2              |
| 6      | DC, Z axis, Sensor 2                          |
| 48     | Linear correlation, Sensor 2 with itself      |
| 49     | Circular correlation, Sensor 2 with itself    |
| 43     | Circular correlation, Sensors 1 & 3           |
| 50     | Linear correlation, Sensor 3 with itself      |
| 45     | Circular correlation, Sensors 2 & 3           |
| 9      | DC, Z axis, Sensor 3                          |
| 42     | Linear correlation, Sensors 1 & 3             |

Table 5.21: The optimal feature set for the old method according to sec. B.3  $\,$ 

### 5.5 Patient F2

This data referred to as patient F2 was measured on a person not actually suffering from epilepsy. Instead the subject was instructed to carry out a rehearsed seizure sequence. In this set the "seizures" are supposed to look like real epileptic seizures of quite subtle nature (described below). This data can therefore be thought of as substituting an authentic measurement, but with consistent and reasonably numerous seizures and authentic every day background activity. The data set includes 17 "seizures" over a time span of about 35 hours.

#### Seizure sequence

The seizure sequence starts out with the actor assuming a fencing position with right hand stretched and left hand tucked behind the head. The head directed towards the right hand. From this fencing position, the "seizure" evolves by introducing small jerkings with decreasing frequency and increasing amplitude in the right hand. The whole seizure last for about 15-20 seconds.

#### 5.5.1 Parameter evaluation results

Figure 5.5 show the results from all parameter set evaluations (to see more details see appendix sec. A.4).

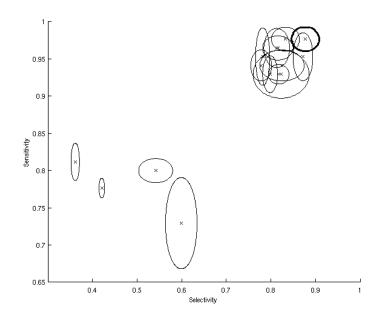



Figure 5.5: Plot of the results using all evaluated parameter sets.

| Features   | used:       | All features |          |            |                |
|------------|-------------|--------------|----------|------------|----------------|
| Cluster a  | analysis:   | Gm fuzzy, 3  | clusters |            |                |
| PLS-DA     | variance:   | 70%          |          |            |                |
| Classifier | •           | KNN, $k = 3$ | 3        |            |                |
|            | Sensitivity | Selectivity  | Num seiz | Found seiz | Found non seiz |
|            | 100%        | 94%          | 17       | 17         | 1              |
|            | 100%        | 85%          | 17       | 17         | 3              |
|            | 100%        | 81%          | 17       | 17         | 4              |
|            | 94%         | 94%          | 17       | 16         | 1              |
|            | 94%         | 84%          | 17       | 16         | 3              |
| Mean       | 97.6%       | 87.6%        | 17       | 16.6       | 2.4            |
| Median     | 100.0%      | 85.0%        | 17       | 17.0       | 3.0            |
| STD        | 3.3%        | 6.0%         | 0        | 0.5        | 1.3            |

Table 5.22: Results of the parameter set that showed overall best results and was later used to evaluate the feature sets.

| Clustering method    | Sensitiv | vity  | Selectiv | vity  |
|----------------------|----------|-------|----------|-------|
| Clustering method    | Mean     | STD   | Mean     | STD   |
| Gm fuzzy, 3 clusters | 97.6%    | 3.2%  | 87.7%    | 6.2%  |
| Gm fuzzy, 4 clusters | 95.3%    | 7.7%  | 78.2%    | 3.2%  |
| Gm fuzzy, 4 clusters | 94.1%    | 4.2%  | 82.5%    | 9.9%  |
| Gm fuzzy, 4 clusters | 92.9%    | 6.4%  | 82.3%    | 12.5% |
| Gm fuzzy, 4 clusters | 92.9%    | 4.9%  | 79.8%    | 3.3%  |
| Gm fuzzy, 4 clusters | 92.9%    | 2.6%  | 81.7%    | 4.6%  |
| Gm fuzzy, 4 clusters | 96.5%    | 3.2%  | 81.6%    | 6.8%  |
| Gm fuzzy, 4 clusters | 94.1%    | 4.2%  | 77.8%    | 4.7%  |
| Gm fuzzy, 4 clusters | 95.3%    | 6.4%  | 87.2%    | 4.4%  |
| Gm hard, 3 clusters  | 97.6%    | 3.2%  | 83.3%    | 6.3%  |
| Gm hard, 4 clusters  | 96.5%    | 5.3%  | 81.3%    | 5.8%  |
| K means, 3 clusters  | 80.0%    | 3.2%  | 54.2%    | 7.6%  |
| K means, 5 clusters  | 72.9%    | 12.2% | 59.9%    | 7.0%  |
| Max values           | 77.6%    | 2.6%  | 42.1%    | 1.2%  |
| Min values           | 81.2%    | 4.9%  | 36.1%    | 1.9%  |

Table 5.23: Performance compared to clustering method for patient F2.

#### 5.5.2 Best performance

How well do the proposed method perform on patient F2 at its best? The figure 5.5 answer this question. For this data set, several models generated good results. The overall best model can be seen in table 5.22. This result shows that the task of classifying quite subtle tonic-clonic seizures with adequate precision in a realistic background setting is possible.

#### 5.5.3 Best parameter set

The parameter set that yielded the best performance can be seen in table 5.22. A comparison between the clustering methods and the results from the evaluation can be seen in table 5.23.

| Clustering<br>Classificat |        |       |        |       |
|---------------------------|--------|-------|--------|-------|
| Variance                  | Sensit | ivity | Select | ivity |
| variance                  | Mean   | STD   | Mean   | STD   |
| 50%                       | 92.8   | 6.6   | 82.2   | 12.2  |
| 70%                       | 95.2   | 7.8   | 78.0   | 3.1   |
| 80%                       | 94.0   | 4.2   | 82.4   | 10.0  |

Table 5.24: Comparison between accounting for different amounts of variance in the PLS-DA dimension reduction for patient F2.

| Clustering: GM fuzzy, 4 clusters<br>PLS-DA variance: 70% |        |        |        |       |
|----------------------------------------------------------|--------|--------|--------|-------|
| Classifier                                               | Sensit | tivity | Select | ivity |
| Classifier                                               | Mean   | STD    | Mean   | STD   |
| KNN, $k = 1$                                             | 92.8   | 2.7    | 81.6   | 4.6   |
| KNN, $k = 3$                                             | 95.2   | 7.8    | 78.0   | 3.1   |
| KNN, $k = 5$                                             | 92.8   | 5.0    | 79.8   | 3.3   |
| QDA, Prior prob. weights [1 1]                           | 96.4   | 3.3    | 81.6   | 6.8   |
| QDA, Prior prob. weights [10 1]                          | 94.0   | 4.2    | 77.8   | 4.5   |
| QDA, Prior prob. weights [1 10]                          | 95.2   | 6.6    | 87.0   | 4.3   |

Table 5.25: Comparison between classifiers on patient F2 data set.

Table 5.23 shows that only the Gaussian mixture based clustering methods are able to yield adequate selectivity. Probably, the shape adaptivity of the Gaussian mixture methods is needed to fit the data satisfactorily in order to acquire the discriminatory information.

As seen in table 5.24, there is no big difference in performance when accounting for 50%, 70% or 80% of the variance in the PLS-DA dimension reduction. However, both 50% and 80% PLS-DA variance causes significantly larger variance among the selectivity values, as compared to using 70% variance. Therefore, using 70% of the PLS-DA variance would be recommended for stability reasons.

The K-nearest neighbor method seems to perform equally well when choosing k = 1, 3 or 5. There is no significant difference between them, K = 3 having a slightly larger sensitivity value than the others but with greater variance for the sensitivity as well. No real difference can be concluded.

The QDA classifiers seem to work at least as well as the KNN and weighting the prior probability for non seizures to be 10 times more likely than a seizure increases the selectivity from about 80% to 87% without changing the sensitivity significantly.

#### 5.5.4 Feature evaluation results

The statistics of the feature set combinations can be seen in table 5.26. This is to compare with the results from table 5.22.

For further information on the feature set evaluation result see appendix sec. A.4.

| Feature set                 | Sensit | ivity      | Select | ivity |
|-----------------------------|--------|------------|--------|-------|
|                             | Mean   | STD        | Mean   | STD   |
| Without VM and MAMD         | 90.4~% | 6.8~%      | 80.2 % | 9.4~% |
| Without SMA and MAMD        | 97.6~% | 3.3~%      | 78.4~% | 3.2 % |
| Without SMA and VM          | 96.4~% | 5.4~%      | 83.6~% | 3.6 % |
| Without DC                  | 89.2~% | 6.6~%      | 60.8~% | 5.4~% |
| Without CORR                | 94.0~% | 4.2~%      | 83.4~% | 4.7 % |
| Without PER                 | 94.0~% | $4.2 \ \%$ | 80.0~% | 5.3~% |
| Without FREQ                | 89.2~% | 6.6~%      | 64.8~% | 2.5 % |
| Without highest FREQ        | 92.8~% | 5.0~%      | 88.0~% | 6.5~% |
| Without sensor 1            | 95.2~% | 5.0~%      | 71.4~% | 9.2 % |
| Without sensor 2            | 85.6~% | 3.3~%      | 63.2~% | 5.0~% |
| Without sensor 3            | 88.0~% | 7.3~%      | 52.2~% | 4.6 % |
| Without sensor 1 and 2      | 91.6~% | 5.4~%      | 51.2~% | 4.1 % |
| Without sensor 2 and 3      | 88.0~% | 7.3~%      | 40.8~% | 3.3~% |
| Without sensor 1 and 3      | 90.4~% | 5.4~%      | 46.4~% | 4.6 % |
| Using feature differentials | 88.0~% | 4.2~%      | 60.4~% | 4.8~% |

Table 5.26: Results from feature set evaluation of patient F2.

#### 5.5.5 Best feature set

The results when excluding certain feature groups can be viewed in table 5.26. For this patient, the general activity measurements signal magnitude area, vector magnitude and mean absolute magnitude difference do seem to hold their own contribution to the discriminatory power of the feature set. Excluding two of them will decrease the classification result somewhat. The mean absolute magnitude difference seems to have the most of the information since only using this measure will decrease the result the least.

Removing the DC features will affect the sensitivity somewhat and the selectivity deeply. The selectivity decreases to only 60% which renders the model unusable for most applications. Similarly removing the frequency components seems to affect the discriminatory power equally.

Removing correlation, periodicity or the highest frequency band (13.25-25Hz), one at a time, will reduce performance somewhat but will still yield satisfactory results.

Removing sensor 1 will reduce selectivity to 70% while keeping the sensitivity at around 95%. Removing sensor 2 or sensor 3 will decrease the performance much more severely.

Removing two sensors at a time will render results of about 90% sensitivity but only 45% selectivity.

Using feature differentials yield a sensitivity in the order of about 90% but with a selectivity of 60%, below what could be a satisfactory performance in the most implementations.

#### 5.5.6 Old method evaluation

The features used for evaluation of the old method can be seen in table 5.28. These features were analyzed to be the optimal feature set for patient F2 using the evaluation procedure from [3], see sec. B.4. There are two evaluated parameter sets. The first being exactly the same parameter set as suggested by the prior thesis [3], the second evaluation having the same parameters apart from the weighting of prior probabilities set much higher for non seizures than seizures. This causes a increase in both sensitivity and selectivity (see table 5.27).

| Classifier | :           | Old method  | , Prior prob  | . weight [1 1]  |                   |
|------------|-------------|-------------|---------------|-----------------|-------------------|
|            | Sensitivity | Selectivity | Num seiz      | Found seiz      | Found non seiz    |
| Mean       | 76.2%       | 12.0%       | 17            | 13.0            | 94.2              |
| Median     | 76.0%       | 12.0%       | 17            | 13.0            | 93.0              |
| STD        | 3.9%        | 0.7%        | 0             | 0.7             | 3.0               |
| Classifier | :           | Old method  | l, Prior prob | o. weight [1 10 | ) <sup>20</sup> ] |
|            | Sensitivity | Selectivity | Num seiz      | Found seiz      | Found non seiz    |
| Mean       | 84.4%       | 37.8%       | 17            | 14.4            | 23.6              |
| Median     | 82.0%       | 38.0%       | 17            | 14.0            | 23.0              |
| STD        | 3.3%        | 1.1%        | 0             | 0.5             | 0.9               |

Table 5.27: Results using the old classification method that existed prior to this thesis.

| Feat $\#$ | Feature name                                |
|-----------|---------------------------------------------|
| 19        | Periodicity, Sensor 1                       |
| 36        | Frequency band 3.75 - 5.25 Hz, Sensor 3     |
| 30        | Frequency band 3.75 - 5.25 Hz, Sensor 2     |
| 45        | Circular correlation, Sensors 2 & 3         |
| 37        | Frequency band 5.25 - 8.25 Hz, Sensor 3     |
| 14        | VM, Sensor 2                                |
| 40        | Linear correlation, Sensors 1 & 2           |
| 35        | Frequency band 2.25 - 3.75 Hz, Sensor 3     |
| 38        | Frequency band 8.25 - 13.25 Hz, Sensor 3    |
| 5         | DC, Y axis, Sensor 2                        |
| 46        | Linear correlation, Sensor 1 with itself    |
| 7         | DC, X axis, Sensor 3                        |
| 49        | Circular correlation, Sensors 2 with itself |
| 29        | Frequency band $2.25 - 3.75$ Hz, Sensor 2   |
| 47        | Circular correlation, Sensor 1 with itself  |

Table 5.28: The optimal feature set for the old method according to sec. B.3

#### 5.5.7 Performance of old method

The results from the old classification method evaluation for patient F2 can be seen in table 5.20.

As can be seen in the table there are sensitivity values that are quite satisfactory but the selectivity is very low. When increasing the prior probability weights for the non seizures, it is possible to increase the performance of the method but the selectivity does never go above 40%, to low to be usable in a real implementation.

## Chapter 6

## Discussion

In this chapter, interpretation and conclusions are drawn from the results in chapter 5. The chapter first make a general interpretation of the results from the four data sets studied in chapter 5. Later, a section addressing future work and possible alternatives are presented. Finally, a section that draws general conclusions and compares them to the questions and tasks of the thesis (see sec. 1.4) are presented.

### 6.1 General interpretation

The proposed method has been evaluated on four different data sets consisting of measurements with four different seizure behaviors as well as some differences in background activity. All four data sets do however have something in common: They all share the properties that the seizures are consistent and numerous (at least 10).

Exactly how dependent the relation between number of seizures and classification performance is, is hard to subjectively assess. It is however believed that more than 10 seizures with the same behavior pattern should be present to fit a reasonable classification model.

#### 6.1.1 Best performance

For patient 14 the proposed classification method did not seem to perform satisfactorily. This shows that those types of tonic seizures are not expected to be classified correctly by the proposed classification method. This reduces the possible market for such an automatic seizure logger somewhat. However, epilepsy is a common disorder and there is a large group of people suffering from seizures which this classification method shows promising results for.

The 3 other data sets have shown satisfactory results, both sensitivity and selectivity above 80% for all of them. From this the conclusions is that: the kinds of seizures exhibited by patient 7 and patient F2 are possible to classify with satisfactory results. Also, patient

F1 showed that powerful movements can be classified even with a background of high activity and that movements can be generalized between different persons. This last conclusion is quite important, since it makes it possible to increase a seizure data base by fusing seizures from several patients suffering from similar types of epilepsy.

#### 6.1.2 Best parameter set

#### **Clustering method**

The data sets showed optimal performance with different clustering algorithms. It seems that no single clustering method is adapted for all kinds of seizure movements. The K-means clustering did work quite well with all patients except patient F2. I would draw the conclusion that, if the seizures are subtle (but still specific) a Gaussian mixture based clustering methods is needed. When the seizures are a bit more energetic, K-means based clustering methods is better since they can fit a larger number of clusters. Also, K-means method is less computationally intensive which might be important in embedded implementations.

#### **PLS** variance

It is evident that the amount of variance chosen as a threshold in the PLS-DA dimension reduction must be based on both the clustering method and the patient. No general conclusion can be drawn here.

#### Classifier

Generally K-nearest neighbors seem to yield the best results when both sensitivity and selectivity are important. QDA might be useful when sensitivity are far more important than selectivity.

#### 6.1.3 Best feature sets

#### Activity measures

For some patients, there was no differences in the results when choosing between the three measures (SMA, VM and MAMD) while for some others there were a difference. It does, however, seem like there is some redundant discriminatory power among the three activity measures. Not all three are expected to be necessary but in some cases two of them may be.

#### DC values

DC values seem to play an important role for some kinds of seizures. Since they are basically a measure of inclination, they should be used for seizures associated with some orientation. One might suspect that for more subtle seizures, the DC values become more important to rule out non seizure activities based on the orientation.

#### **Highest frequency**

The highest frequency band (13.25-25Hz), does not seem to hold any discriminatory information. This is the frequency band that is affected the most if some radio packets are lost. Furthermore, the body is not able to oscillate at these frequencies. The reason why these frequencies might exist in the measurements can be explained by overtones caused by mechanics inside the sensor boxes or the fixation of the sensor boxes to the limbs. These kinds of oscillations might therefore be more typical of certain hardware under special circumstances. It might be hazardous to use such properties since they might not exist in all measurement setups.

Another origin of so high frequency components might be fast acceleration changes in a movement. Such changes will cause the fourier transform for that time interval to contain high frequency components of reasonable amplitude. However, drastic acceleration activity is expected to show in other features (such as the general activity measures). Thus, it is advisable to remove this feature from the algorithm.

#### Frequency components

The frequency components seem important even though they are not crucial for every patient. At least all seizures containing clonic episodes should be classified with aid of the frequency components. These features should remain in the feature sets for all kinds of epilepsy.

#### Periodicity and correlation

The periodicity and correlation features did not seem to hold exclusive discriminatory information. Because of the physical interpretation of these features, it is not expected that they are correlated. Therefore, it may be possible to remove them both although that was never tested during the evaluation.

#### Sensors

It seems that one or two sensors was adequate for all patients except patient F2 in this study. How many sensors or where to put them might however be up to the characteristics of the patients seizures. When analyzing a patient, it would be recommended to tune

the classifier and hardware setup for that particular patient for optimal classification performance.

#### Feature differentials

The feature differential transformation did cause severe decrease in performance for all data sets except for patient 14, where the performance was instead increased. For patient 14, even though the performance was increased, the results acquired was not good enough to be useful in an actual implementation.

Although feature differentials were not useful on their own, the fact that they improved the results for patient 14 indicates that they could be useful as a complement to the normal ones.

#### 6.1.4 Comparison between old and new method

The new classification method has shown superior to the old method for all data sets, except patient 14 where the two methods performed similarly inadequate. No advantage in performance has been recognizable for the old method. However, the old method is less computationally complex and might therefore yield advantages in implementations on systems restricted by battery or computational power.

### 6.2 Future work

There is plenty of possibilities for future work. First of all, obtaining more data sets that fulfill the requirements of consistent seizure behavior and many seizures of the kind that affect muscular movement. Once more data sets are available, a larger and more quantative evaluation study should be performed in order to statistically assess the performance of the classifier.

Hardware specific implementation of the proposed method from this thesis can be an interesting task. Here, numerical stability and computational complexity on a small embedded system introduces new challenges. The hardware can also be implemented to interact with the user (in this case the patient). In this way, the hardware can communicate with the user when a classification takes place. The users might be able to give their input on whether the alarm was a probable seizure or a false alarm. This human-machine interaction might be developed further with the introduction of on-line learning, where the classifier is trained with more data in real time as soon as it is gathered. By doing so, the patient might give input which can be used to confirm data and consequently expand the training set.

There is also the possibility to perform statistical analysis of the accelerometer- or featuredata - and study the possibility of predicting seizures in advance. Furthermore, there are other kinds of classification methods that might perform better than the proposed method from this thesis. Here, a new classification method or an add-on to the existing one can be developed. Methods such as artificial neural networks or hidden Markov chains could for example be used. Also, more complex clustering and classification techniques that might perform better than the existing ones could be implemented.

The classification performance could be enhanced by developing new and more discriminatory measurements (features) derived from the accelerometer data. To be able to find such measurements, it would be necessary to have a good understanding of epilepsy and its complications. A person that studies or have studied medicine would be more appropriate for such a task.

More areas of application for the product could be identified. It could be applied to study similar disorders such as Parkinson, to monitor the status of the elderly, as diagnosing or training tools for athletes, among others. Classification of movements for non-humans such as animals or machines might also be a market for such a device.

Finally, modifying the hardware can also bring new possibilities. As mentioned in the discussion chapter, finding tonic seizures would be much easier if the position of the limbs were known at all times instead of only their acceleration. By introducing hardware capable of finding these positions, new doors would open for seizure classification.

### 6.3 Conclusion

Let us assess how well the purpose of this thesis (see sec.1.4) has been fulfilled:

• Include time evolutionary acceleration information into the decision process of the seizure classifier.

The time evolutionary acceleration information has been included on a larger time scale throughout the transition matrix extraction (see sec.3.3). Since these transition matrices are used in the final classification decision, this purpose is considered to be clearly fulfilled.

• Enhance the performance of the current classifier method.

The pilot study, which evaluated the performance of the new classification method, shows only advantages compared to the old classification method. The pilot study did only evaluate the two classification methods on four different data sets. It is therefore impossible to say, with complete certainty, that the performance of these four data sets is representative for the majority of possible epilepsy measurements. As far as we know, it seems likely that future measurements will behave similarly to the tested data sets and, if they do, the new classification method will perform much better than the old one.

• Perform a pilot study, assessing the performance of the proposed classification method. The pilot study was performed and some conclusions has been drawn ( as far as conclusions can be drawn from the limited number of data sets studied ).

First of all, the clustering algorithm that gives the best result is entirely dependent on the kind of behavior studied. Further on, the parameters of the different stages of the classification method are all quite dependant on the data studied. Therefore, it seems like the parameters and clustering techniques to use should be "tuned" for the particular patient behavior that is being studied. For example, a senior citizen with a restricted movement pattern will have a less active background data compared to an athlete. Therefore, these two patients might demand differently tuned classification methods.

The KNN classifier (see sec.3.2.2) seems to perform better or equal to the QDA classifier (see sec.3.2.1) for all tested data sets. The QDA classifier does however have some computational advantages. If KNN is too demanding, it might be necessary to use QDA anyway. Some optimization of the KNN classifier might solve this problem.

Neither the new or the old classification method seem to be able to find tonic seizures. This is believed to derive from the non-original acceleration pattern of tonic seizures.

Generalizing seizure behavior from one patient model to another seem to be possible. This means that, if two patients suffer from the same kind of seizures, it should be possible to use the classification model from one of the patients to find seizures at the other patient. This could also be used to increase the training set while training the classifier.

Finding very original seizure behavior seems to be possible even when the background data is very active and extreme. This opens up the possibility to have very strong background data and find normal seizures as well.

#### • Investigate possibilities of decreasing the number of sensors and decreasing the computational complexity of the classifier.

This task was performed by removing some feature groups at a time and evaluate if and how the classification performance changed.

It seemed like some, but not all, of the general activity measurements should remain in the feature set. The highest frequency band (13.25 - 25 Hz) as well as the periodicity and correlation features can be removed without any decrease in classification performance. The DC and the rest of the frequency bands should remain in the features set.

The number and placements of sensors needed are completely dependent on the patients seizure and background movement behavior. For the most patients it seems possible to only include 1 or 2 sensors.

The time derivatives of the features did not show any discriminatory advantage compared to the original feature values, quite the contrary.

# Bibliography

- Charlotte Sachs, Gösta Blennow, and Jörgen Malmquist. Epilepsi nationalencyklopedin, 2011. [Online; accessed 29-April-2011].
- [2] Encyclopedia Britannica. Epilepsy encyclopedia britannica, 2011. [Online; accessed 29-April-2011].
- [3] Johan Wipenmyr. Utveckling av metoder för diskriminering av epileptiska anfall. Master's thesis, Luleå university of technology, 2011.
- [4] J Stigwall, J Wipenmyr, T Petterson, B Rydenhag, and K Malmgren. Automatic registration and classification of epileptic seizures using wireless motion sensors. proceedings of the 7th international conference on wearable micro- and nano-technologies for personalized health, pHealth, May 2010.
- [5] Raisonance. STM32-Primer2 user manual, 2009. www.raisonance.com.
- [6] Dynastream innovations inc, 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1. ANT Message Protocol and Usage, 4.2 edition. thisisant.com.
- [7] M. J. Mathie, A. C. F. Coster, N. H. Lovell, and B. G. Celler. Detection of daily physical activities using a triaxial accelerometer.
- [8] Milan Sonka, Vaclav Hlavac, and Roger Boyle. Image Processing, Analysis and Machine Vision. Thomson learning, Toronto, third edition, 2008.
- [9] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. *The elements of statistical learning*. Springer, Stanford, California, second edition, 2008.
- [10] A.K Jain, M.N Murty, and P.J Flynn. Data clustering: A review. ACM Computing Surveys, 31(3):316–323, 1999.
- [11] Richard A Redner and Homer F Walker. Mixture densities, maximum likelihood and the em algorithm. SIAM Review, 26(2):195–239, 1984.
- [12] David Williams. *Weighting the odds.* Cambridge university press, The Pitt building, Trumpington street, Cambridge, United kingdom, 2004.
- [13] Jiang Xudong. Linear subspace learning-based dimensionality reduction. *IEEE Sig*nal processing magazine, 28(2):16–26, 2011.

- [14] Anil K. Jain, Robert P.W. Duin, and Jianchang Mao. Statistical pattern recognition: A review. *IEEE Transactions on pattern analysis and machine intelligence*, 22(1):4–37, 2000.
- [15] C Lay, David. Linear Algebra and its application. Pearson, third edition, 2003.
- [16] P Geladi and B.R. Kowalski. Partial least-squares regression: A tutorial. Analytica Chimica Acta, 185(C):1–17, 1986.
- [17] Svante Wold, Mikael Sjöström, and Lennart Eriksson. Pls-regression: a basic tool for chemometrics. *Chemometrics and intelligent laboratory systems*, 58:109–130, 2001.

# Appendix A

# **Complete results**

### A.1 Patient 7

|                                                                                      | used:                                                                                                                                                                     | All features                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                  |                                                                                              |                                                                                                           |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Cluster a                                                                            |                                                                                                                                                                           | Kmeans, 4 c                                                                                                                                                                                                                                                                                                                                                             | lusters                                                                                                                                                                                                                                                                                                                          |                                                                                              |                                                                                                           |
| PLS-DA                                                                               | variance:                                                                                                                                                                 | 70%                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                  |                                                                                              |                                                                                                           |
| Classifier                                                                           | :                                                                                                                                                                         | KNN, k = 3                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                  |                                                                                              |                                                                                                           |
|                                                                                      | Sensitivity                                                                                                                                                               | Selectivity                                                                                                                                                                                                                                                                                                                                                             | Num seiz                                                                                                                                                                                                                                                                                                                         | Found seiz                                                                                   | Found non seiz                                                                                            |
|                                                                                      | 82%                                                                                                                                                                       | 75%                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                               | 9                                                                                            | 3                                                                                                         |
|                                                                                      | 82%                                                                                                                                                                       | 75%                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                               | 9                                                                                            | 3                                                                                                         |
|                                                                                      | 82%                                                                                                                                                                       | 75%                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                               | 9                                                                                            | 3                                                                                                         |
|                                                                                      | 73%                                                                                                                                                                       | 73%                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                               | 8                                                                                            | 3                                                                                                         |
|                                                                                      | 73%                                                                                                                                                                       | 67%                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                               | 8                                                                                            | 4                                                                                                         |
| Mean                                                                                 | 78.4%                                                                                                                                                                     | 73.0%                                                                                                                                                                                                                                                                                                                                                                   | 11                                                                                                                                                                                                                                                                                                                               | 8.6                                                                                          | 3.2                                                                                                       |
| Median                                                                               | 82.0%                                                                                                                                                                     | 75.0%                                                                                                                                                                                                                                                                                                                                                                   | 11                                                                                                                                                                                                                                                                                                                               | 9.0                                                                                          | 3.0                                                                                                       |
| STD                                                                                  | 4.9%                                                                                                                                                                      | 3.5%                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                | 0.5                                                                                          | 0.4                                                                                                       |
|                                                                                      |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                  |                                                                                              |                                                                                                           |
| Features                                                                             |                                                                                                                                                                           | All features                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                |                                                                                              |                                                                                                           |
| Cluster a                                                                            |                                                                                                                                                                           | Kmeans, 5 c                                                                                                                                                                                                                                                                                                                                                             | lusters                                                                                                                                                                                                                                                                                                                          |                                                                                              |                                                                                                           |
| PLS-DA                                                                               |                                                                                                                                                                           | 70%                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                  |                                                                                              |                                                                                                           |
| Classifier                                                                           |                                                                                                                                                                           | KNN, $k = 3$                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                  |                                                                                              |                                                                                                           |
|                                                                                      | Sensitivity                                                                                                                                                               | Selectivity                                                                                                                                                                                                                                                                                                                                                             | Num seiz                                                                                                                                                                                                                                                                                                                         | Found seiz                                                                                   | Found non seiz                                                                                            |
|                                                                                      | 82%                                                                                                                                                                       | 82%                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                               | 9                                                                                            | 2                                                                                                         |
|                                                                                      | 82%                                                                                                                                                                       | 75%                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                               | 9                                                                                            | 3                                                                                                         |
|                                                                                      | $\frac{82\%}{73\%}$                                                                                                                                                       | 75%                                                                                                                                                                                                                                                                                                                                                                     | 11<br>11                                                                                                                                                                                                                                                                                                                         | 9<br>8                                                                                       | 3                                                                                                         |
|                                                                                      | 73%                                                                                                                                                                       | 80%<br>73%                                                                                                                                                                                                                                                                                                                                                              | 11                                                                                                                                                                                                                                                                                                                               | 8                                                                                            | 2                                                                                                         |
| Mean                                                                                 | 73%                                                                                                                                                                       | 77.0%                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                  | -                                                                                            | 2.6                                                                                                       |
| Mean<br>Median                                                                       | 78.4%                                                                                                                                                                     | 77.0%                                                                                                                                                                                                                                                                                                                                                                   | 11                                                                                                                                                                                                                                                                                                                               | 8.6<br>9.0                                                                                   | 2.6                                                                                                       |
| STD                                                                                  | 4.9%                                                                                                                                                                      | 3.8%                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                | 0.5                                                                                          | 0.5                                                                                                       |
| 51D                                                                                  | 4.970                                                                                                                                                                     | 3.870                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                | 0.5                                                                                          | 0.5                                                                                                       |
| Features                                                                             |                                                                                                                                                                           | All features                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                  |                                                                                              |                                                                                                           |
| Cluster a                                                                            |                                                                                                                                                                           | Kmeans, 3 c                                                                                                                                                                                                                                                                                                                                                             | luctors                                                                                                                                                                                                                                                                                                                          |                                                                                              |                                                                                                           |
|                                                                                      |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                  |                                                                                              |                                                                                                           |
| PLS-DA                                                                               |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                         | 1450015                                                                                                                                                                                                                                                                                                                          |                                                                                              |                                                                                                           |
| PLS-DA                                                                               | variance:                                                                                                                                                                 | 70%                                                                                                                                                                                                                                                                                                                                                                     | lusters                                                                                                                                                                                                                                                                                                                          |                                                                                              |                                                                                                           |
| PLS-DA<br>Classifier                                                                 | variance:                                                                                                                                                                 | 70% KNN, k = 3                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                  | Found seiz                                                                                   | Found non seiz                                                                                            |
|                                                                                      | variance:<br>:<br>Sensitivity                                                                                                                                             | 70% KNN, k = 3 Selectivity                                                                                                                                                                                                                                                                                                                                              | Num seiz                                                                                                                                                                                                                                                                                                                         | Found seiz                                                                                   | Found non seiz                                                                                            |
|                                                                                      | variance:<br>:<br>Sensitivity<br>91%                                                                                                                                      | 70% KNN, k = 3 Selectivity $77%$                                                                                                                                                                                                                                                                                                                                        | Num seiz                                                                                                                                                                                                                                                                                                                         | 10                                                                                           | 3                                                                                                         |
|                                                                                      | variance:<br>Sensitivity<br>91%<br>82%                                                                                                                                    | 70% KNN, k = 3 Selectivity $77%$ 82%                                                                                                                                                                                                                                                                                                                                    | Num seiz<br>11<br>11                                                                                                                                                                                                                                                                                                             | 10<br>9                                                                                      | 3<br>2                                                                                                    |
|                                                                                      | variance:<br>:<br>Sensitivity<br>91%<br>82%<br>82%                                                                                                                        | 70% KNN, k = 3 Selectivity $77%$ 82% $69%$                                                                                                                                                                                                                                                                                                                              | Num seiz<br>11<br>11<br>11                                                                                                                                                                                                                                                                                                       | 10<br>9<br>9                                                                                 | 3<br>2<br>4                                                                                               |
|                                                                                      | variance:<br>Sensitivity<br>91%<br>82%                                                                                                                                    | 70% KNN, k = 3 Selectivity $77%$ 82%                                                                                                                                                                                                                                                                                                                                    | Num seiz<br>11<br>11                                                                                                                                                                                                                                                                                                             | 10<br>9                                                                                      | 3<br>2                                                                                                    |
|                                                                                      | variance:<br>:<br>Sensitivity<br>91%<br>82%<br>82%<br>73%                                                                                                                 | $\begin{array}{c} 70\% \\ \text{KNN, } \mathbf{k} = 3 \\ \hline \text{Selectivity} \\ 77\% \\ 82\% \\ 69\% \\ 80\% \end{array}$                                                                                                                                                                                                                                         | Num seiz<br>11<br>11<br>11<br>11<br>11                                                                                                                                                                                                                                                                                           | 10<br>9<br>9<br>8                                                                            | 3 $2$ $4$ $2$                                                                                             |
| Classifier                                                                           | variance:<br>:<br>Sensitivity<br>91%<br>82%<br>82%<br>73%<br>73%<br>73%                                                                                                   | $\begin{array}{c} 70\% \\ \mathrm{KNN, \ k} = 3 \\ \overline{\mathrm{Selectivity}} \\ 77\% \\ 82\% \\ 69\% \\ 80\% \\ 73\% \end{array}$                                                                                                                                                                                                                                 | Num seiz<br>11<br>11<br>11<br>11<br>11<br>11                                                                                                                                                                                                                                                                                     | 10<br>9<br>9<br>8<br>8<br>8.8                                                                | 3<br>2<br>4<br>2<br>3                                                                                     |
| Classifier                                                                           | variance:<br>:<br>Sensitivity<br>91%<br>82%<br>82%<br>73%<br>73%<br>73%<br>80.2%                                                                                          | $\begin{array}{c} 70\% \\ \mathrm{KNN, \ k} = 3 \\ \overline{\mathrm{Selectivity}} \\ 77\% \\ 82\% \\ 69\% \\ 80\% \\ 73\% \\ \overline{76.2\%} \end{array}$                                                                                                                                                                                                            | Num seiz<br>11<br>11<br>11<br>11<br>11<br>11<br>11                                                                                                                                                                                                                                                                               | 10<br>9<br>9<br>8<br>8                                                                       | $     \begin{array}{r}       3 \\       2 \\       4 \\       2 \\       3 \\       2.8     \end{array} $ |
| Classifier<br>Mean<br>Median                                                         | variance:<br>Sensitivity<br>91%<br>82%<br>82%<br>73%<br>73%<br>80.2%<br>82.0%                                                                                             | $\begin{array}{c} 70\% \\ \mathrm{KNN, \ k = 3} \\ \overline{\mathrm{Selectivity}} \\ 77\% \\ 82\% \\ 69\% \\ 80\% \\ 73\% \\ \overline{73\%} \\ 76.2\% \\ 77.0\% \end{array}$                                                                                                                                                                                          | Num seiz<br>11<br>11<br>11<br>11<br>11<br>11<br>11                                                                                                                                                                                                                                                                               | 10<br>9<br>9<br>8<br>8<br>8.8<br>9.0                                                         | 3<br>2<br>4<br>2<br>3<br>2.8<br>3.0                                                                       |
| Classifier<br>Mean<br>Median<br>STD                                                  | variance:<br>Sensitivity<br>91%<br>82%<br>82%<br>73%<br>73%<br>80.2%<br>82.0%<br>7.5%                                                                                     | $\begin{array}{c} 70\% \\ \mathrm{KNN},  \mathbf{k} = 3 \\ \mathrm{Selectivity} \\ 77\% \\ 82\% \\ 69\% \\ 80\% \\ 73\% \\ 76.2\% \\ 77.0\% \\ 5.3\% \end{array}$                                                                                                                                                                                                       | Num seiz<br>11<br>11<br>11<br>11<br>11<br>11<br>11                                                                                                                                                                                                                                                                               | 10<br>9<br>9<br>8<br>8<br>8.8<br>9.0                                                         | 3<br>2<br>4<br>2<br>3<br>2.8<br>3.0                                                                       |
| Classifier<br>Mean<br>Median                                                         | variance:<br>Sensitivity<br>91%<br>82%<br>82%<br>73%<br>73%<br>80.2%<br>82.0%<br>7.5%<br>used:                                                                            | $\begin{array}{c} 70\% \\ \mathrm{KNN},  \mathrm{k} = 3 \\ \mathrm{Selectivity} \\ 77\% \\ 82\% \\ 69\% \\ 80\% \\ 73\% \\ 76.2\% \\ 77.0\% \\ 5.3\% \\ \end{array}$                                                                                                                                                                                                    | Num seiz<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>0                                                                                                                                                                                                                                                                          | 10<br>9<br>9<br>8<br>8<br>8.8<br>9.0                                                         | 3<br>2<br>4<br>2<br>3<br>2.8<br>3.0                                                                       |
| Classifier<br>Mean<br>Median<br>STD<br>Features                                      | variance:<br>Sensitivity<br>91%<br>82%<br>73%<br>73%<br>73%<br>80.2%<br>82.0%<br>7.5%<br>used:<br>nalysis:                                                                | $\begin{array}{c} 70\% \\ \mathrm{KNN},  \mathbf{k} = 3 \\ \mathrm{Selectivity} \\ 77\% \\ 82\% \\ 69\% \\ 80\% \\ 73\% \\ 76.2\% \\ 77.0\% \\ 5.3\% \end{array}$                                                                                                                                                                                                       | Num seiz<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>0                                                                                                                                                                                                                                                                          | 10<br>9<br>9<br>8<br>8<br>8.8<br>9.0                                                         | 3<br>2<br>4<br>2<br>3<br>2.8<br>3.0                                                                       |
| Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a                         | variance:<br>Sensitivity<br>91%<br>82%<br>82%<br>73%<br>73%<br>80.2%<br>80.2%<br>7.5%<br>used:<br>nalysis:<br>variance:                                                   | $\begin{array}{c} 70\% \\ {\rm KNN, \ k = 3} \\ \overline{\rm Selectivity} \\ 77\% \\ 82\% \\ 69\% \\ 80\% \\ 73\% \\ \overline{76.2\%} \\ 76.2\% \\ \overline{77.0\%} \\ \overline{5.3\%} \\ \end{array}$ All features Gm hard, 4 70%                                                                                                                                  | Num seiz<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>0                                                                                                                                                                                                                                                                          | 10<br>9<br>9<br>8<br>8<br>8.8<br>9.0                                                         | 3<br>2<br>4<br>2<br>3<br>2.8<br>3.0                                                                       |
| Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA               | variance:<br>Sensitivity<br>91%<br>82%<br>82%<br>73%<br>73%<br>80.2%<br>80.2%<br>7.5%<br>used:<br>nalysis:<br>variance:                                                   | $\begin{array}{l} 70\% \\ {\rm KNN},  {\rm k} = 3 \\ {\rm Selectivity} \\ 77\% \\ 82\% \\ 69\% \\ 80\% \\ 73\% \\ 76.2\% \\ 77.0\% \\ 5.3\% \\ \hline \\ {\rm All \ features} \\ {\rm Gm \ hard, \ 4} \end{array}$                                                                                                                                                      | Num seiz<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>0                                                                                                                                                                                                                                                                          | 10<br>9<br>9<br>8<br>8<br>8.8<br>9.0                                                         | 3<br>2<br>4<br>2<br>3<br>2.8<br>3.0                                                                       |
| Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA               | variance:<br>Sensitivity<br>91%<br>82%<br>82%<br>82%<br>73%<br>73%<br>80.2%<br>82.0%<br>7.5%<br>used:<br>nalysis:<br>variance:<br>:                                       | $\begin{array}{l} 70\% \\ \mathrm{KNN, \ k = 3} \\ \mathrm{Selectivity} \\ \hline \\ 82\% \\ 69\% \\ 69\% \\ 80\% \\ 73\% \\ \hline \\ 76.2\% \\ \hline \\ 77.0\% \\ \hline \\ 5.3\% \\ \hline \\ \mathrm{All \ features} \\ \mathrm{Gm \ hard, \ 4} \\ 70\% \\ \mathrm{KNN, \ k = 3} \end{array}$                                                                      | Num seiz<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>0<br>clusters                                                                                                                                                                                                                                                              | 10<br>9<br>8<br>8<br>8.8<br>9.0<br>0.8                                                       | 3<br>2<br>4<br>2<br>3<br>2.8<br>3.0<br>0.8                                                                |
| Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA               | variance:<br>Sensitivity<br>91%<br>82%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>0.2%<br>82.0%<br>7.5%<br>used:<br>nalysis:<br>variance:<br>Sensitivity         | $\begin{array}{c} 70\% \\ {\rm KNN, \ k = 3} \\ \overline{\rm Selectivity} \\ 77\% \\ 82\% \\ 69\% \\ 80\% \\ 73\% \\ \overline{76.2\%} \\ 76.2\% \\ 77.0\% \\ \overline{5.3\%} \\ \hline \\ {\rm All \ features} \\ {\rm Gm \ hard, \ 4} \\ 70\% \\ {\rm KNN, \ k = 3} \\ \overline{\rm Selectivity} \\ \end{array}$                                                   | Num seiz         11           11         11           11         11           11         11           11         0           clusters         Num seiz                                                                                                                                                                           | 10<br>9<br>8<br>8<br>8.8<br>9.0<br>0.8                                                       | 3<br>2<br>4<br>2<br>3<br>2.8<br>3.0<br>0.8                                                                |
| Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA               | variance:<br>Sensitivity<br>91%<br>82%<br>73%<br>73%<br>73%<br>80.2%<br>82.0%<br>7.5%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>82%<br>82%               | $\begin{array}{l} 70\% \\ \mathrm{KNN},  \mathrm{k} = 3 \\ \mathrm{Selectivity} \\ 77\% \\ 82\% \\ 69\% \\ 80\% \\ 73\% \\ 76.2\% \\ 77.0\% \\ 5.3\% \\ \end{array}$ All features Gm hard, 4<br>70% \\ \mathrm{KNN},  \mathrm{k} = 3 \\ \mathrm{Selectivity} \\ 82\% \end{array}                                                                                        | Num seiz         11           11         11           11         11           11         11           0         0                                                                                                                                                                                                                | 10<br>9<br>8<br>8<br>8.8<br>9.0<br>0.8<br>Found seiz<br>9<br>9<br>9                          | 3<br>2<br>4<br>2<br>3<br>.0<br>0.8<br>Found non seiz<br>2<br>4<br>5                                       |
| Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA               | variance:<br>Sensitivity<br>91%<br>82%<br>82%<br>73%<br>73%<br>73%<br>80.2%<br>82.0%<br>7.5%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>82%<br>82%<br>82% | $\begin{array}{r} 70\% \\ \mathrm{KNN},  \mathrm{k} = 3 \\ \mathrm{Selectivity} \\ 77\% \\ 82\% \\ 69\% \\ 80\% \\ 73\% \\ 76.2\% \\ 77.0\% \\ 5.3\% \\ \hline \\ \mathrm{All \ features} \\ \mathrm{Gm \ hard, } 4 \\ 70\% \\ \mathrm{KNN},  \mathrm{k} = 3 \\ \mathrm{Selectivity} \\ 82\% \\ 69\% \\ 64\% \\ 64\% \end{array}$                                       | Num seiz         11           11         11           11         11           11         11           11         11           0         0             clusters           Num seiz           11           11           11                                                                                                         | 10<br>9<br>8<br>8<br>8.8<br>9.0<br>0.8<br>Found seiz<br>9<br>9<br>9<br>9<br>9                | 3<br>2<br>4<br>2<br>3<br>3.0<br>0.8<br>Found non seiz<br>2<br>4<br>5<br>5                                 |
| Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA               | variance:<br>Sensitivity<br>91%<br>82%<br>82%<br>73%<br>73%<br>80.2%<br>82.0%<br>7.5%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>82% | $\begin{array}{r} 70\% \\ {\rm KNN, \ k = 3} \\ \overline{\rm Selectivity} \\ 77\% \\ 82\% \\ 69\% \\ 80\% \\ 73\% \\ \overline{76.2\%} \\ 76.2\% \\ \overline{76.2\%} \\ \overline{69\%} \\ \overline{64\%} \\ 64\% \\ 56\% \end{array}$ | Num seiz         11           11         11           11         11           11         11           11         0           clusters           Num seiz           11         11           11         11           11         11           11         11           11         11           11         11           11         11 | 10<br>9<br>9<br>8<br>8<br>8.8<br>9.0<br>0.8<br>Found seiz<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | 3<br>2<br>4<br>2<br>3<br>2.8<br>3.0<br>0.8<br>Found non seiz<br>2<br>4<br>5<br>5<br>7                     |
| Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA               | variance:<br>Sensitivity<br>91%<br>82%<br>82%<br>73%<br>73%<br>73%<br>80.2%<br>82.0%<br>7.5%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>82%<br>82%<br>82% | $\begin{array}{r} 70\% \\ \mathrm{KNN},  \mathrm{k} = 3 \\ \mathrm{Selectivity} \\ 77\% \\ 82\% \\ 69\% \\ 80\% \\ 73\% \\ 76.2\% \\ 77.0\% \\ 5.3\% \\ \hline \\ \mathrm{All \ features} \\ \mathrm{Gm \ hard, } 4 \\ 70\% \\ \mathrm{KNN},  \mathrm{k} = 3 \\ \mathrm{Selectivity} \\ 82\% \\ 69\% \\ 64\% \\ 64\% \end{array}$                                       | Num seiz         11           11         11           11         11           11         11           11         11           0         0             clusters           Num seiz           11           11           11                                                                                                         | 10<br>9<br>8<br>8<br>8.8<br>9.0<br>0.8<br>Found seiz<br>9<br>9<br>9<br>9<br>9                | 3<br>2<br>4<br>2<br>3<br>3.0<br>0.8<br>Found non seiz<br>2<br>4<br>5<br>5                                 |
| Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier | variance:<br>Sensitivity<br>91%<br>82%<br>82%<br>73%<br>73%<br>80.2%<br>82.0%<br>7.5%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>82% | $\begin{array}{r} 70\% \\ {\rm KNN, \ k = 3} \\ \overline{\rm Selectivity} \\ 77\% \\ 82\% \\ 69\% \\ 80\% \\ 73\% \\ \overline{76.2\%} \\ 76.2\% \\ \overline{76.2\%} \\ \overline{69\%} \\ \overline{64\%} \\ 64\% \\ 56\% \end{array}$ | Num seiz         11           11         11           11         11           11         11           11         0           clusters           Num seiz           11         11           11         11           11         11           11         11           11         11           11         11           11         11 | 10<br>9<br>9<br>8<br>8<br>8.8<br>9.0<br>0.8<br>Found seiz<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | 3<br>2<br>4<br>2<br>3<br>2.8<br>3.0<br>0.8<br>Found non seiz<br>2<br>4<br>5<br>5<br>7                     |

| Features<br>Cluster a                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                  | Gm hard, 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | clustors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PLS-DA                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                  | 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | clusters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                       |
| Classifier                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                  | KNN, k = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                       |
| Clabolitor                                                                                                                                                                                | Sensitivity                                                                                                                                                                                                                                                                                                                                      | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Num seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Found seiz                                                                                                                                                                                                                                                                                              | Found non seiz                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                           | 100%                                                                                                                                                                                                                                                                                                                                             | 52%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11                                                                                                                                                                                                                                                                                                      | 10                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                           | 100%                                                                                                                                                                                                                                                                                                                                             | 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11                                                                                                                                                                                                                                                                                                      | 11                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                           | 91%                                                                                                                                                                                                                                                                                                                                              | 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                      | 10                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                           | 82%                                                                                                                                                                                                                                                                                                                                              | 56%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9                                                                                                                                                                                                                                                                                                       | 7                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                           | 82%                                                                                                                                                                                                                                                                                                                                              | 47%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9                                                                                                                                                                                                                                                                                                       | 10                                                                                                                                                                                                                                                                                                                    |
| Mean                                                                                                                                                                                      | 91.0%                                                                                                                                                                                                                                                                                                                                            | 51.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.0                                                                                                                                                                                                                                                                                                    | 9.6                                                                                                                                                                                                                                                                                                                   |
| Median                                                                                                                                                                                    | 91.0%                                                                                                                                                                                                                                                                                                                                            | 50.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.0                                                                                                                                                                                                                                                                                                    | 10.0                                                                                                                                                                                                                                                                                                                  |
| STD                                                                                                                                                                                       | 9.0%                                                                                                                                                                                                                                                                                                                                             | 3.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0                                                                                                                                                                                                                                                                                                     | 1.5                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                       |
| Features                                                                                                                                                                                  | used:                                                                                                                                                                                                                                                                                                                                            | All features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                       |
| Cluster a                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                  | Gm fuzzy, 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | clusters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                       |
| PLS-DA                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                  | 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                       |
| Classifier                                                                                                                                                                                | :                                                                                                                                                                                                                                                                                                                                                | KNN, k = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                           | Sensitivity                                                                                                                                                                                                                                                                                                                                      | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Num seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Found seiz                                                                                                                                                                                                                                                                                              | Found non seiz                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                           | 91%                                                                                                                                                                                                                                                                                                                                              | 48%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                      | 11                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                           | 91%                                                                                                                                                                                                                                                                                                                                              | 48%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                      | 11                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                           | 82%                                                                                                                                                                                                                                                                                                                                              | 60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9                                                                                                                                                                                                                                                                                                       | 6                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                           | 82%                                                                                                                                                                                                                                                                                                                                              | 47%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9                                                                                                                                                                                                                                                                                                       | 10                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                           | 82%                                                                                                                                                                                                                                                                                                                                              | 43%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9                                                                                                                                                                                                                                                                                                       | 12                                                                                                                                                                                                                                                                                                                    |
| Mean                                                                                                                                                                                      | 85.6%                                                                                                                                                                                                                                                                                                                                            | 49.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.4                                                                                                                                                                                                                                                                                                     | 10.0                                                                                                                                                                                                                                                                                                                  |
| Median                                                                                                                                                                                    | 82.0%                                                                                                                                                                                                                                                                                                                                            | 48.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.0                                                                                                                                                                                                                                                                                                     | 11.0                                                                                                                                                                                                                                                                                                                  |
| STD                                                                                                                                                                                       | 4.9%                                                                                                                                                                                                                                                                                                                                             | 6.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.5                                                                                                                                                                                                                                                                                                     | 2.3                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                       |
| Features<br>Cluster a<br>PLS-DA                                                                                                                                                           | nalysis:                                                                                                                                                                                                                                                                                                                                         | All features<br>Gm fuzzy, 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | clusters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                       |
| Classifier                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                  | 70%<br>KNN, k = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                       |
| Jassiner                                                                                                                                                                                  | Sensitivity                                                                                                                                                                                                                                                                                                                                      | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Num seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Found seiz                                                                                                                                                                                                                                                                                              | Found non seiz                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                           | 82%                                                                                                                                                                                                                                                                                                                                              | 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                           | 82%                                                                                                                                                                                                                                                                                                                                              | 56%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9                                                                                                                                                                                                                                                                                                       | 3<br>7                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                           | 82%                                                                                                                                                                                                                                                                                                                                              | 56%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9                                                                                                                                                                                                                                                                                                       | 7                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                           | 73%                                                                                                                                                                                                                                                                                                                                              | 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                                                                                                                                                                                                                                                                                                       | 8                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                           | 73%                                                                                                                                                                                                                                                                                                                                              | 47%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                                                                                                                                                                                                                                                                                                       | 9                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                       |
| Mean                                                                                                                                                                                      | 78.4%                                                                                                                                                                                                                                                                                                                                            | 56.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 86                                                                                                                                                                                                                                                                                                      | 6.8                                                                                                                                                                                                                                                                                                                   |
| Mean<br>Median                                                                                                                                                                            | 78.4%<br>82.0%                                                                                                                                                                                                                                                                                                                                   | 56.8%<br>56.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.6                                                                                                                                                                                                                                                                                                     | 6.8<br>7.0                                                                                                                                                                                                                                                                                                            |
| Median<br>STD<br>Features<br>Cluster a                                                                                                                                                    | 82.0%<br>4.9%<br>used:<br>nalysis:                                                                                                                                                                                                                                                                                                               | 56.0%<br>10.9%<br>All features<br>Kmeans seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.6<br>9.0<br>0.5                                                                                                                                                                                                                                                                                       | 7.0<br>2.3                                                                                                                                                                                                                                                                                                            |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                          | 82.0%<br>4.9%<br>used:<br>nalysis:<br>variance:                                                                                                                                                                                                                                                                                                  | 56.0%<br>10.9%<br>All features<br>Kmeans seiz<br>70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.0<br>0.5                                                                                                                                                                                                                                                                                              | 7.0<br>2.3                                                                                                                                                                                                                                                                                                            |
| Median<br>STD<br>Features<br>Cluster a                                                                                                                                                    | 82.0%<br>4.9%<br>used:<br>nalysis:<br>variance:<br>:                                                                                                                                                                                                                                                                                             | 56.0%<br>10.9%<br>All features<br>Kmeans seiz<br>70%<br>KNN, k = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11<br>0<br>ure separated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.0<br>0.5<br>l, 3 of 7 cluste                                                                                                                                                                                                                                                                          | 7.0<br>2.3<br>rs                                                                                                                                                                                                                                                                                                      |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                          | 82.0%<br>4.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity                                                                                                                                                                                                                                                                              | 56.0%<br>10.9%<br>All features<br>Kmeans seiz<br>70%<br>KNN, k = 3<br>Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11<br>0<br>ure separated<br>Num seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.0<br>0.5<br>l, 3 of 7 cluste<br>Found seiz                                                                                                                                                                                                                                                            | 7.0<br>2.3<br>rs<br>Found non seiz                                                                                                                                                                                                                                                                                    |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                          | 82.0%<br>4.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>100%                                                                                                                                                                                                                                                                      | $\begin{array}{c} 56.0\%\\ 10.9\%\\ \end{array}$ All features<br>Kmeans seiz<br>$70\%\\ KNN, \ \mathbf{k}=3\\ \end{array}$ Selectivity<br>92%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11<br>0<br>ure separated<br>Num seiz<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.0<br>0.5<br>l, 3 of 7 cluste<br>Found seiz<br>11                                                                                                                                                                                                                                                      | 7.0<br>2.3<br>rs<br>Found non seiz<br>1                                                                                                                                                                                                                                                                               |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                          | 82.0%<br>4.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity                                                                                                                                                                                                                                                                              | $\begin{array}{c} 56.0\%\\ \hline 10.9\%\\ \hline \\ \text{All features}\\ \text{Kmeans seiz}\\ 70\%\\ \text{KNN, k = 3}\\ \text{Selectivity}\\ 92\%\\ 77\%\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11<br>0<br>ure separated<br>Num seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.0<br>0.5<br>l, 3 of 7 cluste<br>Found seiz                                                                                                                                                                                                                                                            | 7.0<br>2.3<br>rs<br>Found non seiz                                                                                                                                                                                                                                                                                    |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                          | 82.0%<br>4.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>91%                                                                                                                                                                                                                                                               | $\begin{array}{c} 56.0\%\\ 10.9\%\\ \end{array}$ All features<br>Kmeans seiz<br>$70\%\\ KNN, \ \mathbf{k}=3\\ \end{array}$ Selectivity<br>92%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11<br>0<br>ure separated<br>Num seiz<br>11<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.0<br>0.5<br>1, 3 of 7 cluste<br>Found seiz<br>11<br>10                                                                                                                                                                                                                                                | 7.0<br>2.3<br>rs<br>Found non seiz<br>1<br>3                                                                                                                                                                                                                                                                          |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                          | 82.0%<br>4.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>91%                                                                                                                                                                                                                                                               | 56.0%<br>10.9%<br>All features<br>Kmeans seiz<br>70%<br>KNN, k = 3<br>Selectivity<br>92%<br>77%<br>77%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11<br>0<br>ure separated<br>Num seiz<br>11<br>11<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.0<br>0.5<br>1, 3 of 7 cluste<br>Found seiz<br>11<br>10<br>10                                                                                                                                                                                                                                          | 7.0<br>2.3<br>rs<br>Found non seiz<br>1<br>3<br>3                                                                                                                                                                                                                                                                     |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                          | 82.0%<br>4.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>91%<br>91%                                                                                                                                                                                                                                                        | 56.0%<br>10.9%<br>All features<br>Kmeans seiz<br>70%<br>KNN, k = 3<br>Selectivity<br>92%<br>77%<br>77%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11<br>0<br>ure separated<br>Num seiz<br>11<br>11<br>11<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.0<br>0.5<br>I, 3 of 7 cluste<br>Found seiz<br>11<br>10<br>10                                                                                                                                                                                                                                          | 7.0<br>2.3<br>rs<br>Found non seiz<br>1<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                           |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median                                                                                                          | 82.0%<br>4.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>91%<br>91%<br>91%<br>82%                                                                                                                                                                                                                                          | $\begin{array}{c} 56.0\% \\ \hline 10.9\% \\ \hline \\ \text{All features} \\ \text{Kmeans seiz} \\ 70\% \\ \text{KNN, } k = 3 \\ \text{Selectivity} \\ 92\% \\ 77\% \\ 77\% \\ 77\% \\ 90\% \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11<br>0<br>ure separateo<br>Num seiz<br>11<br>11<br>11<br>11<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.0<br>0.5<br>l, 3 of 7 cluste<br>Found seiz<br>11<br>10<br>10<br>9                                                                                                                                                                                                                                     | 7.0<br>2.3<br>rs<br>Found non seiz<br>1<br>3<br>3<br>3<br>1                                                                                                                                                                                                                                                           |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median                                                                                                          | 82.0%<br>4.9%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>91%<br>91%<br>91%<br>82%<br>91.0%<br>91.0%                                                                                                                                                                                                                             | 56.0%<br>10.9%<br>All features<br>Kmeans seiz<br>70%<br>KNN, k = 3<br>Selectivity<br>92%<br>77%<br>77%<br>77%<br>77%<br>90%<br>82.6%<br>77.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11<br>0<br>ure separated<br>11<br>11<br>11<br>11<br>11<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.0<br>0.5<br>Found seiz<br>11<br>10<br>10<br>10<br>9<br>10.0                                                                                                                                                                                                                                           | 7.0<br>2.3<br>Found non seiz<br>1<br>3<br>3<br>3<br>1<br>2.2                                                                                                                                                                                                                                                          |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean                                                                                                                    | 82.0%<br>4.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91                                                                                                                                                                                                 | $\begin{array}{c} 56.0\% \\ \hline 10.9\% \\ \hline \\ \text{All features} \\ \text{Kmeans seiz} \\ 70\% \\ \text{KNN, } \mathbf{k} = 3 \\ \hline \\ \text{Selectivity} \\ 92\% \\ 77\% \\ 77\% \\ 77\% \\ 77\% \\ 90\% \\ 82.6\% \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11<br>0<br>ure separated<br>11<br>11<br>11<br>11<br>11<br>11<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.0<br>0.5<br>Found seiz<br>11<br>10<br>10<br>9<br>9<br>10.0<br>10.0                                                                                                                                                                                                                                    | 7.0<br>2.3<br>rs<br>Found non seiz<br>1<br>3<br>3<br>3<br>1<br>2.2<br>3.0                                                                                                                                                                                                                                             |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                        | 82.0%<br>4.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>91%<br>91%<br>91%<br>91%<br>82%<br>91.0%<br>6.4%<br>used:<br>nalysis:<br>variance:                                                                                                                                                                                | $\begin{array}{c} 56.0\% \\ \hline 10.9\% \\ \hline 10.9\% \\ \hline \\ \text{All features} \\ \text{Kmeans seiz} \\ 70\% \\ \text{KNN, } k = 3 \\ \text{Selectivity} \\ 92\% \\ 77\% \\ 77\% \\ 77\% \\ 77\% \\ 77\% \\ 90\% \\ \text{82.6\%} \\ 77.0\% \\ \hline 7.7\% \\ \hline 82.6\% \\ \text{77.0\%} \\ \hline 7.7\% \\ \text{All features} \\ \text{Kmeans seiz} \\ 70\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11<br>0<br>ure separated<br>11<br>11<br>11<br>11<br>11<br>11<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.0<br>0.5<br>Found seiz<br>11<br>10<br>10<br>9<br>9<br>10.0<br>10.0                                                                                                                                                                                                                                    | 7.0<br>2.3<br>Found non seiz<br>1<br>3<br>3<br>1<br>2.2<br>3.0<br>1.1                                                                                                                                                                                                                                                 |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a                                                                          | 82.0%<br>4.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>91%<br>91%<br>91%<br>91%<br>82%<br>91.0%<br>6.4%<br>used:<br>nalysis:<br>variance:                                                                                                                                                                                | 56.0%<br>10.9%<br>All features<br>Kmeans seiz<br>70%<br>KNN, k = 3<br>Selectivity<br>92%<br>77%<br>77%<br>77%<br>90%<br>82.6%<br>77.0%<br>7.7%<br>All features<br>Kmeans seiz<br>Kmeans seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11<br>0<br>ure separated<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>0<br>ure separated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.0<br>0.5<br>Found seiz<br>11<br>10<br>10<br>9<br>10.0<br>10.0<br>0.7<br>d, 4 of 7 cluste                                                                                                                                                                                                              | 7.0<br>2.3<br>rs<br>Found non seiz<br>1<br>3<br>3<br>3<br>1<br>2.2<br>3.0<br>1.1<br>rs                                                                                                                                                                                                                                |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                        | 82.0%<br>4.9%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91.0%<br>6.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity                                                                                                                                                                 | 56.0%<br>10.9%<br>All features<br>Kmeans seiz<br>70%<br>KNN, k = 3<br>Selectivity<br>92%<br>77%<br>77%<br>77%<br>77%<br>90%<br>82.6%<br>77.0%<br>7.7%<br>All features<br>Kmeans seiz<br>70%<br>KNN, k = 3<br>Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11<br>0<br>ure separated<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>0<br>ure separated<br>Num seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.0<br>0.5<br>Found seiz<br>11<br>10<br>10<br>10<br>9<br>10.0<br>10.0<br>10.0<br>0.7<br>d, 4 of 7 cluste<br>Found seiz                                                                                                                                                                                  | 7.0<br>2.3<br>rs<br>Found non seiz<br>1<br>3<br>3<br>3<br>1<br>2.2<br>3.0<br>1.1<br>rs<br>Found non seiz                                                                                                                                                                                                              |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                        | 82.0%<br>4.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91.0%<br>6.4%<br>used:<br>nalysis:<br>variance:<br>:                                                                                                                                                                    | $\begin{array}{c} 56.0\% \\ \hline 10.9\% \\ \hline 10.9\% \\ \hline 10.9\% \\ \hline 10.9\% \\ \hline 8100000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11<br>0<br>ure separated<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>0<br>ure separated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.0<br>0.5<br>Found seiz<br>11<br>10<br>10<br>9<br>10.0<br>10.0<br>0.7<br>d, 4 of 7 cluste                                                                                                                                                                                                              | 7.0<br>2.3<br>rs<br>Found non seiz<br>1<br>3<br>3<br>3<br>1<br>2.2<br>3.0<br>1.1<br>rs                                                                                                                                                                                                                                |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                        | 82.0%<br>4.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>91%<br>91%<br>91%<br>91.0%<br>6.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>91%                                                                                                                                                                   | $\begin{array}{c} 56.0\% \\ \hline 10.9\% \\ \hline 10.9\% \\ \hline 10.9\% \\ \hline \text{All features} \\ \text{Kmeans seiz} \\ 70\% \\ \text{KNN, k = 3} \\ \text{Selectivity} \\ 92\% \\ 77\% \\ 77\% \\ 77\% \\ 77\% \\ 90\% \\ 82.6\% \\ 77.0\% \\ \hline 77.0\% \\ \hline 82.6\% \\ 77.0\% \\ \hline 77\% \\ \hline 82.6\% \\ \text{Kmeans seiz} \\ 70\% \\ \hline \text{KNN, k = 3} \\ \text{Selectivity} \\ 77\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11<br>0<br>ure separated<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>0<br>ure separated<br>Num seiz<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.0<br>0.5<br>Found seiz<br>11<br>10<br>10<br>10.0<br>10.0<br>0.7<br>d, 4 of 7 cluste<br>Found seiz<br>10                                                                                                                                                                                               | 7.0<br>2.3<br>rs<br>Found non seiz<br>3<br>3.0<br>1.1<br>rs<br>Found non seiz<br>3<br>2                                                                                                                                                                                                                               |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                        | 82.0%<br>4.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>91%<br>91%<br>91%<br>91%<br>91.0%<br>6.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>91%                                                                                                                                                            | $\begin{array}{c} 56.0\% \\ \hline 10.9\% \\ \hline 10.9\% \\ \hline 10.9\% \\ \hline 10.9\% \\ \hline 8100000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11           0           ure separated           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.0<br>0.5<br>Found seiz<br>11<br>10<br>10<br>10<br>9<br>10.0<br>10.0<br>0.7<br>d, 4 of 7 cluste<br>Found seiz<br>10                                                                                                                                                                                    | 7.0<br>2.3<br>rs<br>Found non seiz<br>1<br>3<br>3<br>1<br>2.2<br>3.0<br>1.1<br>rs<br>Found non seiz<br>3<br>3<br>2<br>2                                                                                                                                                                                               |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                          | 82.0%<br>4.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>91%<br>91%<br>91%<br>91%<br>82%<br>91.0%<br>6.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>91%<br>82%<br>82%                                                                                                                                       | $\begin{array}{c} 56.0\% \\ \hline 10.9\% \\ \hline 10.9\% \\ \hline 10.9\% \\ \hline 10.9\% \\ \hline 8.15 \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                         | 11           0           ure separated           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.0<br>0.5<br>Found seiz<br>11<br>10<br>10<br>10<br>9<br>10.0<br>10.0<br>0.7<br>I, 4 of 7 cluste<br>Found seiz<br>10<br>10<br>9<br>9<br>9<br>9                                                                                                                                                          | 7.0<br>2.3<br>Found non seiz<br>1<br>3<br>3<br>3<br>1<br>2.2<br>3.0<br>1.1<br>rs<br>Found non seiz<br>3<br>3<br>2<br>2<br>3                                                                                                                                                                                           |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                  | 82.0%<br>4.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>91%<br>91%<br>91%<br>82%<br>91.0%<br>6.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>91%<br>82%<br>82%<br>82%<br>82%<br>85.6%                                                                                                                       | $\begin{array}{c} 56.0\% \\ \hline 10.9\% \\ \hline 10.9\% \\ \hline 10.9\% \\ \hline 10.9\% \\ \hline 81.00\% \\ \hline 82.0\% \\ \hline 77\% \\ 77\% \\ 77\% \\ 77\% \\ 77\% \\ 77\% \\ 90\% \\ \hline 82.6\% \\ \hline 77.0\% \\ \hline 82.6\% \\ \hline 77.0\% \\ \hline 82.6\% \\ \hline 77.\% \\ \hline 82\% \\ \hline 82\% \\ \hline 82\% \\ \hline 75\% \\ \hline 78.6\% \\ \hline 78.6\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11           0           ure separated           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.0<br>0.5<br>1, 3 of 7 cluste<br>Found seiz<br>11<br>10<br>10<br>9<br>10.0<br>10.0<br>0.7<br>1, 4 of 7 cluste<br>Found seiz<br>10<br>10<br>9<br>9<br>9<br>9<br>9.4                                                                                                                                     | 7.0<br>2.3<br>Found non seiz<br>1<br>3<br>3<br>1<br>2.2<br>3.0<br>1.1<br>rs<br>Found non seiz<br>3<br>3<br>2<br>2<br>2<br>3<br>2.6                                                                                                                                                                                    |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                          | 82.0%<br>4.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>91%<br>91%<br>91%<br>91%<br>82%<br>91.0%<br>6.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>91%<br>82%<br>82%                                                                                                                                       | $\begin{array}{c} 56.0\% \\ \hline 10.9\% \\ \hline 10.9\% \\ \hline 10.9\% \\ \hline 10.9\% \\ \hline 8.15 \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                         | 11           0           ure separated           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.0<br>0.5<br>Found seiz<br>11<br>10<br>10<br>10<br>9<br>10.0<br>10.0<br>0.7<br>I, 4 of 7 cluste<br>Found seiz<br>10<br>10<br>9<br>9<br>9<br>9                                                                                                                                                          | 7.0<br>2.3<br>Found non seiz<br>1<br>3<br>3<br>3<br>1<br>2.2<br>3.0<br>1.1<br>rs<br>Found non seiz<br>3<br>3<br>2<br>2<br>3                                                                                                                                                                                           |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                  | 82.0%<br>4.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>91%<br>91%<br>91%<br>82%<br>91.0%<br>6.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>91%<br>82%<br>82%<br>82%<br>82%<br>85.6%                                                                                                                       | $\begin{array}{c} 56.0\% \\ \hline 10.9\% \\ \hline 10.9\% \\ \hline 10.9\% \\ \hline 10.9\% \\ \hline 81.00\% \\ \hline 82.0\% \\ \hline 77\% \\ 77\% \\ 77\% \\ 77\% \\ 77\% \\ 77\% \\ 90\% \\ \hline 82.6\% \\ \hline 77.0\% \\ \hline 82.6\% \\ \hline 77.0\% \\ \hline 82.6\% \\ \hline 77.\% \\ \hline 82\% \\ \hline 82\% \\ \hline 82\% \\ \hline 75\% \\ \hline 78.6\% \\ \hline 78.6\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11           0           ure separated           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.0<br>0.5<br>1, 3 of 7 cluste<br>Found seiz<br>11<br>10<br>10<br>9<br>10.0<br>10.0<br>0.7<br>1, 4 of 7 cluste<br>Found seiz<br>10<br>10<br>9<br>9<br>9<br>9<br>9.4                                                                                                                                     | 7.0<br>2.3<br>Found non seiz<br>1<br>3<br>3<br>1<br>2.2<br>3.0<br>1.1<br>rs<br>Found non seiz<br>3<br>3<br>2<br>2<br>2<br>3<br>2.6                                                                                                                                                                                    |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Mean<br>Mean                                  | 82.0%<br>4.9%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>91%<br>91%<br>91%<br>91%<br>91.0%<br>6.4%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>91%<br>91%<br>91%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%                                                                                                       | $\begin{array}{c} 56.0\% \\ \hline 10.9\% \\ \hline 81.0\% \\ \hline 82.6\% \\ \hline 77\% \\ 77\% \\ 77\% \\ 77\% \\ 77\% \\ 77\% \\ 77\% \\ 77\% \\ \hline 77.0\% \\ \hline 7.7\% \\ \hline 7.0\% \\ \hline 82.6\% \\ \hline 77.0\% \\ \hline 7.7\% \\ \hline 77.0\% \\ \hline 82\% \\ \hline 82\% \\ 82\% \\ 82\% \\ 82\% \\ 82\% \\ 75\% \\ \hline 78.6\% \\ \hline 77.0\% $                                                                                                                                                                                                                                                                                                                                                                              | 11<br>0<br>ure separated<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>0<br>ure separated<br>Num seiz<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.0<br>0.5<br>Found seiz<br>11<br>10<br>10<br>10<br>9<br>9<br>0.0<br>10.0<br>0.7<br>d, 4 of 7 cluste<br>Found seiz<br>10<br>10<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9.4<br>9.0                                                                                                                    | 7.0<br>2.3<br>rs<br>Found non seiz<br>1<br>3<br>3<br>1<br>2.2<br>3.0<br>1.1<br>rs<br>Found non seiz<br>3<br>2<br>2<br>3<br>2<br>2<br>3.0<br>1.1                                                                                                                                                                       |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>CLassifier       | 82.0%<br>4.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>91%<br>91%<br>91%<br>91%<br>91.0%<br>6.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>91%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82                                                                                       | $\begin{array}{c} 56.0\% \\ \hline 10.9\% \\ \hline 81.5\% \\ \hline 70\% \\ \hline 70\% \\ \hline 77\% \\ \hline 82.6\% \\ \hline 77.0\% \\ \hline \hline 82.6\% \\ \hline 77.0\% \\ \hline 82.6\% \\ \hline 77.0\% \\ \hline 82\% \\ \hline 77\% \\ \hline 82\% \\ \hline 82\% \\ \hline 82\% \\ \hline 82\% \\ \hline 81.6\% \\ \hline 81.6\%$                                                                                                                                                                                                                                                                                                             | 11           0           ure separated           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.0<br>0.5<br>Found seiz<br>11<br>10<br>10<br>10<br>9<br>9<br>0.0<br>10.0<br>0.7<br>d, 4 of 7 cluste<br>Found seiz<br>10<br>10<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9.4<br>9.0                                                                                                                    | 7.0<br>2.3<br>Found non seiz<br>1<br>3<br>3<br>1<br>2.2<br>3.0<br>1.1<br>rs<br>Found non seiz<br>3<br>3<br>2<br>2<br>2<br>3<br>2.6<br>3.0<br>0.5                                                                                                                                                                      |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>STD | 82.0%<br>4.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>6.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>91%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82                                                                                          | $\begin{array}{c} 56.0\% \\ \hline 10.9\% \\ \hline 81.5 \\ \hline 81.5 \\ \hline 81.5 \\ \hline 81.5 \\ \hline 82.6\% \\ \hline 77\% \\ \hline 90\% \\ \hline 82.6\% \\ \hline 77.0\% \\ \hline 77\% \\ \hline 82.6\% \\ \hline 77.0\% \\ \hline 77.0\% \\ \hline 77\% \\ \hline 82.6\% \\ \hline 77.0\% \\ \hline 77\% \\ \hline 82\% \\ \hline 82\% \\ \hline 82\% \\ \hline 82\% \\ \hline 75\% \\ \hline 77.6\% \\ \hline 77\% \\ \hline 82\% \\ \hline 77\% \\ \hline 82\% \\ \hline 81.5 \\ \hline 82\% \\ \hline 81.5 \\ \hline 81$                                                                                                                                                                                                                                                                                                                                                                     | 11           0           ure separated           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11 <t< td=""><td>9.0<br/>0.5<br/>Found seiz<br/>11<br/>10<br/>10<br/>10<br/>9<br/>10.0<br/>10.0<br/>0.7<br/>d, 4 of 7 cluste<br/>Found seiz<br/>10<br/>10<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9.4<br/>9.0<br/>0.5<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10</td><td>7.0<br/>2.3<br/>rs<br/>Found non seiz<br/>1<br/>3<br/>3<br/>3<br/>1<br/>2.2<br/>3.0<br/>1.1<br/>rs<br/>Found non seiz<br/>3<br/>2<br/>2<br/>2<br/>3<br/>2<br/>2<br/>3<br/>0<br/>1.1<br/>rs</td></t<>                                             | 9.0<br>0.5<br>Found seiz<br>11<br>10<br>10<br>10<br>9<br>10.0<br>10.0<br>0.7<br>d, 4 of 7 cluste<br>Found seiz<br>10<br>10<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9.4<br>9.0<br>0.5<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                          | 7.0<br>2.3<br>rs<br>Found non seiz<br>1<br>3<br>3<br>3<br>1<br>2.2<br>3.0<br>1.1<br>rs<br>Found non seiz<br>3<br>2<br>2<br>2<br>3<br>2<br>2<br>3<br>0<br>1.1<br>rs                                                                                                                                                    |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA      | 82.0%<br>4.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>91%<br>91%<br>91%<br>91%<br>91.0%<br>6.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>91%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82                                                                                                     | $\begin{array}{c} 56.0\% \\ \hline 10.9\% \\ \hline 10.9\% \\ \hline 10.9\% \\ \hline 10.9\% \\ \hline \\ \text{All features} \\ \text{Kmeans seiz} \\ 70\% \\ 77\% \\ 77\% \\ 77\% \\ 77\% \\ 90\% \\ \hline 82.6\% \\ 77.0\% \\ \hline 77.0\% \\ \hline 82.6\% \\ \hline 77.0\% \\ \hline 82.6\% \\ \hline 77.0\% \\ \hline 82.6\% \\ \hline 77.0\% \\ \hline 82\% \\ \hline 82\% \\ 75\% \\ \hline 78.6\% \\ \hline 77.0\% \\ \hline 3.2\% \\ \hline \\ \hline \\ \text{All features} \\ \text{Kmeans seiz} \\ 80\% \\ \text{KNN, k = 3} \\ \hline \\ \text{Selectivity} \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11           0           ure separated           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11 <t< td=""><td>9.0<br/>0.5<br/>Found seiz<br/>11<br/>10<br/>10<br/>10<br/>10.0<br/>10.0<br/>0.7<br/>d, 4 of 7 cluste<br/>Found seiz<br/>10<br/>10<br/>9<br/>9<br/>9<br/>9.4<br/>9.0<br/>0.5<br/>d, 3 of 7 cluste</td><td>7.0         2.3         rs         Found non seiz         1         3         1         2.2         3.0         1.1         rs         Found non seiz         3         2         3         2         3         2         3         2         3         2.6         3.0         0.5         rs         Found non seiz</td></t<> | 9.0<br>0.5<br>Found seiz<br>11<br>10<br>10<br>10<br>10.0<br>10.0<br>0.7<br>d, 4 of 7 cluste<br>Found seiz<br>10<br>10<br>9<br>9<br>9<br>9.4<br>9.0<br>0.5<br>d, 3 of 7 cluste                                                                                                                           | 7.0         2.3         rs         Found non seiz         1         3         1         2.2         3.0         1.1         rs         Found non seiz         3         2         3         2         3         2         3         2         3         2.6         3.0         0.5         rs         Found non seiz |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA      | 82.0%<br>4.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>91%<br>91%<br>91%<br>91%<br>91%<br>82%<br>91.0%<br>6.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>91%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82                                                                         | $\begin{array}{c} 56.0\% \\ \hline 10.9\% \\ \hline 10.9\% \\ \hline 10.9\% \\ \hline 10.9\% \\ \hline 8.0\% \\ \hline 8.0\% \\ \hline 8.0\% \\ \hline 7.0\% \\ \hline 7.7\% \\ \hline 90\% \\ \hline 82.6\% \\ \hline 7.7\% \\ \hline 7.7\% \\ \hline 82.6\% \\ \hline 7.7\% \\ \hline \hline 82.6\% \\ \hline 7.7\% \\ \hline 82.6\% \\ \hline 7.7\% \\ \hline 82.6\% \\ \hline 7.7\% \\ \hline 82\% \\ \hline 7.7\% \\ \hline 82\% \\ \hline 7.5\% \\ \hline 7.6\% \\ \hline 7.6\% \\ \hline 7.0\% \\ \hline 3.2\% \\ \hline \hline 8.6\% \\ \hline 7.0\% \\ \hline 3.2\% \\ \hline \hline 8.6\% \\ \hline 7.0\% \\ \hline 3.2\% \\ \hline 83\% \\ \hline 83\% \\ \hline 83\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11           0           ure separated           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.0<br>0.5<br>Found seiz<br>11<br>10<br>10<br>10<br>10.0<br>10.0<br>10.0<br>0.7<br>d, 4 of 7 cluste<br>Found seiz<br>10<br>10<br>9<br>9<br>9<br>9<br>9.4<br>9.0<br>0.5<br>d, 3 of 7 cluste                                                                                                              | 7.0<br>2.3<br>Found non seiz<br>1<br>3<br>3<br>1<br>2.2<br>3.0<br>1.1<br>rs<br>Found non seiz<br>3<br>2<br>2<br>3<br>2<br>2<br>3<br>0.5<br>rs<br>Found non seiz<br>2                                                                                                                                                  |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA      | 82.0%<br>4.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>91%<br>91%<br>91%<br>82%<br>91.0%<br>6.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>91%<br>82%<br>82%<br>82%<br>82%<br>85.6%<br>82.0%<br>4.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>91%<br>82%                                  | $\begin{array}{c} 56.0\% \\ \hline 10.9\% \\ \hline 81.5\% \\ \hline 81.5\% \\ \hline 77\% \\ \hline 77\% \\ 77\% \\ 77\% \\ 77\% \\ 77\% \\ 77\% \\ 77\% \\ 77\% \\ 77\% \\ \hline 82\% \\ \hline 82\% \\ \hline 82\% \\ \hline 82\% \\ \hline 77\% \\ \hline 82\% \\ \hline 78.6\% \\ \hline 77.0\% \\ \hline 3.2\% \\ \hline \hline \\ \hline All features \\ Kmeans seiz \\ 80\% \\ \hline KNN, k = 3 \\ \hline Selectivity \\ \hline 83\% \\ \hline 90\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11           0           ure separated           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11 <t< td=""><td>9.0<br/>0.5<br/>Found seiz<br/>11<br/>10<br/>10<br/>10<br/>10.0<br/>10.0<br/>0.7<br/>d, 4 of 7 cluste<br/>Found seiz<br/>10<br/>10<br/>9<br/>9<br/>9<br/>9.4<br/>9.0<br/>0.5<br/>d, 3 of 7 cluste</td><td>7.0         2.3         rs         Found non seiz         1         3         1         2.2         3.0         1.1         rs         Found non seiz         3         2         3         2         3         2         3         2         3         2.6         3.0         0.5         rs         Found non seiz</td></t<> | 9.0<br>0.5<br>Found seiz<br>11<br>10<br>10<br>10<br>10.0<br>10.0<br>0.7<br>d, 4 of 7 cluste<br>Found seiz<br>10<br>10<br>9<br>9<br>9<br>9.4<br>9.0<br>0.5<br>d, 3 of 7 cluste                                                                                                                           | 7.0         2.3         rs         Found non seiz         1         3         1         2.2         3.0         1.1         rs         Found non seiz         3         2         3         2         3         2         3         2         3         2.6         3.0         0.5         rs         Found non seiz |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA      | 82.0%<br>4.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>91%<br>91%<br>91%<br>91%<br>91.0%<br>6.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>91%<br>82%<br>82%<br>82%<br>82.0%<br>4.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>91%<br>82%<br>82.0%                                         | $\begin{array}{c} 56.0\% \\ \hline 10.9\% \\ \hline 81.0\% \\ \hline 82.6\% \\ \hline 77\% \\ 77\% \\ 77\% \\ 77\% \\ 77\% \\ 77\% \\ 90\% \\ \hline 82.6\% \\ \hline 77.0\% \\ \hline 77.0\% \\ \hline 82.6\% \\ \hline 77.0\% \\ \hline 77.0\% \\ \hline 82.6\% \\ \hline 77.0\% \\ \hline 82\% \\ \hline 82\% \\ \hline 77\% \\ \hline 71.0\% \\ \hline 3.2\% \\ \hline 82\% \\ \hline 82\% \\ \hline 83\% \\ \hline 90\% \\ \hline 82\% \\ \hline $                                    | 11           0           ure separated           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.0<br>0.5<br>Found seiz<br>11<br>10<br>10<br>10<br>10.0<br>10.0<br>0.7<br>4, 4 of 7 cluste<br>Found seiz<br>10<br>9<br>9<br>9.4<br>9.0<br>0.5<br>4, 3 of 7 cluste<br>Found seiz<br>10<br>9<br>9<br>9<br>9.4<br>9.0<br>0.5<br>10<br>10<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | 7.0<br>2.3<br>Found non seiz<br>1<br>3<br>3<br>1<br>2.2<br>3.0<br>1.1<br>rs<br>Found non seiz<br>3<br>3<br>2<br>2<br>3<br>2.6<br>3.0<br>0.5<br>rs<br>Found non seiz<br>2<br>1<br>2                                                                                                                                    |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA      | 82.0%<br>4.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>91%<br>91%<br>91%<br>82%<br>91.0%<br>6.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>91%<br>82%<br>82%<br>82%<br>82%<br>85.6%<br>82.0%<br>4.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>91%<br>82%                                  | $\begin{array}{c} 56.0\% \\ \hline 10.9\% \\ \hline 81.5\% \\ \hline 81.5\% \\ \hline 77\% \\ \hline 77\% \\ 77\% \\ 77\% \\ 77\% \\ 77\% \\ 77\% \\ 77\% \\ 77\% \\ 77\% \\ \hline 82\% \\ \hline 82\% \\ \hline 82\% \\ \hline 82\% \\ \hline 77\% \\ \hline 82\% \\ \hline 78.6\% \\ \hline 77.0\% \\ \hline 3.2\% \\ \hline \hline \\ \hline All features \\ Kmeans seiz \\ 80\% \\ \hline KNN, k = 3 \\ \hline Selectivity \\ \hline 83\% \\ \hline 90\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11           0           ure separated           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.0<br>0.5<br>1, 3 of 7 cluste<br>Found seiz<br>11<br>10<br>10<br>9<br>10.0<br>10.0<br>0.7<br>1, 4 of 7 cluste<br>Found seiz<br>10<br>10<br>9<br>9<br>9<br>9.4<br>9.0<br>0.5<br>1, 3 of 7 cluste<br>Found seiz<br>10<br>10<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9             | 7.0<br>2.3<br>Found non seiz<br>1<br>3<br>3<br>1<br>2.2<br>3.0<br>1.1<br>rs<br>Found non seiz<br>3<br>2<br>2<br>3<br>2<br>2<br>3<br>2<br>2<br>3<br>3<br>2<br>2<br>3<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                     |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA      | 82.0%<br>4.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>91%<br>91%<br>91%<br>91%<br>82%<br>91.0%<br>6.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>91%<br>82%<br>82%<br>82.0%<br>4.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>91%<br>82%<br>82%<br>82%                                    | $\begin{array}{c} 56.0\% \\ \hline 10.9\% \\ \hline 81.0\% \\ \hline 82.6\% \\ \hline 77\% \\ \hline 82.6\% \\ \hline 77.0\% \\ \hline \hline 77.0\% \\ \hline \hline 82.6\% \\ \hline 77.0\% \\ \hline \hline 82.6\% \\ \hline 77.0\% \\ \hline 82\% \\ \hline 77\% \\ \hline 82\% \\ \hline 77.0\% \\ \hline 82\% \\ \hline 78.6\% \\ \hline 77.0\% \\ \hline 3.2\% \\ \hline \hline 81.0\% \\ \hline 82\% \\ \hline 83\% \\ \hline 90\% \\ \hline 82\% \\ \hline $       | 11           0           ure separated           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.0<br>0.5<br>Found seiz<br>11<br>10<br>10<br>10<br>10.0<br>10.0<br>0.7<br>1, 4 of 7 cluste<br>Found seiz<br>10<br>9<br>9<br>9<br>9.4<br>9.0<br>0.5<br>10<br>10<br>9<br>9<br>9<br>9<br>9<br>10<br>10<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10     | 7.0<br>2.3<br>Found non seiz<br>1<br>3<br>3<br>1<br>2.2<br>3.0<br>1.1<br>rs<br>Found non seiz<br>3<br>2<br>2<br>3<br>2<br>2<br>3<br>0.5<br>rs<br>Found non seiz<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                        |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier | 82.0%<br>4.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>91%<br>91%<br>91%<br>91%<br>82%<br>91.0%<br>6.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>91%<br>82%<br>82%<br>82%<br>82.0%<br>4.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>91%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82% | $\begin{array}{c} 56.0\% \\ \hline 10.9\% \\ \hline 81.5\% \\ \hline 82.6\% \\ \hline 77\% \\ \hline 82.6\% \\ \hline 77.0\% \\ \hline \hline 7.7\% \\ \hline \hline 82\% \\ \hline 82\% \\ \hline 82\% \\ \hline 77\% \\ \hline 82\% \\ \hline 83\% \\ \hline 80\% \\ \hline 82\% \\ \hline 83\% \\ $ | 11           0           ure separated           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.0<br>0.5<br>1, 3 of 7 cluste<br>Found seiz<br>11<br>10<br>10<br>10<br>10.0<br>10.0<br>0.7<br>1, 4 of 7 cluste<br>Found seiz<br>10<br>10<br>9<br>9<br>9<br>9.4<br>9.0<br>0.5<br>10<br>10<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                              | 7.0<br>2.3<br>Found non seiz<br>1<br>3<br>3<br>1<br>2.2<br>3.0<br>1.1<br>rs<br>Found non seiz<br>3<br>2<br>2<br>3<br>2<br>2<br>3<br>2<br>2<br>3<br>3<br>2<br>2<br>3<br>3<br>2<br>2<br>3<br>3<br>2<br>2<br>3<br>3<br>2<br>2<br>3<br>3<br>2<br>2<br>3<br>3<br>5<br>5<br>5<br>5                                          |

| Features              | used:        | All features |               |                  |                |
|-----------------------|--------------|--------------|---------------|------------------|----------------|
| Cluster a             |              |              | ure separate  | l, 3 of 7 cluste | re             |
| PLS-DA                |              | 80%          | die separate  | 1, 0 01 / 014600 |                |
| Classifier            |              | KNN, $k = 5$ |               |                  |                |
|                       | Sensitivity  | Selectivity  | Num seiz      | Found seiz       | Found non seiz |
|                       | 100%         | 85%          | 11            | 11               | 2              |
|                       | 100%         | 85%          | 11            | 11               | 2              |
|                       | 91%          | 83%          | 11            | 10               | 2              |
|                       | 91%          | 83%          | 11            | 10               | 2              |
|                       | 82%          | 82%          | 11            | 9                | 2              |
| Mean                  | 92.8%        | 83.6%        | 11            | 10.2             | 2.0            |
| Median                | 91.0%        | 83.0%        | 11            | 10.2             | 2.0            |
| STD                   |              |              |               |                  |                |
| SID                   | 7.5%         | 1.3%         | 0             | 0.8              | 0.0            |
|                       |              |              |               |                  |                |
| Features              |              | All features |               |                  |                |
| Cluster a             |              |              | ure separated | 1, 3 of 7 cluste | rs             |
| PLS-DA                |              | 80%          |               |                  |                |
| Classifier            |              | KNN, $k = 1$ |               |                  |                |
|                       | Sensitivity  | Selectivity  | Num seiz      | Found seiz       | Found non seiz |
|                       | 82%          | 100%         | 11            | 9                | 0              |
|                       | 82%          | 90%          | 11            | 9                | 1              |
|                       | 82%          | 90%          | 11            | 9                | 1              |
|                       | 82%          | 90%          | 11            | 9                | 1              |
|                       | 82%          | 90%          | 11            | 9                | 1              |
| Mean                  | 82.0%        | 92.0%        | 11            | 9.0              | 0.8            |
| Median                | 82.0%        | 90.0%        | 11            | 9.0              | 1.0            |
| STD                   | 0.0%         | 4.5%         | 0             | 0.0              | 0.4            |
| ~                     | 0.070        |              | ÷             | 0.0              | 0.12           |
| Features              |              | All features |               |                  |                |
|                       |              | Karaana asia |               | 1, 3 of 7 cluste |                |
| Cluster a             | narysis:     |              | ure separated | i, 5 of 7 cluste | rs             |
| PLS-DA<br>Classifier  | variance:    | 80%          |               | [n n]            |                |
| Classiner             |              |              | prob. weight  |                  |                |
|                       | Sensitivity  | Selectivity  | Num seiz      | Found seiz       | Found non seiz |
|                       | 100%         | 69%          | 11            | 11               | 5              |
|                       | 100%         | 65%          | 11            | 11               | 6              |
|                       | 100%         | 61%          | 11            | 11               | 7              |
|                       | 100%         | 55%          | 11            | 11               | 9              |
|                       | 91%          | 71%          | 11            | 10               | 4              |
| Mean                  | 98.2%        | 64.2%        | 11            | 10.8             | 6.2            |
| Median                | 100.0%       | 65.0%        | 11            | 11.0             | 6.0            |
| STD                   | 4.0%         | 6.4%         | 0             | 0.4              | 1.9            |
|                       |              |              |               |                  |                |
| Features              | used:        | All features |               |                  |                |
| Cluster a             | nalysis:     | Kmeans seiz  | ure separated | d, 3 of 7 cluste | rs             |
| PLS-DA                | variance:    | 80%          | •             |                  |                |
| Classifier            | :            | QDA, Prior   | prob. weight: | s [1 10]         |                |
|                       | Sensitivity  | Selectivity  | Num seiz      | Found seiz       | Found non seiz |
|                       | 100%         | 73%          | 11            | 11               | 4              |
|                       | 100%         | 69%          | 11            | 11               | 5              |
|                       | 100%         | 58%          | 11            | 11               | 8              |
|                       | 91%          | 63%          | 11            | 10               | 6              |
|                       | 91%          | 56%          | 11            | 10               | 8              |
| Mean                  | 96.4%        | 63.8%        | 11            | 10.6             | 6.2            |
|                       | 100.0%       |              |               |                  |                |
| Median                |              | 63.0%        | 11            | 11.0             | 6.0            |
| STD                   | 4.9%         | 7.2%         | 0             | 0.5              | 1.8            |
| _                     |              |              |               |                  |                |
| Features              |              | All features |               |                  |                |
| Cluster a             |              |              | ure separated | 1, 3 of 7 cluste | rs             |
| PLS-DA                |              | 80%          |               |                  |                |
| Classifier            |              |              | prob. weights |                  |                |
|                       | Sensitivity  | Selectivity  | Num seiz      | Found seiz       | Found non seiz |
|                       | 100%         | 73%          | 11            | 11               | 4              |
|                       | 100%         | 65%          | 11            | 11               | 6              |
|                       | 100%         | 65%          | 11            | 11               | 6              |
|                       |              | 61%          | 11            | 11               | 7              |
|                       | 100%         |              |               |                  |                |
|                       | 100%<br>91%  |              | 11            | 10               | 7              |
| Mean                  | 91%          | 59%          | 11            | 10               | 7              |
| Mean                  | 91%<br>98.2% | 59%<br>64.6% | 11            | 10.8             | 6.0            |
| Mean<br>Median<br>STD | 91%          | 59%          |               |                  |                |

| Features         | Features used:    |             |          |            |                |
|------------------|-------------------|-------------|----------|------------|----------------|
| Cluster a        | Cluster analysis: |             |          |            |                |
| PLS-DA variance: |                   | 70%         |          |            |                |
| Classifier       | Classifier:       |             |          |            |                |
|                  | Sensitivity       | Selectivity | Num seiz | Found seiz | Found non seiz |
|                  | 100%              | 73%         | 11       | 11         | 4              |
|                  | 91%               | 77%         | 11       | 10         | 3              |
|                  | 91%               | 77%         | 11       | 10         | 3              |
|                  | 91%               | 77%         | 11       | 10         | 3              |
|                  | 82%               | 75%         | 11       | 9          | 3              |
| Mean             | 91.0%             | 75.8%       | 11       | 10.0       | 3.2            |
| Median           | 91.0%             | 77.0%       | 11       | 10.0       | 3.0            |
| STD              | 6.4%              | 1.8%        | 0        | 0.7        | 0.4            |

| Features                                                                                                                                                                    | used:                                                                                                                                                                                                                                                                                                       | All features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                            |                                                                                                                                                                                                                         |                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cluster a                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                             | Min values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                            |                                                                                                                                                                                                                         |                                                                                                                                                                                     |
| PLS-DA                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                             | 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                            |                                                                                                                                                                                                                         |                                                                                                                                                                                     |
| Classifier                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                             | KNN, $k = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                            |                                                                                                                                                                                                                         |                                                                                                                                                                                     |
|                                                                                                                                                                             | Sensitivity                                                                                                                                                                                                                                                                                                 | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Num seiz                                                                                                                                   | Found seiz                                                                                                                                                                                                              | Found non seiz                                                                                                                                                                      |
|                                                                                                                                                                             | 82%                                                                                                                                                                                                                                                                                                         | 43%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                         | 9                                                                                                                                                                                                                       | 12                                                                                                                                                                                  |
|                                                                                                                                                                             | 73%<br>73%                                                                                                                                                                                                                                                                                                  | 44%<br>40%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11<br>11                                                                                                                                   | 8                                                                                                                                                                                                                       | 10<br>12                                                                                                                                                                            |
|                                                                                                                                                                             | 73%                                                                                                                                                                                                                                                                                                         | 38%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                         | 8                                                                                                                                                                                                                       | 12                                                                                                                                                                                  |
|                                                                                                                                                                             | 73%                                                                                                                                                                                                                                                                                                         | 36%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                         | 8                                                                                                                                                                                                                       | 14                                                                                                                                                                                  |
| Mean                                                                                                                                                                        | 74.8%                                                                                                                                                                                                                                                                                                       | 40.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11                                                                                                                                         | 8.2                                                                                                                                                                                                                     | 12.2                                                                                                                                                                                |
| Median                                                                                                                                                                      | 73.0%                                                                                                                                                                                                                                                                                                       | 40.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11                                                                                                                                         | 8.0                                                                                                                                                                                                                     | 12.0                                                                                                                                                                                |
| STD                                                                                                                                                                         | 4.0%                                                                                                                                                                                                                                                                                                        | 3.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                          | 0.4                                                                                                                                                                                                                     | 1.5                                                                                                                                                                                 |
| 010                                                                                                                                                                         | 11070                                                                                                                                                                                                                                                                                                       | 0.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ŭ                                                                                                                                          | 0.1                                                                                                                                                                                                                     | 110                                                                                                                                                                                 |
| Features                                                                                                                                                                    | used:                                                                                                                                                                                                                                                                                                       | All features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                            |                                                                                                                                                                                                                         |                                                                                                                                                                                     |
| Cluster a                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                             | Max absolut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e values                                                                                                                                   |                                                                                                                                                                                                                         |                                                                                                                                                                                     |
| PLS-DA                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                             | 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                            |                                                                                                                                                                                                                         |                                                                                                                                                                                     |
| Classifier                                                                                                                                                                  | :                                                                                                                                                                                                                                                                                                           | KNN, k = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                            |                                                                                                                                                                                                                         |                                                                                                                                                                                     |
|                                                                                                                                                                             | Sensitivity                                                                                                                                                                                                                                                                                                 | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Num seiz                                                                                                                                   | Found seiz                                                                                                                                                                                                              | Found non seiz                                                                                                                                                                      |
|                                                                                                                                                                             | 91%                                                                                                                                                                                                                                                                                                         | 59%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                         | 10                                                                                                                                                                                                                      | 7                                                                                                                                                                                   |
|                                                                                                                                                                             | 82%                                                                                                                                                                                                                                                                                                         | 64%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                         | 9                                                                                                                                                                                                                       | 5                                                                                                                                                                                   |
|                                                                                                                                                                             | 82%                                                                                                                                                                                                                                                                                                         | 60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                         | 9                                                                                                                                                                                                                       | 6                                                                                                                                                                                   |
|                                                                                                                                                                             | 82%                                                                                                                                                                                                                                                                                                         | 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                         | 9                                                                                                                                                                                                                       | 9                                                                                                                                                                                   |
|                                                                                                                                                                             | 82%                                                                                                                                                                                                                                                                                                         | 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                         | 9                                                                                                                                                                                                                       | 9                                                                                                                                                                                   |
| Mean                                                                                                                                                                        | 83.8%                                                                                                                                                                                                                                                                                                       | 56.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11                                                                                                                                         | 9.2                                                                                                                                                                                                                     | 7.2                                                                                                                                                                                 |
| Median                                                                                                                                                                      | 82.0%                                                                                                                                                                                                                                                                                                       | 59.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11                                                                                                                                         | 9.0                                                                                                                                                                                                                     | 7.0                                                                                                                                                                                 |
| STD                                                                                                                                                                         | 4.0%                                                                                                                                                                                                                                                                                                        | 6.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                          | 0.4                                                                                                                                                                                                                     | 1.8                                                                                                                                                                                 |
| <b>D</b> (                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                             | A 11 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                            |                                                                                                                                                                                                                         |                                                                                                                                                                                     |
| Features<br>Cluster a                                                                                                                                                       |                                                                                                                                                                                                                                                                                                             | All features<br>Max values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                            |                                                                                                                                                                                                                         |                                                                                                                                                                                     |
| Cluster a<br>PLS-DA                                                                                                                                                         |                                                                                                                                                                                                                                                                                                             | Max values<br>80%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                            |                                                                                                                                                                                                                         |                                                                                                                                                                                     |
| Classifier                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                             | KNN, k = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                            |                                                                                                                                                                                                                         |                                                                                                                                                                                     |
| 2.2.0011101                                                                                                                                                                 | Sensitivity                                                                                                                                                                                                                                                                                                 | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Num seiz                                                                                                                                   | Found seiz                                                                                                                                                                                                              | Found non seiz                                                                                                                                                                      |
|                                                                                                                                                                             | 91%                                                                                                                                                                                                                                                                                                         | 71%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                         | 10                                                                                                                                                                                                                      | 4                                                                                                                                                                                   |
|                                                                                                                                                                             | 82%                                                                                                                                                                                                                                                                                                         | 69%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                         | 9                                                                                                                                                                                                                       | 4                                                                                                                                                                                   |
|                                                                                                                                                                             | 82%                                                                                                                                                                                                                                                                                                         | 69%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                         | 9                                                                                                                                                                                                                       | 4                                                                                                                                                                                   |
|                                                                                                                                                                             | 82%                                                                                                                                                                                                                                                                                                         | 69%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                         | 9                                                                                                                                                                                                                       | 4                                                                                                                                                                                   |
|                                                                                                                                                                             | 82%                                                                                                                                                                                                                                                                                                         | 69%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                         | 9                                                                                                                                                                                                                       | 4                                                                                                                                                                                   |
| Mean                                                                                                                                                                        | 83.8%                                                                                                                                                                                                                                                                                                       | 69.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11                                                                                                                                         | 9.2                                                                                                                                                                                                                     | 4.0                                                                                                                                                                                 |
| Median                                                                                                                                                                      | 82.0%                                                                                                                                                                                                                                                                                                       | 69.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11                                                                                                                                         | 9.0                                                                                                                                                                                                                     | 4.0                                                                                                                                                                                 |
| STD                                                                                                                                                                         | 4.0%                                                                                                                                                                                                                                                                                                        | 0.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                          | 0.4                                                                                                                                                                                                                     | 0.0                                                                                                                                                                                 |
|                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                            |                                                                                                                                                                                                                         |                                                                                                                                                                                     |
|                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                            |                                                                                                                                                                                                                         |                                                                                                                                                                                     |
| Features                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                             | All features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                            |                                                                                                                                                                                                                         |                                                                                                                                                                                     |
| Cluster a                                                                                                                                                                   | nalysis:                                                                                                                                                                                                                                                                                                    | Min values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                            |                                                                                                                                                                                                                         |                                                                                                                                                                                     |
| Cluster a<br>PLS-DA                                                                                                                                                         | nalysis:<br>variance:                                                                                                                                                                                                                                                                                       | Min values<br>80%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                            |                                                                                                                                                                                                                         |                                                                                                                                                                                     |
| Cluster a                                                                                                                                                                   | nalysis:<br>variance:<br>:                                                                                                                                                                                                                                                                                  | $\begin{array}{l} \text{Min values} \\ 80\% \\ \text{KNN, } \mathbf{k} = 3 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Num coig                                                                                                                                   | Found coig                                                                                                                                                                                                              | Found non soig                                                                                                                                                                      |
| Cluster a<br>PLS-DA                                                                                                                                                         | nalysis:<br>variance:<br>:<br>Sensitivity                                                                                                                                                                                                                                                                   | $\begin{array}{c} \text{Min values} \\ 80\% \\ \text{KNN, } k = 3 \\ \hline \text{Selectivity} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Num seiz                                                                                                                                   | Found seiz                                                                                                                                                                                                              | Found non seiz                                                                                                                                                                      |
| Cluster a<br>PLS-DA                                                                                                                                                         | nalysis:<br>variance:<br>:<br>Sensitivity<br>82%                                                                                                                                                                                                                                                            | $\begin{array}{c} \text{Min values} \\ 80\% \\ \text{KNN, } k = 3 \\ \hline \text{Selectivity} \\ \hline 60\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11                                                                                                                                         | 9                                                                                                                                                                                                                       | 6                                                                                                                                                                                   |
| Cluster a<br>PLS-DA                                                                                                                                                         | nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%                                                                                                                                                                                                                                                     | $\begin{array}{l} \text{Min values} \\ 80\% \\ \text{KNN, } k = 3 \\ \hline \text{Selectivity} \\ 60\% \\ 56\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11<br>11                                                                                                                                   | 9<br>9                                                                                                                                                                                                                  | 6<br>7                                                                                                                                                                              |
| Cluster a<br>PLS-DA                                                                                                                                                         | nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>82%                                                                                                                                                                                                                                              | $\begin{array}{c} \text{Min values} \\ 80\% \\ \text{KNN, } k = 3 \\ \hline \text{Selectivity} \\ 60\% \\ 56\% \\ 50\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11<br>11<br>11                                                                                                                             | 9<br>9<br>9                                                                                                                                                                                                             | 6<br>7<br>9                                                                                                                                                                         |
| Cluster a<br>PLS-DA                                                                                                                                                         | nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%                                                                                                                                                                                                                                       | $\begin{array}{l} {\rm Min\ values} \\ 80\% \\ {\rm KNN,\ k=3} \\ \hline \\ {\rm Selectivity} \\ 60\% \\ 56\% \\ 50\% \\ 50\% \\ 50\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11<br>11<br>11<br>11                                                                                                                       | 9<br>9<br>9<br>9                                                                                                                                                                                                        | 6<br>7<br>9<br>9                                                                                                                                                                    |
| Cluster a<br>PLS-DA<br>Classifier                                                                                                                                           | nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>73%                                                                                                                                                                                                                                | $\begin{array}{l} {\rm Min \ values} \\ 80\% \\ {\rm KNN, \ k = 3} \\ \hline 80\% \\ {\rm Selectivity} \\ 60\% \\ 56\% \\ 50\% \\ 50\% \\ 47\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11<br>11<br>11<br>11<br>11                                                                                                                 | 9<br>9<br>9<br>9<br>8                                                                                                                                                                                                   | 6<br>7<br>9<br>9<br>9                                                                                                                                                               |
| Cluster a<br>PLS-DA                                                                                                                                                         | nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>73%<br>80.2%                                                                                                                                                                                                                       | $\begin{array}{l} \mbox{Min values} \\ 80\% \\ \mbox{KNN, } k = 3 \\ \mbox{Selectivity} \\ \hline 60\% \\ 56\% \\ 50\% \\ 50\% \\ 47\% \\ \hline 52.6\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11<br>11<br>11<br>11                                                                                                                       | 9<br>9<br>9<br>9                                                                                                                                                                                                        | 6<br>7<br>9<br>9                                                                                                                                                                    |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median                                                                                                                         | nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>73%<br>80.2%<br>80.2%<br>82.0%                                                                                                                                                                                                     | $\begin{array}{l} \mbox{Min values} \\ 80\% \\ \mbox{KNN, } k = 3 \\ \hline \mbox{Selectivity} \\ \hline \mbox{60\%} \\ 56\% \\ 50\% \\ 50\% \\ 47\% \\ \hline \mbox{52.6\%} \\ 50.0\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11<br>11<br>11<br>11<br>11<br>11<br>11                                                                                                     | 9<br>9<br>9<br>9<br>8<br>8.8                                                                                                                                                                                            | 6<br>7<br>9<br>9<br>9<br>9<br>8.0                                                                                                                                                   |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean                                                                                                                                   | nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>73%<br>80.2%                                                                                                                                                                                                                       | $\begin{array}{l} \mbox{Min values} \\ 80\% \\ \mbox{KNN, } k = 3 \\ \mbox{Selectivity} \\ \hline 60\% \\ 56\% \\ 50\% \\ 50\% \\ 47\% \\ \hline 52.6\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11<br>11<br>11<br>11<br>11<br>11<br>11<br>11                                                                                               | 9<br>9<br>9<br>9<br>8<br>8.8<br>9.0                                                                                                                                                                                     | 6<br>7<br>9<br>9<br>9<br>8.0<br>9.0                                                                                                                                                 |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median                                                                                                                         | nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>73%<br>80.2%<br>80.2%<br>82.0%<br>4.0%                                                                                                                                                                                             | $\begin{array}{l} \mbox{Min values} \\ 80\% \\ \mbox{KNN, } k = 3 \\ \hline \mbox{Selectivity} \\ \hline \mbox{60\%} \\ 56\% \\ 50\% \\ 50\% \\ 47\% \\ \hline \mbox{52.6\%} \\ 50.0\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11<br>11<br>11<br>11<br>11<br>11<br>11<br>11                                                                                               | 9<br>9<br>9<br>9<br>8<br>8.8<br>9.0                                                                                                                                                                                     | 6<br>7<br>9<br>9<br>9<br>8.0<br>9.0                                                                                                                                                 |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD                                                                                                                  | nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82.0%<br>4.0%<br>4.0%                                                                                                                                                                           | $\begin{array}{l} {\rm Min\ values}\\ 80\%\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ 60\%\\ 56\%\\ 50\%\\ 50\%\\ 47\%\\ 52.6\%\\ 50.0\%\\ 55.0\%\\ 5.3\%\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11<br>11<br>11<br>11<br>11<br>11<br>11<br>0                                                                                                | 9<br>9<br>9<br>9<br>8<br>8.8<br>9.0                                                                                                                                                                                     | 6<br>7<br>9<br>9<br>9<br>8.0<br>9.0                                                                                                                                                 |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                               | nalysis:<br>variance:<br>:<br>:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>73%<br>80.2%<br>82.0%<br>4.0%<br>used:<br>nalysis:<br>variance:                                                                                                                                                               | $\begin{array}{l} \mbox{Min values} \\ 80\% \\ \mbox{KNN, } k = 3 \\ \mbox{Selectivity} \\ 60\% \\ 56\% \\ 50\% \\ 47\% \\ 52.6\% \\ 50.0\% \\ 5.3\% \\ \hline \\ \mbox{All features} \\ \mbox{Max absolut} \\ 80\% \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11<br>11<br>11<br>11<br>11<br>11<br>11<br>0                                                                                                | 9<br>9<br>9<br>9<br>8<br>8.8<br>9.0                                                                                                                                                                                     | 6<br>7<br>9<br>9<br>9<br>8.0<br>9.0                                                                                                                                                 |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a                                                                                         | nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82.0%<br>4.0%<br>4.0%<br>used:<br>nalysis:<br>variance:<br>:                                                                                                                                    | $\begin{array}{l} \mbox{Min values} \\ 80\% \\ \mbox{KNN, k = 3} \\ \hline \mbox{Selectivity} \\ \hline \mbox{60\%} \\ 56\% \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ \hline \mbox{52.6\%} \\ \hline \mbox{52.6\%} \\ \hline \mbox{53.6\%} \\ \hline \mbox{53.6\%} \\ \hline \mbox{All features} \\ \mbox{Max absolut} \\ 80\% \\ \mbox{KNN, k = 3} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11<br>11<br>11<br>11<br>11<br>11<br>11<br>0                                                                                                | 9<br>9<br>9<br>9<br>8<br>8.8<br>9.0                                                                                                                                                                                     | 6<br>7<br>9<br>9<br>9<br>8.0<br>9.0                                                                                                                                                 |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                               | nalysis:<br>variance:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82.0%<br>4.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity                                                                                                                                              | $\begin{array}{l} \mbox{Min values} \\ 80\% \\ \mbox{KNN, } k = 3 \\ \mbox{Selectivity} \\ \hline 60\% \\ 56\% \\ 50\% \\ 50\% \\ 47\% \\ \hline 52.6\% \\ \hline 50.0\% \\ \hline 52.6\% \\ \hline 50.0\% \\ \hline 53\% \\ \hline \\ \mbox{All features} \\ \mbox{Max absolut} \\ 80\% \\ \mbox{KNN, } k = 3 \\ \mbox{Selectivity} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11<br>11<br>11<br>11<br>11<br>11<br>0<br>e values<br>Num seiz                                                                              | 9<br>9<br>9<br>8<br>8<br>8.8<br>9.0<br>0.4                                                                                                                                                                              | 6<br>7<br>9<br>9<br>9<br>8.0<br>9.0<br>1.4<br>Found non seiz                                                                                                                        |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                               | nalysis:<br>variance:<br>:<br>:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82.0%<br>4.0%<br>4.0%<br>used:<br>nalysis:<br>variance:<br>:<br>:<br>Sensitivity<br>91%                                                                                                                  | $\begin{array}{l} \mbox{Min values} \\ 80\% \\ 80\% \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \hline 60\% \\ 56\% \\ 50\% \\ 50\% \\ 47\% \\ \hline 50.0\% \\ 52.6\% \\ \hline 50.0\% \\ \hline 50.0\% \\ \hline 5.3\% \\ \hline \\ \mbox{All features} \\ \mbox{Max absolut} \\ 80\% \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \hline 77\% \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11<br>11<br>11<br>11<br>11<br>11<br>11<br>0<br>e values<br>Num seiz<br>11                                                                  | 9<br>9<br>9<br>8<br>8.8<br>9.0<br>0.4<br>Found seiz<br>10                                                                                                                                                               | 6<br>7<br>9<br>9<br>9<br>9.0<br>9.0<br>1.4<br>Found non seiz<br>3                                                                                                                   |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                               | nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%                                                                                                                                                                                             | $\begin{array}{l} \mbox{Min values} \\ 80\% \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \hline 60\% \\ 56\% \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ 52.6\% \\ \hline 50.0\% \\ 52.6\% \\ \hline 50.0\% \\ 53\% \\ \hline \\ \mbox{All features} \\ \mbox{Max absolut} \\ 80\% \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \hline 77\% \\ \hline 71\% \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11<br>11<br>11<br>11<br>11<br>11<br>11<br>0<br>e values<br>Num seiz<br>11<br>11                                                            | 9<br>9<br>9<br>8<br>8.8<br>9.0<br>0.4<br>Found seiz<br>10                                                                                                                                                               | 6<br>7<br>9<br>9<br>9<br>8.0<br>9.0<br>1.4<br>Found non seiz<br>3<br>4                                                                                                              |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                               | nalysis:<br>variance:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>73%<br>73%<br>73%<br>73%<br>4.0%<br>4.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>91%<br>91%                                                                                                | $\begin{array}{l} \mbox{Min values} \\ 80\% \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \hline 60\% \\ 56\% \\ 50\% \\ 50\% \\ 50\% \\ 52.6\% \\ \hline 52.6\% \\ \hline 52.6\% \\ \hline 50.0\% \\ \hline 53.3\% \\ \hline \\ \mbox{All features} \\ \mbox{Max absolut} \\ 80\% \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \hline 77\% \\ \hline 71\% \\ \mbox{67\%} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11<br>11<br>11<br>11<br>11<br>11<br>0<br>e values<br>Num seiz<br>11<br>11                                                                  | 9<br>9<br>9<br>8<br>8<br>8.8<br>9.0<br>0.4<br>Found seiz<br>10<br>10                                                                                                                                                    | 6<br>7<br>9<br>9<br>9<br>8.0<br>9.0<br>1.4<br>Found non seiz<br>3<br>4<br>5                                                                                                         |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                               | nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>80.2%<br>80.2%<br>80.2%<br>80.2%<br>80.2%                                                                                                                                                                                          | $\begin{array}{l} \mbox{Min values} \\ 80\% \\ 80\% \\ \mbox{KNN, k = 3} \\ \hline \mbox{Selectivity} \\ \hline \mbox{60\%} \\ 56\% \\ 50\% \\ 50\% \\ 47\% \\ 47\% \\ 52.6\% \\ \hline \mbox{50\%} \\ 5.3\% \\ \hline \mbox{All features} \\ \mbox{Max absolut} \\ 80\% \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \hline \mbox{77\%} \\ 71\% \\ 67\% \\ 75\% \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11<br>11<br>11<br>11<br>11<br>11<br>0<br>e values<br>Num seiz<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>1                   | 9<br>9<br>9<br>8<br>8.8<br>9.0<br>0.4<br>Found seiz<br>10<br>10<br>9                                                                                                                                                    | 6<br>7<br>9<br>9<br>8.0<br>9.0<br>1.4<br>Found non seiz<br>3<br>4<br>5<br>3                                                                                                         |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                 | nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>82.0%<br>4.0%<br>4.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>91%<br>91%<br>91%<br>82%                                                                                                                            | $\begin{array}{l} \mbox{Min values} \\ 80\% \\ \mbox{KNN, k = 3} \\ \hline \mbox{Selectivity} \\ \hline \mbox{60\%} \\ 56\% \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ 52.6\% \\ \hline \mbox{50.0\%} \\ 5.3\% \\ \hline \mbox{All features} \\ \mbox{Max absolut} \\ 80\% \\ \mbox{KNN, k = 3} \\ \hline \mbox{Selectivity} \\ \hline \mbox{77\%} \\ \hline \mbox{67\%} \\ \mbox{67\%} \\ \mbox{67\%} \\ \mbox{64\%} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11<br>11<br>11<br>11<br>11<br>11<br>0<br>e values<br>Num seiz<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>1                   | 9<br>9<br>9<br>8<br>8.8<br>9.0<br>0.4<br>Found seiz<br>10<br>10<br>10<br>9<br>9                                                                                                                                         | 6<br>7<br>9<br>9<br>8.0<br>9.0<br>1.4<br>Found non seiz<br>3<br>4<br>5<br>3<br>5                                                                                                    |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                 | nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%                                                                                                                                                                                             | $\begin{array}{c} {\rm Min\ values}\\ 80\%\\ {\rm KNN,\ k=3}\\ \hline {\rm Selectivity}\\ \hline 60\%\\ 56\%\\ 50\%\\ 50\%\\ 47\%\\ \hline 52.6\%\\ \hline 50.0\%\\ \hline 53.6\%\\ \hline \\ \hline {\rm Selectivity}\\ \hline \\ {\rm All\ features}\\ {\rm Max\ absolut}\\ 80\%\\ {\rm KNN,\ k=3}\\ \hline {\rm Selectivity}\\ \hline \\ 77\%\\ \hline \\ 67\%\\ 75\%\\ \hline 64\%\\ \hline \\ 70.8\%\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11<br>11<br>11<br>11<br>11<br>11<br>11<br>0<br>e values<br>Num seiz<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>1             | 9<br>9<br>9<br>8<br>8<br>8.8<br>9.0<br>0.4<br>Found seiz<br>10<br>10<br>10<br>9<br>9<br>9.6                                                                                                                             | 6<br>7<br>9<br>9<br>8.0<br>9.0<br>1.4<br>Found non seiz<br>3<br>4<br>5<br>3<br>5<br>4.0                                                                                             |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Mean<br>Mean                                         | nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>82%<br>82.0%<br>4.0%<br>4.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>91%<br>91%<br>91%<br>82%<br>82%<br>82%<br>87.4%<br>91.0%                                                                                     | $\begin{array}{l} \mbox{Min values} \\ 80\% \\ 80\% \\ \mbox{KNN, } k = 3 \\ \hline \mbox{Selectivity} \\ \hline \mbox{60\%} \\ 50\% \\ 50\% \\ 50\% \\ 52.6\% \\ \hline \mbox{50\%} \\ \hline \mbox{52.6\%} \\ \hline \mbox{53\%} \\ \hline \mbox{All features} \\ \mbox{Max absolut} \\ 80\% \\ \mbox{KNN, } k = 3 \\ \hline \mbox{Selectivity} \\ \hline \mbox{77\%} \\ \hline \mbox{71\%} \\ \hline \mbox{64\%} \\ \hline \mbox{64\%} \\ \hline \mbox{70.8\%} \\ \hline \mbox{71.0\%} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11<br>11<br>11<br>11<br>11<br>11<br>11<br>0<br>e values<br>Num seiz<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>1             | 9<br>9<br>9<br>8<br>8.8<br>9.0<br>0.4<br>Found seiz<br>10<br>10<br>10<br>9<br>9<br>9.6<br>10.0                                                                                                                          | 6<br>7<br>9<br>9<br>8.0<br>9.0<br>1.4<br>Found non seiz<br>3<br>4<br>5<br>3<br>5<br>4.0<br>4.0                                                                                      |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                 | nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%                                                                                                                                                                                             | $\begin{array}{c} {\rm Min\ values}\\ 80\%\\ {\rm KNN,\ k=3}\\ \hline {\rm Selectivity}\\ \hline 60\%\\ 56\%\\ 50\%\\ 50\%\\ 47\%\\ \hline 52.6\%\\ \hline 50.0\%\\ \hline 53.6\%\\ \hline \\ \hline {\rm Selectivity}\\ \hline \\ {\rm All\ features}\\ {\rm Max\ absolut}\\ 80\%\\ {\rm KNN,\ k=3}\\ \hline {\rm Selectivity}\\ \hline \\ 77\%\\ \hline \\ 67\%\\ 75\%\\ \hline 64\%\\ \hline \\ 70.8\%\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11<br>11<br>11<br>11<br>11<br>11<br>11<br>0<br>e values<br>Num seiz<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>1             | 9<br>9<br>9<br>8<br>8<br>8.8<br>9.0<br>0.4<br>Found seiz<br>10<br>10<br>10<br>9<br>9<br>9.6                                                                                                                             | 6<br>7<br>9<br>9<br>8.0<br>9.0<br>1.4<br>Found non seiz<br>3<br>4<br>5<br>3<br>5<br>4.0                                                                                             |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD                                        | nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>82.0%<br>4.0%<br>4.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>91%<br>91%<br>91%<br>91%<br>82%<br>82%<br>87.4%<br>91.0%<br>4.9%                                                                                    | $\begin{array}{l} \mbox{Min values}\\ 80\% \\ \mbox{KNN, k = 3}\\ \hline \mbox{Selectivity}\\ \hline 60\% \\ 56\% \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ \hline 50\% \\ 52.6\% \\ \hline 50.0\% \\ 5.3\% \\ \hline \\ \hline \\ \mbox{All features} \\ \mbox{Max absolut} \\ 80\% \\ \hline \\ \mbox{KNN, k = 3}\\ \hline \\ \mbox{Selectivity} \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11<br>11<br>11<br>11<br>11<br>11<br>0<br>e values<br>Num seiz<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>0                         | 9<br>9<br>9<br>8<br>8.8<br>9.0<br>0.4<br>Found seiz<br>10<br>10<br>10<br>9<br>9<br>9.6<br>10.0<br>0.5                                                                                                                   | 6<br>7<br>9<br>9<br>8.0<br>9.0<br>1.4<br>Found non seiz<br>3<br>4<br>5<br>3<br>5<br>4.0<br>4.0                                                                                      |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD                                        | nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>82%<br>82.0%<br>4.0%<br>4.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>91%<br>91%<br>82%<br>82%<br>87.4%<br>91.0%<br>4.9%<br>used:                                                                                  | $\begin{array}{r} \mbox{Min values} \\ 80\% \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \hline 60\% \\ 56\% \\ 50\% \\ 50\% \\ 47\% \\ \hline 52.6\% \\ \hline 50.0\% \\ 5.3\% \\ \hline \\ \mbox{All features} \\ \mbox{Max absolut} \\ 80\% \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \hline 77\% \\ 67\% \\ 75\% \\ 64\% \\ \hline 70.8\% \\ \hline 71.0\% \\ \hline 5.4\% \\ \hline \\ \mbox{Without VM} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11<br>11<br>11<br>11<br>11<br>11<br>11<br>0<br>e values<br>Num seiz<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>1             | 9<br>9<br>9<br>8<br>8<br>8<br>8<br>8<br>9.0<br>0.4<br>0.4<br>10<br>10<br>10<br>9<br>9.6<br>10.0<br>0.5                                                                                                                  | $\begin{array}{c} 6 \\ 7 \\ 9 \\ 9 \\ 9 \\ 9 \\ 0 \\ 1.4 \\ \end{array}$ Found non seiz $\begin{array}{c} 3 \\ 4 \\ 5 \\ 3 \\ 5 \\ 4.0 \\ 4.0 \\ 1.0 \\ \end{array}$                |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>Classifier | nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>82%<br>82.0%<br>4.0%<br>used:<br>nalysis:<br>variance:<br>:<br>:<br>Sensitivity<br>91%<br>91%<br>91%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%                                                                       | $\begin{array}{l} \mbox{Min values}\\ 80\%\\ 80\%\\ KNN, k = 3\\ \hline \mbox{Selectivity}\\ \hline 60\%\\ 56\%\\ 50\%\\ 50\%\\ 50\%\\ 52.6\%\\ 52.6\%\\ 52.6\%\\ 53\%\\ \hline \mbox{A1l features}\\ Max absolut\\ 80\%\\ KNN, k = 3\\ \hline \mbox{Selectivity}\\ 77\%\\ 71\%\\ 71\%\\ 71\%\\ 64\%\\ 75\%\\ 64\%\\ 70.8\%\\ 71.0\%\\ 5.4\%\\ \hline \mbox{Without VM}\\ Kmeans seiz \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11<br>11<br>11<br>11<br>11<br>11<br>11<br>0<br>e values<br>Num seiz<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>1             | 9<br>9<br>9<br>8<br>8.8<br>9.0<br>0.4<br>Found seiz<br>10<br>10<br>10<br>9<br>9<br>9.6<br>10.0<br>0.5                                                                                                                   | $\begin{array}{c} 6 \\ 7 \\ 9 \\ 9 \\ 9 \\ 9 \\ 0 \\ 1.4 \\ \end{array}$ Found non seiz $\begin{array}{c} 3 \\ 4 \\ 5 \\ 3 \\ 5 \\ 4.0 \\ 4.0 \\ 1.0 \\ \end{array}$                |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Classifier                                    | nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>82%<br>82.0%<br>4.0%<br>4.0%<br>4.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91.0%<br>4.9%<br>used:<br>nalysis:<br>variance:                       | $\begin{array}{l} \mbox{Min values}\\ 80\% \\ 80\% \\ \mbox{KNN, k = 3}\\ \hline \mbox{Selectivity} \\ \hline 60\% \\ 56\% \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ 52.6\% \\ \hline 50.0\% \\ 5.3\% \\ \hline \\ \hline \mbox{All features} \\ \mbox{Max absolut} \\ 80\% \\ \hline \mbox{KNN, k = 3}\\ \hline \mbox{Selectivity} \\ \hline 77\% \\ \hline 67\% \\ 64\% \\ \hline 70.8\% \\ \hline 71.0\% \\ \hline 5.4\% \\ \hline \\ \hline \mbox{Without VM} \\ \mbox{Kmeans seiz} \\ 80\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11<br>11<br>11<br>11<br>11<br>11<br>11<br>0<br>e values<br>Num seiz<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>1             | 9<br>9<br>9<br>8<br>8<br>8<br>8<br>8<br>9.0<br>0.4<br>0.4<br>10<br>10<br>10<br>9<br>9.6<br>10.0<br>0.5                                                                                                                  | $\begin{array}{c} 6 \\ 7 \\ 9 \\ 9 \\ 9 \\ 9 \\ 0 \\ 1.4 \\ \end{array}$ Found non seiz $\begin{array}{c} 3 \\ 4 \\ 5 \\ 3 \\ 5 \\ 4.0 \\ 4.0 \\ 1.0 \\ \end{array}$                |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>Classifier | nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>82%<br>82.0%<br>4.0%<br>4.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>91%<br>91%<br>82%<br>87.4%<br>91.0%<br>4.9%<br>used:<br>nalysis:<br>variance:<br>:                                                           | $\begin{array}{l} \mbox{Min values}\\ 80\%\\ 80\%\\ KNN, k = 3\\ \hline 80\%\\ 56\%\\ 50\%\\ 50\%\\ 50\%\\ 50\%\\ 47\%\\ 52.6\%\\ 50.0\%\\ 5.3\%\\ \hline \\ \mbox{Arr}\\ 80\%\\ KNN, k = 3\\ \hline 80\%\\ 71\%\\ 67\%\\ 75\%\\ 64\%\\ \hline 71.0\%\\ \hline 5.4\%\\ \hline \\ \hline \\ \mbox{Without VM}\\ Kmeans seiz\\ 80\%\\ KNN, k = 5\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11<br>11<br>11<br>11<br>11<br>11<br>11<br>0<br>e values<br>Num seiz<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>1             | 9<br>9<br>9<br>8<br>8<br>8<br>8<br>8<br>9.0<br>0.4<br>0.4<br>10<br>10<br>10<br>9<br>9.6<br>10.0<br>0.5<br>0<br>1, 3 of 7 cluste                                                                                         | 6<br>7<br>9<br>9<br>8.0<br>9.0<br>1.4<br>Found non seiz<br>3<br>4<br>5<br>3<br>5<br>4.0<br>4.0<br>1.0                                                                               |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Classifier                                    | nalysis:<br>variance:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82.0%<br>4.0%<br>4.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>91%<br>91%<br>82%<br>82%<br>82%<br>82%<br>87.4%<br>91.0%<br>4.9%<br>used:<br>nalysis:<br>variance:<br>sensitivity<br>Sensitivity<br>Sensitivity | $\begin{array}{l} \mbox{Min values} \\ 80\% \\ 80\% \\ \mbox{KNN, k = 3} \\ \hline \mbox{Selectivity} \\ \hline \mbox{60\%} \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ 52.6\% \\ \hline \mbox{5.3\%} \\ \hline \mbox{A1l features} \\ \mbox{Max absolut} \\ 80\% \\ \mbox{KNN, k = 3} \\ \hline \mbox{Selectivity} \\ \hline \mbox{77\%} \\ \hline \mbox{71.0\%} \\ \hline \mbox{5.4\%} \\ \hline \mbox{Without VM} \\ \mbox{Kmeans seiz} \\ \mbox{80\%} \\ \mbox{KNN, k = 5} \\ \hline \mbox{Selectivity} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>0<br>e values<br>Num seiz<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>1       | 9<br>9<br>9<br>8<br>8.8<br>9.0<br>0.4                                                                                                                                                                                   | 6<br>7<br>9<br>9<br>8.0<br>9.0<br>1.4<br>Found non seiz<br>3<br>4<br>5<br>3<br>5<br>4.0<br>4.0<br>1.0<br>rs                                                                         |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Classifier                                    | nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>82%<br>82.0%<br>4.0%<br>4.0%<br>4.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%                                                                   | $\begin{array}{l} \mbox{Min values} \\ 80\% \\ \mbox{KNN, k = 3} \\ \hline \mbox{Selectivity} \\ \hline \mbox{60\%} \\ 56\% \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ \hline \mbox{50\%} \\ 52.6\% \\ \hline \mbox{50\%} \\ 52.6\% \\ \hline \mbox{51\%} \\ \hline \mbox{Max absolut} \\ 80\% \\ \mbox{KNN, k = 3} \\ \hline \mbox{Selectivity} \\ \hline \mbox{71\%} \\ \hline \mbox{67\%} \\ \hline \mbox{67\%} \\ \hline \mbox{64\%} \\ \hline \mbox{71.0\%} \\ \hline \mbox{75\%} \\ \hline \mbox{64\%} \\ \hline \mbox{70.8\%} \\ \hline \mbox{71.0\%} \\ \hline \mbox{5.4\%} \\ \hline \mbox{Without VN} \\ \mbox{Kmeans seiz} \\ \mbox{80\%} \\ \mbox{KNN, k = 5} \\ \hline \mbox{Selectivity} \\ \hline \mbox{82\%} \\ \hline \mbox{Without VN} \\ \mbox{Kmeans seiz} \\ \mbox{82\%} \\ \hline \m$ | 11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>0<br>e values<br>Num seiz<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>1       | 9<br>9<br>9<br>8<br>8.8<br>9.0<br>0.4                                                                                                                                                                                   | 6<br>7<br>9<br>9<br>8.0<br>9.0<br>1.4<br>Found non seiz<br>3<br>4<br>5<br>3<br>4<br>5<br>3<br>5<br>4.0<br>4.0<br>1.0<br>rs<br>Found non seiz<br>2                                   |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Classifier                                    | nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82.0%<br>4.0%<br>4.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>91%<br>82%<br>87.4%<br>91.0%<br>4.9%<br>4.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>87.4%<br>91.0%           | $\begin{array}{l} \mbox{Min values}\\ 80\% \\ 80\% \\ \mbox{KNN, k = 3}\\ \hline \mbox{Selectivity} \\ \hline 60\% \\ 56\% \\ 50\% \\ 50\% \\ 47\% \\ \hline 52.6\% \\ \hline 50.0\% \\ 53\% \\ \hline \\ \hline \mbox{Arr} \\ \hline 52.6\% \\ \hline 50.0\% \\ \hline 53\% \\ \hline \\ \hline \mbox{Arr} \\ \hline \mbox{Arr}$                               | 11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>0<br>Num seiz<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>1             | 9<br>9<br>9<br>8<br>8<br>8.8<br>9.0<br>0.4                                                                                                                                                                              | 6<br>7<br>9<br>9<br>8.0<br>9.0<br>1.4<br>Found non seiz<br>3<br>4<br>5<br>3<br>4<br>5<br>3<br>5<br>4.0<br>4.0<br>1.0<br>rs                                                          |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Classifier                                    | nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>82%<br>82.0%<br>4.0%<br>4.0%<br>4.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%                                                                   | $\begin{array}{l} \mbox{Min values} \\ 80\% \\ \mbox{KNN, k = 3} \\ \hline \mbox{Selectivity} \\ \hline \mbox{60\%} \\ 56\% \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ \hline \mbox{50\%} \\ 52.6\% \\ \hline \mbox{50\%} \\ 52.6\% \\ \hline \mbox{51\%} \\ \hline \mbox{Max absolut} \\ 80\% \\ \mbox{KNN, k = 3} \\ \hline \mbox{Selectivity} \\ \hline \mbox{71\%} \\ \hline \mbox{67\%} \\ \hline \mbox{67\%} \\ \hline \mbox{64\%} \\ \hline \mbox{71.0\%} \\ \hline \mbox{75\%} \\ \hline \mbox{64\%} \\ \hline \mbox{70.8\%} \\ \hline \mbox{71.0\%} \\ \hline \mbox{5.4\%} \\ \hline \mbox{Without VN} \\ \mbox{Kmeans seiz} \\ \mbox{80\%} \\ \mbox{KNN, k = 5} \\ \hline \mbox{Selectivity} \\ \hline \mbox{82\%} \\ \hline \mbox{Without VN} \\ \mbox{Kmeans seiz} \\ \mbox{82\%} \\ \hline \m$ | 11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>0<br>e values<br>Num seiz<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>1       | 9<br>9<br>9<br>8<br>8.8<br>9.0<br>0.4                                                                                                                                                                                   | 6<br>7<br>9<br>9<br>8.0<br>9.0<br>1.4<br>Found non seiz<br>3<br>4<br>5<br>3<br>5<br>4.0<br>4.0<br>1.0<br>rs<br>Found non seiz<br>2<br>2                                             |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Classifier                                    | nalysis:<br>variance:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82.0%<br>4.0%<br>4.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>91%<br>91%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>91.0%<br>4.9%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>87.4%<br>91.0% | $\begin{array}{l} \mbox{Min values} \\ 80\% \\ 80\% \\ \mbox{KNN, k = 3} \\ \hline \mbox{Selectivity} \\ \hline \mbox{60\%} \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ 52.6\% \\ \hline \mbox{5.3\%} \\ \hline \mbox{A1l features} \\ \mbox{Max absolut} \\ 80\% \\ \mbox{KNN, k = 3} \\ \hline \mbox{Selectivity} \\ \hline \mbox{77\%} \\ \hline \mbox{71\%} \\ \hline \mbox{77\%} \\ \hline \mbox{71.0\%} \\ \hline \mbox{5.4\%} \\ \hline \mbox{Without VM} \\ \mbox{Kmeans seiz} \\ \mbox{80\%} \\ \mbox{KNN, k = 5} \\ \hline \mbox{Selectivity} \\ \hline \mbox{82\%} \\ \mbox{83\%} \\ \mbox{83\%} \\ \mbox{83\%} \\ \hline \mbox{83\%} \\ \hline \mbox{KNN, k = 3} \\ \hline \mbox{82\%} \\ \hline \mbox{83\%} \\ \hline \mbox{80\%} \\ \hline \$      | 11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>0<br>e values<br>Num seiz<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>1       | 9<br>9<br>9<br>8<br>8.8<br>9.0<br>0.4<br>7<br>7<br>10<br>10<br>10<br>9<br>9<br>9<br>9.6<br>10.0<br>0.5<br>7<br>d, 3 of 7 cluste<br>Found seiz<br>9<br>10<br>10                                                          | 6<br>7<br>9<br>9<br>8.0<br>9.0<br>1.4<br>Found non seiz<br>3<br>4<br>5<br>3<br>5<br>4.0<br>4.0<br>1.0<br>Trs<br>Found non seiz<br>2<br>2<br>2                                       |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Classifier                                    | nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>82.0%<br>4.0%<br>4.0%<br>4.0%<br>4.0%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91.0%<br>82%<br>87.4%<br>91.0%<br>4.9%                                                                                            | $\begin{array}{l} \mbox{Min values}\\ 80\% \\ 80\% \\ \mbox{KNN, k = 3}\\ \hline \mbox{Selectivity} \\ \hline 60\% \\ 56\% \\ 50\% \\ 50\% \\ \hline 50\% \\ 52.6\% \\ \hline 50.0\% \\ 5.2\% \\ \hline \hline \mbox{Arr} \\ 52.6\% \\ \hline 50.0\% \\ \hline 5.3\% \\ \hline \mbox{Arr} \ \mbox{Arr} \\ \hline \mbox{Arr} \\ \hline \mbox{Arr} \\ \hline \mbox{Arr} \\ \hline \mb$                                           | 11<br>11<br>11<br>11<br>11<br>11<br>11<br>0<br>e values<br>Num seiz<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>1             | 9<br>9<br>9<br>8<br>8.8<br>9.0<br>0.4<br>7<br>7<br>10<br>10<br>9<br>9.6<br>10.0<br>0.5<br>7<br>1, 3 of 7 cluste<br>Found seiz<br>9<br>10<br>10<br>11                                                                    | 6<br>7<br>9<br>9<br>8.0<br>9.0<br>1.4<br>5<br>3<br>4<br>5<br>3<br>4<br>5<br>3<br>5<br>4.0<br>4.0<br>1.0<br>1.0<br>rs<br>Found non seiz<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                | nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>82%<br>82.0%<br>4.0%<br>4.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>91%<br>82%<br>82%<br>82%<br>87.4%<br>91.0%<br>4.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>87.4%<br>91.0%            | $\begin{array}{l} \mbox{Min values}\\ 80\% \\ 80\% \\ \mbox{KNN, k = 3}\\ \hline \mbox{Selectivity} \\ \hline \mbox{60\%} \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ \hline \mbox{5.3\%} \\ \hline \mbox{All features} \\ \mbox{Max absolut} \\ 80\% \\ \mbox{KNN, k = 3}\\ \hline \mbox{Selectivity} \\ \hline \mbox{77\%} \\ \hline \mbox{64\%} \\ \hline \mbox{71.0\%} \\ \hline \mbox{75\%} \\ \mbox{64\%} \\ \hline \mbox{70.8\%} \\ \hline \mbox{71.0\%} \\ \hline \mbox{5.4\%} \\ \hline \\ \hline \mbox{Without VM} \\ \mbox{Knean seiz} \\ \mbox{80\%} \\ \hline \mbox{KNN, k = 5} \\ \hline \mbox{Selectivity} \\ \hline \mbox{82\%} \\ \mbox{83\%} \\ \mbox{83\%} \\ \mbox{85\%} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>0<br>e values<br>Num seiz<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>1 | 9<br>9<br>9<br>8<br>8<br>8.8<br>9.0<br>0.4<br>10<br>10<br>10<br>10<br>9<br>9.6<br>10.0<br>0.5<br>0<br>1, 3 of 7 cluste<br>Found seiz<br>9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 6<br>7<br>9<br>9<br>8.0<br>9.0<br>1.4<br>Found non seiz<br>3<br>4<br>5<br>3<br>4<br>5<br>3<br>5<br>4.0<br>4.0<br>1.0<br>TS<br>Found non seiz<br>2<br>2<br>2<br>1                    |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                | nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>82%<br>82.0%<br>4.0%<br>4.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>91%<br>91%<br>91%<br>91%<br>91.0%<br>4.9%<br>4.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>87.4%<br>91.0%<br>4.9%     | $\begin{array}{l} \mbox{Min values}\\ 80\% \\ 80\% \\ \mbox{KNN, k} = 3 \\ \hline \mbox{Selectivity} \\ \hline 60\% \\ 56\% \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ 70\% \\ 71\% \\ 67\% \\ 77\% \\ 67\% \\ 77\% \\ 67\% \\ 77\% \\ 67\% \\ 75\% \\ 64\% \\ 70.8\% \\ 71.0\% \\ 5.4\% \\ \hline \mbox{VN Kmeans seiz} \\ 80\% \\ \mbox{KNN, k} = 5 \\ \hline \mbox{Selectivity} \\ 82\% \\ 83\% \\ 83\% \\ 85\% \\ 81\% \\ 81\% \\ 84.8\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>0<br>e values<br>Num seiz<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>1       | 9<br>9<br>9<br>8<br>8.8<br>9.0<br>0.4<br>7<br>7<br>10<br>10<br>10<br>9<br>9.6<br>10.0<br>0.5<br>7<br>10<br>0.5<br>7<br>10<br>10<br>0.5<br>7<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>0.5                      | 6<br>7<br>9<br>9<br>8.0<br>9.0<br>1.4<br>Found non seiz<br>3<br>4<br>5<br>3<br>4<br>5<br>3<br>5<br>4.0<br>4.0<br>1.0<br>Trs<br>Found non seiz<br>2<br>2<br>2<br>2<br>1<br>1.8       |

| Features                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A and MAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Cluster a                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ure separated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | l, 3 of 7 cluste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PLS-DA                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 80%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Classifier                                                                                                                                                      | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | KNN, $k = 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                 | Sensitivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Num seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Found non seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                 | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                 | 91%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 83%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                 | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 79%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                 | 91%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 83%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                 | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Mean                                                                                                                                                            | 96.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 83.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Median                                                                                                                                                          | 100.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 83.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| STD                                                                                                                                                             | 4.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 51D                                                                                                                                                             | 4.970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| The second                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 337°41 - 4 CDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A 1 373.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Features                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Without SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 9 . 6 7 . 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Cluster a                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ure separated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1, 3 of 7 cluste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PLS-DA                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 80%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Classifier                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | KNN, $k = 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                 | Sensitivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Num seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Found non seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                 | 73%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                 | 82%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 82%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                 | 82%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 82%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                 | 91%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 83%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                 | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Mean                                                                                                                                                            | 85.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 82.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Median                                                                                                                                                          | 82.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 82.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| STD                                                                                                                                                             | 10.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 515                                                                                                                                                             | 10.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Deat                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WHEN DO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Features                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Without DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 2 - 6 7 - 1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Cluster a                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ure separated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1, 3 of 7 cluste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PLS-DA                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 80%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Classifier                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | KNN, k = 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                 | Sensitivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Num seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Found non seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                 | 82%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 82%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                 | 82%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 82%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                 | 91%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 83%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                 | 91%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 83%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                 | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 79%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Mean                                                                                                                                                            | 89.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 81.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Median                                                                                                                                                          | 91.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 82.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| STD                                                                                                                                                             | 7.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Features<br>Cluster a                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Without CC<br>Kmeans seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d 3 of 7 cluste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Cluster a<br>PLS-DA                                                                                                                                             | nalysis:<br>variance:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Kmeans seiz<br>80%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d, 3 of 7 cluste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Cluster a                                                                                                                                                       | nalysis:<br>variance:<br>:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Kmeans seiz<br>80%<br>KNN, k = 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ure separated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Cluster a<br>PLS-DA                                                                                                                                             | nalysis:<br>variance:<br>:<br>Sensitivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} \text{Kmeans seiz} \\ 80\% \\ \text{KNN, } \mathbf{k} = 5 \\ \hline \text{Selectivity} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ure separateo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Found non seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Cluster a<br>PLS-DA                                                                                                                                             | nalysis:<br>variance:<br>:<br>Sensitivity<br>100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} \text{Kmeans seiz} \\ 80\% \\ \text{KNN, } \mathbf{k} = 5 \\ \hline \text{Selectivity} \\ 85\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ure separateo<br>Num seiz<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Found non seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Cluster a<br>PLS-DA                                                                                                                                             | nalysis:<br>variance:<br>Sensitivity<br>100%<br>82%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \text{Kmeans seiz} \\ 80\% \\ \text{KNN, } k = 5 \\ \hline \text{Selectivity} \\ 85\% \\ 82\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Num seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Found seiz<br>11<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Found non seiz<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Cluster a<br>PLS-DA                                                                                                                                             | nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>82%<br>82%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} \text{Kmeans seiz}\\ 80\%\\ \text{KNN, } k=5\\ \hline \\ \text{Selectivity}\\ 85\%\\ 82\%\\ 90\%\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Num seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Found seiz<br>11<br>9<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Found non seiz<br>2<br>2<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Cluster a<br>PLS-DA                                                                                                                                             | nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>82%<br>82%<br>82%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{l} \text{Kmeans seiz}\\ 80\%\\ \text{KNN, } k=5\\ \hline \text{Selectivity}\\ 85\%\\ 82\%\\ 90\%\\ 90\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Num seiz<br>11<br>11<br>11<br>11<br>11<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Found seiz<br>11<br>9<br>9<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Found non seiz<br>2<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Cluster a<br>PLS-DA<br>Classifier                                                                                                                               | nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{l} {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k}=5\\ \hline\\ 85\%\\ 82\%\\ 90\%\\ 90\%\\ 85\%\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Num seiz<br>11<br>11<br>11<br>11<br>11<br>11<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Found seiz<br>11<br>9<br>9<br>9<br>9<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Found non seiz<br>2<br>2<br>1<br>1<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Cluster a<br>PLS-DA<br>Classifier                                                                                                                               | nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>82%<br>82%<br>82%<br>82%<br>100%<br>89.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{l} {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 85\%\\ 82\%\\ 90\%\\ 90\%\\ 85\%\\ 86.4\%\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Num seiz           11           11           11           11           11           11           11           11           11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Found seiz<br>11<br>9<br>9<br>9<br>9<br>11<br>9.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Found non seiz<br>2<br>1<br>1<br>2<br>1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median                                                                                                             | nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>82%<br>82%<br>82%<br>100%<br>89.2%<br>89.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 85\%\\ 82\%\\ 90\%\\ 90\%\\ 85\%\\ 85\%\\ 86.4\%\\ 85.0\%\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Num seiz           11           11           11           11           11           11           11           11           11           11           11           11           11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Found seiz<br>11<br>9<br>9<br>11<br>9.8<br>9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Found non seiz<br>2<br>1<br>1<br>2<br>1.6<br>2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Cluster a<br>PLS-DA<br>Classifier                                                                                                                               | nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>82%<br>82%<br>82%<br>82%<br>100%<br>89.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{l} {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 85\%\\ 82\%\\ 90\%\\ 90\%\\ 85\%\\ 86.4\%\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Num seiz           11           11           11           11           11           11           11           11           11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Found seiz<br>11<br>9<br>9<br>9<br>9<br>11<br>9.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Found non seiz<br>2<br>1<br>1<br>2<br>1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median                                                                                                             | nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>82%<br>82%<br>82%<br>100%<br>89.2%<br>89.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 85\%\\ 82\%\\ 90\%\\ 90\%\\ 85\%\\ 85\%\\ 86.4\%\\ 85.0\%\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Num seiz           11           11           11           11           11           11           11           11           11           11           11           11           11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Found seiz<br>11<br>9<br>9<br>11<br>9.8<br>9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Found non seiz<br>2<br>1<br>1<br>2<br>1.6<br>2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median                                                                                                             | nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>82%<br>82%<br>82%<br>100%<br>89.2%<br>82.0%<br>9.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 85\%\\ 82\%\\ 90\%\\ 90\%\\ 85\%\\ 85\%\\ 86.4\%\\ 85.0\%\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Num seiz           11           11           11           11           11           11           11           0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Found seiz<br>11<br>9<br>9<br>11<br>9.8<br>9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Found non seiz<br>2<br>1<br>1<br>2<br>1.6<br>2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features                                                                                          | nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>9.9%<br>9.9%<br>used:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{l} {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 85\%\\ 90\%\\ 90\%\\ 90\%\\ 85\%\\ 85\%\\ 85.0\%\\ 3.5\%\\ \hline\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Num seiz           11           11           11           11           11           11           11           11           11           R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Found seiz<br>11<br>9<br>9<br>11<br>9.8<br>9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Found non seiz<br>2<br>1<br>1<br>2<br>1.6<br>2.0<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD                                                                                                      | nalysis:<br>variance:<br>:<br>:<br>Sensitivity<br>100%<br>82%<br>82%<br>82%<br>100%<br>89.2%<br>89.2%<br>89.2%<br>82.0%<br>9.9%<br>used:<br>nalysis:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{l} {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 85\%\\ 82\%\\ 90\%\\ 90\%\\ 85\%\\ 85\%\\ 85\%\\ 86.4\%\\ 85.0\%\\ 3.5\%\\ \hline\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Num seiz           11           11           11           11           11           11           11           11           11           R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Found seiz<br>11<br>9<br>9<br>11<br>9.8<br>9.0<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Found non seiz<br>2<br>1<br>1<br>2<br>1.6<br>2.0<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a                                                                             | nalysis:<br>variance:<br>:<br>:<br>Sensitivity<br>100%<br>82%<br>82%<br>82%<br>100%<br>89.2%<br>82.0%<br>9.9%<br>used:<br>nalysis:<br>variance:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Kmeans seiz<br>80%<br>KNN, k = 5<br>Selectivity<br>85%<br>82%<br>90%<br>90%<br>85%<br>85%<br>86.4%<br>85.0%<br>3.5%<br>Without PE<br>Kmeans seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Num seiz           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           0                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Found seiz<br>11<br>9<br>9<br>11<br>9.8<br>9.0<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Found non seiz<br>2<br>2<br>1<br>1<br>2<br>1.6<br>2.0<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                   | nalysis:<br>variance:<br>:<br>:<br>Sensitivity<br>100%<br>82%<br>82%<br>82%<br>100%<br>89.2%<br>82.0%<br>9.9%<br>used:<br>nalysis:<br>variance:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Kmeans seiz<br>80%<br>KNN, k = 5<br>Selectivity<br>85%<br>82%<br>90%<br>90%<br>85%<br>86.4%<br>85.0%<br>3.5%<br>Without PE<br>Kmeans seiz<br>80%<br>KNN, k = 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Num seiz           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           0                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Found seiz<br>11<br>9<br>9<br>11<br>9.8<br>9.0<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Found non seiz<br>2<br>2<br>1<br>1<br>2<br>2.0<br>0.5<br>rs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                   | nalysis:<br>variance:<br>Sensitivity<br>100%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82,0%<br>9.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{l} {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 85\%\\ 90\%\\ 90\%\\ 85\%\\ 85\%\\ 85.0\%\\ 3.5\%\\ \hline\\ {\rm Without\ PE}\\ {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Num seiz<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>0<br>R<br>ure separated<br>Num seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Found seiz<br>11<br>9<br>9<br>9<br>11<br>9.8<br>9.0<br>1.1<br>d, 3 of 7 cluste<br>Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Found non seiz         2         2         1         1         2         1         1         2         1         6         2.0         0.5         5         75         Found non seiz         Found non seiz |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                   | nalysis:<br>variance:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{l} {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 85\%\\ 82\%\\ 90\%\\ 90\%\\ 85\%\\ 86.4\%\\ 85.0\%\\ \hline\\ 3.5\%\\ \hline\\ {\rm Without\ PE}\\ {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 82\%\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Num seiz           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11                                                                                                                                                                                                                                                                                                                                                                             | Found seiz<br>11<br>9<br>9<br>11<br>9.8<br>9.0<br>1.1<br>d, 3 of 7 cluster<br>Found seiz<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Found non seiz           2           1           1           2           1.6           2.0           0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                   | nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82,0%<br>9.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>91%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{l} {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 85\%\\ 82\%\\ 90\%\\ 90\%\\ 90\%\\ 85\%\\ 86.4\%\\ 85.0\%\\ 3.5\%\\ \hline \\ {\rm Without\ PE}\\ {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 82\%\\ 83\%\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Num seiz           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11                                                                                                                                                                                                                                                                                                                                                                                                                                              | Found seiz<br>11<br>9<br>9<br>11<br>9.8<br>9.0<br>1.1<br>d, 3 of 7 cluster<br>Found seiz<br>9<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Found non seiz<br>2<br>2<br>1<br>1<br>2<br>2.0<br>0.5<br>rs<br>Found non seiz<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                   | nalysis:<br>variance:<br>Sensitivity<br>100%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>9.9%<br>9.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{l} {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 85\%\\ 90\%\\ 90\%\\ 90\%\\ 85\%\\ 85\%\\ 85.0\%\\ 3.5\%\\ \hline\\ {\rm Without\ PE}\\ {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 82\%\\ 83\%\\ 91\%\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Num seiz           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11                                                                                                                                                                                                                                                                                                                                                                                                       | Found seiz<br>11<br>9<br>9<br>9<br>11<br>9.8<br>9.0<br>1.1<br>d, 3 of 7 cluster<br>Found seiz<br>9<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Found non seiz         2         2         1         1         2         1         1         2         1         6         2.0         0.5         5         5         5         5         5         5         5         5         5         5         5         5         7         5         7         5         7         5         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7 <th7< th="">         7         7</th7<>                                                                                                                                                                                                                                                                                                                                    |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                   | nalysis:<br>variance:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{l} {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 85\%\\ 90\%\\ 90\%\\ 90\%\\ 85\%\\ 86.4\%\\ 85.0\%\\ \hline \\ 3.5\%\\ \hline \\ {\rm Without\ PE}\\ {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 82\%\\ 83\%\\ 91\%\\ 91\%\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Num seiz           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11                                                                                                                                                                                                                                                                                                                                      | Found seiz<br>11<br>9<br>9<br>11<br>9.8<br>9.0<br>1.1<br>4, 3 of 7 cluster<br>Found seiz<br>9<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Found non seiz<br>2<br>2<br>1<br>1<br>2<br>.0<br>0.5<br>TS<br>Found non seiz<br>2<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>1<br>1<br>2<br>1<br>1<br>2<br>1<br>1<br>2<br>1<br>1<br>2<br>1<br>1<br>2<br>1<br>1<br>2<br>1<br>1<br>2<br>1<br>1<br>2<br>1<br>1<br>2<br>1<br>1<br>2<br>1<br>1<br>2<br>1<br>1<br>2<br>1<br>1<br>2<br>1<br>2<br>1<br>1<br>2<br>1<br>1<br>2<br>1<br>1<br>2<br>1<br>2<br>1<br>1<br>2<br>1<br>2<br>1<br>1<br>2<br>1<br>2<br>1<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>2<br>2<br>1<br>1<br>2<br>2<br>2<br>1<br>1<br>2<br>2<br>2<br>1<br>1<br>1<br>2<br>2<br>2<br>1<br>1<br>1<br>2<br>2<br>2<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>1<br>1<br>1<br>1<br>2<br>2<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                     | nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>82%<br>82%<br>82%<br>82%<br>82.0%<br>9.9%<br>9.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>91%<br>91%<br>91%<br>91%<br>91%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{l} {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ \hline {\rm Selectivity}\\ 85\%\\ 82\%\\ 90\%\\ 90\%\\ 90\%\\ 90\%\\ 85\%\\ \hline 85\%\\ \hline 86.4\%\\ \hline 85.0\%\\ \hline 3.5\%\\ \hline \\ \hline {\rm Without\ PE}\\ {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ \hline {\rm Selectivity}\\ 82\%\\ 91\%\\ 91\%\\ 85\%\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Num seiz           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11                                                                                                                                                                                                                                                                                                                                                                             | Found seiz<br>11<br>9<br>9<br>11<br>9.8<br>9.0<br>1.1<br>d, 3 of 7 cluster<br>Found seiz<br>9<br>10<br>10<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Found non seiz<br>2<br>2<br>1<br>1<br>2<br>.6<br>2.0<br>0.5<br>rs<br>Found non seiz<br>2<br>2<br>1<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>2<br>1<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                     | nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>9.9%<br>9.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{l} {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 85\%\\ 82\%\\ 90\%\\ 90\%\\ 90\%\\ 85\%\\ 85\%\\ 85.0\%\\ 3.5\%\\ \hline \\ {\rm Without\ PE}\\ {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 82\%\\ 83\%\\ 91\%\\ 91\%\\ 91\%\\ 85\%\\ 86.4\%\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Num seiz           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11                                                                                                                                                                                                                                                                                                                                                                             | Found seiz<br>11<br>9<br>9<br>9<br>11<br>9.8<br>9.0<br>1.1<br>4, 3 of 7 cluster<br>Found seiz<br>9<br>10<br>10<br>10<br>11<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Found non seiz<br>2<br>2<br>1<br>1<br>2<br>1.6<br>2.0<br>0.5<br>rs<br>Found non seiz<br>2<br>2<br>1<br>1<br>2<br>1.6<br>.0<br>.0<br>.5<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Mean<br>Mean                             | nalysis:<br>variance:<br>Sensitivity<br>100%<br>82%<br>82%<br>82%<br>82%<br>82.0%<br>9.9%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>91%<br>91%<br>91%<br>91%<br>91.0%<br>91.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{l} {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 85\%\\ 82\%\\ 90\%\\ 90\%\\ 90\%\\ 85\%\\ 85\%\\ 85.0\%\\ \hline \\ {\rm Without\ PE}\\ {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 82\%\\ 83\%\\ 91\%\\ 91\%\\ 85\%\\ 86.4\%\\ 85.0\%\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Num seiz           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11                                                                                                                                                                                                                                                                                                                                                                             | Found seiz<br>11<br>9<br>9<br>11<br>9.8<br>9.0<br>1.1<br>d, 3 of 7 cluster<br>Found seiz<br>9<br>10<br>10<br>10<br>10<br>10.0<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Found non seiz<br>2<br>2<br>1<br>1<br>2<br>1.6<br>2.0<br>0.5<br>TS<br>Found non seiz<br>2<br>2<br>2<br>1<br>1<br>2<br>1.6<br>2.0<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                     | nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>9.9%<br>9.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{l} {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 85\%\\ 82\%\\ 90\%\\ 90\%\\ 90\%\\ 85\%\\ 85\%\\ 85.0\%\\ 3.5\%\\ \hline \\ {\rm Without\ PE}\\ {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 82\%\\ 83\%\\ 91\%\\ 91\%\\ 91\%\\ 85\%\\ 86.4\%\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Num seiz           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11                                                                                                                                                                                                                                                                                                                                                                             | Found seiz<br>11<br>9<br>9<br>9<br>11<br>9.8<br>9.0<br>1.1<br>4, 3 of 7 cluster<br>Found seiz<br>9<br>10<br>10<br>10<br>11<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Found non seiz<br>2<br>2<br>1<br>1<br>2<br>1.6<br>2.0<br>0.5<br>rs<br>Found non seiz<br>2<br>2<br>1<br>1<br>2<br>1.6<br>.0<br>.0<br>.5<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                     | nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82.0%<br>9.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91.0%<br>91.0%<br>6.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{l} {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 85\%\\ 82\%\\ 90\%\\ 90\%\\ 85\%\\ 86.4\%\\ 85.0\%\\ 3.5\%\\ \hline \\ {\rm Without\ PE}\\ {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 82\%\\ 83\%\\ 91\%\\ 85\%\\ 86.4\%\\ 85.0\%\\ 4.3\%\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Num seiz           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           0                                                                                                                                                                                                                                                                                                                                                                 | Found seiz<br>11<br>9<br>9<br>11<br>9.8<br>9.0<br>1.1<br>d, 3 of 7 cluster<br>Found seiz<br>9<br>10<br>10<br>10<br>10<br>10.0<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Found non seiz<br>2<br>2<br>1<br>1<br>2<br>1.6<br>2.0<br>0.5<br>TS<br>Found non seiz<br>2<br>2<br>2<br>1<br>1<br>2<br>1.6<br>2.0<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Classifier<br>STD<br>Mean<br>Median<br>STD       | nalysis:<br>variance:<br>Sensitivity<br>100%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>9.9%<br>9.9%<br>9.9%<br>9.9%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{l} {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 85\%\\ 90\%\\ 90\%\\ 90\%\\ 90\%\\ 90\%\\ 85\%\\ 85.0\%\\ 3.5\%\\ \hline \\ {\rm Without\ PE}\\ {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 82\%\\ 83\%\\ 91\%\\ 91\%\\ 91\%\\ 91\%\\ 85\%\\ 86.4\%\\ 85.0\%\\ 4.3\%\\ \hline \\ {\rm Without\ FR}\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Num seiz           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           12           13                                                                                                                                                                                                                                                                                                            | Found seiz<br>11<br>9<br>9<br>9<br>11<br>9.8<br>9.0<br>1.1<br>d, 3 of 7 cluster<br>Found seiz<br>9<br>10<br>10<br>10<br>10<br>10.0<br>0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Found non seiz<br>2<br>1<br>1<br>2<br>1.6<br>2.0<br>0.5<br>rs<br>Found non seiz<br>2<br>2<br>1<br>1<br>2<br>1.6<br>2.0<br>0.5<br>rs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD                            | nalysis:<br>variance:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{l} {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 85\%\\ 82\%\\ 90\%\\ 90\%\\ 90\%\\ 85\%\\ 85\%\\ 85.0\%\\ \hline 3.5\%\\ \hline \\ {\rm Without\ PE}\\ {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 82\%\\ 83\%\\ 91\%\\ 91\%\\ 91\%\\ 85\%\\ 86.4\%\\ \hline \\ 85.0\%\\ \hline \\ 4.3\%\\ \hline \\ {\rm Without\ FR}\\ {\rm Kmeans\ seiz}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Num seiz           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           12           13                                                                                                                                                                                                                                                                                                            | Found seiz<br>11<br>9<br>9<br>11<br>9.8<br>9.0<br>1.1<br>d, 3 of 7 cluster<br>Found seiz<br>9<br>10<br>10<br>10<br>10<br>10.0<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Found non seiz<br>2<br>1<br>1<br>2<br>1.6<br>2.0<br>0.5<br>rs<br>Found non seiz<br>2<br>2<br>1<br>1<br>2<br>1.6<br>2.0<br>0.5<br>rs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Classifier<br>Cluster a<br>PLS-DA | nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>9.9%<br>9.9%<br>9.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91.0%<br>91.0%<br>6.4%<br>used:<br>nalysis:<br>variance:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{l} {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 85\%\\ 82\%\\ 90\%\\ 90\%\\ 90\%\\ 85\%\\ 86.4\%\\ 85.0\%\\ 3.5\%\\ \hline \\ {\rm Without\ PE}\\ {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 82\%\\ 91\%\\ 83\%\\ 91\%\\ 85\%\\ 86.4\%\\ 85.0\%\\ 4.3\%\\ \hline \\ {\rm Without\ FR}\\ {\rm Kmeans\ seiz}\\ 80\%\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Num seiz           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           12           13           14           15           16           17           18           19           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11 | Found seiz<br>11<br>9<br>9<br>9<br>11<br>9.8<br>9.0<br>1.1<br>d, 3 of 7 cluster<br>Found seiz<br>9<br>10<br>10<br>10<br>10<br>10.0<br>0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Found non seiz<br>2<br>2<br>1<br>1<br>2<br>1.6<br>2.0<br>0.5<br>rs<br>Found non seiz<br>2<br>2<br>1<br>1<br>2<br>1.6<br>2.0<br>0.5<br>rs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD                            | nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>9.9%<br>9.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{l} {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 85\%\\ 82\%\\ 90\%\\ 90\%\\ 90\%\\ 85\%\\ 85\%\\ 85\%\\ 85.0\%\\ 3.5\%\\ \hline \\ {\rm Without\ PE}\\ {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 82\%\\ 83\%\\ 91\%\\ 91\%\\ 91\%\\ 91\%\\ 85\%\\ 86.4\%\\ 85.0\%\\ 4.3\%\\ \hline \\ {\rm Without\ FR}\\ {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Num seiz           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           12           13           14           15           16           17           18           19           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           12           13 | Found seiz<br>11<br>9<br>9<br>9<br>11<br>9.8<br>9.0<br>1.1<br>4, 3 of 7 cluster<br>Found seiz<br>9<br>10<br>10<br>10<br>10<br>10.0<br>0.7<br>d, 3 of 7 cluster<br>4, 3 of 7 cluster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Found non seiz<br>2<br>2<br>1<br>1<br>2<br>1.6<br>2.0<br>0.5<br>rs<br>Found non seiz<br>2<br>2<br>2<br>1<br>1<br>2<br>1.6<br>2.0<br>0.5<br>rs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Classifier<br>Cluster a<br>PLS-DA | nalysis:<br>variance:<br>Sensitivity<br>100%<br>82%<br>82%<br>82%<br>82%<br>82.0%<br>9.9%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91.0%<br>6.4%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{l} {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 85\%\\ 90\%\\ 90\%\\ 90\%\\ 85\%\\ 85\%\\ 85.0\%\\ 3.5\%\\ \hline\\ {\rm Without\ PE}\\ {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 85\%\\ 85.0\%\\ 4.3\%\\ \hline\\ {\rm Without\ FR}\\ {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Num seiz           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11 | Found seiz<br>11<br>9<br>9<br>9<br>11<br>9.8<br>9.0<br>1.1<br>d, 3 of 7 cluste<br>Found seiz<br>9<br>10<br>10<br>10<br>10<br>10.0<br>11<br>10.0<br>10,0<br>11<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>1 | Found non seiz           2           1           1           2           1.6           2.0           0.5   rs           Found non seiz           2           2           1           2           1           2           1           2           1.6           2.0           0.5   rs Found non seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Classifier<br>Cluster a<br>PLS-DA | nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>82%<br>82%<br>82%<br>82%<br>82.0%<br>9.9%<br>9.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>92.0%<br>91.0%<br>92.0%<br>91.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0% | $\begin{array}{l} {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ \hline {\rm Selectivity}\\ 85\%\\ 82\%\\ 90\%\\ 90\%\\ 90\%\\ 90\%\\ 85\%\\ \hline {\rm 85.0\%}\\ \hline {\rm 3.5\%}\\ \hline \\ \hline {\rm Without\ PE}\\ {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ \hline {\rm Selectivity}\\ 82\%\\ 91\%\\ 91\%\\ 85\%\\ \hline {\rm 85.0\%}\\ \hline {\rm 86.4\%}\\ \hline {\rm 86.0\%}\\ \hline $ | Num seiz           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11                                                                                                                                                                                                    | Found seiz           11           9           9           9.1           9.8           9.0           1.1           d, 3 of 7 cluster           Found seiz           9           10           10           10.0           0.7           d, 3 of 7 cluster           Found seiz           9           10,0           10,0           10,0           9,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Found non seiz           2           1           1           2           1.6           2.0           0.5   rs           Found non seiz           2           1           2           1           2           1           2           1           2           1           2           1.6           2.0           0.5   rs Found non seiz 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Classifier<br>Cluster a<br>PLS-DA | nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>9.0%<br>9.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>91%<br>91%<br>91%<br>91.0%<br>6.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>91.0%<br>91.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{l} {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 85\%\\ 90\%\\ 90\%\\ 90\%\\ 85\%\\ 85\%\\ 85\%\\ 85.0\%\\ 3.5\%\\ \hline \\ {\rm Without\ PE}\\ {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 82\%\\ 83\%\\ 91\%\\ 91\%\\ 91\%\\ 91\%\\ 85\%\\ 86.4\%\\ 85\%\\ \hline \\ {\rm 86.4\%}\\ \hline \\ {\rm 85.0\%}\\ \hline \\ \hline \\ {\rm 86.4\%}\\ \hline \\ {\rm 85.0\%}\\ \hline \\ \hline \\ {\rm 86.4\%}\\ \hline \\ {\rm 85.0\%}\\ \hline \\ \hline \\ {\rm 86.4\%}\\ \hline \\ \hline \\ {\rm 85.0\%}\\ \hline \\ \hline \\ \hline \\ {\rm 86.4\%}\\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ {\rm 86.4\%}\\ \hline \\ \hline$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Num seiz           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           12           Num seiz           11           11                                                                                                                                                                                                                                                                                                                                             | Found seiz<br>11<br>9<br>9<br>9<br>11<br>9.8<br>9.0<br>1.1<br>d, 3 of 7 cluste<br>Found seiz<br>9<br>10<br>10<br>10<br>10<br>10.0<br>11<br>10.0<br>10,0<br>11<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>10,0<br>1 | Found non seiz<br>2<br>2<br>1<br>1<br>2<br>1.6<br>2.0<br>0.5<br>rs<br>Found non seiz<br>2<br>2<br>2<br>1<br>1<br>2<br>1.6<br>2.0<br>0.5<br>rs<br>Found non seiz<br>7<br>5<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Classifier<br>Cluster a<br>PLS-DA | nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>82%<br>82%<br>82%<br>82%<br>82.0%<br>9.9%<br>9.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>92.0%<br>91.0%<br>92.0%<br>91.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0%<br>92.0% | $\begin{array}{l} {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ \hline {\rm Selectivity}\\ 85\%\\ 82\%\\ 90\%\\ 90\%\\ 90\%\\ 90\%\\ 85\%\\ \hline {\rm 85.0\%}\\ \hline {\rm 3.5\%}\\ \hline \\ \hline {\rm Without\ PE}\\ {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ \hline {\rm Selectivity}\\ 82\%\\ 91\%\\ 91\%\\ 85\%\\ \hline {\rm 85.0\%}\\ \hline {\rm 86.4\%}\\ \hline {\rm 86.0\%}\\ \hline $ | Num seiz           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11                                                                                                                                                                                                    | Found seiz           11           9           9           9.1           9.8           9.0           1.1           d, 3 of 7 cluster           Found seiz           9           10           10           10.0           0.7           d, 3 of 7 cluster           Found seiz           9           10,0           10,0           10,0           9,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Found non seiz           2           1           1           2           1.6           2.0           0.5   rs           Found non seiz           2           1           2           1           2           1           2           1           2           1           2           1.6           2.0           0.5   rs Found non seiz 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Classifier<br>Cluster a<br>PLS-DA | nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>9.0%<br>9.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>91%<br>91%<br>91%<br>91.0%<br>6.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>91.0%<br>91.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{l} {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 85\%\\ 90\%\\ 90\%\\ 90\%\\ 85\%\\ 85\%\\ 85.0\%\\ 3.5\%\\ \hline \\ {\rm Without\ PE}\\ {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 82\%\\ 83\%\\ 91\%\\ 91\%\\ 91\%\\ 85\%\\ 86.4\%\\ 85\%\\ \hline \\ {\rm 86.4\%}\\ \hline \\ {\rm 85.0\%}\\ \hline \\ {\rm 86.4\%}\\ \hline \\ {\rm 85.0\%}\\ \hline \\ \hline \\ {\rm 86.4\%}\\ 85\%\\ \hline \\ \hline \\ {\rm 86.4\%}\\ \hline \\ {\rm 85.0\%}\\ \hline \\ \hline \\ {\rm 86.4\%}\\ \hline \\ \hline \\ {\rm 85.0\%}\\ \hline \\ \hline \\ \hline \\ {\rm 86.4\%\\ 85\%\\ \hline \\ \hline$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Num seiz           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           12           Num seiz           11           11                                                                                                                                                                                                                                                                                                                                             | Found seiz<br>11<br>9<br>9<br>9<br>11<br>9.8<br>9.0<br>1.1<br>1.1<br>4, 3 of 7 cluster<br>Found seiz<br>9<br>10<br>10<br>10<br>10.0<br>0.7<br>4, 3 of 7 cluster<br>Found seiz<br>9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Found non seiz           2           1           1           2           1.6           2.0           0.5   rs           Found non seiz           2           1           2           1           2           1           2           1           2           1.6           2.0           0.5   rs Found non seiz             5           4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Classifier<br>Cluster a<br>PLS-DA | nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>91%<br>9.9%<br>9.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>91%<br>91%<br>91.0%<br>6.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>91%<br>91%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{l} {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 85\%\\ 90\%\\ 90\%\\ 90\%\\ 85\%\\ 85\%\\ 85\%\\ 85.0\%\\ 3.5\%\\ \hline \\ {\rm Without\ PE}\\ {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 82\%\\ 83\%\\ 91\%\\ 91\%\\ 91\%\\ 91\%\\ 85\%\\ 86.4\%\\ 85.0\%\\ 4.3\%\\ \hline \\ {\rm Without\ FR}\\ {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 64\%\\ {\rm 71\%}\\ 71\%\\ 71\%\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Num seiz           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11                                                                                                                                                             | Found seiz<br>11<br>9<br>9<br>9<br>11<br>9.8<br>9.0<br>1.1<br>d, 3 of 7 cluster<br>Found seiz<br>9<br>10<br>10<br>10<br>10<br>10.0<br>10.0<br>11<br>10.0<br>10.0<br>10.0<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Found non seiz           2           1           1           2           1.6           2.0           0.5   rs           Found non seiz           2           2           1           2           1           2           1           2           1.6           2.0           0.5   rs             Found non seiz           5           4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Classifier<br>Cluster a<br>PLS-DA | nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>82%<br>82%<br>82%<br>82%<br>82.0%<br>9.9%<br>9.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>91%<br>91%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91.0%<br>91%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{l} {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ \hline {\rm Selectivity}\\ 85\%\\ 82\%\\ 90\%\\ 90\%\\ 90\%\\ 90\%\\ 85\%\\ \hline {\rm 85.0\%}\\ \hline {\rm 3.5\%}\\ \hline \\ \hline {\rm Without\ PE}\\ {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ \hline {\rm Selectivity}\\ 82\%\\ 91\%\\ 83\%\\ 91\%\\ 85\%\\ \hline {\rm 86.4\%}\\ \hline {\rm 85.0\%}\\ \hline {\rm 86.4\%}\\ \hline {\rm 86.4\%$     | Num seiz           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11                                                                                                                                                                          | Found seiz           11           9           9           9.1           9.8           9.0           1.1           4, 3 of 7 cluster           Found seiz           9           10           10           10.0           0.7           4, 3 of 7 cluster           Found seiz           9           10           10.0           0.7           1.3 of 7 cluster           Found seiz           9           10           10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Found non seiz           2           1           1           2           1.6           2.0           0.5             rs           Found non seiz           2           1           2           1           2           1           2           1           2           1           2           1.6           2.0           0.5           rs           Found non seiz           5           4           3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Features<br>Cluster a<br>PLS-DA<br>Classifier    | nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>82%<br>82%<br>82%<br>82%<br>82%<br>9.0%<br>9.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>91%<br>91%<br>91%<br>91.0%<br>6.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>91.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{l} {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 85\%\\ 90\%\\ 90\%\\ 90\%\\ 85\%\\ 85\%\\ 85.0\%\\ 3.5\%\\ \hline \\ {\rm Without\ PE}\\ {\rm Kmeans\ seiz}\\ 80\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 82\%\\ 83\%\\ 91\%\\ 91\%\\ 91\%\\ 91\%\\ 85\%\\ 86.4\%\\ 85\%\\ 86.4\%\\ 85\%\\ 86.4\%\\ 85\%\\ \hline \\ {\rm Selectivity}\\ 64\%\\ {\rm KNN,\ k=5}\\ {\rm Selectivity}\\ 64\%\\ 71\%\\ 71\%\\ 77\%\\ 79\%\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Num seiz           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11                                                                                                                                                                          | Found seiz           11           9           9           11           9.8           9.0           1.1           d, 3 of 7 cluste           Found seiz           9           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Found non seiz<br>2<br>2<br>1<br>1<br>2<br>1.6<br>2.0<br>0.5<br>rs<br>Found non seiz<br>2<br>2<br>2<br>1<br>1<br>2<br>1.6<br>2.0<br>0.5<br>rs<br>Found non seiz<br>2<br>1<br>1<br>2<br>1.6<br>2.0<br>0.5<br>rs<br>Found non seiz<br>2<br>2<br>1<br>1<br>1<br>2<br>5<br>4<br>4<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Features                                                                                                                                                                                      | used:                                                                                                                                                                                                                                                                                               | Without hig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | hest FREQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cluster a                                                                                                                                                                                     | nalysis:                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | l, 3 of 7 cluste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PLS-DA                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                     | 80%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Classifier                                                                                                                                                                                    | :                                                                                                                                                                                                                                                                                                   | KNN, $k = 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                               | Sensitivity                                                                                                                                                                                                                                                                                         | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Num seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Found non seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                               | 100%                                                                                                                                                                                                                                                                                                | 79%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                               | 100%                                                                                                                                                                                                                                                                                                | 85%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                               | 91%                                                                                                                                                                                                                                                                                                 | 83%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                               | 91%                                                                                                                                                                                                                                                                                                 | 83%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                               | 91%                                                                                                                                                                                                                                                                                                 | 91%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Mean                                                                                                                                                                                          | 94.6%                                                                                                                                                                                                                                                                                               | 84.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Median                                                                                                                                                                                        | 91.0%                                                                                                                                                                                                                                                                                               | 83.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| STD                                                                                                                                                                                           | 4.9%                                                                                                                                                                                                                                                                                                | 4.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SID                                                                                                                                                                                           | 4.370                                                                                                                                                                                                                                                                                               | 4.470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Fratures                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                     | With not non                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Features                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                     | Without sen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 9 . 6 7 . 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Cluster a<br>PLS-DA                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ure separated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | l, 3 of 7 cluste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Classifier                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                     | 80%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Classifier                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                     | KNN, k = 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The Local                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                               | Sensitivity                                                                                                                                                                                                                                                                                         | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Num seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Found non seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                               | 82%                                                                                                                                                                                                                                                                                                 | 82%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                               | 91%                                                                                                                                                                                                                                                                                                 | 83%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                               | 91%                                                                                                                                                                                                                                                                                                 | 83%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                               | 91%                                                                                                                                                                                                                                                                                                 | 83%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                               | 91%                                                                                                                                                                                                                                                                                                 | 91%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Mean                                                                                                                                                                                          | 89.2%                                                                                                                                                                                                                                                                                               | 84.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Median                                                                                                                                                                                        | 91.0%                                                                                                                                                                                                                                                                                               | 83.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| STD                                                                                                                                                                                           | 4.0%                                                                                                                                                                                                                                                                                                | 3.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Features                                                                                                                                                                                      | used:                                                                                                                                                                                                                                                                                               | Without sen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | sor 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Cluster a                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | l, 3 of 7 cluste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PLS-DA                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                     | 80%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Classifier                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                     | KNN, k = 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                               | Sensitivity                                                                                                                                                                                                                                                                                         | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Num seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Found non seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                               | 91%                                                                                                                                                                                                                                                                                                 | 83%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                               | 91%                                                                                                                                                                                                                                                                                                 | 83%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                               | 91%<br>91%                                                                                                                                                                                                                                                                                          | 83%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                               | 91%                                                                                                                                                                                                                                                                                                 | 83%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                               | 91%<br>91%                                                                                                                                                                                                                                                                                          | 83%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Moan                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Mean                                                                                                                                                                                          | 91.0%                                                                                                                                                                                                                                                                                               | 83.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Median                                                                                                                                                                                        | 91.0%<br>91.0%                                                                                                                                                                                                                                                                                      | 83.0%<br>83.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Median<br>STD<br>Features<br>Cluster a                                                                                                                                                        | 91.0%<br>91.0%<br>0.0%<br>used:<br>nalysis:                                                                                                                                                                                                                                                         | 83.0%<br>83.0%<br>0.0%<br>Without sen<br>Kmeans seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11<br>0<br>sor 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Median<br>STD<br>Features                                                                                                                                                                     | 91.0%<br>91.0%<br>0.0%<br>used:<br>nalysis:<br>variance:                                                                                                                                                                                                                                            | 83.0%<br>83.0%<br>0.0%<br>Without sen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11<br>0<br>sor 3<br>sure separated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                              | 91.0%<br>91.0%<br>0.0%<br>used:<br>nalysis:<br>variance:                                                                                                                                                                                                                                            | 83.0%<br>83.0%<br>0.0%<br>Without sen<br>Kmeans seiz<br>80%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11<br>0<br>sor 3<br>sure separated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                              | 91.0%<br>91.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:                                                                                                                                                                                                                                       | 83.0%<br>83.0%<br>0.0%<br>Without sen<br>Kmeans seiz<br>80%<br>KNN, k = 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11<br>0<br>sor 3<br>ure separated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.0<br>0.0<br>l, 3 of 7 cluste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                              | 91.0%<br>91.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity                                                                                                                                                                                                                        | 83.0%<br>83.0%<br>0.0%<br>Without sen<br>Kmeans seiz<br>80%<br>KNN, k = 5<br>Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11<br>0<br>sor 3<br>ure separated<br>Num seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.0<br>0.0<br>d, 3 of 7 cluste<br>Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.0<br>0.0<br>rs<br>Found non seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                              | 91.0%<br>91.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>73%                                                                                                                                                                                                                 | $\begin{array}{c} 83.0\% \\ 83.0\% \\ 0.0\% \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11<br>0<br>sor 3<br>ure separated<br>Num seiz<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.0<br>0.0<br>l, 3 of 7 cluste<br>Found seiz<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.0<br>0.0<br>rs<br>Found non seiz<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                              | 91.0%<br>91.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>64%                                                                                                                                                                                                          | $\begin{array}{c} 83.0\% \\ 83.0\% \\ 0.0\% \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11<br>0<br>sor 3<br>ure separated<br>Num seiz<br>11<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.0<br>0.0<br>1, 3 of 7 cluste<br>Found seiz<br>8<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.0<br>0.0<br>rs<br>Found non seiz<br>11<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                              | 91.0%<br>91.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>64%<br>73%<br>73%                                                                                                                                                                                            | $\begin{array}{c} 83.0\% \\ 83.0\% \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ Without sen Kmeans seiz \\ 80\% \\ KNN, k = 5 \\ \hline \\ Selectivity \\ 42\% \\ 32\% \\ 89\% \\ 40\% \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11<br>0<br>sor 3<br>ure separated<br>11<br>11<br>11<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.0<br>0.0<br>1, 3 of 7 cluste<br>Found seiz<br>8<br>7<br>8<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.0<br>0.0<br>rs<br>Found non seiz<br>11<br>15<br>1<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                                                                                | 91.0%<br>91.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>64%<br>73%<br>73%<br>73%                                                                                                                                                                                     | $\begin{array}{c} 83.0\% \\ 83.0\% \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ Without sen \\ Kneans seiz \\ 80\% \\ KNN, k = 5 \\ \hline \\ Selectivity \\ 42\% \\ 42\% \\ 42\% \\ 40\% \\ 50\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11<br>0<br>sor 3<br>ure separated<br>11<br>11<br>11<br>11<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.0<br>0.0<br>1, 3 of 7 cluste<br>Found seiz<br>8<br>7<br>8<br>8<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.0<br>0.0<br>rs<br>Found non seiz<br>11<br>15<br>1<br>12<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean                                                                                                                        | 91.0%<br>91.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>64%<br>73%<br>73%<br>73%<br>73%<br>73%<br>71.2%                                                                                                                                                              | $\begin{array}{c} 83.0\% \\ 83.0\% \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ 80\% \\ KNN, \ k = 5 \\ Selectivity \\ 42\% \\ 32\% \\ 89\% \\ 40\% \\ 50\% \\ \hline \\ 50.6\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11<br>0<br>sor 3<br>ure separated<br>11<br>11<br>11<br>11<br>11<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.0<br>0.0<br>Found seiz<br>8<br>7<br>8<br>8<br>8<br>8<br>8<br>7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.0<br>0.0<br>rs<br>Found non seiz<br>11<br>15<br>1<br>12<br>8<br>9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median                                                                                                              | $\begin{array}{r} 91.0\% \\ 91.0\% \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ used: \\ nalysis: \\ variance: \\ \vdots \\ \hline \\ Sensitivity \\ \hline \\ 73\% \\ 73\% \\ 73\% \\ 73\% \\ 73\% \\ 71.2\% \\ 73.0\% \\ \hline \end{array}$                                                          | $\begin{array}{c} 83.0\% \\ 83.0\% \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ Without sen \\ Kmeans seiz \\ 80\% \\ KNN, k = 5 \\ \hline \\ Selectivity \\ 42\% \\ 32\% \\ 89\% \\ 40\% \\ 50\% \\ 50.6\% \\ \hline \\ 42.0\% \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11<br>0<br>sor 3<br>ure separated<br>11<br>11<br>11<br>11<br>11<br>11<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.0<br>0.0<br>Found seiz<br>8<br>7<br>8<br>8<br>8<br>8<br>7.8<br>8<br>8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.0<br>0.0<br>rs<br>Found non seiz<br>11<br>15<br>1<br>12<br>8<br>9.4<br>11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median                                                                                                              | 91.0%<br>91.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>64%<br>73%<br>73%<br>73%<br>73%<br>73%<br>71.2%                                                                                                                                                              | $\begin{array}{c} 83.0\% \\ 83.0\% \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ Without sen \\ Kmeans seiz \\ 80\% \\ KNN, k = 5 \\ Selectivity \\ 42\% \\ 32\% \\ 89\% \\ 40\% \\ 50\% \\ 50.6\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11<br>0<br>sor 3<br>ure separated<br>11<br>11<br>11<br>11<br>11<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.0<br>0.0<br>Found seiz<br>8<br>7<br>8<br>8<br>8<br>8<br>8<br>7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.0<br>0.0<br>rs<br>Found non seiz<br>11<br>15<br>1<br>12<br>8<br>9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD                                                                                                       | 91.0%<br>91.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:                                                                                                                                                  | $\begin{array}{c} 83.0\% \\ 83.0\% \\ 0.0\% \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11           0           sor 3           ure separated           11           11           11           11           11           11           11           0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.0<br>0.0<br>Found seiz<br>8<br>7<br>8<br>8<br>8<br>8<br>7.8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.0<br>0.0<br>rs<br>Found non seiz<br>11<br>15<br>1<br>12<br>8<br>9.4<br>11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features                                                                                           | 91.0%<br>91.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>64%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73                                                                                                                                     | $\begin{array}{c} 83.0\% \\ 83.0\% \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11<br>0<br>sor 3<br>ure separated<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>0<br>sor 1 and 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.0<br>0.0<br>Found seiz<br>8<br>7<br>8<br>8<br>8<br>7.8<br>8<br>8<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.0<br>0.0<br>rs<br>Found non seiz<br>11<br>15<br>1<br>12<br>8<br>9.4<br>11.0<br>5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a                                                                              | 91.0%<br>91.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>64%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73.0%<br>4.0%<br>used:<br>nalysis:                                                                                                                          | $\begin{array}{c} 83.0\% \\ 83.0\% \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ 0.0\% \\ 80\% \\ KNN, k = 5 \\ \hline \\ Selectivity \\ 42\% \\ 32\% \\ 89\% \\ 40\% \\ 50\% \\ 50.6\% \\ 42.0\% \\ \hline \\ 22.4\% \\ \hline \\ \hline \\ \hline \\ Without sen \\ Kmeans seiz \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11<br>0<br>sor 3<br>ure separated<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>0<br>sor 1 and 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.0<br>0.0<br>Found seiz<br>8<br>7<br>8<br>8<br>8<br>8<br>7.8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.0<br>0.0<br>rs<br>Found non seiz<br>11<br>15<br>1<br>12<br>8<br>9.4<br>11.0<br>5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                            | 91.0%<br>91.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:                                                                                                                                                  | 83.0%<br>83.0%<br>0.0%<br>Without sen<br>Kmeans seiz<br>80%<br>KNN, k = 5<br>Selectivity<br>42%<br>32%<br>89%<br>40%<br>50%<br>50.6%<br>42.0%<br>22.4%<br>Without sen<br>Kmeans seiz<br>80%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11           0           sor 3           ure separated           11           11           11           11           11           11           11           11           11           11           11           11           11           0           sor 1 and 2           ure separated                                                                                                                                                                                                                                                                                                                                                                                                              | 10.0<br>0.0<br>Found seiz<br>8<br>7<br>8<br>8<br>8<br>7.8<br>8<br>8<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.0<br>0.0<br>rs<br>Found non seiz<br>11<br>15<br>1<br>12<br>8<br>9.4<br>11.0<br>5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a                                                                              | 91.0%<br>91.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>64%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73.0%<br>4.0%<br>used:<br>nalysis:<br>variance:<br>:                                                                                          | $\begin{array}{c} 83.0\% \\ 83.0\% \\ 83.0\% \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11           0           sor 3           ure separated           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           12           word and 2           ure separated                                                                                                                | 10.0<br>0.0<br>1, 3 of 7 cluster<br>Found seiz<br>8<br>7<br>8<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>8<br>7<br>8<br>8<br>8<br>7<br>8<br>8<br>8<br>7<br>8<br>8<br>8<br>8<br>8<br>7<br>8<br>8<br>8<br>8<br>7<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.0<br>0.0<br>rs<br>Found non seiz<br>11<br>15<br>1<br>12<br>8<br>9.4<br>11.0<br>5.3<br>rs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                            | 91.0%<br>91.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>64%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73                                                                                                                                     | $\begin{array}{c} 83.0\% \\ 83.0\% \\ 83.0\% \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11           0           sor 3           ure separated           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           12           13 | 10.0<br>0.0<br>Found seiz<br>8<br>7<br>8<br>8<br>8<br>7.8<br>8<br>8<br>7.8<br>8.0<br>0.4<br>d, 3 of 7 cluste<br>Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.0<br>0.0<br>rs<br>Found non seiz<br>11<br>15<br>1<br>1<br>12<br>8<br>9.4<br>11.0<br>5.3<br>rs<br>Found non seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                            | 91.0%<br>91.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>73%<br>64%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73.0%<br>4.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%                                                                                                   | $\begin{array}{c} 83.0\% \\ 83.0\% \\ 0.0\% \\ \hline \\ 80\% \\ KNN, k = 5 \\ \hline \\ 80\% \\ 42\% \\ 32\% \\ 89\% \\ 40\% \\ 50\% \\ 50.6\% \\ \hline \\ 42.0\% \\ 42.0\% \\ \hline \\ 22.4\% \\ \hline \\ \hline \\ \hline \\ Without sen \\ Kmeans seiz \\ 80\% \\ KNN, k = 5 \\ \hline \\ \\ Selectivity \\ 75\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11           0           sor 3           ure separated           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11                                                                                                                                                                                                                                                                     | 10.0<br>0.0<br>Found seiz<br>8<br>7<br>8<br>8<br>7.8<br>8<br>8<br>7.8<br>8<br>0.4<br>1, 3 of 7 cluster<br>Found seiz<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.0<br>0.0<br>rs<br>Found non seiz<br>11<br>15<br>1<br>12<br>8<br>9.4<br>11.0<br>5.3<br>rs<br>Found non seiz<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                            | 91.0%<br>91.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>:<br>Sensitivity<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%                                                                                                                                             | $\begin{array}{c} 83.0\% \\ 83.0\% \\ 83.0\% \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11           0           sor 3           ure separated           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11                                                                                                                                                                                                                                                                                                                                      | 10.0<br>0.0<br>Found seiz<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>10<br>8<br>8<br>7<br>10<br>8<br>8<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.0<br>0.0<br>11<br>15<br>1<br>12<br>8<br>9.4<br>11.0<br>5.3<br>15<br>12<br>15<br>1<br>12<br>8<br>9.4<br>11.0<br>5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                            | 91.0%<br>91.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>64%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73                                                                                                                                     | $\begin{array}{r} 83.0\% \\ 83.0\% \\ 83.0\% \\ 0.0\% \\ \hline \\ 80\% \\ 42\% \\ 89\% \\ 40\% \\ 42\% \\ 89\% \\ 40\% \\ 50\% \\ 50.6\% \\ 42.0\% \\ 22.4\% \\ \hline \\ \hline \\ \hline \\ \hline \\ without sen \\ Kmeans seiz \\ 80\% \\ KNN, k = 5 \\ \hline \\ \hline \\ Selectivity \\ \hline \\ 75\% \\ 53\% \\ 59\% \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11           0           sor 3           ure separated           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11                                                                                                                                                                                                                                                                                                                                                                | 10.0<br>0.0<br>1, 3 of 7 cluste<br>Found seiz<br>8<br>7<br>8<br>8<br>7.8<br>8.0<br>0.4<br>1, 3 of 7 cluste<br>Found seiz<br>9<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.0<br>0.0<br>rs<br>Found non seiz<br>11<br>15<br>1<br>12<br>8<br>9.4<br>11.0<br>5.3<br>rs<br>Found non seiz<br>3<br>9<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                            | 91.0%<br>91.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>73%<br>64%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73.0%<br>4.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>91%                                                                              | $\begin{array}{c} 83.0\% \\ 83.0\% \\ \hline 83.0\% \\ \hline 0.0\% \\ 0.0\% \\ \hline 0.0\% \\ 0.0\% \hline 0.0\% \\ 0.0\% \hline 0.0\% \\ 0.0\% \hline 0.0\% \hline 0.0\% \\ 0.0\% \hline 0.0\% \hline$ | 11           0           sor 3           ure separated           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11                                                                                                                                                                                                                              | 10.0<br>0.0<br>1, 3 of 7 cluste<br>Found seiz<br>8<br>7<br>8<br>8<br>8<br>7.8<br>8<br>8<br>0.4<br>1, 3 of 7 cluste<br>Found seiz<br>9<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.0<br>0.0<br>rs<br>Found non seiz<br>11<br>15<br>1<br>12<br>8<br>9.4<br>11.0<br>5.3<br>rs<br>Found non seiz<br>3<br>9<br>7<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                              | 91.0%<br>91.0%<br>0.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:                                                                                                                                          | $\begin{array}{c} 83.0\% \\ 83.0\% \\ 83.0\% \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ \\ Without sen \\ 42\% \\ 89\% \\ 40\% \\ 50\% \\ 50.6\% \\ 42.0\% \\ 22.4\% \\ \hline \\ \\ \hline \\ \\ Without sen \\ Knmeans seiz \\ 80\% \\ KNN, k = 5 \\ \hline \\ \\ \\ Selectivity \\ 75\% \\ 53\% \\ 59\% \\ 83\% \\ 91\% \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11           0           sor 3           ure separated           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11                                                                                                                                                                                                                                                                                                                         | 10.0<br>0.0<br>Found seiz<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>8<br>7<br>8<br>8<br>8<br>7<br>8<br>8<br>8<br>7<br>8<br>8<br>8<br>7<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.0<br>0.0<br>10<br>11<br>15<br>1<br>12<br>8<br>9.4<br>11.0<br>5.3<br>rs<br>Found non seiz<br>3<br>9<br>7<br>2<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean                                              | 91.0%<br>91.0%<br>0.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>64%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73                                                                                                                             | $\begin{array}{c} 83.0\% \\ 83.0\% \\ 83.0\% \\ 0.0\% \\ \hline \\ 80\% \\ 42\% \\ 89\% \\ 40\% \\ 50\% \\ 50\% \\ 50\% \\ \hline \\ 50\% \\ 60\% \\ \hline \\ 22.4\% \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11           0           sor 3           ure separated           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11                                                                                                                                                                                                                                                                                                                         | 10.0<br>0.0<br>1, 3 of 7 cluster<br>Found seiz<br>8<br>7<br>8<br>8<br>7.8<br>8.0<br>0.4<br>1, 3 of 7 cluster<br>Found seiz<br>9<br>10<br>10<br>10<br>9.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.0<br>0.0<br>rs<br>Found non seiz<br>11<br>15<br>1<br>12<br>8<br>9.4<br>11.0<br>5.3<br>rs<br>Found non seiz<br>3<br>9<br>7<br>2<br>1<br>1<br>4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Mean<br>Mean                              | 91.0%<br>91.0%<br>0.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>64%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73                                                                                                                                         | $\begin{array}{c} 83.0\% \\ 83.0\% \\ 0.0\% \\ \hline \\ 80\% \\ KNN, k = 5 \\ \hline \\ 80\% \\ 89\% \\ 40\% \\ 50\% \\ \hline \\ 50\% \\ \hline \\ 50.6\% \\ \hline \\ 42.0\% \\ 22.4\% \\ \hline \\ \hline \\ \hline \\ Without sen \\ Kmeans seiz \\ 80\% \\ KNN, k = 5 \\ \hline \\ \\ Selectivity \\ \hline \\ 75\% \\ 53\% \\ \hline \\ 59\% \\ 83\% \\ 91\% \\ \hline \\ 72.2\% \\ \hline \\ 75.0\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11           0           sor 3           ure separated           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11                                                                                                                                                                                                                                                                                                                         | 10.0<br>0.0<br>0.0<br>Found seiz<br>8<br>7<br>8<br>8<br>7.8<br>8.0<br>0.4<br>10<br>10<br>10<br>10<br>9.8<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.0<br>0.0<br>75<br>Found non seiz<br>11<br>15<br>1<br>12<br>8<br>9.4<br>11.0<br>5.3<br>rs<br>Found non seiz<br>3<br>9<br>7<br>2<br>1<br>1<br>4.4<br>3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Mean<br>Mean                              | 91.0%<br>91.0%<br>0.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>64%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73                                                                                                                             | $\begin{array}{c} 83.0\% \\ 83.0\% \\ 83.0\% \\ 0.0\% \\ \hline \\ 80\% \\ 42\% \\ 89\% \\ 40\% \\ 50\% \\ 50\% \\ 50\% \\ \hline \\ 50\% \\ 60\% \\ \hline \\ 22.4\% \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11           0           sor 3           ure separated           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11                                                                                                                                                                                                                                                                                                                         | 10.0<br>0.0<br>1, 3 of 7 cluster<br>Found seiz<br>8<br>7<br>8<br>8<br>7.8<br>8.0<br>0.4<br>1, 3 of 7 cluster<br>Found seiz<br>9<br>10<br>10<br>10<br>9.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.0<br>0.0<br>rs<br>Found non seiz<br>11<br>15<br>1<br>12<br>8<br>9.4<br>11.0<br>5.3<br>rs<br>Found non seiz<br>3<br>9<br>7<br>2<br>1<br>1<br>4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD                             | 91.0%<br>91.0%<br>0.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%                                                                                                                                          | $\begin{array}{c} 83.0\% \\ 83.0\% \\ 83.0\% \\ 0.0\% \\ \hline \\ 80\% \\ KNN, k = 5 \\ 50.6\% \\ 42.0\% \\ 50\% \\ 50.6\% \\ 42.0\% \\ 22.4\% \\ \hline \\ \hline \\ \hline \\ Without sen \\ Kmeans seiz \\ 80\% \\ KNN, k = 5 \\ \hline \\ Selectivity \\ 75\% \\ 53\% \\ 53\% \\ 59\% \\ 83\% \\ 91\% \\ \hline \\ 72.2\% \\ 75.0\% \\ \hline \\ 16.0\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11           0           sor 3           ure separated           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           0                                                                                                                                                                                                                                                                                                                          | 10.0<br>0.0<br>0.0<br>Found seiz<br>8<br>7<br>8<br>8<br>7.8<br>8.0<br>0.4<br>10<br>10<br>10<br>10<br>9.8<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.0<br>0.0<br>75<br>Found non seiz<br>11<br>15<br>1<br>12<br>8<br>9.4<br>11.0<br>5.3<br>rs<br>Found non seiz<br>3<br>9<br>7<br>2<br>1<br>1<br>4.4<br>3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Mean<br>Median<br>STD    | 91.0%<br>91.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>73%<br>64%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73                                                                                                                                          | $\begin{array}{c} 83.0\% \\ 83.0\% \\ 83.0\% \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11           0           sor 3           ure separated           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11 | 10.0<br>0.0<br>0.0<br>Found seiz<br>8<br>7<br>8<br>8<br>7.8<br>8.0<br>0.4<br>1, 3 of 7 cluster<br>Found seiz<br>9<br>10<br>10<br>10<br>9.8<br>10.0<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.0<br>0.0<br>10<br>11<br>15<br>1<br>12<br>8<br>9.4<br>11.0<br>5.3<br>15<br>1<br>12<br>8<br>9.4<br>11.0<br>5.3<br>1<br>1<br>4.4<br>3.0<br>3.4<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Cluster a<br>PLS-DA<br>Cluster a<br>STD<br>Features<br>Cluster a<br>STD | 91.0%<br>91.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:                                                                                                                                                  | $\begin{array}{c} 83.0\% \\ 83.0\% \\ 83.0\% \\ 0.0\% \\ \hline \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11           0           sor 3           ure separated           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11 | 10.0<br>0.0<br>0.0<br>Found seiz<br>8<br>7<br>8<br>8<br>7.8<br>8.0<br>0.4<br>10<br>10<br>10<br>10<br>9.8<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.0<br>0.0<br>10<br>11<br>15<br>1<br>12<br>8<br>9.4<br>11.0<br>5.3<br>15<br>1<br>12<br>8<br>9.4<br>11.0<br>5.3<br>1<br>1<br>4.4<br>3.0<br>3.4<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Classifier                         | 91.0%<br>91.0%<br>0.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%                                                                                                                                               | $\begin{array}{c} 83.0\% \\ 83.0\% \\ 83.0\% \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11           0           sor 3           ure separated           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11 | 10.0<br>0.0<br>0.0<br>Found seiz<br>8<br>7<br>8<br>8<br>7.8<br>8.0<br>0.4<br>1, 3 of 7 cluster<br>Found seiz<br>9<br>10<br>10<br>10<br>9.8<br>10.0<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.0<br>0.0<br>10<br>11<br>15<br>1<br>12<br>8<br>9.4<br>11.0<br>5.3<br>15<br>1<br>12<br>8<br>9.4<br>11.0<br>5.3<br>1<br>1<br>4.4<br>3.0<br>3.4<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Cluster a<br>PLS-DA<br>Cluster a<br>STD<br>Features<br>Cluster a<br>STD | 91.0%<br>91.0%<br>0.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>73%<br>64%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73                                                                                                                                  | $\begin{array}{c} 83.0\% \\ 83.0\% \\ 83.0\% \\ 0.0\% \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11           0           sor 3           ure separated           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11 | 10.0<br>0.0<br>0.0<br>Found seiz<br>8<br>7<br>8<br>8<br>7.8<br>8.0<br>0.4<br>1, 3 of 7 cluster<br>Found seiz<br>9<br>10<br>10<br>10<br>9.8<br>10.0<br>0.4<br>1, 3 of 7 cluster<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.0<br>0.0<br>11<br>15<br>1<br>12<br>8<br>9.4<br>11.0<br>5.3<br>rs<br>Found non seiz<br>3<br>9<br>7<br>2<br>1<br>4.4<br>3.0<br>3.4<br>rs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Classifier                         | 91.0%<br>91.0%<br>0.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%                                                                                                                                               | $\begin{array}{c} 83.0\% \\ 83.0\% \\ 83.0\% \\ 0.0\% \\ \hline \\ 83.0\% \\ KNN, k = 5 \\ \hline \\ 89\% \\ 42\% \\ 32\% \\ 89\% \\ 40\% \\ 50\% \\ 50\% \\ \hline \\ 50\% \\ \hline \\ 50.6\% \\ 42.0\% \\ 42.0\% \\ \hline \\ 22.4\% \\ \hline \\ \hline \\ \hline \\ Without sen \\ KnN, k = 5 \\ \hline \\ 83\% \\ 91\% \\ 59\% \\ 53\% \\ 59\% \\ 59\% \\ 53\% \\ 59\% \\ 59\% \\ 53\% \\ 91\% \\ 75.0\% \\ \hline \\ 75.0\% \\ \hline \\ 16.0\% \\ \hline \\ \hline \\ Without sen \\ Kmeans seiz \\ 80\% \\ KNN, k = 5 \\ \hline \\ Selectivity \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11           0           sor 3           ure separated           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11 | 10.0<br>0.0<br>0.0<br>Found seiz<br>8<br>7<br>8<br>8<br>7.8<br>8.0<br>0.4<br>1, 3 of 7 cluster<br>Found seiz<br>9<br>10<br>10<br>10<br>9.8<br>10.0<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.0<br>0.0<br>11<br>15<br>1<br>12<br>8<br>9.4<br>11.0<br>5.3<br>rs<br>Found non seiz<br>3<br>9<br>7<br>2<br>1<br>4.4<br>3.0<br>3.4<br>rs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Classifier                         | 91.0%<br>91.0%<br>0.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%                                                                                                                                               | $\begin{array}{r} 83.0\% \\ 83.0\% \\ 83.0\% \\ 0.0\% \\ \hline \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11           0           sor 3           ure separated           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11 | 10.0<br>0.0<br>1, 3 of 7 cluster<br>Found seiz<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>0.4<br>1, 3 of 7 cluster<br>9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.0<br>0.0<br>11<br>15<br>1<br>12<br>8<br>9.4<br>11.0<br>5.3<br>rs<br>Found non seiz<br>3<br>9<br>7<br>2<br>1<br>4.4<br>3.0<br>3.4<br>rs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Classifier                         | 91.0%<br>91.0%<br>0.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>73%<br>64%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73                                                                                                                                  | $\begin{array}{c} 83.0\% \\ 83.0\% \\ 83.0\% \\ 0.0\% \\ \hline \\ 83.0\% \\ KNN, k = 5 \\ \hline \\ 89\% \\ 42\% \\ 32\% \\ 89\% \\ 40\% \\ 50\% \\ 50\% \\ \hline \\ 50\% \\ \hline \\ 50.6\% \\ 42.0\% \\ 42.0\% \\ \hline \\ 22.4\% \\ \hline \\ \hline \\ \hline \\ Without sen \\ KnN, k = 5 \\ \hline \\ 83\% \\ 91\% \\ 59\% \\ 53\% \\ 59\% \\ 59\% \\ 53\% \\ 59\% \\ 59\% \\ 53\% \\ 91\% \\ 75.0\% \\ \hline \\ 75.0\% \\ \hline \\ 16.0\% \\ \hline \\ \hline \\ Without sen \\ Kmeans seiz \\ 80\% \\ KNN, k = 5 \\ \hline \\ Selectivity \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11           0           sor 3           ure separated           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11 | 10.0<br>0.0<br>0.0<br>Found seiz<br>8<br>7<br>8<br>8<br>7.8<br>8.0<br>0.4<br>1, 3 of 7 cluster<br>Found seiz<br>9<br>10<br>10<br>10<br>10<br>9.8<br>10.0<br>0.4<br>4, 3 of 7 cluster<br>Found seiz<br>Found seiz<br>9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.0<br>0.0<br>11<br>15<br>1<br>12<br>8<br>9.4<br>11.0<br>5.3<br>rs<br>Found non seiz<br>3<br>9<br>7<br>2<br>1<br>4.4<br>3.0<br>3.4<br>Found non seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Classifier                         | 91.0%<br>91.0%<br>0.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%                                                                                                                                               | $\begin{array}{r} 83.0\% \\ 83.0\% \\ 83.0\% \\ 0.0\% \\ \hline \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11           0           sor 3           ure separated           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           0           sor 2 and 3           ure separated           Num seiz           11                                                                                             | 10.0<br>0.0<br>1, 3 of 7 cluster<br>Found seiz<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>0.4<br>1, 3 of 7 cluster<br>9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.0<br>0.0<br>11<br>15<br>1<br>12<br>8<br>9.4<br>11.0<br>5.3<br>15<br>1<br>12<br>8<br>9.4<br>11.0<br>5.3<br>1<br>1<br>12<br>8<br>9.4<br>11.0<br>5.3<br>1<br>1<br>12<br>1<br>1<br>12<br>1<br>1<br>12<br>1<br>1<br>12<br>1<br>1<br>12<br>1<br>1<br>12<br>1<br>1<br>12<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>STD<br>Features<br>Cluster a<br>PLS-DA         | 91.0%<br>91.0%<br>0.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>:<br>Sensitivity<br>73%<br>73%<br>73%<br>73%<br>73%<br>73%<br>73.0%<br>4.0%<br>4.0%<br>used:<br>nalysis:<br>variance:<br>:<br>:<br>Sensitivity<br>82%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91 | $\begin{array}{r} 83.0\% \\ 83.0\% \\ 83.0\% \\ 0.0\% \\ \hline \\ 80\% \\ KNN, k = 5 \\ \hline \\ 89\% \\ 40\% \\ 42\% \\ \hline \\ 89\% \\ 40\% \\ 50\% \\ 50\% \\ \hline \\ 22.4\% \\ \hline \\ \hline \\ \hline \\ Without sen \\ Kmeans seiz \\ 80\% \\ KNN, k = 5 \\ \hline \\ \\ Selectivity \\ \hline \\ 75\% \\ 59\% \\ 83\% \\ 91\% \\ \hline \\ 72.2\% \\ \hline \\ 75.0\% \\ \hline \\ 16.0\% \\ \hline \\ \hline \\ \hline \\ Without sen \\ Kmeans seiz \\ 80\% \\ \hline \\ \hline \\ \hline \\ \hline \\ Without sen \\ Kmeans seiz \\ 80\% \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11           0           sor 3           ure separated           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11                                                                                                                                                                                                                 | 10.0<br>0.0<br>0.0<br>Found seiz<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>7<br>8<br>8<br>8<br>7<br>7<br>8<br>8<br>8<br>7<br>7<br>8<br>8<br>8<br>7<br>7<br>8<br>8<br>8<br>7<br>7<br>8<br>8<br>8<br>7<br>7<br>8<br>8<br>9<br>10<br>10<br>10<br>10<br>10<br>9<br>8<br>10<br>10<br>10<br>10<br>9<br>8<br>10<br>10<br>10<br>10<br>9<br>8<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>8<br>10<br>10<br>8<br>10<br>10<br>10<br>10<br>8<br>10<br>10<br>10<br>10<br>8<br>10<br>10<br>10<br>8<br>10<br>10<br>10<br>10<br>8<br>10<br>10<br>10<br>8<br>10<br>8<br>10<br>8<br>10<br>10<br>8<br>10<br>10<br>8<br>10<br>8<br>10<br>10<br>8<br>10<br>8<br>10<br>10<br>8<br>10<br>10<br>8<br>10<br>8<br>10<br>10<br>8<br>10<br>8<br>10<br>8<br>10<br>8<br>10<br>8<br>10<br>8<br>10<br>8<br>10<br>10<br>8<br>10<br>10<br>8<br>10<br>10<br>8<br>10<br>10<br>8<br>10<br>10<br>8<br>10<br>10<br>8<br>10<br>8<br>10<br>10<br>8<br>10<br>8<br>10<br>8<br>10<br>8<br>10<br>8<br>10<br>8<br>10<br>10<br>10<br>8<br>10<br>8<br>10<br>10<br>10<br>8<br>10<br>10<br>8<br>10<br>10<br>10<br>8<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 2.0<br>0.0<br>10<br>11<br>15<br>1<br>12<br>8<br>9.4<br>11.0<br>5.3<br>15<br>1<br>12<br>8<br>9.4<br>11.0<br>5.3<br>1<br>1<br>12<br>8<br>9.4<br>11.0<br>5.3<br>1<br>1<br>12<br>8<br>9.4<br>11<br>12<br>8<br>9.4<br>11.0<br>5.3<br>1<br>1<br>1<br>12<br>8<br>9.4<br>11.0<br>5.3<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Classifier                         | 91.0%<br>91.0%<br>0.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:                                                                                                                                          | $\begin{array}{r} 83.0\% \\ 83.0\% \\ 0.0\% \\ \hline \\ 83.0\% \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ \\ 0.0\% \\ \hline \\ 80\% \\ KNN, k = 5 \\ \hline \\ 89\% \\ 42\% \\ 32\% \\ 89\% \\ 40\% \\ 50\% \\ \hline \\ 50\% \\ \hline \\ 50\% \\ \hline \\ 22.4\% \\ \hline \\ \hline \\ \\ \\ \hline \\ \\ \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11           0           sor 3           ure separated           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11                                                                               | 10.0<br>0.0<br>1, 3 of 7 cluster<br>Found seiz<br>8<br>7<br>8<br>8<br>7.8<br>8.0<br>0.4<br>1, 3 of 7 cluster<br>Found seiz<br>9<br>10<br>10<br>10<br>10<br>10<br>9.8<br>10.0<br>0.4<br>4<br>Found seiz<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.0<br>0.0<br>11<br>15<br>1<br>12<br>8<br>9.4<br>11.0<br>5.3<br>rs<br>Found non seiz<br>3<br>9<br>7<br>2<br>1<br>4.4<br>3.0<br>3.4<br>rs<br>Found non seiz<br>4<br>5<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>STD<br>Features<br>Cluster a<br>PLS-DA         | 91.0%<br>91.0%<br>0.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>73%<br>64%<br>73%<br>73%<br>73%<br>73%<br>73.0%<br>4.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91                             | $\begin{array}{r} 83.0\% \\ 83.0\% \\ 83.0\% \\ 0.0\% \\ \hline \\ 80\% \\ KNN, k = 5 \\ \hline \\ Selectivity \\ 42\% \\ 80\% \\ 40\% \\ 50\% \\ 50.6\% \\ 42.0\% \\ 42.0\% \\ 42.0\% \\ \hline \\ 22.4\% \\ \hline \\ \hline \\ \hline \\ Without sen \\ Kmeans seiz \\ 80\% \\ KNN, k = 5 \\ \hline \\ Selectivity \\ \hline \\ 75.0\% \\ \hline \\ \hline \\ 83\% \\ 91\% \\ \hline \\ 62\% \\ 64\% \\ \hline \\ 64\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11           0           sor 3           ure separated           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11                                                                                                                                   | 10.0<br>0.0<br>1, 3 of 7 cluster<br>Found seiz<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>0.4<br>1, 3 of 7 cluster<br>Found seiz<br>9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.0<br>0.0<br>10<br>11<br>15<br>1<br>12<br>8<br>9.4<br>11.0<br>5.3<br>15<br>12<br>8<br>9.4<br>11.0<br>5.3<br>12<br>8<br>9.4<br>11.0<br>5.3<br>12<br>12<br>8<br>9.4<br>11.0<br>5.3<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Features<br>Cluster a<br>PLS-DA<br>Classifier     | 91.0%<br>91.0%<br>0.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>73%<br>73%<br>73%<br>73.0%<br>4.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91%<br>91                                 | $\begin{array}{c} 83.0\% \\ 83.0\% \\ 83.0\% \\ 0.0\% \\ \hline \\ Selectivity \\ 42\% \\ 89\% \\ 40\% \\ 50\% \\ 50\% \\ 50\% \\ \hline \\ 0.0\% \\ \hline \\ 22.4\% \\ \hline \\ \hline \\ \hline \\ Without sen \\ Kmeans seiz \\ 80\% \\ \hline \\ Selectivity \\ \hline \\ 75\% \\ \hline \\ 53\% \\ 59\% \\ 83\% \\ 91\% \\ \hline \\ 72.2\% \\ 75.0\% \\ \hline \\ 16.0\% \\ \hline \\ \hline \\ \hline \\ Without sen \\ Kmeans seiz \\ 80\% \\ \hline \\ \hline \\ KNN, k = 5 \\ \hline \\ Selectivity \\ \hline \\ \hline \\ \hline \\ 52\% \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11           0           sor 3           ure separated           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11                                                                                                         | 10.0<br>0.0<br>0.0<br>Found seiz<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>8<br>7<br>7<br>8<br>8<br>8<br>7<br>7<br>8<br>8<br>8<br>7<br>7<br>8<br>8<br>8<br>7<br>7<br>8<br>8<br>8<br>7<br>7<br>8<br>8<br>8<br>7<br>7<br>8<br>8<br>9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.0<br>0.0<br>10<br>11<br>15<br>1<br>12<br>8<br>9.4<br>11.0<br>5.3<br>15<br>12<br>8<br>9.4<br>11.0<br>5.3<br>15<br>12<br>8<br>9.4<br>11.0<br>5.3<br>11<br>12<br>8<br>9.4<br>11.0<br>5.3<br>11<br>12<br>8<br>9.4<br>11.0<br>5.3<br>15<br>11<br>12<br>8<br>9.4<br>11.0<br>5.3<br>15<br>11<br>12<br>8<br>9.4<br>11.0<br>5.3<br>15<br>15<br>12<br>12<br>8<br>9.4<br>11.0<br>5.3<br>15<br>11<br>12<br>8<br>9.4<br>11.0<br>5.3<br>15<br>15<br>11<br>12<br>8<br>9.4<br>11.0<br>5.3<br>15<br>15<br>10<br>5.3<br>15<br>10<br>5.3<br>15<br>15<br>10<br>5.3<br>15<br>10<br>5.3<br>15<br>10<br>5.3<br>15<br>10<br>5.3<br>15<br>10<br>5.3<br>15<br>10<br>5.3<br>15<br>10<br>5.3<br>15<br>10<br>5.3<br>15<br>10<br>5.3<br>15<br>10<br>5.3<br>15<br>10<br>5.3<br>15<br>10<br>5.3<br>15<br>10<br>5.3<br>10<br>10<br>5.3<br>10<br>10<br>5.3<br>10<br>10<br>5.3<br>10<br>10<br>5.3<br>10<br>10<br>5.3<br>11<br>10<br>5.3<br>11<br>10<br>5.3<br>11<br>10<br>5.3<br>11<br>10<br>5.3<br>11<br>10<br>5.3<br>11<br>10<br>5.3<br>11<br>10<br>5.3<br>11<br>10<br>5.3<br>11<br>10<br>5.3<br>11<br>10<br>5.3<br>11<br>10<br>5.3<br>11<br>10<br>5.3<br>11<br>10<br>5.3<br>11<br>10<br>5.3<br>11<br>10<br>5.3<br>11<br>10<br>5.3<br>15<br>5.3<br>15<br>5.3<br>15<br>5.3<br>15<br>5.3<br>15<br>5.3<br>15<br>5.3<br>15<br>5.3<br>15<br>5.3<br>15<br>5.3<br>15<br>5.3<br>15<br>5.3<br>15<br>5.3<br>15<br>5.3<br>15<br>5.3<br>15<br>5.3<br>15<br>5.3<br>15<br>5.3<br>15<br>5.3<br>15<br>5.3<br>15<br>5.3<br>15<br>5.3<br>15<br>5.3<br>15<br>5.3<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15 |

| Features                                                                                                    | usod:                                                                                                                                                                                                                            | Without sen                                                                                                                                                                                                                                                                                                                                                                                    | sor 1 and 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Cluster a                                                                                                   |                                                                                                                                                                                                                                  | Kmeans seizure separated, 3 of 7 clusters                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| PLS-DA                                                                                                      |                                                                                                                                                                                                                                  | 80%                                                                                                                                                                                                                                                                                                                                                                                            | die separate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | i, o or i crubio                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Classifier                                                                                                  | :                                                                                                                                                                                                                                | KNN, $k = 5$                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                                                                             | Sensitivity                                                                                                                                                                                                                      | Selectivity                                                                                                                                                                                                                                                                                                                                                                                    | Num seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Found seiz                                                                                                     | Found non seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                                                                                             | 73%                                                                                                                                                                                                                              | 42%                                                                                                                                                                                                                                                                                                                                                                                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                                                              | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                             | 73%                                                                                                                                                                                                                              | 53%                                                                                                                                                                                                                                                                                                                                                                                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                                                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                                                                             | 73%                                                                                                                                                                                                                              | 57%                                                                                                                                                                                                                                                                                                                                                                                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                                                              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                                                                             | 82%                                                                                                                                                                                                                              | 41%                                                                                                                                                                                                                                                                                                                                                                                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9                                                                                                              | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                             | 91%                                                                                                                                                                                                                              | 50%                                                                                                                                                                                                                                                                                                                                                                                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Mean                                                                                                        | 78.4%                                                                                                                                                                                                                            | 48.6%                                                                                                                                                                                                                                                                                                                                                                                          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.6                                                                                                            | 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Median                                                                                                      | 73.0%                                                                                                                                                                                                                            | 50.0%                                                                                                                                                                                                                                                                                                                                                                                          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.0                                                                                                            | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| STD                                                                                                         | 8.0%                                                                                                                                                                                                                             | 6.9%                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9                                                                                                            | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                                                                                             |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                                                                             | Features used:                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                | e differential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Cluster a                                                                                                   |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                | ure separated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | l, 3 of 7 cluste                                                                                               | rs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| PLS-DA                                                                                                      |                                                                                                                                                                                                                                  | 80%                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Classifier                                                                                                  | -                                                                                                                                                                                                                                | KNN, $k = 5$                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                                                                             | Sensitivity                                                                                                                                                                                                                      | Selectivity                                                                                                                                                                                                                                                                                                                                                                                    | Num seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Found seiz                                                                                                     | Found non seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                                                                                             | 82%                                                                                                                                                                                                                              | 60%                                                                                                                                                                                                                                                                                                                                                                                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9                                                                                                              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                                                                             | 91%                                                                                                                                                                                                                              | 50%                                                                                                                                                                                                                                                                                                                                                                                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                             | 91%                                                                                                                                                                                                                              | 67%                                                                                                                                                                                                                                                                                                                                                                                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                                                                                                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                                                                             | 100%<br>100%                                                                                                                                                                                                                     | 58%<br>61%                                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11<br>11                                                                                                       | 8<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| M                                                                                                           |                                                                                                                                                                                                                                  | 59.2%                                                                                                                                                                                                                                                                                                                                                                                          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Mean                                                                                                        | 92.8%                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.2                                                                                                           | 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Median                                                                                                      | 91.0%                                                                                                                                                                                                                            | 60.0%                                                                                                                                                                                                                                                                                                                                                                                          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.0                                                                                                           | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| STD                                                                                                         | 7.5%                                                                                                                                                                                                                             | 6.1%                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.8                                                                                                            | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                                                                                             |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Footurog                                                                                                    | naodi                                                                                                                                                                                                                            | Optimal set                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Features<br>Cluster a                                                                                       |                                                                                                                                                                                                                                  | Optimal set                                                                                                                                                                                                                                                                                                                                                                                    | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Cluster a                                                                                                   | nalysis:                                                                                                                                                                                                                         | No clusterin                                                                                                                                                                                                                                                                                                                                                                                   | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                                                                             | nalysis:<br>variance:                                                                                                                                                                                                            | No clusterin<br>100%                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | weights [1 1]                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Cluster a<br>PLS-DA                                                                                         | nalysis:<br>variance:<br>:                                                                                                                                                                                                       | No clusterin<br>100%<br>Old method                                                                                                                                                                                                                                                                                                                                                             | , Prior prob.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                | Found non seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Cluster a<br>PLS-DA                                                                                         | nalysis:<br>variance:<br>:<br>Sensitivity                                                                                                                                                                                        | No clusterin<br>100%<br>Old method<br>Selectivity                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | weights [1 1]<br>Found seiz<br>9                                                                               | Found non seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Cluster a<br>PLS-DA                                                                                         | nalysis:<br>variance:<br>:<br>Sensitivity<br>82%                                                                                                                                                                                 | No clusterin<br>100%<br>Old method<br>Selectivity<br>41%                                                                                                                                                                                                                                                                                                                                       | , Prior prob.<br>Num seiz<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Found seiz<br>9                                                                                                | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Cluster a<br>PLS-DA                                                                                         | nalysis:<br>variance:<br>:<br>Sensitivity                                                                                                                                                                                        | No clusterin<br>100%<br>Old method<br>Selectivity                                                                                                                                                                                                                                                                                                                                              | , Prior prob.<br>Num seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Found seiz                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Cluster a<br>PLS-DA                                                                                         | nalysis:<br>variance:<br>Sensitivity<br>82%<br>82%                                                                                                                                                                               | No clusterin<br>100%<br>Old method<br>Selectivity<br>41%<br>41%                                                                                                                                                                                                                                                                                                                                | , Prior prob.<br>Num seiz<br>11<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Found seiz<br>9<br>9                                                                                           | 13<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Cluster a<br>PLS-DA                                                                                         | nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>82%                                                                                                                                                                   | No clusterin           100%         Old method.           Selectivity         41%           41%         41%                                                                                                                                                                                                                                                                                    | , Prior prob.<br>Num seiz<br>11<br>11<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Found seiz<br>9<br>9<br>9                                                                                      | 13<br>13<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Cluster a<br>PLS-DA                                                                                         | nalysis:<br>variance:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%                                                                                                                                                                 | No clusterin<br>100%<br>Old method.<br>Selectivity<br>41%<br>41%<br>41%<br>43%                                                                                                                                                                                                                                                                                                                 | , Prior prob.<br>Num seiz<br>11<br>11<br>11<br>11<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Found seiz<br>9<br>9<br>9<br>9<br>9<br>9                                                                       | 13<br>13<br>13<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Cluster a<br>PLS-DA<br>Classifier                                                                           | nalysis:<br>variance:<br>:<br><u>Sensitivity</u><br>82%<br>82%<br>82%<br>82%<br>82%                                                                                                                                              | No clusterin           100%         Old method.           Selectivity         41%           41%         41%           43%         43%                                                                                                                                                                                                                                                          | , Prior prob.<br><u>Num seiz</u><br><u>11</u><br>11<br>11<br>11<br>11<br>11<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Found seiz<br>9<br>9<br>9<br>9<br>9<br>9                                                                       | 13<br>13<br>13<br>12<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Cluster a<br>PLS-DA<br>Classifier                                                                           | nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                | , Prior prob.<br>Num seiz<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Found seiz<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9.0                                                           | $     \begin{array}{r}       13 \\       13 \\       12 \\       12 \\       12.6     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median                                                         | nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82.0%                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                | , Prior prob.<br>Num seiz<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Found seiz<br>9<br>9<br>9<br>9<br>9<br>9<br>9.0<br>9.0                                                         | $ \begin{array}{r}     13 \\     13 \\     12 \\     12 \\     12 \\     12.6 \\     13.0 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median                                                         | nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82.0%<br>82.0%<br>0.0%                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                | , Prior prob.<br>Num seiz<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Found seiz<br>9<br>9<br>9<br>9<br>9<br>9<br>9.0<br>9.0                                                         | $ \begin{array}{r}     13 \\     13 \\     12 \\     12 \\     12 \\     12.6 \\     13.0 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a                         | nalysis:<br>variance:<br>:<br>:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>82.0%<br>82.0%<br>0.0%<br>used:<br>nalysis:                                                                                                        | No         clusterin           100%         Old method.           Selectivity         41%           41%         41%           41%         43%           43%         43.6           41.8%         41.0%           1.1%         000000000000000000000000000000000000                                                                                                                             | , Prior prob.<br>Num seiz<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Found seiz<br>9<br>9<br>9<br>9<br>9<br>9<br>9.0<br>9.0                                                         | $ \begin{array}{r}     13 \\     13 \\     12 \\     12 \\     12 \\     12.6 \\     13.0 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA               | nalysis:<br>variance:<br>:<br>:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>82%<br>82.0%<br>0.0%<br>0.0%<br>used:<br>nalysis:<br>variance:                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                | s, Prior prob.<br>Num seiz<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>0<br>g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Found seiz<br>9<br>9<br>9<br>9<br>9<br>9.0<br>9.0<br>0.0                                                       | $ \begin{array}{r} 13\\ 13\\ 12\\ 12\\ 12\\ 12.6\\ 13.0\\ 0.5\\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a                         | nalysis:<br>variance:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>82%<br>82.0%<br>0.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                | , Prior prob.<br>Num seiz<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Found seiz<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>0.0<br>0.0<br>weights $[1 \ 10^1$                             | 13<br>13<br>12<br>12<br>12.6<br>13.0<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA               | nalysis:<br>variance:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:                                                                                                                  | $\begin{array}{c} \mbox{No clusterin}\\ 100\%\\ \mbox{Old method}\\ \hline \mbox{Selectivity}\\ \hline \mbox{41\%}\\ \mbox{41\%}\\ \mbox{41\%}\\ \mbox{43\%}\\ \hline \mbox{41.8\%}\\ \hline \mbox{41.8\%}\\ \hline \mbox{41.0\%}\\ \hline \mbox{1.1\%}\\ \hline \mbox{Optimal set}\\ \mbox{No clusterin}\\ \mbox{100\%}\\ \mbox{Old method}\\ \hline \mbox{Selectivity}\\ \hline \end{array}$ | Prior prob.           Num seiz           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           11           12           13           14           15           16           17           18           19           11           11           11           11           11           12 | Found seiz<br>9<br>9<br>9<br>9<br>9.0<br>0.0<br>0.0<br>weights [1 10 <sup>1</sup><br>Found seiz                | 13<br>13<br>12<br>12<br>12.6<br>13.0<br>0.5<br><sup>5</sup> ]<br>Found non seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA               | nalysis:<br>variance:<br>:<br>:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>82%<br>82.0%<br>82.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>:<br>Sensitivity<br>73%                                                    |                                                                                                                                                                                                                                                                                                                                                                                                | s, Prior prob.<br>Num seiz<br>11<br>11<br>11<br>11<br>11<br>11<br>0<br>g<br>, Prior prob.<br>Num seiz<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Found seiz<br>9<br>9<br>9<br>9<br>9.0<br>9.0<br>0.0<br>weights [1 10 <sup>1</sup><br>Found seiz<br>8           | 13<br>13<br>12<br>12<br>12.6<br>13.0<br>0.5<br>5<br>5<br>Found non seiz<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA               | nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>82%<br>82.0%<br>0.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>73%                                                               |                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>Prior prob.</li> <li>Num seiz</li> <li>11</li> <li>11</li> <li>11</li> <li>11</li> <li>11</li> <li>11</li> <li>0</li> <li>g</li> <li>Prior prob.</li> <li>Num seiz</li> <li>11</li> <li>11</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Found seiz<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>0.0<br>0.0<br>0.0<br>0.                                       | 13<br>13<br>12<br>12<br>12.6<br>13.0<br>0.5<br>5<br>5<br>Found non seiz<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA               | nalysis:<br>variance:<br>:<br>:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>82.0%<br>82.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>: |                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>Prior prob.</li> <li>Num seiz</li> <li>11</li> <li>11</li> <li>11</li> <li>11</li> <li>11</li> <li>11</li> <li>0</li> <li>g</li> <li>Prior prob.</li> <li>Num seiz</li> <li>11</li> <li>11</li> <li>11</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Found seiz<br>9<br>9<br>9<br>9<br>9<br>9.0<br>0.0<br>0.0<br>weights [1 $10^1$<br>Found seiz<br>8<br>8<br>9     | $ \begin{array}{r}     13 \\     13 \\     12 \\     12 \\     12.6 \\     13.0 \\     0.5 \\ \end{array} $ Found non seiz $ \begin{array}{r}     5 \\     5 \\     5 \\     5 \\   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA               | nalysis:<br>variance:<br>:<br>:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>82.0%<br>0.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>:<br>Sensitivity<br>73%<br>73%<br>73%<br>82%                                       |                                                                                                                                                                                                                                                                                                                                                                                                | s, Prior prob.<br>Num seiz<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>0<br>g<br>s, Prior prob.<br>Num seiz<br>11<br>11<br>11<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Found seiz<br>9<br>9<br>9<br>9<br>9.0<br>9.0<br>0.0<br>0.0<br>Found seiz<br>8<br>8<br>9<br>9                   | $ \begin{array}{r}     13 \\     13 \\     12 \\     12 \\     12.6 \\     13.0 \\     0.5 \\ \end{array} $ Found non seiz $ \begin{array}{r}     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\     5 \\ $ |  |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier | nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>82.0%<br>0.0%<br>82.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>82%<br>82%                                               | $\begin{array}{c} No \ clusterin \\ 100\% \\ Old \ method \\ Selectivity \\ 41\% \\ 41\% \\ 41\% \\ 43\% \\ 41.8\% \\ 41.8\% \\ 41.8\% \\ 41.0\% \\ 1.1\% \\ \hline Optimal \ set \\ No \ clusterin \\ no \ clusterin \\ 00d \ method \\ Selectivity \\ 62\% \\ 64\% \\ 64\% \\ 64\% \\ 64\% \\ \end{array}$                                                                                   | s, Prior prob.<br>Num seiz<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>0<br>g<br>s, Prior prob.<br>Num seiz<br>11<br>11<br>11<br>11<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Found seiz<br>9<br>9<br>9<br>9<br>9<br>9<br>0.0<br>0.0<br>0.0<br>0.0                                           | $     \begin{bmatrix}       13 \\       13 \\       12 \\       12 \\       12.6 \\       13.0 \\       0.5 \\       5       5       5       5       5       $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier | nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>82.0%<br>82.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>82%<br>82%<br>82%<br>82%<br>82%<br>78.4%                         |                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>Prior prob.</li> <li>Num seiz</li> <li>11</li> <li>11</li> <li>11</li> <li>11</li> <li>11</li> <li>11</li> <li>0</li> <li>g</li> <li>Prior prob.</li> <li>Num seiz</li> <li>11</li> <li>11</li> <li>11</li> <li>11</li> <li>11</li> <li>11</li> <li>11</li> <li>11</li> <li>11</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                       | Found seiz<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | $ \begin{array}{r} 13\\ 13\\ 12\\ 12\\ 12.6\\ 13.0\\ 0.5\\ \hline \\ 5\\ 5\\ 5\\ 5\\ 5\\ 5.0\\ \hline \\ 5.0\\ \hline \\ 5.0\\ \hline \\ 5.0\\ \hline \\ \hline \\ \hline \\ 5.0\\ \hline \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier | nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>82%<br>82%<br>82.0%<br>0.0%<br>82.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>82%<br>82%                                               | $\begin{array}{c} No \ clusterin \\ 100\% \\ Old \ method \\ Selectivity \\ 41\% \\ 41\% \\ 41\% \\ 43\% \\ 41.8\% \\ 41.8\% \\ 41.8\% \\ 41.0\% \\ 1.1\% \\ \hline Optimal \ set \\ No \ clusterin \\ no \ clusterin \\ 00d \ method \\ Selectivity \\ 62\% \\ 64\% \\ 64\% \\ 64\% \\ 64\% \\ \end{array}$                                                                                   | s, Prior prob.<br>Num seiz<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>0<br>g<br>s, Prior prob.<br>Num seiz<br>11<br>11<br>11<br>11<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Found seiz<br>9<br>9<br>9<br>9<br>9<br>9<br>0.0<br>0.0<br>0.0<br>0.0                                           | $     \begin{bmatrix}       13 \\       13 \\       12 \\       12 \\       12.6 \\       13.0 \\       0.5 \\       5       5       5       5       5       $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |

### A.2 Patient 14

| Features    | used:       | All features | All features       |            |                |  |  |
|-------------|-------------|--------------|--------------------|------------|----------------|--|--|
| Cluster a   |             |              | Kmeans, 4 clusters |            |                |  |  |
| PLS-DA      |             |              | 70%                |            |                |  |  |
| Classifier: |             | KNN, k = 3   |                    |            |                |  |  |
|             | Sensitivity | Selectivity  | Num seiz           | Found seiz | Found non seiz |  |  |
|             | 77%         | 25%          | 22                 | 17         | 50             |  |  |
|             | 64%         | 28%          | 22                 | 14         | 36             |  |  |
|             | 59%         | 24%          | 22                 | 13         | 42             |  |  |
|             | 59%         | 22%          | 22                 | 13         | 46             |  |  |
|             | 50%         | 20%          | 22                 | 11         | 45             |  |  |
| Mean        | 61.8%       | 23.8%        | 22                 | 13.6       | 43.8           |  |  |
| Median      | 59.0%       | 24.0%        | 22                 | 13.0       | 45.0           |  |  |
| STD         | 9.9%        | 3.0%         | 0                  | 2.2        | 5.2            |  |  |

| Cluster a:                                                                                                                                                                                        | used:                                                                                                                                                                                                                                                                                                       | All features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                             |                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                             | Kmeans, 5 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lusters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                             |                                                                                                                                                                                            |
| PLS-DA Classifier                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                             | 70%<br>KNN k = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                             |                                                                                                                                                                                            |
| Classifier                                                                                                                                                                                        | Sensitivity                                                                                                                                                                                                                                                                                                 | KNN, k = 3<br>Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Num seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Found seiz                                                                                                                                                                  | Found non seiz                                                                                                                                                                             |
|                                                                                                                                                                                                   | 59%                                                                                                                                                                                                                                                                                                         | 28%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13                                                                                                                                                                          | 34                                                                                                                                                                                         |
|                                                                                                                                                                                                   | 59%<br>55%                                                                                                                                                                                                                                                                                                  | 28%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13                                                                                                                                                                          | 34<br>38                                                                                                                                                                                   |
|                                                                                                                                                                                                   | 55%                                                                                                                                                                                                                                                                                                         | 24%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12                                                                                                                                                                          | 39                                                                                                                                                                                         |
|                                                                                                                                                                                                   | 50%                                                                                                                                                                                                                                                                                                         | 24%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12                                                                                                                                                                          | 39                                                                                                                                                                                         |
|                                                                                                                                                                                                   | 50%                                                                                                                                                                                                                                                                                                         | 22%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                             |                                                                                                                                                                                            |
| M                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11                                                                                                                                                                          | 41 38.2                                                                                                                                                                                    |
| Mean                                                                                                                                                                                              | 53.8%                                                                                                                                                                                                                                                                                                       | 23.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11.8                                                                                                                                                                        |                                                                                                                                                                                            |
| Median                                                                                                                                                                                            | 55.0%                                                                                                                                                                                                                                                                                                       | 24.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12.0                                                                                                                                                                        | 39.0                                                                                                                                                                                       |
| STD                                                                                                                                                                                               | 3.8%                                                                                                                                                                                                                                                                                                        | 2.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.8                                                                                                                                                                         | 2.6                                                                                                                                                                                        |
|                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                             |                                                                                                                                                                                            |
| Features                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                             | All features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                             |                                                                                                                                                                                            |
| Cluster a                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                             | Kmeans, 6 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lusters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                             |                                                                                                                                                                                            |
| PLS-DA                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                             | 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                             |                                                                                                                                                                                            |
| Classifier                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                             | KNN, k = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                             |                                                                                                                                                                                            |
|                                                                                                                                                                                                   | Sensitivity                                                                                                                                                                                                                                                                                                 | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Num seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Found seiz                                                                                                                                                                  | Found non seiz                                                                                                                                                                             |
|                                                                                                                                                                                                   | 59%                                                                                                                                                                                                                                                                                                         | 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13                                                                                                                                                                          | 40                                                                                                                                                                                         |
|                                                                                                                                                                                                   | 45%                                                                                                                                                                                                                                                                                                         | 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                          | 30                                                                                                                                                                                         |
|                                                                                                                                                                                                   | 45%                                                                                                                                                                                                                                                                                                         | 21%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                          | 37                                                                                                                                                                                         |
|                                                                                                                                                                                                   | 41%                                                                                                                                                                                                                                                                                                         | 24%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                                                                                                                                                                           | 28                                                                                                                                                                                         |
|                                                                                                                                                                                                   | 41%                                                                                                                                                                                                                                                                                                         | 19%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                                                                                                                                                                           | 39                                                                                                                                                                                         |
| Mean                                                                                                                                                                                              | 46.2%                                                                                                                                                                                                                                                                                                       | 22.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.2                                                                                                                                                                        | 34.8                                                                                                                                                                                       |
| Median                                                                                                                                                                                            | 45.0%                                                                                                                                                                                                                                                                                                       | 24.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.0                                                                                                                                                                        | 37.0                                                                                                                                                                                       |
| STD                                                                                                                                                                                               | 7.4%                                                                                                                                                                                                                                                                                                        | 2.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.6                                                                                                                                                                         | 5.4                                                                                                                                                                                        |
|                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                           |                                                                                                                                                                                            |
| Features                                                                                                                                                                                          | used.                                                                                                                                                                                                                                                                                                       | All features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                             |                                                                                                                                                                                            |
| Cluster a                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                             | Kmeans, 4 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lustors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                             |                                                                                                                                                                                            |
| PLS-DA                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                             | 80%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1481618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                             |                                                                                                                                                                                            |
| Classifier:                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                             | $^{80\%}_{\text{KNN}, k = 3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                             |                                                                                                                                                                                            |
| Classifier                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Th. 1                                                                                                                                                                       | <b>D</b>                                                                                                                                                                                   |
|                                                                                                                                                                                                   | Sensitivity                                                                                                                                                                                                                                                                                                 | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Num seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Found seiz                                                                                                                                                                  | Found non seiz                                                                                                                                                                             |
|                                                                                                                                                                                                   | 68%                                                                                                                                                                                                                                                                                                         | 22%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                                                                                                                                                                          | 54                                                                                                                                                                                         |
|                                                                                                                                                                                                   | 64%                                                                                                                                                                                                                                                                                                         | 32%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14                                                                                                                                                                          | 30                                                                                                                                                                                         |
|                                                                                                                                                                                                   | 64%                                                                                                                                                                                                                                                                                                         | 24%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14                                                                                                                                                                          | 45                                                                                                                                                                                         |
|                                                                                                                                                                                                   | 50%                                                                                                                                                                                                                                                                                                         | 18%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11                                                                                                                                                                          | 51                                                                                                                                                                                         |
|                                                                                                                                                                                                   | 45%                                                                                                                                                                                                                                                                                                         | 17%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                          | 49                                                                                                                                                                                         |
| Mean                                                                                                                                                                                              | 58.2%                                                                                                                                                                                                                                                                                                       | 22.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12.8                                                                                                                                                                        | 45.8                                                                                                                                                                                       |
| Median                                                                                                                                                                                            | 64.0%                                                                                                                                                                                                                                                                                                       | 22.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.0                                                                                                                                                                        | 49.0                                                                                                                                                                                       |
|                                                                                                                                                                                                   | 10 107                                                                                                                                                                                                                                                                                                      | C 007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                             | 9.4                                                                                                                                                                                        |
| Features<br>Cluster a                                                                                                                                                                             | nalysis:                                                                                                                                                                                                                                                                                                    | 6.0%<br>All features<br>Kmeans, 5 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>clusters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.2                                                                                                                                                                         | 9.4                                                                                                                                                                                        |
| Cluster a<br>PLS-DA                                                                                                                                                                               | used:<br>nalysis:<br>variance:                                                                                                                                                                                                                                                                              | All features<br>Kmeans, 5 c<br>80%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lusters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.2                                                                                                                                                                         | 9.4                                                                                                                                                                                        |
| Features<br>Cluster a                                                                                                                                                                             | used:<br>nalysis:<br>variance:<br>:                                                                                                                                                                                                                                                                         | All features<br>Kmeans, 5 c<br>80%<br>KNN, k = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lusters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                             |                                                                                                                                                                                            |
| Features<br>Cluster a<br>PLS-DA                                                                                                                                                                   | used:<br>nalysis:<br>variance:<br>:<br>Sensitivity                                                                                                                                                                                                                                                          | All features<br>Kmeans, 5 c<br>80%<br>KNN, k = 3<br>Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lusters<br>Num seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Found seiz                                                                                                                                                                  | Found non seiz                                                                                                                                                                             |
| Features<br>Cluster a<br>PLS-DA                                                                                                                                                                   | used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>68%                                                                                                                                                                                                                                                   | All features<br>Kmeans, 5 c<br>80%<br>KNN, k = 3<br>Selectivity<br>30%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lusters<br>Num seiz<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Found seiz                                                                                                                                                                  | Found non seiz<br>35                                                                                                                                                                       |
| Features<br>Cluster a<br>PLS-DA                                                                                                                                                                   | used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>68%<br>55%                                                                                                                                                                                                                                            | All features<br>Kmeans, 5 c<br>80%<br>KNN, k = 3<br>Selectivity<br>30%<br>27%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lusters<br>Num seiz<br>22<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Found seiz<br>15<br>12                                                                                                                                                      | Found non seiz<br>35<br>33                                                                                                                                                                 |
| Features<br>Cluster a<br>PLS-DA                                                                                                                                                                   | used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>68%<br>55%<br>50%                                                                                                                                                                                                                                     | All features<br>Kmeans, 5 c<br>80%<br>KNN, k = 3<br>Selectivity<br>30%<br>27%<br>24%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Num seiz<br>22<br>22<br>22<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Found seiz<br>15<br>12<br>11                                                                                                                                                | Found non seiz<br>35<br>33<br>34                                                                                                                                                           |
| Features<br>Cluster a<br>PLS-DA                                                                                                                                                                   | used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>68%<br>55%<br>50%<br>50%                                                                                                                                                                                                                              | All features<br>Kmeans, 5 c<br>80%<br>KNN, k = 3<br>Selectivity<br>30%<br>27%<br>24%<br>21%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Num seiz<br>22<br>22<br>22<br>22<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Found seiz<br>15<br>12<br>11<br>11                                                                                                                                          | Found non seiz<br>35<br>33<br>34<br>41                                                                                                                                                     |
| Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                                                                                                     | used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>68%<br>55%<br>50%<br>50%<br>32%                                                                                                                                                                                                                       | All features<br>Kmeans, 5 c<br>80%<br>KNN, k = 3<br>Selectivity<br>30%<br>27%<br>24%<br>21%<br>19%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Num seiz<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Found seiz<br>15<br>12<br>11<br>11<br>7                                                                                                                                     | Found non seiz<br>35<br>33<br>34<br>41<br>29                                                                                                                                               |
| Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                                                                                                     | used:<br>nalysis:<br>variance:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:                                                                                                                                                                                    | All features<br>Kmeans, 5 c<br>80%<br>KNN, k = 3<br>Selectivity<br>30%<br>27%<br>24%<br>21%<br>19%<br>24.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Num seiz<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Found seiz<br>15<br>12<br>11<br>11<br>7<br>11.2                                                                                                                             | Found non seiz<br>35<br>33<br>34<br>41<br>29<br>34.4                                                                                                                                       |
| Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median                                                                                                                                   | used:<br>nalysis:<br>variance:<br>:<br>55%<br>50%<br>50%<br>50%<br>32%<br>51.0%<br>50.0%                                                                                                                                                                                                                    | $\begin{array}{c} \mbox{All features} \\ \mbox{Kmeans, 5 c} \\ \mbox{80\%} \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \mbox{30\%} \\ \mbox{217\%} \\ \mbox{24\%} \\ \mbox{24\%} \\ \mbox{21\%} \\ \mbox{24.2\%} \\ \mbox{24.0\%} \\ \mbox{24.0\%} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lusters<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Found seiz<br>15<br>12<br>11<br>11<br>7<br>11.2<br>11.0                                                                                                                     | Found non seiz<br>35<br>33<br>34<br>41<br>29<br>34.4<br>34.0                                                                                                                               |
| Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                                                                                                     | used:<br>nalysis:<br>variance:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:                                                                                                                                                                                    | All features<br>Kmeans, 5 c<br>80%<br>KNN, k = 3<br>Selectivity<br>30%<br>27%<br>24%<br>21%<br>19%<br>24.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Num seiz<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Found seiz<br>15<br>12<br>11<br>11<br>7<br>11.2                                                                                                                             | Found non seiz<br>35<br>33<br>34<br>41<br>29<br>34.4                                                                                                                                       |
| Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD                                                                                                                            | used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>68%<br>55%<br>50%<br>32%<br>51.0%<br>50.0%<br>12.9%                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lusters<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Found seiz<br>15<br>12<br>11<br>11<br>7<br>11.2<br>11.0                                                                                                                     | Found non seiz<br>35<br>33<br>34<br>41<br>29<br>34.4<br>34.0                                                                                                                               |
| Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features                                                                                                                | used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>68%<br>55%<br>50%<br>50%<br>32%<br>51.0%<br>50.0%<br>12.9%<br>used:                                                                                                                                                                                   | All features<br>Kmeans, 5 c<br>80%<br>KNN, k = 3<br>Selectivity<br>30%<br>24%<br>21%<br>19%<br>24.2%<br>24.2%<br>24.0%<br>4.4%<br>All features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Num seiz           22           22           22           22           22           22           22           22           22           22           22           22           22           0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Found seiz<br>15<br>12<br>11<br>11<br>7<br>11.2<br>11.0                                                                                                                     | Found non seiz<br>35<br>33<br>34<br>41<br>29<br>34.4<br>34.0                                                                                                                               |
| Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a                                                                                                   | used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>68%<br>55%<br>50%<br>50%<br>32%<br>51.0%<br>50.0%<br>12.9%<br>used:<br>nalysis:                                                                                                                                                                       | All features<br>Kmeans, 5 c<br>80%<br>KNN, k = 3<br>Selectivity<br>30%<br>27%<br>24%<br>21%<br>19%<br>24.2%<br>24.2%<br>24.0%<br>4.4%<br>All features<br>Kmeans, 6 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Num seiz           22           22           22           22           22           22           22           22           22           22           22           22           22           0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Found seiz<br>15<br>12<br>11<br>11<br>7<br>11.2<br>11.0                                                                                                                     | Found non seiz<br>35<br>33<br>34<br>41<br>29<br>34.4<br>34.0                                                                                                                               |
| Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                         | used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>68%<br>55%<br>50%<br>32%<br>51.0%<br>50.0%<br>32%<br>51.0%<br>12.9%<br>used:<br>nalysis:<br>variance:                                                                                                                                                 | All features<br>Kmeans, 5 c<br>80%<br>KNN, k = 3<br>Selectivity<br>300%<br>27%<br>24%<br>21%<br>19%<br>24.2%<br>24.2%<br>24.0%<br>4.4%<br>All features<br>Kmeans, 6 c<br>80%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Num seiz           22           22           22           22           22           22           22           22           22           22           22           22           22           0           dusters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Found seiz<br>15<br>12<br>11<br>11<br>7<br>11.2<br>11.0                                                                                                                     | Found non seiz<br>35<br>33<br>34<br>41<br>29<br>34.4<br>34.0                                                                                                                               |
| Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a                                                                                                   | used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>68%<br>55%<br>50%<br>32%<br>51.0%<br>50.0%<br>32%<br>51.0%<br>12.9%<br>used:<br>nalysis:<br>variance:                                                                                                                                                 | All features<br>Kmeans, 5 c<br>80%<br>KNN, k = 3<br>Selectivity<br>30%<br>24%<br>21%<br>19%<br>24.2%<br>24.2%<br>24.0%<br>4.4%<br>All features<br>Kmeans, 6 c<br>80%<br>KNN, k = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Num seiz           22           22           22           22           22           22           22           22           22           22           22           22           22           0           dusters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Found seiz<br>15<br>12<br>11<br>11<br>7<br>11.2<br>11.0                                                                                                                     | Found non seiz<br>35<br>33<br>34<br>41<br>29<br>34.4<br>34.0                                                                                                                               |
| Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                         | used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>68%<br>55%<br>50%<br>50%<br>32%<br>51.0%<br>50.0%<br>12.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity                                                                                                                                      | All features<br>Kmeans, 5 c<br>80%<br>KNN, k = 3<br>Selectivity<br>30%<br>27%<br>24%<br>24%<br>24.2%<br>24.2%<br>24.2%<br>24.0%<br>4.4%<br>All features<br>Kmeans, 6 c<br>80%<br>KNN, k = 3<br>Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lusters<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>0<br>lusters<br>Num seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Found seiz<br>15<br>12<br>11<br>11<br>7<br>11.2<br>11.0<br>2.9<br>Found seiz                                                                                                | Found non seiz<br>35<br>33<br>34<br>41<br>29<br>34.4<br>34.0<br>4.3<br>Found non seiz                                                                                                      |
| Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                         | used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>68%<br>55%<br>50%<br>32%<br>51.0%<br>50.0%<br>12.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>55%                                                                                                                                      | All features<br>Kmeans, 5 c<br>80%<br>KNN, k = 3<br>Selectivity<br>30%<br>27%<br>24%<br>24%<br>24.2%<br>24.2%<br>24.2%<br>24.0%<br>4.4%<br>All features<br>Kmeans, 6 c<br>80%<br>KNN, k = 3<br>Selectivity<br>31%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Num seiz           22           22           22           22           22           22           22           22           22           0           lusters           Num seiz           22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Found seiz<br>15<br>12<br>11<br>11<br>7<br>11.2<br>11.0<br>2.9                                                                                                              | Found non seiz<br>35<br>33<br>41<br>29<br>34.4<br>34.0<br>4.3<br>Found non seiz<br>27                                                                                                      |
| Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                         | used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>68%<br>55%<br>50%<br>50%<br>32%<br>51.0%<br>50.0%<br>12.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>55%<br>50%                                                                                                                        | All features<br>Kmeans, 5 c<br>80%<br>KNN, k = 3<br>Selectivity<br>30%<br>24%<br>24%<br>24%<br>24.2%<br>24.2%<br>24.0%<br>4.4%<br>All features<br>Kmeans, 6 c<br>80%<br>KNN, k = 3<br>Selectivity<br>31%<br>22%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Num seiz           22           22           22           22           22           22           22           22           22           0           lusters           Num seiz           22           22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Found seiz<br>15<br>12<br>11<br>11<br>7<br>11.2<br>11.0<br>2.9<br>Found seiz<br>12<br>11                                                                                    | Found non seiz<br>35<br>33<br>34<br>41<br>29<br>34.4<br>34.0<br>4.3<br>Found non seiz<br>27<br>38                                                                                          |
| Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                         | used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>68%<br>55%<br>50%<br>32%<br>51.0%<br>50.0%<br>12.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>55%<br>50%<br>45%                                                                                                                        | All features<br>Kmeans, 5 c<br>80%<br>KNN, k = 3<br>Selectivity<br>27%<br>24%<br>24%<br>24.2%<br>24.2%<br>24.2%<br>24.0%<br>4.4%<br>All features<br>Kmeans, 6 c<br>80%<br>KNN, k = 3<br>Selectivity<br>31%<br>22%<br>27%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Num seiz           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22                                                                                                                                                                                                                                                                                                                                                                                                                                            | Found seiz<br>15<br>12<br>11<br>11<br>7<br>11.2<br>11.0<br>2.9<br>Found seiz<br>12<br>11<br>10                                                                              | Found non seiz<br>35<br>33<br>34<br>41<br>29<br>34.4<br>34.0<br>4.3<br>Found non seiz<br>27<br>38<br>27                                                                                    |
| Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                         | used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>68%<br>55%<br>50%<br>32%<br>51.0%<br>50.0%<br>12.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>55%<br>50%<br>45%                                                                                                                        | All features<br>Kmeans, 5 c<br>80%<br>KNN, k = 3<br>Selectivity<br>30%<br>27%<br>24%<br>24,2%<br>24.2%<br>24.0%<br>4.4%<br>All features<br>Kmeans, 6 c<br>80%<br>KNN, k = 3<br>Selectivity<br>31%<br>22%<br>27%<br>23%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Num seiz           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22                                                                                                                                                                                                                                                                                             | Found seiz<br>15<br>12<br>11<br>11<br>7<br>11.2<br>11.0<br>2.9<br>Found seiz<br>12<br>11<br>10<br>10                                                                        | Found non seiz<br>35<br>33<br>44<br>41<br>29<br>34.4<br>34.0<br>4.3<br>Found non seiz<br>27<br>38<br>27<br>34                                                                              |
| Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                                   | used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>68%<br>55%<br>50%<br>32%<br>51.0%<br>50.0%<br>12.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>55%<br>50%<br>45%<br>36%                                                                                                                 | All features<br>Kmeans, 5 c<br>80%<br>KNN, k = 3<br>Selectivity<br>30%<br>24%<br>21%<br>19%<br>24.2%<br>24.2%<br>24.0%<br>4.4%<br>4.4%<br>All features<br>Kmeans, 6 c<br>80%<br>KNN, k = 3<br>Selectivity<br>31%<br>22%<br>27%<br>23%<br>21%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Num seiz           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22                                                                                                                                                                                     | Found seiz<br>15<br>12<br>11<br>11<br>7<br>11.2<br>11.0<br>2.9<br>Found seiz<br>12<br>11<br>10<br>8                                                                         | Found non seiz<br>35<br>33<br>44<br>29<br>34.4<br>34.0<br>4.3<br>Found non seiz<br>27<br>38<br>27<br>34<br>34<br>30                                                                        |
| Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Mean                                                           | used:<br>nalysis:<br>variance:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:                                                                                                                                                                                    | $\begin{array}{c} \mbox{All features} \\ \mbox{Kmeans, 5 c} \\ \mbox{80\%} \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \mbox{30\%} \\ \mbox{24\%} \\ \mbox{24\%} \\ \mbox{24\%} \\ \mbox{24.2\%} \\ \mbox{24.2\%} \\ \mbox{24.2\%} \\ \mbox{4.4\%} \\ \mbox{All features} \\ \mbox{Kmeans, 6 c} \\ \mbox{80\%} \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \mbox{31\%} \\ \mbox{22\%} \\ \mbox{22\%} \\ \mbox{23\%} \\ \mbox{21\%} \\ \mbox{21\%} \\ \mbox{24.8\%} \\ \mbox{24.8\%} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Num seiz           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22                                                                                                                                                                                                                                                                                                                                                              | Found seiz<br>15<br>12<br>11<br>11<br>7<br>11.2<br>11.0<br>2.9<br>Found seiz<br>12<br>11<br>10<br>10<br>8<br>10.2                                                           | Found non seiz<br>35<br>33<br>44<br>29<br>34.4<br>34.0<br>4.3<br>Found non seiz<br>27<br>38<br>27<br>34<br>30<br>31.2                                                                      |
| Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Mean<br>Mean                                                   | used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>68%<br>55%<br>50%<br>32%<br>51.0%<br>50.0%<br>12.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>55%<br>50%<br>45%<br>45%<br>45%<br>45%<br>45%<br>45.0%                                                                                   | $\begin{array}{c} \mbox{All features} \\ \mbox{Kmeans, 5 c} \\ \mbox{80\%} \\ \mbox{KNN, k = 3} \\ \mbox{27\%} \\ \mbox{24\%} \\ \mbox{24\%} \\ \mbox{24.2\%} \\ \mbox{24.2\%} \\ \mbox{24.0\%} \\ \mbox{24.4\%} \\ \mbox{24.0\%} \\ \mbox{All features} \\ \mbox{Kmeans, 6 c} \\ \mbox{80\%} \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \mbox{31\%} \\ \mbox{22\%} \\ \mbox{23\%} \\ \mbox{21\%} \\ \mbox{21\%} \\ \mbox{24.8\%} \\ \mbox{23.0\%} \\ \mbox{23.0\%} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Num seiz           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22                                                                                                                                                                                     | Found seiz<br>15<br>12<br>11<br>11<br>7<br>11.2<br>11.0<br>2.9<br>Found seiz<br>12<br>11<br>10<br>8                                                                         | Found non seiz<br>35<br>33<br>44<br>29<br>34.4<br>34.0<br>4.3<br>Found non seiz<br>27<br>38<br>27<br>34<br>30                                                                              |
| Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Mean                                                           | used:<br>nalysis:<br>variance:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:                                                                                                                                                                                    | $\begin{array}{c} \mbox{All features} \\ \mbox{Kmeans, 5 c} \\ \mbox{80\%} \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \mbox{30\%} \\ \mbox{24\%} \\ \mbox{24\%} \\ \mbox{24\%} \\ \mbox{24.2\%} \\ \mbox{24.2\%} \\ \mbox{24.2\%} \\ \mbox{4.4\%} \\ \mbox{All features} \\ \mbox{Kmeans, 6 c} \\ \mbox{80\%} \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \mbox{31\%} \\ \mbox{22\%} \\ \mbox{22\%} \\ \mbox{23\%} \\ \mbox{21\%} \\ \mbox{21\%} \\ \mbox{24.8\%} \\ \mbox{24.8\%} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Num seiz           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22                                                                                                                                                                                                                                                                                                                                                              | Found seiz<br>15<br>12<br>11<br>11<br>7<br>11.2<br>11.0<br>2.9<br>Found seiz<br>12<br>11<br>10<br>10<br>8<br>10.2                                                           | Found non seiz<br>35<br>33<br>44<br>29<br>34.4<br>34.0<br>4.3<br>Found non seiz<br>27<br>38<br>27<br>34<br>30<br>31.2                                                                      |
| Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Mean<br>Mean                                                   | used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>68%<br>55%<br>50%<br>32%<br>51.0%<br>50.0%<br>12.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>55%<br>50%<br>45%<br>45%<br>45%<br>45%<br>45%<br>45.0%                                                                                   | $\begin{array}{c} \mbox{All features} \\ \mbox{Kmeans, 5 c} \\ \mbox{80\%} \\ \mbox{KNN, k = 3} \\ \mbox{27\%} \\ \mbox{24\%} \\ \mbox{24\%} \\ \mbox{24.2\%} \\ \mbox{24.2\%} \\ \mbox{24.0\%} \\ \mbox{24.4\%} \\ \mbox{24.0\%} \\ \mbox{All features} \\ \mbox{Kmeans, 6 c} \\ \mbox{80\%} \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \mbox{31\%} \\ \mbox{22\%} \\ \mbox{23\%} \\ \mbox{21\%} \\ \mbox{21\%} \\ \mbox{24.8\%} \\ \mbox{23.0\%} \\ \mbox{23.0\%} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Num seiz           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22 <td>Found seiz<br/>15<br/>12<br/>11<br/>11<br/>7<br/>11.2<br/>11.0<br/>2.9<br/>Found seiz<br/>12<br/>11<br/>10<br/>10<br/>8<br/>10.2<br/>10.0</td> <td>Found non seiz<br/>35<br/>33<br/>41<br/>29<br/>34.4<br/>34.0<br/>4.3<br/>Found non seiz<br/>27<br/>38<br/>27<br/>34<br/>30<br/>31.2<br/>30.0</td> | Found seiz<br>15<br>12<br>11<br>11<br>7<br>11.2<br>11.0<br>2.9<br>Found seiz<br>12<br>11<br>10<br>10<br>8<br>10.2<br>10.0                                                   | Found non seiz<br>35<br>33<br>41<br>29<br>34.4<br>34.0<br>4.3<br>Found non seiz<br>27<br>38<br>27<br>34<br>30<br>31.2<br>30.0                                                              |
| Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Mean<br>Mean                                                   | used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>68%<br>55%<br>50%<br>32%<br>51.0%<br>51.0%<br>51.0%<br>50.0%<br>12.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>55%<br>50%<br>45%<br>45%<br>45%<br>36%<br>45%<br>36%<br>45.0%<br>7.0%                                                  | $\begin{array}{c} \mbox{All features} \\ \mbox{Kmeans, 5 c} \\ \mbox{80\%} \\ \mbox{KNN, k = 3} \\ \mbox{27\%} \\ \mbox{24\%} \\ \mbox{24\%} \\ \mbox{24.2\%} \\ \mbox{24.2\%} \\ \mbox{24.0\%} \\ \mbox{24.4\%} \\ \mbox{24.0\%} \\ \mbox{All features} \\ \mbox{Kmeans, 6 c} \\ \mbox{80\%} \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \mbox{31\%} \\ \mbox{22\%} \\ \mbox{23\%} \\ \mbox{21\%} \\ \mbox{21\%} \\ \mbox{24.8\%} \\ \mbox{23.0\%} \\ \mbox{23.0\%} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Num seiz           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22 <td>Found seiz<br/>15<br/>12<br/>11<br/>11<br/>7<br/>11.2<br/>11.0<br/>2.9<br/>Found seiz<br/>12<br/>11<br/>10<br/>10<br/>8<br/>10.2<br/>10.0</td> <td>Found non seiz<br/>35<br/>33<br/>41<br/>29<br/>34.4<br/>34.0<br/>4.3<br/>Found non seiz<br/>27<br/>38<br/>27<br/>34<br/>30<br/>31.2<br/>30.0</td> | Found seiz<br>15<br>12<br>11<br>11<br>7<br>11.2<br>11.0<br>2.9<br>Found seiz<br>12<br>11<br>10<br>10<br>8<br>10.2<br>10.0                                                   | Found non seiz<br>35<br>33<br>41<br>29<br>34.4<br>34.0<br>4.3<br>Found non seiz<br>27<br>38<br>27<br>34<br>30<br>31.2<br>30.0                                                              |
| Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Features                          | used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>68%<br>55%<br>50%<br>32%<br>51.0%<br>50.0%<br>12.9%<br>used:<br>malysis:<br>variance:<br>:<br>Sensitivity<br>55%<br>50%<br>45%<br>45%<br>45%<br>45%<br>45%<br>46.2%<br>46.2%<br>used:                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Num seiz           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22                                                                                                                                 | Found seiz<br>15<br>12<br>11<br>11<br>7<br>11.2<br>11.0<br>2.9<br>Found seiz<br>12<br>11<br>10<br>10<br>8<br>10.2<br>10.0                                                   | Found non seiz<br>35<br>33<br>41<br>29<br>34.4<br>34.0<br>4.3<br>Found non seiz<br>27<br>38<br>27<br>38<br>27<br>34<br>30<br>31.2<br>30.0                                                  |
| Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>STD                  | used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>68%<br>55%<br>50%<br>32%<br>51.0%<br>50.0%<br>12.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>55%<br>50%<br>45%<br>45%<br>45%<br>45%<br>36%<br>7.0%<br>used:<br>nalysis:                                                               | All features<br>Kmeans, 5 c<br>80%<br>KNN, k = 3<br>Selectivity<br>30%<br>27%<br>24%<br>24,2%<br>24.2%<br>24.0%<br>4.4%<br>All features<br>Kmeans, 6 c<br>80%<br>KNN, k = 3<br>Selectivity<br>31%<br>22%<br>27%<br>23%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Num seiz           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22                                                                                                                                 | Found seiz<br>15<br>12<br>11<br>11<br>7<br>11.2<br>11.0<br>2.9<br>Found seiz<br>12<br>11<br>10<br>10<br>8<br>10.2<br>10.0                                                   | Found non seiz<br>35<br>33<br>44<br>41<br>29<br>34.4<br>34.0<br>4.3<br>Found non seiz<br>27<br>38<br>27<br>34<br>30<br>31.2<br>30.0                                                        |
| Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                     | used:<br>nalysis:<br>variance:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:                                                                                                                                                                                    | All features<br>Kmeans, 5 c<br>80%<br>KNN, k = 3<br>Selectivity<br>30%<br>24%<br>21%<br>19%<br>24.2%<br>24.2%<br>24.0%<br>4.4%<br>All features<br>Kmeans, 6 c<br>80%<br>KNN, k = 3<br>Selectivity<br>31%<br>22%<br>27%<br>23%<br>21%<br>23%<br>21%<br>23%<br>23%<br>21%<br>24.8%<br>23.0%<br>4.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Num seiz           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           23           24                                                                                                                                 | Found seiz<br>15<br>12<br>11<br>11<br>7<br>11.2<br>11.0<br>2.9<br>Found seiz<br>12<br>11<br>10<br>8<br>10.2<br>10.0<br>1.5                                                  | Found non seiz<br>35<br>33<br>44<br>41<br>29<br>34.4<br>34.0<br>4.3<br>Found non seiz<br>27<br>38<br>27<br>34<br>30<br>31.2<br>30.0                                                        |
| Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>STD                  | used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>68%<br>55%<br>50%<br>32%<br>51.0%<br>50.0%<br>12.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>55%<br>45%<br>45%<br>45%<br>45%<br>45%<br>45%<br>45%<br>45%<br>45%                                                                       | All features<br>Kmeans, 5 c<br>80%<br>KNN, k = 3<br>Selectivity<br>27%<br>24%<br>21%<br>19%<br>24.2%<br>24.2%<br>24.2%<br>24.2%<br>4.4%<br>All features<br>KNN, k = 3<br>Selectivity<br>31%<br>22%<br>27%<br>23%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%                                                                                                                                                                                                                                                                                                         | Num seiz           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           23           24           25                                                                                                                                 | Found seiz<br>15<br>12<br>11<br>11<br>7<br>11.2<br>11.0<br>2.9<br>Found seiz<br>12<br>11<br>10<br>10<br>8<br>10.2<br>10.0<br>1.5<br>s [1 1]                                 | Found non seiz<br>35<br>33<br>34<br>41<br>29<br>34.4<br>34.0<br>4.3<br>Found non seiz<br>27<br>38<br>27<br>34<br>30<br>31.2<br>30.0<br>4.8                                                 |
| Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                     | used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>68%<br>55%<br>50%<br>32%<br>51.0%<br>50.0%<br>12.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>55%<br>50%<br>45%<br>45%<br>45%<br>45%<br>45%<br>45%<br>36%<br>7.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>Sensitivity | All features<br>Kmeans, 5 c<br>80%<br>KNN, k = 3<br>Selectivity<br>30%<br>27%<br>24%<br>24%<br>24.2%<br>24.2%<br>24.0%<br>4.4%<br>All features<br>Kmeans, 6 c<br>80%<br>KNN, k = 3<br>Selectivity<br>31%<br>22%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>22%<br>23%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>31%<br>3                                                                                                                                                                                                                                                                                                     | Num seiz           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           0           lusters           prob. weight:           Num seiz                                                                                                                                                                                                                                                           | Found seiz<br>15<br>12<br>11<br>11<br>7<br>11.2<br>11.0<br>2.9<br>Found seiz<br>12<br>11<br>10<br>10<br>8<br>10.2<br>10.0<br>1.5<br>s [1 1]<br>Found seiz                   | Found non seiz<br>35<br>33<br>34<br>41<br>29<br>34.4<br>34.0<br>4.3<br>Found non seiz<br>27<br>38<br>27<br>38<br>27<br>34<br>30<br>31.2<br>30.0<br>4.8<br>Found non seiz                   |
| Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                     | used:<br>nalysis:<br>variance:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:                                                                                                                                                                                    | $\begin{array}{c} \mbox{All features} \\ \mbox{Kmeans, 5 c} \\ \mbox{80\%} \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \mbox{30\%} \\ \mbox{27\%} \\ \mbox{24\%} \\ \mbox{24\%} \\ \mbox{24.2\%} \\ \mbox{24.2\%} \\ \mbox{24.2\%} \\ \mbox{24.2\%} \\ \mbox{24.0\%} \\ \mbox{4.4\%} \\ \mbox{All features} \\ \mbox{Kmeans, 6 c} \\ \mbox{80\%} \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \mbox{31\%} \\ \mbox{22\%} \\ \mbox{27\%} \\ \mbox{27\%} \\ \mbox{27\%} \\ \mbox{23\%} \\ \mbox{21\%} \\ \mbox{21\%} \\ \mbox{23\%} \\ \mbox{21\%} \\ \mbox{21\%} \\ \mbox{23\%} \\ \mbox{21\%} \\ \mbox{23\%} \\ \mbox{21\%} \\ \mbox{23\%} \\ \mbox{24.8\%} \\ \mbox{24.8\%} \\ \mbox{24.8\%} \\ \mbox{24.8\%} \\ \mbox{24.8\%} \\ \mbox{24.8\%} \\ \mbox{20\%} \\ \mbox{20\%} \\ \mbox{21\%} \\ \m$   | Num seiz           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22                                                                                                                                                                                                  | Found seiz<br>15<br>12<br>11<br>11<br>7<br>11.2<br>11.0<br>2.9<br>Found seiz<br>12<br>11<br>10<br>8<br>10.2<br>10.0<br>1.5<br>s [1 1]<br>Found seiz<br>15                   | Found non seiz<br>35<br>33<br>41<br>29<br>34.4<br>34.0<br>4.3<br>Found non seiz<br>27<br>38<br>27<br>38<br>27<br>34<br>30<br>31.2<br>30.0<br>4.8<br>Found non seiz<br>34                   |
| Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                     | used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>68%<br>55%<br>50%<br>32%<br>51.0%<br>50.0%<br>12.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>55%<br>45%<br>45%<br>45%<br>45%<br>45%<br>45%<br>45%<br>45%<br>45%                                                                       | All features<br>Kmeans, 5 c<br>80%<br>KNN, k = 3<br>Selectivity<br>30%<br>27%<br>24%<br>21%<br>19%<br>24.2%<br>24.2%<br>24.2%<br>24.2%<br>4.4%<br>All features<br>Kmeans, 6 c<br>80%<br>KNN, k = 3<br>Selectivity<br>31%<br>22%<br>27%<br>23%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Num seiz           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           0           lusters           prob. weight:           Num seiz           22           22           22                                                                                                                                                                                                                                                                                                                                                                                             | Found seiz<br>15<br>12<br>11<br>11<br>7<br>11.2<br>11.0<br>2.9<br>Found seiz<br>12<br>11<br>10<br>8<br>10.2<br>10.0<br>1.5<br>s [1 1]<br>Found seiz<br>15                   | Found non seiz<br>35<br>33<br>34<br>41<br>29<br>34.4<br>34.0<br>4.3<br>Found non seiz<br>27<br>38<br>27<br>34<br>30<br>31.2<br>30.0<br>4.8<br>Found non seiz<br>34<br>46                   |
| Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                     | used:<br>nalysis:<br>variance:<br>Sensitivity<br>68%<br>55%<br>50%<br>32%<br>51.0%<br>50.0%<br>12.9%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>55%<br>50%<br>45%<br>45%<br>45%<br>45%<br>45%<br>45%<br>36%<br>45.0%<br>7.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>68%<br>68%<br>64% | All features<br>Kmeans, 5 c<br>80%<br>KNN, k = 3<br>Selectivity<br>30%<br>27%<br>24%<br>24%<br>24.2%<br>24.2%<br>24.2%<br>4.4%<br>All features<br>Kmeans, 6 c<br>80%<br>KNN, k = 3<br>Selectivity<br>31%<br>22%<br>21%<br>21%<br>21%<br>21%<br>21%<br>23%<br>21%<br>23.0%<br>4.1%<br>All features<br>Kmeans, 5 c<br>70%<br>QDA, Prior<br>Selectivity<br>31%<br>25%<br>25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Num seiz           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           0           lusters           prob. weight:           Num seiz           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22                                                                                                                                                                                                                    | Found seiz<br>15<br>12<br>11<br>11<br>7<br>11.2<br>11.0<br>2.9<br>Found seiz<br>12<br>11<br>10<br>10<br>8<br>10.2<br>10.0<br>1.5<br>s [1 1]<br>Found seiz<br>15<br>14       | Found non seiz<br>35<br>33<br>34<br>41<br>29<br>34.4<br>34.0<br>4.3<br>Found non seiz<br>27<br>38<br>27<br>38<br>27<br>34<br>30<br>31.2<br>30.0<br>4.8<br>Found non seiz<br>34<br>46<br>43 |
| Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                     | used:<br>nalysis:<br>variance:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:                                                                                                                                                                                    | $\begin{array}{c} \mbox{All features} \\ \mbox{Kmeans, 5 c} \\ \mbox{80\%} \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \mbox{30\%} \\ \mbox{27\%} \\ \mbox{24\%} \\ \mbox{24\%} \\ \mbox{24.2\%} \\ \mbox{24.2\%} \\ \mbox{24.2\%} \\ \mbox{24.2\%} \\ \mbox{24.2\%} \\ \mbox{24.4\%} \\ \mbox{All features} \\ \mbox{Kmeans, 6 c} \\ \mbox{80\%} \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \mbox{31\%} \\ \mbox{22\%} \\ \mbox{23\%} \\ \mbox{21\%} \\ \mbox{21\%} \\ \mbox{23\%} \\ \mbox{21\%} \\ \mbox{22\%} \\ \mbox{25\%} \\ \mbox{23\%} \\ \mbox{25\%} \\ \mbox{23\%} \\ $ | Num seiz           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22                                                                                                                                 | Found seiz<br>15<br>12<br>11<br>11<br>7<br>11.2<br>11.0<br>2.9<br>Found seiz<br>12<br>11<br>10<br>8<br>10.2<br>10.0<br>1.5<br>s [1 1]<br>Found seiz<br>15<br>15<br>14<br>14 | Found non seiz<br>35<br>33<br>41<br>29<br>34.4<br>34.0<br>4.3<br>Found non seiz<br>27<br>38<br>27<br>38<br>27<br>34<br>30<br>31.2<br>30.0<br>4.8<br>Found non seiz<br>34<br>46<br>43<br>47 |
| Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier | used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>68%<br>55%<br>50%<br>32%<br>51.0%<br>50.0%<br>12.9%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>55%<br>45%<br>45%<br>45%<br>45%<br>45%<br>45%<br>45%<br>45%<br>45%                                                                       | All features<br>Kmeans, 5 c<br>80%<br>KNN, k = 3<br>Selectivity<br>30%<br>27%<br>24%<br>21%<br>19%<br>24.2%<br>24.2%<br>24.2%<br>24.2%<br>4.4%<br>All features<br>Kmeans, 6 c<br>80%<br>KNN, k = 3<br>Selectivity<br>31%<br>22%<br>27%<br>23%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>21%<br>23.0%<br>4.1%<br>All features<br>Kmeans, 5 c<br>70%<br>QDA, Prior<br>Selectivity<br>31%<br>25%<br>25%<br>25%<br>23%<br>22%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Num seiz           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22                                                                                                                                 | Found seiz<br>15<br>12<br>11<br>11<br>7<br>11.2<br>11.0<br>2.9<br>Found seiz<br>12<br>11<br>10<br>8<br>10.2<br>10.0<br>1.5<br>15<br>14<br>14<br>14                          | Found non seiz<br>35<br>33<br>34<br>41<br>29<br>34.4<br>34.0<br>4.3<br>Found non seiz<br>27<br>38<br>27<br>34<br>30<br>31.2<br>30.0<br>4.8<br>Found non seiz<br>34<br>46<br>43<br>47<br>49 |
| Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                     | used:<br>nalysis:<br>variance:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:                                                                                                                                                                                    | $\begin{array}{c} \mbox{All features} \\ \mbox{Kmeans, 5 c} \\ \mbox{80\%} \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \mbox{30\%} \\ \mbox{27\%} \\ \mbox{24\%} \\ \mbox{24\%} \\ \mbox{24.2\%} \\ \mbox{24.2\%} \\ \mbox{24.2\%} \\ \mbox{24.2\%} \\ \mbox{24.2\%} \\ \mbox{24.4\%} \\ \mbox{All features} \\ \mbox{Kmeans, 6 c} \\ \mbox{80\%} \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \mbox{31\%} \\ \mbox{22\%} \\ \mbox{23\%} \\ \mbox{21\%} \\ \mbox{21\%} \\ \mbox{23\%} \\ \mbox{21\%} \\ \mbox{22\%} \\ \mbox{25\%} \\ \mbox{23\%} \\ \mbox{25\%} \\ \mbox{23\%} \\ $ | Num seiz           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22                                                                                                                                 | Found seiz<br>15<br>12<br>11<br>11<br>7<br>11.2<br>11.0<br>2.9<br>Found seiz<br>12<br>11<br>10<br>8<br>10.2<br>10.0<br>1.5<br>s [1 1]<br>Found seiz<br>15<br>15<br>14<br>14 | Found non seiz<br>35<br>33<br>41<br>29<br>34.4<br>34.0<br>4.3<br>Found non seiz<br>27<br>38<br>27<br>38<br>27<br>34<br>30<br>31.2<br>30.0<br>4.8<br>Found non seiz<br>34<br>46<br>43<br>47 |

| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | und non seiz<br>34<br>33<br>42<br>29<br>34<br>34.4<br>34.0<br>4.7                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \begin{array}{r}     34 \\     33 \\     42 \\     29 \\     34 \\     34.4 \\     34.0 \\ \end{array} $                                                                                                                    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \begin{array}{r}     34 \\     33 \\     42 \\     29 \\     34 \\     34.4 \\     34.0 \\ \end{array} $                                                                                                                    |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $ \begin{array}{r}     34 \\     33 \\     42 \\     29 \\     34 \\     34.4 \\     34.0 \\ \end{array} $                                                                                                                    |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $ \begin{array}{r}     34 \\     33 \\     42 \\     29 \\     34 \\     34.4 \\     34.0 \\ \end{array} $                                                                                                                    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33<br>42<br>29<br>34<br>34.4<br>34.0                                                                                                                                                                                          |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 42<br>29<br>34<br>34.4<br>34.0                                                                                                                                                                                                |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29<br>34<br>34.4<br>34.0                                                                                                                                                                                                      |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34.4<br>34.0                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 34.0                                                                                                                                                                                                                          |
| TD     3.8%     2.4%     0     0.8       Peatures used:     All features       Cluster analysis:     Kmeans, 5 clusters       PLS-DA variance:     70%       Classifier:     QDA, Prior prob. weights [10 1]       Sensitivity     Selectivity       Num seiz     Found seiz       73%     20%       22     16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                               |
| Veatures used:     All features       Cluster analysis:     Kmeans, 5 clusters       Cls.DA variance:     70%       Classifier:     QDA, Prior prob. weights [10 1]       Sensitivity     Selectivity       Num seiz     Found seiz       73%     20%       22     16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.7                                                                                                                                                                                                                           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                               |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                               |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                               |
| Stassifier:         QDA, Prior prob. weights [10 1]           Sensitivity         Selectivity         Num seiz         Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                               |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                               |
| 73% 18% 22 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | und non seiz                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 66                                                                                                                                                                                                                            |
| 68% 18% 22 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 71                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 70                                                                                                                                                                                                                            |
| 68% 14% 22 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 91                                                                                                                                                                                                                            |
| 64% 19% 22 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60                                                                                                                                                                                                                            |
| Iean 69.2% 17.8% 22 15.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 71.6                                                                                                                                                                                                                          |
| Iedian 68.0% 18.0% 22 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70.0                                                                                                                                                                                                                          |
| TD 3.8% 2.3% 0 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.7                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                               |
| Peatures used: All features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                               |
| Cluster analysis: Gm fuzzy, 5 clusters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                               |
| PLS-DA variance: $70\%$<br>Classifier: KNN, $k = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | und non seiz                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41                                                                                                                                                                                                                            |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41<br>25                                                                                                                                                                                                                      |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35                                                                                                                                                                                                                            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36                                                                                                                                                                                                                            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 41                                                                                                                                                                                                                            |
| 20% $11%$ $22$ $6.8$ Mean $31.0%$ $16.4%$ $22$ $6.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35.6                                                                                                                                                                                                                          |
| Median         32.0%         16.0%         22         7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36.0                                                                                                                                                                                                                          |
| TD 4.8% 3.9% 0 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.5                                                                                                                                                                                                                           |
| Cluster analysis:     Gm fuzzy, 4 clusters       PLS-DA variance:     70%       Jassifier:     KNN, k = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | und non seiz                                                                                                                                                                                                                  |
| 55% 20% 22 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 49                                                                                                                                                                                                                            |
| 41% 19% 22 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 39                                                                                                                                                                                                                            |
| 36% 14% 22 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 49                                                                                                                                                                                                                            |
| 32% 15% 22 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 41                                                                                                                                                                                                                            |
| 9% 4% 22 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 46                                                                                                                                                                                                                            |
| Mean 34.6% 14.4% 22 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 44.8                                                                                                                                                                                                                          |
| Median 36.0% 15.0% 22 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46.0                                                                                                                                                                                                                          |
| 5TD 16.7% 6.3% 0 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.6                                                                                                                                                                                                                           |
| TD 16.7% 6.3% 0 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.0                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.0                                                                                                                                                                                                                           |
| Peatures used: All features<br>Cluster analysis: Gm fuzzy, 3 clusters<br>2LS-DA variance: 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                               |
| Peatures used: All features<br>Cluster analysis: Gm fuzzy, 3 clusters<br>LS-DA variance: 70%<br>Classifier: KNN, k = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                               |
| Veatures used:       All features         Juster analysis:       Gm fuzzy, 3 clusters         PLS-DA variance:       70%         Zlassifier:       KNN, k = 3         Sensitivity       Selectivity         Num seiz       Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | und non seiz                                                                                                                                                                                                                  |
| Peatures used:       All features         Cluster analysis:       Gm fuzzy, 3 clusters         PLS-DA variance:       70%         Classifier:       KNN, k = 3         Sensitivity       Selectivity       Num seiz       Found seiz       Found seiz         55%       17%       22       12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | und non seiz<br>57                                                                                                                                                                                                            |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | und non seiz                                                                                                                                                                                                                  |
| Ventures used:       All features         Cluster analysis:       Gm fuzzy, 3 clusters         Cls-DA variance: $70\%$ Classifier:       KNN, k = 3         Sensitivity       Selectivity       Num seiz       Found seiz       Found seiz         55% $17\%$ 22       12         50% $17\%$ 22       11         45% $16\%$ 22       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | und non seiz<br>57<br>54                                                                                                                                                                                                      |
| Ventures used:       All features         Cluster analysis:       Gm fuzzy, 3 clusters         Cls-DA variance: $70\%$ Classifier:       KNN, k = 3         Sensitivity       Selectivity       Num seiz       Found seiz       Found seiz         55% $17\%$ 22       12         50% $17\%$ 22       11         45% $16\%$ 22       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | und non seiz<br>57<br>54<br>53                                                                                                                                                                                                |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | und non seiz<br>57<br>54<br>53<br>56                                                                                                                                                                                          |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | und non seiz<br>57<br>54<br>53<br>56<br>53                                                                                                                                                                                    |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} {\rm und \ non \ seiz} \\ 57 \\ 54 \\ 53 \\ 56 \\ 53 \\ 54.6 \end{array}$                                                                                                                                   |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} {\rm und \ non \ seiz} \\ 57 \\ 54 \\ 53 \\ 56 \\ 53 \\ 54.6 \\ 54.0 \end{array}$                                                                                                                           |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} {\rm und \ non \ seiz} \\ 57 \\ 54 \\ 53 \\ 56 \\ 53 \\ 54.6 \\ 54.0 \end{array}$                                                                                                                           |
| Teatures used:       All features         Cluster analysis:       Gm fuzzy, 3 clusters         Cluster analysis:       Tom fuzzy, 3 clusters         VLS-DA variance:       70%         Classifier:       KNN, k = 3         Sensitivity       Selectivity       Num seiz         55%       17%       22       12         50%       17%       22       11         45%       16%       22       10         36%       13%       22       8         27%       10%       22       6         Mean       42.6%       14.6%       22       9.4         Median       45.0%       16.0%       22       10.0         TD       11.2%       3.0%       0       2.4         Catures used:       All features       2       10.0         Clussifier:       KNN, k = 3       30%       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} {\rm und \ non \ seiz} \\ 57 \\ 54 \\ 53 \\ 56 \\ 53 \\ 54.6 \\ 54.0 \end{array}$                                                                                                                           |
| Teatures used:       All features         Cluster analysis:       Gm fuzzy, 3 clusters         Cluster analysis:       Tom fuzzy, 3 clusters         Cluster analysis:       Tom fuzzy, 3 clusters         The second s | $\begin{array}{c} {\rm und \ non \ seiz} \\ 57 \\ 54 \\ 53 \\ 56 \\ 53 \\ \hline 54.6 \\ 54.0 \\ \hline 1.8 \end{array}$                                                                                                      |
| Performance       All features         Classifier:       All features         Classifier:       KNN, k = 3         Sensitivity       Selectivity       Num seiz         Form       55%       17%       22       12         55%       17%       22       11         45%       16%       22       10         36%       13%       22       8         27%       10%       22       9.4         Acdian       45.0%       16.0%       22       9.4         Acdian       45.0%       16.0%       22       9.4         Acdian       45.0%       16.0%       22       10.0         TD       11.2%       3.0%       0       2.4         Catures used:       All features       Cluster analysis:       Gm fuzzy, 3 clusters         Cluster analysis:       Gm fuzzy, 3 clusters       20       2.4         Classifier:       KNN, k = 3       Sensitivity       Selectivity       Num seiz       Found seiz       Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | und non seiz<br>57<br>54<br>53<br>56<br>53<br>54.6<br>54.0<br>1.8<br>und non seiz                                                                                                                                             |
| Seatures used:         All features           Cluster analysis:         Gm fuzzy, 3 clusters           LS-DA variance:         70%           Classifier:         KNN, k = 3           Sensitivity         Selectivity         Num seiz           55%         17%         22         12           55%         17%         22         11           45%         16%         22         10           36%         13%         22         8           27%         10%         22         9.4           Acdian         45.0%         16.0%         22         10.0           TD         11.2%         3.0%         0         2.4         100.0           TD         11.2%         3.0%         0         2.4         100.0           Weatures used:         All features         10.0         10.0         10.0           TD         11.2%         3.0%         0         2.4         10.0           Veatures used:         All features         10.0         10.0         10.0         10.0           Sensitivity         Selectivity         Num seiz         Found seiz         Found seiz         Found seiz         Found seiz         Found sei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} \text{und non seiz} \\ 57 \\ 54 \\ 53 \\ 56 \\ 53 \\ 54.6 \\ \hline 54.0 \\ 1.8 \\ \hline \\ 1.8 \\ \hline \\ \text{und non seiz} \\ 56 \\ \end{array}$                                                     |
| Seatures used:       All features         Cluster analysis:       Gm fuzzy, 3 clusters         Cls.DA variance:       70%         Classifier:       KNN, k = 3         Sensitivity       Selectivity       Num seiz       Found seiz         55%       17%       22       12         50%       17%       22       11         45%       16%       22       10         36%       13%       22       8         27%       10%       22       9.4         Median       45.0%       16.0%       22       9.4         Median       45.0%       16.0%       22       10.0         TD       11.2%       3.0%       0       2.4         Peatures used:       All features         Cluster analysis:       Gm fuzzy, 3 clusters         2Ls-DA variance:       80%         Classifier:       KNN, k = 3         Sensitivity       Selectivity       Num seiz       Found seiz         45%       14%       22       10         41%       13%       22       9         32%       13%       22       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \text{und non seiz} \\ 57 \\ 54 \\ 53 \\ 56 \\ 53 \\ 54.6 \\ \hline 54.0 \\ 1.8 \\ \hline \\ 1.8 \\ \hline \\ und non seiz \\ \hline \\ 56 \\ 60 \\ 62 \\ 46 \\ \hline \end{array}$                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \text{und non seiz} \\ 57 \\ 54 \\ 53 \\ 56 \\ 53 \\ 54.6 \\ 54.0 \\ 1.8 \\ \hline \\ \hline \\ 1.8 \\ \hline \\ \hline \\ 56 \\ 60 \\ 62 \\ 46 \\ 50 \\ \hline \end{array}$                                |
| Teatures used:         All features           Cluster analysis:         Gm fuzzy, 3 clusters           Cluster analysis:         To%           Classifier:         KNN, k = 3           Sensitivity         Selectivity         Num seiz           55%         17%         22         12           50%         17%         22         11           45%         16%         22         10           36%         13%         22         8           27%         10%         22         6           Mean         42.6%         14.6%         22         9.4           Median         45.0%         16.0%         22         10.0           TD         11.2%         3.0%         0         2.4           Peatures used:         All features         10.0         10.0           TD         11.2%         3.0%         0         2.4           VLS-DA variance:         80%         10.0         10.0           Classifier:         KNN, k = 3         10         13%         22         10           45%         14%         22         10         141%         13%         22         9           32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{r} \text{und non seiz} \\ 57 \\ 54 \\ 53 \\ 56 \\ 53 \\ 54.6 \\ 54.0 \\ \hline 1.8 \\ \hline \\ \hline \\ \text{und non seiz} \\ \hline \\ 56 \\ 60 \\ 62 \\ 46 \\ 50 \\ \hline \\ 54.8 \\ \hline \end{array}$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{r} \text{und non seiz} \\ 57 \\ 54 \\ 53 \\ 56 \\ 53 \\ 54.6 \\ 54.0 \\ 1.8 \\ \hline \\ \hline \\ 1.8 \\ \hline \\ \hline \\ 60 \\ 62 \\ 46 \\ 50 \\ \hline \end{array}$                                      |

| Cluster a                                                                                                                                                                                                          | used:<br>nalysis:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Gm fuzzy, 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | clusters                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PLS-DA                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Classifier                                                                                                                                                                                                         | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | KNN, k = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                    | Sensitivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Num seiz                                                                                                                                      | Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Found non sei                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                    | 45%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22                                                                                                                                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 37                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                    | 45%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22                                                                                                                                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 44                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                    | $\frac{41\%}{41\%}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18%<br>17%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22<br>22                                                                                                                                      | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $40 \\ 45$                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                    | 41%<br>41%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22                                                                                                                                            | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Mean                                                                                                                                                                                                               | 41%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22                                                                                                                                            | 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 43                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Median                                                                                                                                                                                                             | 41.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22                                                                                                                                            | 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 44.0                                                                                                                                                                                                                                                                                                                                                                                                                   |
| STD                                                                                                                                                                                                                | 2.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                             | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SID                                                                                                                                                                                                                | 2.270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Features                                                                                                                                                                                                           | used:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | All features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Cluster a                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gm fuzzy, 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | clusters                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PLS-DA                                                                                                                                                                                                             | variance:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Classifier                                                                                                                                                                                                         | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | KNN, k = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                    | Sensitivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Num seiz                                                                                                                                      | Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Found non sei                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                    | 41%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22                                                                                                                                            | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                    | 32%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22                                                                                                                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                    | 27%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22                                                                                                                                            | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                    | 23%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22                                                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                    | 18%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Mean                                                                                                                                                                                                               | 28.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22                                                                                                                                            | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 38.6                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Median                                                                                                                                                                                                             | 27.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22                                                                                                                                            | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 39.0                                                                                                                                                                                                                                                                                                                                                                                                                   |
| STD                                                                                                                                                                                                                | 8.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                             | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Features                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | All features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Cluster a                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gm hard, 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | clusters                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PLS-DA                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Classifier                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | KNN, $k = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Num                                                                                                                                           | Energy 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Faund                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                    | Sensitivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Num seiz                                                                                                                                      | Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Found non sei                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                    | 41%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22                                                                                                                                            | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                    | 41%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22                                                                                                                                            | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 54                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                    | 36%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22                                                                                                                                            | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                    | 23%<br>18%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8%<br>9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22<br>22                                                                                                                                      | 5<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 55<br>39                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Maan                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 47.9                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Mean                                                                                                                                                                                                               | 31.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22                                                                                                                                            | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 47.2                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Median                                                                                                                                                                                                             | 31.8%<br>36.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.8%<br>14.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22<br>22                                                                                                                                      | 7.0 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45.0                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Median<br>STD<br>Features                                                                                                                                                                                          | $     31.8\% \\     36.0\% \\     10.7\% \\     used: $                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12.8%<br>14.0%<br>4.1%<br>All features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22<br>22<br>0                                                                                                                                 | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45.0<br>7.0                                                                                                                                                                                                                                                                                                                                                                                                            |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                                   | 31.8%<br>36.0%<br>10.7%<br>used:<br>nalysis:<br>variance:                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.8%<br>14.0%<br>4.1%<br>All features<br>Kmeans seiz<br>80%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22<br>22<br>0                                                                                                                                 | 7.0<br>8.0<br>2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45.0<br>7.0                                                                                                                                                                                                                                                                                                                                                                                                            |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                                   | 31.8%<br>36.0%<br>10.7%<br>used:<br>nalysis:<br>variance:<br>:                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.8%<br>14.0%<br>4.1%<br>All features<br>Kmeans seiz<br>80%<br>KNN, k = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22<br>22<br>0<br>ure separated                                                                                                                | 7.0<br>8.0<br>2.3<br>d, 3 of 7 cluste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 45.0<br>7.0<br>rs                                                                                                                                                                                                                                                                                                                                                                                                      |
| Median<br>STD                                                                                                                                                                                                      | 31.8%<br>36.0%<br>10.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.8%<br>14.0%<br>4.1%<br>All features<br>Kmeans seiz<br>80%<br>KNN, k = 3<br>Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22<br>22<br>0<br>ure separated<br>Num seiz                                                                                                    | 7.0<br>8.0<br>2.3<br>d, 3 of 7 cluste<br>Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45.0<br>7.0<br>rs<br>Found non sei:                                                                                                                                                                                                                                                                                                                                                                                    |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                                   | 31.8%<br>36.0%<br>10.7%<br>used:<br>nalysis:<br>variance:<br>:                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.8%<br>14.0%<br>4.1%<br>All features<br>Kmeans seiz<br>80%<br>KNN, k = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22<br>22<br>0<br>ure separated                                                                                                                | 7.0<br>8.0<br>2.3<br>d, 3 of 7 cluste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 45.0<br>7.0<br>rs                                                                                                                                                                                                                                                                                                                                                                                                      |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                                   | 31.8%<br>36.0%<br>10.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>73%                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.8%<br>14.0%<br>4.1%<br>All features<br>Kmeans seiz<br>80%<br>KNN, k = 3<br>Selectivity<br>9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22<br>22<br>0<br>ure separated<br>Num seiz<br>22                                                                                              | 7.0<br>8.0<br>2.3<br>d, 3 of 7 cluste<br>Found seiz<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 45.0<br>7.0<br>rs<br>Found non sei:<br>164                                                                                                                                                                                                                                                                                                                                                                             |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                                   | 31.8%<br>36.0%<br>10.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>59%                                                                                                                                                                                                                                                                                                                                                                                                                             | 12.8%<br>14.0%<br>4.1%<br>All features<br>Kmeans seiz<br>80%<br>KNN, k = 3<br>Selectivity<br>9%<br>7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22<br>22<br>0<br>ure separated<br>Num seiz<br>22<br>22                                                                                        | 7.0<br>8.0<br>2.3<br>1, 3 of 7 cluste<br>Found seiz<br>16<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 45.0<br>7.0<br>rs<br>Found non sei:<br>164<br>176                                                                                                                                                                                                                                                                                                                                                                      |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                                   | 31.8%<br>36.0%<br>10.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>59%<br>45%                                                                                                                                                                                                                                                                                                                                                                                                                      | 12.8%<br>14.0%<br>4.1%<br>All features<br>Kmeans seiz<br>80%<br>KNN, k = 3<br>Selectivity<br>9%<br>7%<br>6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22<br>22<br>0<br>ure separated<br>Num seiz<br>22<br>22<br>22                                                                                  | 7.0<br>8.0<br>2.3<br>d, 3 of 7 cluste<br>Found seiz<br>16<br>13<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 45.0<br>7.0<br>rs<br>Found non sei<br>164<br>176<br>159                                                                                                                                                                                                                                                                                                                                                                |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                                   | 31.8%<br>36.0%<br>10.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>59%<br>45%<br>41%                                                                                                                                                                                                                                                                                                                                                                                                               | 12.8%<br>14.0%<br>4.1%<br>All features<br>Kmeans seiz<br>80%<br>KNN, k = 3<br>Selectivity<br>9%<br>7%<br>6%<br>5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22<br>22<br>0<br>ure separated<br><u>Num seiz</u><br>22<br>22<br>22<br>22<br>22<br>22                                                         | 7.0<br>8.0<br>2.3<br>d, 3 of 7 cluste<br>Found seiz<br>16<br>13<br>10<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 45.0<br>7.0<br>rs<br>Found non seiz<br>164<br>176<br>159<br>186                                                                                                                                                                                                                                                                                                                                                        |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                                                                                                     | 31.8%<br>36.0%<br>10.7%<br>used:<br>nalysis:<br>variance:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:                                                                                                                                                                                                                                                                                                                                                                     | 12.8%<br>14.0%<br>4.1%<br>All features<br>Kmeans seiz<br>80%<br>KNN, k = 3<br>Selectivity<br>9%<br>7%<br>6%<br>5%<br>4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22<br>22<br>0<br>ure separated<br>Num seiz<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                                    | 7.0<br>8.0<br>2.3<br>d, 3 of 7 cluste<br>Found seiz<br>16<br>13<br>10<br>9<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 45.0<br>7.0<br>rs<br>Found non sei:<br>164<br>176<br>159<br>186<br>175                                                                                                                                                                                                                                                                                                                                                 |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean                                                                                                                                             | 31.8%<br>36.0%<br>10.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>59%<br>45%<br>41%<br>36%<br>50.8%                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 12.8\% \\ 14.0\% \\ 4.1\% \\ \hline \\ \text{All features} \\ \text{Kmeans seiz} \\ 80\% \\ \text{KNN, } k = 3 \\ \text{Selectivity} \\ 9\% \\ 7\% \\ 6\% \\ 5\% \\ 4\% \\ 6.2\% \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22<br>22<br>0<br>ure separated<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                              | 7.0<br>8.0<br>2.3<br>d, 3 of 7 cluste<br>Found seiz<br>16<br>13<br>10<br>9<br>8<br>11.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45.0<br>7.0<br>rs<br>164<br>176<br>159<br>186<br>175<br>172.0                                                                                                                                                                                                                                                                                                                                                          |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median                                                                                                                                   | $\begin{array}{r} 31.8\% \\ 36.0\% \\ 10.7\% \\ \hline \\ 10.7\% \\ \hline \\ used: \\ nalysis: \\ variance: \\ \vdots \\ \hline \\ Sensitivity \\ 73\% \\ 59\% \\ 45\% \\ 41\% \\ 36\% \\ 50.8\% \\ 45.0\% \\ \end{array}$                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 12.8\% \\ 14.0\% \\ 4.1\% \\ \hline \\ \text{All features} \\ \text{Kmeans seiz} \\ 80\% \\ \text{KNN, } k = 3 \\ \text{Selectivity} \\ 9\% \\ 7\% \\ 6\% \\ 5\% \\ 4\% \\ 6.2\% \\ 6.0\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22<br>22<br>0<br>ure separated<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                  | 7.0<br>8.0<br>2.3<br>d, 3 of 7 cluste<br>Found seiz<br>16<br>13<br>10<br>9<br>8<br>11.2<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 45.0<br>7.0<br>rs<br>164<br>176<br>159<br>186<br>175<br>172.0<br>175.0                                                                                                                                                                                                                                                                                                                                                 |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD                                                                                                                            | 31.8%<br>36.0%<br>10.7%<br>used:<br>nalysis:<br>variance:<br>:<br>:<br>Sensitivity<br>73%<br>59%<br>45%<br>41%<br>36%<br>50.8%<br>45.0%<br>15.1%                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 12.8\% \\ 14.0\% \\ 4.1\% \\ \hline \\ \text{All features} \\ \text{Kmeans seiz} \\ 80\% \\ \text{KNN, } k = 3 \\ \text{Selectivity} \\ 9\% \\ 7\% \\ 6\% \\ 5\% \\ 4\% \\ 6.2\% \\ 6.0\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22<br>22<br>0<br>ure separated<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                  | 7.0<br>8.0<br>2.3<br>d, 3 of 7 cluste<br>Found seiz<br>16<br>13<br>10<br>9<br>8<br>11.2<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 45.0<br>7.0<br>rs<br>164<br>176<br>159<br>186<br>175<br>172.0<br>175.0                                                                                                                                                                                                                                                                                                                                                 |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a                                                                                                   | 31.8%<br>36.0%<br>10.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>59%<br>45%<br>41%<br>36%<br>50.8%<br>45.0%<br>15.1%<br>used:<br>nalysis:<br>used:<br>nalysis:                                                                                                                                                                                                                                                                                                                                   | 12.8%<br>14.0%<br>4.1%<br>All features<br>Kmeans seiz<br>80%<br>KNN, k = 3<br>Selectivity<br>9%<br>7%<br>6%<br>5%<br>4%<br>6.2%<br>6.0%<br>1.9%<br>All features<br>Max value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22<br>22<br>0<br>ure separated<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                  | 7.0<br>8.0<br>2.3<br>d, 3 of 7 cluste<br>Found seiz<br>16<br>13<br>10<br>9<br>8<br>11.2<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 45.0<br>7.0<br>rs<br>164<br>176<br>159<br>186<br>175<br>172.0<br>175.0                                                                                                                                                                                                                                                                                                                                                 |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>Cluster a<br>Cluster a                                                                                 | 31.8%<br>36.0%<br>10.7%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>73%<br>59%<br>41%<br>36%<br>50.8%<br>41%<br>36%<br>50.8%<br>45.0%<br>15.1%<br>used:<br>nalysis:<br>variance:                                                                                                                                                                                                                                                                                                                                | 12.8%<br>14.0%<br>4.1%<br>All features<br>Kmeans seiz<br>80%<br>KNN, k = 3<br>Selectivity<br>9%<br>6%<br>6%<br>5%<br>4%<br>6.2%<br>6.0%<br>1.9%<br>All features<br>Max value<br>70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22<br>22<br>0<br>ure separated<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                  | 7.0<br>8.0<br>2.3<br>d, 3 of 7 cluste<br>Found seiz<br>16<br>13<br>10<br>9<br>8<br>11.2<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 45.0<br>7.0<br>rs<br>164<br>176<br>159<br>186<br>175<br>172.0<br>175.0                                                                                                                                                                                                                                                                                                                                                 |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>Cluster a<br>Cluster a                                                                                 | 31.8%<br>36.0%<br>10.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>59%<br>45%<br>41%<br>36%<br>50.8%<br>45.0%<br>15.1%<br>used:<br>nalysis:<br>variance:<br>:                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 12.8\% \\ 14.0\% \\ 4.1\% \\ \hline \\ & 4.1\% \\ \hline \\ & 4.1\% \\ \hline \\ & 80\% \\ & KNN, \ k=3 \\ & 80\% \\ & 50\% \\ & 6\% \\ & 5\% \\ & 6\% \\ & 6.0\% \\ \hline \\ & 6.2\% \\ & 6.0\% \\ \hline \\ & 6.2\% \\ & 6.0\% \\ \hline \\ & 1.9\% \\ \hline \\ & All \ features \\ & Max \ value \\ & 70\% \\ & KNN, \ k=3 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22<br>22<br>0<br>ure separated<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                  | 7.0<br>8.0<br>2.3<br>1, 3 of 7 cluster<br>Found seiz<br>16<br>13<br>10<br>9<br>8<br>11.2<br>10.0<br>3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45.0<br>7.0<br>7.0<br>7.0<br>164<br>176<br>159<br>186<br>175<br>172.0<br>175.0<br>10.7                                                                                                                                                                                                                                                                                                                                 |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>Cluster a<br>Cluster a                                                                                 | 31.8%<br>36.0%<br>10.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>59%<br>45%<br>41%<br>45%<br>45%<br>45%<br>45%<br>45%<br>45%<br>45%<br>45                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 12.8\% \\ 14.0\% \\ 4.1\% \\ \hline \\ & 4.1\% \\ \hline \\ & 4.1\% \\ \hline \\ & 80\% \\ & KNN, \ k = 3 \\ & 80\% \\ & KNN, \ k = 3 \\ & 5\% \\ & 6.0\% \\ & 5\% \\ & 6.0\% \\ \hline \\ & 6.2\% \\ & 6.0\% \\ \hline \\ & 6.2\% \\ & 6.0\% \\ \hline \\ & 1.9\% \\ \hline \\ & All \ features \\ & Max \ value \\ & 70\% \\ & KNN, \ k = 3 \\ & Selectivity \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22<br>22<br>0<br>ure separated<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>0<br>0                                                      | 7.0<br>8.0<br>2.3<br>d, 3 of 7 cluste<br>Found seiz<br>16<br>13<br>10<br>9<br>8<br>11.2<br>10.0<br>3.3<br>Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>164<br>175<br>186<br>175<br>172.0<br>175.0<br>10.7<br>7<br>70.0<br>10.7                                                                                                                                                                                                                                                                                                     |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>Cluster a<br>Cluster a                                                                                 | 31.8%<br>36.0%<br>10.7%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>73%<br>59%<br>45%<br>41%<br>36%<br>50.8%<br>45.0%<br>15.1%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>27%                                                                                                                                                                                                                                                                                                                          | 12.8%<br>14.0%<br>4.1%<br>All features<br>Kmeans seiz<br>80%<br>KNN, k = 3<br>Selectivity<br>9%<br>6%<br>6%<br>6%<br>6.2%<br>6.0%<br>6.2%<br>6.0%<br>6.0%<br>1.9%<br>All features<br>Max value<br>70%<br>KNN, k = 3<br>Selectivity<br>10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22<br>22<br>0<br>ure separated<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>0<br>0                                                      | 7.0<br>8.0<br>2.3<br>d, 3 of 7 cluster<br>Found seiz<br>16<br>13<br>10<br>9<br>8<br>11.2<br>10.0<br>3.3<br>Found seiz<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 45.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>164<br>175<br>175<br>172.0<br>175.0<br>10.7<br>7.0<br>10.7<br>54                                                                                                                                                                                                                                                                                              |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>Cluster a<br>Cluster a                                                                                 | 31.8%<br>36.0%<br>10.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>45%<br>41%<br>36%<br>50.8%<br>45.0%<br>15.1%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>27%<br>23%                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 12.8\% \\ 14.0\% \\ 4.1\% \\ \hline \\ & 4.1\% \\ \hline \\ & All features \\ & Kmeans seiz \\ & 80\% \\ & KNN, k = 3 \\ & Selectivity \\ & 9\% \\ & 7\% \\ & 6\% \\ & 5\% \\ & 5\% \\ & 6.0\% \\ & 5\% \\ & 6.2\% \\ & 6.2\% \\ & 6.0\% \\ & 1.9\% \\ \hline \\ & All features \\ & Max value \\ & 70\% \\ & KNN, k = 3 \\ & Selectivity \\ & 10\% \\ & 8\% \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22<br>22<br>0<br>ure separated<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>0<br>0                                                      | 7.0<br>8.0<br>2.3<br>1, 3 of 7 cluster<br>Found seiz<br>16<br>13<br>10<br>9<br>8<br>11.2<br>10.0<br>3.3<br>Found seiz<br>6<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 45.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>164<br>176<br>159<br>186<br>175<br>172.0<br>175.0<br>10.7<br>7.0<br>10.7<br>7.0<br>54<br>54                                                                                                                                                                                                                                                                          |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>Cluster a<br>Cluster a                                                                                 | 31.8%<br>36.0%<br>10.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>59%<br>45%<br>41%<br>45%<br>45%<br>45%<br>45%<br>45%<br>45%<br>45%<br>45                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 12.8\% \\ 14.0\% \\ 4.1\% \\ \hline \\ 4.1\% \\ \hline \\ All features \\ Kmeans seiz \\ 80\% \\ KNN, k = 3 \\ Selectivity \\ 9\% \\ 7\% \\ 6\% \\ 5\% \\ 4\% \\ 6.2\% \\ 6.0\% \\ 1.9\% \\ \hline \\ All features \\ Max value \\ 70\% \\ KNN, k = 3 \\ Selectivity \\ 10\% \\ 8\% \\ 7\% \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22<br>22<br>0<br>ure separated<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                  | 7.0<br>8.0<br>2.3<br>A, 3 of 7 cluster<br>Found seiz<br>16<br>13<br>10<br>9<br>8<br>11.2<br>10.0<br>3.3<br>Found seiz<br>6<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>164<br>175<br>175<br>175<br>172.0<br>175.0<br>10.7<br>7.0<br>10.7<br>54<br>65                                                                                                                                                                                                                                                                                        |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features                                                                                                                | 31.8%<br>36.0%<br>10.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>59%<br>45%<br>41%<br>36%<br>50.8%<br>45.0%<br>15.1%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>27%<br>23%<br>18%                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 12.8\% \\ 14.0\% \\ 4.1\% \\ \hline \\ 4.1\% \\ \hline \\ All features \\ Kmeans seiz \\ 80\% \\ KNN, k = 3 \\ Selectivity \\ 9\% \\ 6\% \\ 6\% \\ \hline \\ 6\% \\ \hline \\ 6.2\% \\ 4\% \\ 6.2\% \\ 6\% \\ \hline \\ 6\% \\ \hline \\ \\ 6\% \\ \hline \\ \\ 6\% \\ \hline \\ \\ 1.9\% \\ \hline \\ \\ 6\% \\ \hline \\ \\ \\ 1.9\% \\ \hline \\ \\ 1.9\% \\ \hline \\ \\ 1.9\% \\ \hline \\ \\ 1.9\% \\ \hline \\ 1.9\% \\ 1.9\% \\ \hline \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.9\% \\ 1.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22<br>22<br>0<br>ure separated<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>0<br>0<br><u>Num seiz</u><br>22<br>22<br>22<br>0<br>0 | 7.0<br>8.0<br>2.3<br>d, 3 of 7 cluster<br>Found seiz<br>16<br>13<br>10<br>9<br>8<br>11.2<br>10.0<br>3.3<br>Found seiz<br>6<br>5<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45.0<br>7.0<br>7.0<br>rs<br>Found non sei<br>164<br>176<br>159<br>186<br>175<br>172.0<br>175.0<br>10.7<br>Found non sei<br>54<br>54<br>65<br>62                                                                                                                                                                                                                                                                        |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                                   | 31.8%<br>36.0%<br>10.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>45%<br>41%<br>36%<br>50.8%<br>45.0%<br>15.1%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>23%<br>23%<br>23%<br>18%<br>14%                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 12.8\% \\ 14.0\% \\ 4.1\% \\ \hline \\ & 4.1\% \\ \hline \\ & All features \\ & Kmeans seiz \\ & 80\% \\ & KNN, k = 3 \\ & Selectivity \\ & 9\% \\ & 6\% \\ & 5\% \\ & 4\% \\ & 6.2\% \\ & 6.0\% \\ & 6.0\% \\ \hline & 6.0\% \\ & 6.0\% \\ \hline & 6.2\% \\ & 6.0\% \\ & 6.2\% \\ \hline & 6\% \\ & 5\% \\ & 8\% \\ & 7\% \\ & 6\% \\ & 5\% \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22<br>22<br>0<br>ure separated<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                  | 7.0<br>8.0<br>2.3<br>1, 3 of 7 cluster<br>Found seiz<br>16<br>13<br>10<br>9<br>8<br>11.2<br>10.0<br>3.3<br>Found seiz<br>6<br>5<br>5<br>4<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 45.0<br>7.0<br>7.0<br>7.0<br>7.0<br>164<br>176<br>159<br>186<br>175<br>172.0<br>175.0<br>10.7<br>10.7<br>54<br>54<br>54<br>65<br>62<br>61                                                                                                                                                                                                                                                                              |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean                                                                   | 31.8%<br>36.0%<br>10.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>45%<br>41%<br>45%<br>41%<br>59%<br>45%<br>41%<br>50.8%<br>45.0%<br>15.1%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>27%<br>23%<br>23%<br>23%<br>18%<br>14%<br>21.0%                                                                                                                                                                                                                                               | $\begin{array}{c} 12.8\% \\ 14.0\% \\ 4.1\% \\ \hline \\ 4.1\% \\ \hline \\ 4.1\% \\ \hline \\ 80\% \\ KNN, k = 3 \\ Selectivity \\ 9\% \\ 7\% \\ 6\% \\ 5\% \\ 4\% \\ \hline \\ 6.2\% \\ 6.0\% \\ 1.9\% \\ \hline \\ All features \\ Max value \\ 70\% \\ \hline \\ KNN, k = 3 \\ Selectivity \\ 10\% \\ \hline \\ 8\% \\ 7\% \\ 6\% \\ 5\% \\ \hline \\ 7.2\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22<br>22<br>0<br>ure separated<br>Num seiz<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>2                                         | 7.0<br>8.0<br>2.3<br>d, 3 of 7 cluster<br>Found seiz<br>16<br>13<br>10<br>9<br>8<br>11.2<br>10.0<br>3.3<br>Found seiz<br>6<br>5<br>5<br>5<br>4<br>3<br>4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 45.0<br>7.0<br>7.0<br>164<br>176<br>159<br>186<br>175<br>172.0<br>175.0<br>10.7<br>Found non seiz<br>54<br>65<br>62<br>61<br>59.2                                                                                                                                                                                                                                                                                      |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Mean<br>Mean                                                   | 31.8%<br>36.0%<br>10.7%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>73%<br>59%<br>45%<br>41%<br>36%<br>50.8%<br>45.0%<br>15.1%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>27%<br>23%<br>18%<br>14%<br>21.0%<br>23.0%                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 12.8\% \\ 14.0\% \\ 4.1\% \\ \hline \\ 4.1\% \\ \hline \\ 4.1\% \\ \hline \\ 80\% \\ KNN, k = 3 \\ \hline \\ 80\% \\ KNN, k = 3 \\ \hline \\ 80\% \\ 7\% \\ 6\% \\ 6\% \\ 6\% \\ \hline \\ 6.0\% \\ \hline \\ 1.9\% \\ \hline \\ \hline \\ All features \\ Max value \\ 70\% \\ KNN, k = 3 \\ \hline \\ 8\% \\ 70\% \\ KNN, k = 3 \\ \hline \\ 8\% \\ 7\% \\ 6\% \\ 5\% \\ \hline \\ 7.2\% \\ \hline \\ 7.0\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22<br>22<br>0<br>ure separated<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                  | $\begin{array}{c} 7.0 \\ 8.0 \\ 2.3 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 45.0<br>7.0<br>7.0<br>rs<br>Found non seiz<br>164<br>176<br>159<br>186<br>175<br>172.0<br>175.0<br>175.0<br>10.7<br>Found non seiz<br>54<br>65<br>62<br>61<br>59.2<br>61.0                                                                                                                                                                                                                                             |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean                                                                   | 31.8%<br>36.0%<br>10.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>45%<br>41%<br>45%<br>41%<br>59%<br>45%<br>41%<br>50.8%<br>45.0%<br>15.1%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>27%<br>23%<br>23%<br>23%<br>18%<br>14%<br>21.0%                                                                                                                                                                                                                                               | $\begin{array}{c} 12.8\% \\ 14.0\% \\ 4.1\% \\ \hline \\ 4.1\% \\ \hline \\ 4.1\% \\ \hline \\ 80\% \\ KNN, k = 3 \\ Selectivity \\ 9\% \\ 7\% \\ 6\% \\ 5\% \\ 4\% \\ \hline \\ 6.2\% \\ 6.0\% \\ 1.9\% \\ \hline \\ All features \\ Max value \\ 70\% \\ \hline \\ KNN, k = 3 \\ Selectivity \\ 10\% \\ \hline \\ 8\% \\ 7\% \\ 6\% \\ 5\% \\ \hline \\ 7.2\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22<br>22<br>0<br>ure separated<br>Num seiz<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>2                                         | 7.0<br>8.0<br>2.3<br>d, 3 of 7 cluster<br>Found seiz<br>16<br>13<br>10<br>9<br>8<br>11.2<br>10.0<br>3.3<br>Found seiz<br>6<br>5<br>5<br>5<br>4<br>3<br>4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 45.0 \\ \hline 7.0 \\ \hline 164 \\ 175 \\ 159 \\ 186 \\ 175 \\ 172.0 \\ \hline 175.0 \\ 10.7 \\ \hline 10.7 \\ \hline 54 \\ 54 \\ 65 \\ 62 \\ 61 \\ 59.2 \\ \end{array}$                                                                                                                                                      |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD                                                  | 31.8%<br>36.0%<br>10.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>45%<br>41%<br>36%<br>50.8%<br>45.0%<br>15.1%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>27%<br>23%<br>23%<br>23%<br>18%<br>14%<br>21.0%<br>5.0%                                                                                                                                                                                                                                                                   | $\begin{array}{c} 12.8\% \\ 14.0\% \\ 4.1\% \\ \hline \\ & 4.1\% \\ \hline \\ & All features \\ & Kmeans seiz \\ & 80\% \\ & KNN, k = 3 \\ & Selectivity \\ & 9\% \\ & 6\% \\ & 5\% \\ & 4\% \\ & 6.2\% \\ & 6.0\% \\ & 6.0\% \\ & 6.0\% \\ & 6.0\% \\ & 6.2\% \\ & 6.0\% \\ & 6.2\% \\ & 6.0\% \\ & 6.2\% \\ & 6.2\% \\ & 6.2\% \\ & 6.2\% \\ & 6\% \\ & 5\% \\ & 7\% \\ & 7\% \\ & 6\% \\ & 5\% \\ & 7.2\% \\ & 7.0\% \\ & 1.9\% \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22<br>22<br>0<br>ure separated<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                  | $\begin{array}{c} 7.0 \\ 8.0 \\ 2.3 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 45.0<br>7.0<br>7.0<br>rs<br>Found non seiz<br>164<br>176<br>159<br>186<br>175<br>172.0<br>175.0<br>175.0<br>10.7<br>Found non seiz<br>54<br>65<br>62<br>61<br>59.2<br>61.0                                                                                                                                                                                                                                             |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Features                          | 31.8%<br>36.0%<br>10.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>45%<br>41%<br>45%<br>41%<br>45.0%<br>15.1%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>27%<br>23%<br>23%<br>23%<br>23%<br>14%<br>21.0%<br>5.0%<br>used:<br>used:                                                                                                                                                                                                                                                   | $\begin{array}{c} 12.8\% \\ 14.0\% \\ 4.1\% \\ \hline \\ 4.1\% \\ \hline \\ All features \\ Kmeans seiz \\ 80\% \\ KNN, k = 3 \\ Selectivity \\ 9\% \\ 7\% \\ 6\% \\ 5\% \\ 4\% \\ \hline \\ 6.2\% \\ 6.0\% \\ 1.9\% \\ \hline \\ All features \\ Max value \\ 70\% \\ KNN, k = 3 \\ Selectivity \\ 10\% \\ 8\% \\ 7\% \\ 6\% \\ 5\% \\ \hline \\ 7.2\% \\ \hline \\ 7.0\% \\ \hline \\ 1.9\% \\ \hline \\ All features \\ All features \\ All features \\ All features \\ \hline \\ \hline \\ All features \\ \hline \\ \hline \\ All features \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22<br>22<br>0<br>ure separated<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                  | $\begin{array}{c} 7.0 \\ 8.0 \\ 2.3 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 45.0<br>7.0<br>7.0<br>rs<br>Found non seiz<br>164<br>176<br>159<br>186<br>175<br>172.0<br>175.0<br>175.0<br>10.7<br>Found non seiz<br>54<br>65<br>62<br>61<br>59.2<br>61.0                                                                                                                                                                                                                                             |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Cluster a<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>STD                           | 31.8%<br>36.0%<br>10.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>59%<br>45%<br>45%<br>45%<br>45%<br>45%<br>45%<br>45%<br>45                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 12.8\% \\ 14.0\% \\ 4.1\% \\ \hline \\ 4.1\% \\ \hline \\ All features \\ Kmeans seiz \\ 80\% \\ KNN, k = 3 \\ \hline \\ Selectivity \\ 9\% \\ 6\% \\ 5\% \\ 4\% \\ 6.2\% \\ 6\% \\ 5\% \\ 4\% \\ 6.2\% \\ 6\% \\ 5\% \\ 4\% \\ 6.2\% \\ 6\% \\ 5\% \\ 4\% \\ 6.2\% \\ 6\% \\ 5\% \\ 4\% \\ 6.2\% \\ 6.2\% \\ 7\% \\ 6\% \\ 5\% \\ 6.2\% \\ 6.2\% \\ 7\% \\ 6\% \\ 5\% \\ 7.0\% \\ 1.9\% \\ \hline \\ 10\% \\ 8\% \\ 7\% \\ 6\% \\ 5\% \\ 7.2\% \\ 7.0\% \\ 1.9\% \\ \hline \\ All features \\ Min value \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22<br>22<br>0<br>ure separated<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                  | $\begin{array}{c} 7.0 \\ 8.0 \\ 2.3 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 45.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>164<br>175<br>179<br>186<br>175<br>172.0<br>175.0<br>10.7<br>7.0<br>10.7<br>7.0<br>10.7<br>65<br>65<br>65<br>62<br>61<br>59.2<br>61.0                                                                                                                                                                                                                                |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                     | 31.8%<br>36.0%<br>10.7%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>73%<br>45%<br>41%<br>36%<br>50.8%<br>45.0%<br>15.1%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>27%<br>23%<br>23%<br>23%<br>14%<br>21.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>variance:<br>Sensitivity                                                                                                                                                                                                                      | $\begin{array}{c} 12.8\% \\ 14.0\% \\ 4.1\% \\ \hline \\ & 4.1\% \\ \hline \\ & All features \\ & Kmeans seiz \\ & 80\% \\ & KNN, k = 3 \\ & Selectivity \\ & 9\% \\ & 6\% \\ & 5\% \\ & 6.0\% \\ \hline & 1.9\% \\ \hline \\ & All features \\ & Max value \\ & 70\% \\ & KNN, k = 3 \\ & Selectivity \\ & 10\% \\ & 8\% \\ & 7\% \\ & 6\% \\ & 5\% \\ \hline & 7.2\% \\ \hline & 7.0\% \\ \hline & 1.9\% \\ \hline \\ & All features \\ & Min value \\ & 70\% \\ \hline \\ & All features \\ & Min value \\ & 70\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22<br>22<br>0<br>ure separated<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                  | $\begin{array}{c} 7.0 \\ 8.0 \\ 2.3 \\ \hline \\ 2.3 \\ \hline \\ 1, 3 \text{ of } 7 \text{ cluster} \\ \hline \\ 16 \\ 13 \\ 10 \\ 9 \\ 8 \\ \hline \\ 11.2 \\ 10.0 \\ 3.3 \\ \hline \\ \hline \\ 8 \\ 11.2 \\ 10.0 \\ 3.3 \\ \hline \\ \hline \\ 5 \\ 4 \\ 3 \\ 4.6 \\ 5.0 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                              | 45.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>164<br>175<br>179<br>186<br>175<br>172.0<br>175.0<br>10.7<br>7.0<br>10.7<br>7.0<br>10.7<br>65<br>65<br>65<br>62<br>61<br>59.2<br>61.0                                                                                                                                                                                                                                |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Cluster a<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>STD                           | 31.8%<br>36.0%<br>10.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>45%<br>41%<br>36%<br>50.8%<br>45.0%<br>15.1%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>27%<br>23%<br>23%<br>23%<br>23%<br>14%<br>21.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>:                                                                                                                                                                                                                            | 12.8%<br>14.0%<br>4.1%<br>All features<br>Kmeans seiz<br>80%<br>KNN, k = 3<br>Selectivity<br>9%<br>7%<br>6%<br>6.2%<br>6.0%<br>1.9%<br>All features<br>Max value<br>70%<br>KNN, k = 3<br>Selectivity<br>10%<br>8%<br>7%<br>6%<br>5%<br>5%<br>4%<br>All features<br>Max value<br>70%<br>KNN, k = 3<br>Selectivity<br>10%<br>8%<br>7%<br>6%<br>5%<br>5%<br>4%<br>All features<br>Min value<br>70%<br>KNN, k = 3<br>Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22<br>22<br>0<br>ure separated<br>Num seiz<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>2                                         | 7.0<br>8.0<br>2.3<br>A, 3 of 7 cluster<br>Found seiz<br>16<br>13<br>10<br>9<br>8<br>11.2<br>10.0<br>3.3<br>Found seiz<br>6<br>5<br>5<br>4<br>4<br>4.6<br>5.0<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>164<br>175<br>175<br>172.0<br>175.0<br>10.7<br>7.0<br>175.0<br>10.7<br>54<br>65<br>62<br>61<br>59.2<br>61.0<br>5.0                                                                                                                                                                                                                                            |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                     | 31.8%<br>36.0%<br>10.7%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>73%<br>59%<br>45%<br>41%<br>36%<br>50.8%<br>45.0%<br>15.1%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>27%<br>23%<br>18%<br>14%<br>21.0%<br>23.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>27%<br>23%<br>23%<br>23%<br>23%<br>23%<br>23%<br>23%<br>23                                                                                                                                                            | $\begin{array}{c} 12.8\% \\ 14.0\% \\ 4.1\% \\ \hline \\ 4.1\% \\ \hline \\ 4.1\% \\ \hline \\ \\ All features \\ KNN, k = 3 \\ Selectivity \\ 9\% \\ 7\% \\ 6\% \\ 5\% \\ 4\% \\ \hline \\ 6.2\% \\ 6\% \\ 5\% \\ 4\% \\ \hline \\ 6.2\% \\ 6\% \\ 6\% \\ \hline \\ 6.2\% \\ 6\% \\ 6\% \\ \hline \\ 7\% \\ 6.2\% \\ 6\% \\ \hline \\ 8\% \\ 7\% \\ 6\% \\ 5\% \\ \hline \\ 7.2\% \\ \hline \\ 8\% \\ \\ 8\% \\ \hline \\ 8\% \\ \\ 8\% \\ \\ 8\% \\ \hline \\ 8\% \\ \\ 8\% \\ \\ 8\% \\ \\ 8\% \\ \\ 8\% \\ \\ 8\% \\ \\ 8\% \\ \\ 8\%$ | 22<br>22<br>0<br>ure separated<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                  | 7.0<br>8.0<br>2.3<br>d, 3 of 7 cluster<br>Found seiz<br>16<br>13<br>10<br>9<br>8<br>11.2<br>10.0<br>3.3<br>Found seiz<br>6<br>5<br>4<br>3<br>4.6<br>5.0<br>1.1<br>Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 45.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>164<br>175<br>179<br>186<br>175<br>172.0<br>175.0<br>10.7<br>7.0<br>175.0<br>10.7<br>61<br>65<br>62<br>61<br>65<br>62<br>61<br>59.2<br>61.0<br>5.0<br>Found non seir                                                                                                                                                                                          |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                     | 31.8%<br>36.0%<br>10.7%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>73%<br>45%<br>41%<br>45%<br>41%<br>36%<br>50.8%<br>45.0%<br>15.1%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>27%<br>23%<br>23%<br>14%<br>21.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>23%                                                                                                                                                                                                                     | $\begin{array}{c} 12.8\% \\ 14.0\% \\ 4.1\% \\ \hline \\ 4.1\% \\ \hline \\ All features \\ Kmeans seiz \\ 80\% \\ KNN, k = 3 \\ Selectivity \\ 9\% \\ 7\% \\ 6\% \\ 5\% \\ 4\% \\ 6.2\% \\ 6.0\% \\ 1.9\% \\ \hline \\ 6.2\% \\ 6.0\% \\ 1.9\% \\ \hline \\ 8\% \\ 7\% \\ 6\% \\ 5\% \\ KNN, k = 3 \\ Selectivity \\ 7\% \\ \hline \\ All features \\ Min value \\ 70\% \\ \hline \\ All features \\ Min value \\ 70\% \\ \hline \\ \\ KNN, k = 3 \\ Selectivity \\ 7\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22<br>22<br>0<br>ure separated<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                  | 7.0<br>8.0<br>2.3<br>1, 3 of 7 cluster<br>Found seiz<br>16<br>13<br>10<br>9<br>8<br>11.2<br>10.0<br>3.3<br>Found seiz<br>6<br>5<br>4<br>4<br>3<br>4.6<br>5.0<br>1.1<br>Found seiz<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                           | 45.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>164<br>175<br>172.0<br>175.0<br>175.0<br>175.0<br>10.7<br>7.0<br>10.7<br>7.0<br>10.7<br>62<br>62<br>62<br>61<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0                                                                                                                                                                                          |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                     | 31.8%<br>36.0%<br>10.7%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>73%<br>45%<br>41%<br>36%<br>50.8%<br>45.0%<br>15.1%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>27%<br>23%<br>23%<br>14%<br>21.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>23%<br>23%                                                                                                                                                                                                                            | $\begin{array}{c} 12.8\% \\ 14.0\% \\ 4.1\% \\ \hline \\ 4.1\% \\ \hline \\ All features \\ Kmeans seiz \\ 80\% \\ KNN, k = 3 \\ Selectivity \\ 9\% \\ 7\% \\ 6\% \\ 5\% \\ 4\% \\ \hline 6.2\% \\ 6.0\% \\ 1.9\% \\ \hline \\ All features \\ Max value \\ 70\% \\ \hline \\ KNN, k = 3 \\ Selectivity \\ 10\% \\ \hline \\ 8\% \\ 7\% \\ \hline 7.2\% \\ \hline 7.0\% \\ \hline \\ 1.9\% \\ \hline \\ All features \\ Min value \\ 7\% \\ \hline \\ KNN, k = 3 \\ Selectivity \\ 7\% \\ \hline \\ Selectivity \\ 7\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22<br>22<br>0<br>Num seiz<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>2                                                          | 7.0<br>8.0<br>2.3<br>I, 3 of 7 cluster<br>Found seiz<br>16<br>13<br>10<br>9<br>8<br>11.2<br>10.0<br>3.3<br>Found seiz<br>6<br>5<br>5<br>4<br>4<br>3<br>4.6<br>5.0<br>1.1<br>Found seiz<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                 | 45.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>164<br>176<br>175<br>172.0<br>175.0<br>10.7<br>7.0<br>10.7<br>7.0<br>10.7<br>62<br>61.0<br>5.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7                                                                                                                                                                                                          |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                     | 31.8%<br>36.0%<br>10.7%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>59%<br>45%<br>41%<br>36%<br>50.8%<br>45.0%<br>45.0%<br>45.0%<br>15.1%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>27%<br>23%<br>14%<br>21.0%<br>23.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>23%<br>18%                                                                                                                                                                                                        | $\begin{array}{c} 12.8\% \\ 14.0\% \\ 4.1\% \\ \hline \\ 4.1\% \\ \hline \\ 4.1\% \\ \hline \\ 4.1\% \\ \hline \\ 80\% \\ KNN, k = 3 \\ \hline \\ 80\% \\ F\% \\ 6\% \\ 6\% \\ 6\% \\ \hline \\ 6.2\% \\ 4\% \\ 6.2\% \\ 6\% \\ 6\% \\ \hline \\ 6.2\% \\ 6\% \\ 6\% \\ \hline \\ 6.2\% \\ 6\% \\ \hline \\ 6.2\% \\ 6\% \\ \hline \\ 6\% \\ \hline \\ 6.2\% \\ 6\% \\ \hline \\ 6\% \\ \hline \\ 7.2\% \\ \hline \\ 7\% \\ \hline \\ 7\% \\ \hline \\ 8\% \\ \hline \\ 7.2\% \\ \hline \\ 7\% \\ \hline \\ 8\% \\ \hline \\ 7.2\% \\ \hline \\ 7\% \\ \hline \\ 7\% \\ 7\% \\ 7\% \\ 7\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22<br>22<br>0<br>ure separated<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                  | $\begin{array}{c} 7.0 \\ 8.0 \\ 2.3 \\ \hline \\ 2.3 \\ \hline \\ 10 \\ 9 \\ 8 \\ \hline \\ 11.2 \\ \hline \\ 10.0 \\ 3.3 \\ \hline \\ 8 \\ \hline \\ 11.2 \\ \hline \\ 10.0 \\ 3.3 \\ \hline \\ 4 \\ 4.6 \\ \hline \\ 5 \\ 4 \\ 3 \\ \hline \\ 4.6 \\ \hline \\ 5.0 \\ \hline \\ 1.1 \\ \hline \\ \hline \\ \hline \\ 5 \\ 4 \\ 4 \\ \hline \\ 5 \\ 5 \\ 4 \\ 4 \\ \hline \\ \hline \\ 5 \\ 5 \\ 4 \\ \hline \\ 4 \\ \hline \\ \hline \\ 5 \\ 5 \\ 4 \\ \hline \\ \hline \\ 5 \\ 5 \\ 4 \\ \hline \\ \hline \\ \hline \\ 5 \\ 5 \\ 4 \\ \hline \\ \hline$ | $\begin{array}{c} 45.0 \\ \hline 7.0 \\ \hline 164 \\ 175 \\ 175 \\ 177.0 \\ \hline 175.0 \\ 10.7 \\ \hline 10.7 \\ \hline 54 \\ 65 \\ 62 \\ 61 \\ 59.2 \\ \hline 61.0 \\ \hline 57 \\ \hline \end{array}$ |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                     | 31.8%<br>36.0%<br>10.7%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>73%<br>45%<br>41%<br>36%<br>50.8%<br>45.0%<br>15.1%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>27%<br>23%<br>23%<br>23%<br>14%<br>23%<br>23%<br>23%<br>23%<br>18%<br>14%                                                                                                                                                                                                                                                           | $\begin{array}{c} 12.8\% \\ 14.0\% \\ 4.1\% \\ \hline \\ 4.1\% \\ \hline \\ All features \\ Kmeans seiz \\ 80\% \\ KNN, k = 3 \\ \hline \\ Selectivity \\ 9\% \\ 7\% \\ 6\% \\ 5\% \\ 4\% \\ \hline \\ 6.2\% \\ 6.0\% \\ \hline \\ 5\% \\ 4\% \\ \hline \\ 6.2\% \\ 6.0\% \\ \hline \\ 5\% \\ 4\% \\ \hline \\ 6\% \\ 5\% \\ \hline \\ 1.9\% \\ \hline \\ RNN, k = 3 \\ Selectivity \\ \hline \\ 7\% \\ 7\% \\ 7\% \\ 7\% \\ 4\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22<br>22<br>0<br>ure separated<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                  | 7.0<br>8.0<br>2.3<br>I, 3 of 7 cluster<br>Found seiz<br>16<br>13<br>10<br>9<br>8<br>11.2<br>10.0<br>3.3<br>Found seiz<br>6<br>5<br>5<br>4<br>4<br>3<br>4.6<br>5.0<br>1.1<br>Found seiz<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                 | 45.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>164<br>176<br>159<br>186<br>175<br>172.0<br>175.0<br>175.0<br>10.7<br>7.0<br>10.7<br>62<br>61.0<br>5.0<br>7.0<br>62<br>67<br>57<br>64                                                                                                                                                                                                                                |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier | 31.8%<br>36.0%<br>10.7%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>73%<br>45%<br>41%<br>36%<br>50.8%<br>45.0%<br>15.1%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>27%<br>23%<br>23%<br>23%<br>14%<br>21.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>23%<br>23.0%<br>5.0%<br>18%<br>14%<br>23%<br>23%<br>18%<br>14%<br>23%<br>23%<br>23%<br>18%<br>14%<br>23%<br>23%<br>23%<br>18%<br>14%<br>23%<br>23%<br>23%<br>23%<br>14%<br>23%<br>23%<br>23%<br>23%<br>23%<br>23%<br>23%<br>23 | $\begin{array}{c} 12.8\% \\ 14.0\% \\ 4.1\% \\ \hline \\ 4.1\% \\ \hline \\ All features \\ Kmeans seiz \\ 80\% \\ KNN, k = 3 \\ Selectivity \\ 9\% \\ 6\% \\ 5\% \\ 4\% \\ 6.2\% \\ 6.0\% \\ 1.9\% \\ \hline \\ All features \\ Max value \\ 70\% \\ KNN, k = 3 \\ Selectivity \\ 10\% \\ 8\% \\ 7\% \\ 6\% \\ 5\% \\ 7.2\% \\ 7.0\% \\ \hline \\ 7.2\% \\ 7.0\% \\ \hline \\ 1.9\% \\ \hline \\ All features \\ Min value \\ 70\% \\ \hline \\ KNN, k = 3 \\ Selectivity \\ 7\% \\ 7\% \\ 7\% \\ 7\% \\ 7\% \\ 7\% \\ 4\% \\ 3\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22<br>22<br>0<br>ure separated<br>Num seiz<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>2                                         | 7.0<br>8.0<br>2.3<br>I, 3 of 7 cluster<br>Found seiz<br>16<br>13<br>10<br>9<br>8<br>11.2<br>10.0<br>3.3<br>Found seiz<br>6<br>5<br>5<br>4<br>3<br>4.6<br>5.0<br>1.1<br>Found seiz<br>5<br>5<br>4<br>3<br>2                                                                                                                                                                                                                                                                                                                                                                                                                       | 45.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7                                                                                                                                                                                                                                                                                                                                                             |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                     | 31.8%<br>36.0%<br>10.7%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>73%<br>45%<br>41%<br>36%<br>50.8%<br>45.0%<br>15.1%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>27%<br>23%<br>23%<br>23%<br>14%<br>23%<br>23%<br>23%<br>23%<br>18%<br>14%                                                                                                                                                                                                                                                           | $\begin{array}{c} 12.8\% \\ 14.0\% \\ 4.1\% \\ \hline \\ 4.1\% \\ \hline \\ All features \\ Kmeans seiz \\ 80\% \\ KNN, k = 3 \\ \hline \\ Selectivity \\ 9\% \\ 7\% \\ 6\% \\ 5\% \\ 4\% \\ \hline \\ 6.2\% \\ 6.0\% \\ \hline \\ 5\% \\ 4\% \\ \hline \\ 6.2\% \\ 6.0\% \\ \hline \\ 5\% \\ 4\% \\ \hline \\ 6\% \\ 5\% \\ \hline \\ 1.9\% \\ \hline \\ RNN, k = 3 \\ Selectivity \\ \hline \\ 7\% \\ 7\% \\ 7\% \\ 7\% \\ 4\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22<br>22<br>0<br>ure separated<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                  | $\begin{array}{c} 7.0 \\ 8.0 \\ 2.3 \\ \hline \\ 2.3 \\ \hline \\ 1, 3 \text{ of } 7 \text{ cluster} \\ \hline \\ 10 \\ 9 \\ 8 \\ \hline \\ 11.2 \\ \hline \\ 10.0 \\ 3.3 \\ \hline \\ \hline \\ 11.2 \\ \hline \\ 10.0 \\ 3.3 \\ \hline \\ \hline \\ 4 \\ 4.6 \\ \hline \\ 5.0 \\ \hline \\ 1.1 \\ \hline \\ \hline \\ Found seiz \\ \hline \\ 5 \\ 5 \\ 4 \\ 3 \\ \hline \\ \hline \\ 5 \\ 5 \\ 4 \\ 3 \\ \hline \\ \end{array}$                                                                                                                                                                                               | 45.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>164<br>176<br>159<br>186<br>175<br>172.0<br>175.0<br>175.0<br>10.7<br>7.0<br>10.7<br>62<br>61.0<br>5.0<br>7.0<br>62<br>67<br>57<br>64                                                                                                                                                                                                                                |

| Features                                                                                                                                                                                          | used:                                                                                                                                                                                                                                                                                                                | All features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cluster a                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                      | Max absolut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e value                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                             |
| PLS-DA                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                      | 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                             |
| Classifier                                                                                                                                                                                        | :<br>Sensitivity                                                                                                                                                                                                                                                                                                     | KNN, k = 3<br>Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Num seiz                                                                                                                                                             | Found seiz                                                                                                                                                                                                                                                                                                                | Found non seiz                                                                                                                                                                                              |
|                                                                                                                                                                                                   | 5%                                                                                                                                                                                                                                                                                                                   | 1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                         | 80                                                                                                                                                                                                          |
|                                                                                                                                                                                                   | 5%                                                                                                                                                                                                                                                                                                                   | 1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                         | 102                                                                                                                                                                                                         |
|                                                                                                                                                                                                   | 0%                                                                                                                                                                                                                                                                                                                   | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                         | 102                                                                                                                                                                                                         |
|                                                                                                                                                                                                   | $0\% \\ 0\%$                                                                                                                                                                                                                                                                                                         | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22<br>22                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                         | 93<br>84                                                                                                                                                                                                    |
| Mean                                                                                                                                                                                              | 2.0%                                                                                                                                                                                                                                                                                                                 | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22                                                                                                                                                                   | 0.4                                                                                                                                                                                                                                                                                                                       | 92.2                                                                                                                                                                                                        |
| Median                                                                                                                                                                                            | 0.0%                                                                                                                                                                                                                                                                                                                 | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22                                                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                       | 93.0                                                                                                                                                                                                        |
| STD                                                                                                                                                                                               | 2.7%                                                                                                                                                                                                                                                                                                                 | 0.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                    | 0.5                                                                                                                                                                                                                                                                                                                       | 10.1                                                                                                                                                                                                        |
|                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                             |
| Features                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I and MAME                                                                                                                                                           | )                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                             |
| Cluster a<br>PLS-DA                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                      | Kmeans, 5 c<br>70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lusters                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                             |
| Classifier                                                                                                                                                                                        | :                                                                                                                                                                                                                                                                                                                    | QDA, Prior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | prob. weights                                                                                                                                                        | s [1 10]                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                             |
|                                                                                                                                                                                                   | Sensitivity                                                                                                                                                                                                                                                                                                          | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Num seiz                                                                                                                                                             | Found seiz                                                                                                                                                                                                                                                                                                                | Found non seiz                                                                                                                                                                                              |
|                                                                                                                                                                                                   | 59%<br>59%                                                                                                                                                                                                                                                                                                           | 24%<br>27%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22<br>22                                                                                                                                                             | 13<br>13                                                                                                                                                                                                                                                                                                                  | 42<br>36                                                                                                                                                                                                    |
|                                                                                                                                                                                                   | 59%                                                                                                                                                                                                                                                                                                                  | 28%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22                                                                                                                                                                   | 13                                                                                                                                                                                                                                                                                                                        | 33                                                                                                                                                                                                          |
|                                                                                                                                                                                                   | 68%                                                                                                                                                                                                                                                                                                                  | 30%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22                                                                                                                                                                   | 15                                                                                                                                                                                                                                                                                                                        | 35                                                                                                                                                                                                          |
|                                                                                                                                                                                                   | 77%                                                                                                                                                                                                                                                                                                                  | 30%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22                                                                                                                                                                   | 17                                                                                                                                                                                                                                                                                                                        | 39                                                                                                                                                                                                          |
| Mean                                                                                                                                                                                              | 64.4%                                                                                                                                                                                                                                                                                                                | 27.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22                                                                                                                                                                   | 14.2                                                                                                                                                                                                                                                                                                                      | 37.0                                                                                                                                                                                                        |
| Median<br>STD                                                                                                                                                                                     | 59.0%<br>8.0%                                                                                                                                                                                                                                                                                                        | 28.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22                                                                                                                                                                   | 13.0                                                                                                                                                                                                                                                                                                                      | 36.0<br>3.5                                                                                                                                                                                                 |
| 515                                                                                                                                                                                               | 0.070                                                                                                                                                                                                                                                                                                                | 21070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ů                                                                                                                                                                    | 110                                                                                                                                                                                                                                                                                                                       | 0.0                                                                                                                                                                                                         |
| Features                                                                                                                                                                                          | used:                                                                                                                                                                                                                                                                                                                | Without SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A and MAM                                                                                                                                                            | D                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                             |
| Cluster a                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                      | Kmeans, 5 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lusters                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                             |
| PLS-DA<br>Classifier                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                      | 70%<br>ODA Prior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | prob. weight:                                                                                                                                                        | a [1 10]                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                             |
| Classifier                                                                                                                                                                                        | Sensitivity                                                                                                                                                                                                                                                                                                          | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Num seiz                                                                                                                                                             | Found seiz                                                                                                                                                                                                                                                                                                                | Found non seiz                                                                                                                                                                                              |
|                                                                                                                                                                                                   | 64%                                                                                                                                                                                                                                                                                                                  | 27%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22                                                                                                                                                                   | 14                                                                                                                                                                                                                                                                                                                        | 37                                                                                                                                                                                                          |
|                                                                                                                                                                                                   | 68%                                                                                                                                                                                                                                                                                                                  | 34%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22                                                                                                                                                                   | 15                                                                                                                                                                                                                                                                                                                        | 29                                                                                                                                                                                                          |
|                                                                                                                                                                                                   | $\frac{68\%}{77\%}$                                                                                                                                                                                                                                                                                                  | 38%<br>35%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22<br>22                                                                                                                                                             | 15<br>17                                                                                                                                                                                                                                                                                                                  | 24<br>32                                                                                                                                                                                                    |
|                                                                                                                                                                                                   | 77%                                                                                                                                                                                                                                                                                                                  | 36%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22                                                                                                                                                                   | 17                                                                                                                                                                                                                                                                                                                        | 30                                                                                                                                                                                                          |
| Mean                                                                                                                                                                                              | 70.8%                                                                                                                                                                                                                                                                                                                | 34.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22                                                                                                                                                                   | 15.6                                                                                                                                                                                                                                                                                                                      | 30.4                                                                                                                                                                                                        |
| Median                                                                                                                                                                                            | 68.0%                                                                                                                                                                                                                                                                                                                | 35.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22                                                                                                                                                                   | 15.0                                                                                                                                                                                                                                                                                                                      | 30.0                                                                                                                                                                                                        |
| STD                                                                                                                                                                                               | 5.9%                                                                                                                                                                                                                                                                                                                 | 4.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                    | 1.3                                                                                                                                                                                                                                                                                                                       | 4.7                                                                                                                                                                                                         |
|                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , v                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                             |
| Features                                                                                                                                                                                          | used:                                                                                                                                                                                                                                                                                                                | Without SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                             |
| Features<br>Cluster a                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                      | Without SM<br>Kmeans, 5 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A and VM                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                             |
| Cluster a<br>PLS-DA                                                                                                                                                                               | nalysis:<br>variance:                                                                                                                                                                                                                                                                                                | Kmeans, 5 c<br>70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A and VM<br>lusters                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                             |
| Cluster a                                                                                                                                                                                         | nalysis:<br>variance:<br>:                                                                                                                                                                                                                                                                                           | Kmeans, 5 c<br>70%<br>QDA, Prior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A and VM<br>lusters<br>prob. weight:                                                                                                                                 | s [1 10]                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                             |
| Cluster a<br>PLS-DA                                                                                                                                                                               | nalysis:<br>variance:<br>:<br>Sensitivity                                                                                                                                                                                                                                                                            | Kmeans, 5 c<br>70%<br>QDA, Prior<br>Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A and VM<br>lusters<br>prob. weight:<br>Num seiz                                                                                                                     | s [1 10]<br>Found seiz                                                                                                                                                                                                                                                                                                    | Found non seiz                                                                                                                                                                                              |
| Cluster a<br>PLS-DA                                                                                                                                                                               | nalysis:<br>variance:<br>:                                                                                                                                                                                                                                                                                           | Kmeans, 5 c<br>70%<br>QDA, Prior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A and VM<br>lusters<br>prob. weight:                                                                                                                                 | s [1 10]                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                             |
| Cluster a<br>PLS-DA                                                                                                                                                                               | nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>73%<br>77%                                                                                                                                                                                                                                                       | Kmeans, 5 c<br>70%<br>QDA, Prior<br>Selectivity<br>32%<br>32%<br>27%                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A and VM<br>lusters<br>prob. weight:<br>Num seiz<br>22<br>22<br>22<br>22                                                                                             | s [1 10]<br>Found seiz<br>16<br>16<br>17                                                                                                                                                                                                                                                                                  | Found non seiz<br>34<br>45                                                                                                                                                                                  |
| Cluster a<br>PLS-DA                                                                                                                                                                               | nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>73%<br>77%<br>77%                                                                                                                                                                                                                                                | Kmeans, 5 c<br>70%<br>QDA, Prior<br>Selectivity<br>32%<br>32%<br>27%<br>35%                                                                                                                                                                                                                                                                                                                                                                                                                                             | A and VM<br>lusters<br>prob. weight:<br><u>Num seiz</u><br>22<br>22<br>22<br>22<br>22<br>22                                                                          | s [1 10]<br>Found seiz<br>16<br>16<br>17<br>17                                                                                                                                                                                                                                                                            | Found non seiz<br>34<br>34<br>45<br>32                                                                                                                                                                      |
| Cluster a<br>PLS-DA<br>Classifier                                                                                                                                                                 | nalysis:<br>variance:<br>:<br>73%<br>73%<br>77%<br>77%<br>77%<br>77%                                                                                                                                                                                                                                                 | Kmeans, 5 c<br>70%<br>QDA, Prior<br>Selectivity<br>32%<br>32%<br>27%<br>35%<br>35%                                                                                                                                                                                                                                                                                                                                                                                                                                      | A and VM<br>lusters<br>prob. weight:<br><u>Num seiz</u><br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                                        | s [1 10]<br>Found seiz<br>16<br>16<br>17<br>17<br>17                                                                                                                                                                                                                                                                      | Found non seiz<br>34<br>34<br>45<br>32<br>31                                                                                                                                                                |
| Cluster a<br>PLS-DA                                                                                                                                                                               | nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>73%<br>77%<br>77%                                                                                                                                                                                                                                                | Kmeans, 5 c<br>70%<br>QDA, Prior<br>Selectivity<br>32%<br>32%<br>27%<br>35%                                                                                                                                                                                                                                                                                                                                                                                                                                             | A and VM<br>lusters<br>prob. weight:<br><u>Num seiz</u><br>22<br>22<br>22<br>22<br>22<br>22                                                                          | s [1 10]<br>Found seiz<br>16<br>16<br>17<br>17                                                                                                                                                                                                                                                                            | Found non seiz<br>34<br>34<br>45<br>32                                                                                                                                                                      |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean                                                                                                                                                         | nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>73%<br>77%<br>77%<br>77%<br>75.4%                                                                                                                                                                                                                                | Kmeans, 5 c<br>70%<br>QDA, Prior<br>Selectivity<br>32%<br>32%<br>27%<br>35%<br>35%<br>35%<br>32.2%                                                                                                                                                                                                                                                                                                                                                                                                                      | A and VM<br>lusters<br>prob. weight:<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                                                     | s [1 10]<br>Found seiz<br>16<br>16<br>17<br>17<br>17<br>16.6                                                                                                                                                                                                                                                              | Found non seiz<br>34<br>34<br>45<br>32<br>31<br>35.2                                                                                                                                                        |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD                                                                                                                                        | nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>73%<br>73%<br>77%<br>77%<br>77%<br>77.0%<br>2.2%                                                                                                                                                                                                                 | Kmeans, 5 c<br>70%<br>QDA, Prior<br>Selectivity<br>32%<br>32%<br>35%<br>35%<br>35%<br>32.2%<br>32.0%<br>3.3%                                                                                                                                                                                                                                                                                                                                                                                                            | A and VM<br>lusters<br>prob. weight:<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>0                                                    | s [1 10]<br>Found seiz<br>16<br>17<br>17<br>17<br>16.6<br>17.0                                                                                                                                                                                                                                                            | Found non seiz<br>34<br>34<br>45<br>32<br>31<br>35.2<br>34.0                                                                                                                                                |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features                                                                                                                            | nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>73%<br>77%<br>77%<br>77%<br>77.0%<br>2.2%<br>used:                                                                                                                                                                                                               | Kmeans, 5 c<br>70%<br>QDA, Prior<br>Selectivity<br>32%<br>27%<br>35%<br>35%<br>35%<br>32.2%<br>32.0%<br>32.0%<br>3.3%                                                                                                                                                                                                                                                                                                                                                                                                   | A and VM<br>lusters<br>prob. weight:<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>0                                                                | s [1 10]<br>Found seiz<br>16<br>17<br>17<br>17<br>16.6<br>17.0                                                                                                                                                                                                                                                            | Found non seiz<br>34<br>34<br>45<br>32<br>31<br>35.2<br>34.0                                                                                                                                                |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a                                                                                                               | nalysis:<br>variance:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:                                                                                                                                                                                                      | Kmeans, 5 c           70%           QDA, Prior           Selectivity           32%           32%           35%           35%           32.2%           35%           32.2%           35%           35%           32.2%           35%           32.2%           32.0%           3.3%           Without DC           Kmeans, 5 c                                                                                                                                                                                          | A and VM<br>lusters<br>prob. weight:<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>0                                                                | s [1 10]<br>Found seiz<br>16<br>17<br>17<br>17<br>16.6<br>17.0                                                                                                                                                                                                                                                            | Found non seiz<br>34<br>34<br>45<br>32<br>31<br>35.2<br>34.0                                                                                                                                                |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features                                                                                                                            | nalysis:<br>variance:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:                                                                                                                                                                                                      | Kmeans, 5 c<br>70%<br>QDA, Prior<br>Selectivity<br>32%<br>32%<br>32%<br>35%<br>35%<br>35%<br>32.2%<br>32.0%<br>33.3%<br>Without DC<br>Kmeans, 5 c<br>70%<br>QDA, Prior                                                                                                                                                                                                                                                                                                                                                  | A and VM<br>lusters<br>prob. weight:<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>0                                                                | s [1 10]<br>Found seiz<br>16<br>16<br>17<br>17<br>17<br>16.6<br>17.0<br>0.5<br>s [1 10]                                                                                                                                                                                                                                   | Found non seiz<br>34<br>34<br>45<br>32<br>31<br>35.2<br>34.0<br>5.6                                                                                                                                         |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                     | nalysis:<br>variance:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:                                                                                                                                                                                                      | Kmeans, 5 c           70%           QDA, Prior           Selectivity           32%           32%           35%           35%           32.2%           32.0%           33.3%           Without DC           Kmeans, 5 c           70%           QDA, Prior           Selectivity                                                                                                                                                                                                                                        | A and VM<br>lusters<br>prob. weight.<br>Num seiz<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                       | s [1 10]<br>Found seiz<br>16<br>16<br>17<br>17<br>16.6<br>17.0<br>0.5<br>s [1 10]<br>Found seiz                                                                                                                                                                                                                           | Found non seiz<br>34<br>34<br>45<br>32<br>31<br>35.2<br>34.0<br>5.6<br>Found non seiz                                                                                                                       |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                     | nalysis:<br>variance:<br>:<br>:<br>Sensitivity<br>73%<br>73%<br>77%<br>77%<br>77%<br>75.4%<br>77.0%<br>2.2%<br>used:<br>nalysis:<br>variance:<br>:<br>:<br>Sensitivity<br>36%                                                                                                                                        | Kmeans, 5 c<br>70%<br>QDA, Prior<br>Selectivity<br>32%<br>32%<br>35%<br>35%<br>35%<br>35%<br>32.2%<br>32.0%<br>3.3%<br>Without DC<br>Kmeans, 5 c<br>70%<br>QDA, Prior<br>Selectivity<br>12%                                                                                                                                                                                                                                                                                                                             | A and VM<br>lusters<br>prob. weight:<br>Num seiz<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>0<br>0<br>lusters<br>prob. weight:<br>Num seiz<br>22 | s [1 10]<br>Found seiz<br>16<br>16<br>17<br>17<br>17<br>16.6<br>17.0<br>0.5<br>s [1 10]<br>Found seiz<br>8                                                                                                                                                                                                                | Found non seiz<br>34<br>34<br>45<br>32<br>31<br>35.2<br>34.0<br>5.6<br>Found non seiz<br>59                                                                                                                 |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                     | nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>73%<br>77%<br>77%<br>75.4%<br>77.0%<br>2.2%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>36%<br>41%                                                                                                                                                  | Kmeans, 5 c<br>70%<br>QDA, Prior<br>Selectivity<br>32%<br>32%<br>32%<br>35%<br>35%<br>32.2%<br>32.0%<br>32.0%<br>33.3%<br>Without DC<br>Kmeans, 5 c<br>70%<br>QDA, Prior<br>Selectivity<br>12%<br>18%                                                                                                                                                                                                                                                                                                                   | A and VM<br>lusters<br>prob. weight:<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                                   | s [1 10]<br>Found seiz<br>16<br>16<br>17<br>17<br>17<br>16.6<br>17.0<br>0.5<br>s [1 10]<br>Found seiz<br>8<br>9                                                                                                                                                                                                           | Found non seiz<br>34<br>34<br>45<br>32<br>31<br>35.2<br>34.0<br>5.6<br>Found non seiz<br>59<br>40                                                                                                           |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                     | nalysis:<br>variance:<br>:<br>:<br>Sensitivity<br>73%<br>73%<br>77%<br>77%<br>77%<br>75.4%<br>77.0%<br>2.2%<br>used:<br>nalysis:<br>variance:<br>:<br>:<br>Sensitivity<br>36%                                                                                                                                        | Kmeans, 5 c<br>70%<br>QDA, Prior<br>Selectivity<br>32%<br>32%<br>35%<br>35%<br>35%<br>35%<br>32.2%<br>32.0%<br>3.3%<br>Without DC<br>Kmeans, 5 c<br>70%<br>QDA, Prior<br>Selectivity<br>12%                                                                                                                                                                                                                                                                                                                             | A and VM<br>lusters<br>prob. weight:<br>Num seiz<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>0<br>0<br>lusters<br>prob. weight:<br>Num seiz<br>22 | s [1 10]<br>Found seiz<br>16<br>16<br>17<br>17<br>17<br>16.6<br>17.0<br>0.5<br>s [1 10]<br>Found seiz<br>8                                                                                                                                                                                                                | Found non seiz<br>34<br>34<br>35<br>31<br>35.2<br>34.0<br>5.6<br>Found non seiz<br>59                                                                                                                       |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                                       | nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>73%<br>77%<br>77%<br>77%<br>75.4%<br>77.0%<br>2.2%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>36%<br>41%<br>45%<br>50%<br>55%                                                                                                                      | $\begin{array}{c} {\rm Kmeans, 5\ c}\\ {\rm 70\%}\\ {\rm QDA, Prior}\\ {\rm Selectivity}\\ 32\%\\ 32\%\\ 32\%\\ 35\%\\ 35\%\\ 35.2\%\\ 35.2\%\\ 32.2\%\\ 32.0\%\\ 33.3\%\\ \hline \\ {\rm Without\ DC}\\ {\rm Kmeans, 5\ c}\\ {\rm 70\%}\\ {\rm QDA,\ Prior}\\ {\rm Selectivity}\\ 12\%\\ 18\%\\ 17\%\\ 26\%\\ 32\%\\ \end{array}$                                                                                                                                                                                      | A and VM<br>lusters<br>prob. weight:<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                                   | s [1 10]<br>Found seiz<br>16<br>16<br>17<br>17<br>16.6<br>17.0<br>0.5<br>s [1 10]<br>Found seiz<br>8<br>9<br>10<br>11<br>12                                                                                                                                                                                               | Found non seiz<br>34<br>34<br>45<br>32<br>31<br>35.2<br>34.0<br>5.6<br>Found non seiz<br>59<br>40<br>50<br>31<br>26                                                                                         |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                                       | nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>73%<br>77%<br>77%<br>77.0%<br>2.2%<br>2.2%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>36%<br>41%<br>45%<br>50%<br>55%<br>45.4%                                                                                                                     | $\begin{array}{c} {\rm Kmeans, 5\ c}\\ 70\%\\ {\rm QDA, Prior}\\ \hline \\ {\rm Selectivity}\\ 32\%\\ 32\%\\ 32\%\\ 35\%\\ 35\%\\ \hline \\ 35\%\\ \hline \\ 32.2\%\\ \hline \\ 32.0\%\\ \hline \\ 32.0\%\\ \hline \\ 33.0\%\\ \hline \\ \hline \\ {\rm Without\ DC}\\ {\rm Kmeans, 5\ c}\\ 70\%\\ {\rm QDA, Prior}\\ \hline \\ {\rm Selectivity}\\ 12\%\\ 18\%\\ 17\%\\ 26\%\\ 32\%\\ \hline \\ 21.0\%\\ \hline \end{array}$                                                                                           | A and VM<br>lusters<br>prob. weight:<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                                   | s [1 10]<br>Found seiz<br>16<br>16<br>17<br>17<br>17<br>16.6<br>17.0<br>0.5<br>s [1 10]<br>Found seiz<br>8<br>9<br>10<br>11<br>12<br>10.0                                                                                                                                                                                 | Found non seiz<br>34<br>34<br>45<br>32<br>31<br>35.2<br>34.0<br>5.6<br>Found non seiz<br>59<br>40<br>50<br>31<br>26<br>41.2                                                                                 |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Mean                                                                       | nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>73%<br>77%<br>77%<br>77%<br>77.0%<br>2.2%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>36%<br>41%<br>45%<br>50%<br>55%<br>45.4%                                                                                                                      | Kmeans, 5 c<br>70%<br>QDA, Prior<br>Selectivity<br>32%<br>32%<br>35%<br>35%<br>35%<br>35%<br>32.2%<br>32.0%<br>32.0%<br>32.0%<br>33.3%<br>Without DC<br>Kmeans, 5 c<br>70%<br>QDA, Prior<br>Selectivity<br>12%<br>18%<br>17%<br>26%<br>32%<br>21.0%<br>18.0%                                                                                                                                                                                                                                                            | A and VM<br>lusters<br>prob. weight:<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                                   | s [1 10]<br>Found seiz<br>16<br>16<br>17<br>17<br>17<br>16.6<br>17.0<br>0.5<br>s [1 10]<br>Found seiz<br>8<br>9<br>10<br>11<br>12<br>10.0<br>10.0                                                                                                                                                                         | Found non seiz<br>34<br>34<br>35<br>32<br>31<br>35.2<br>34.0<br>5.6<br>Found non seiz<br>59<br>40<br>50<br>31<br>26<br>41.2<br>40.0                                                                         |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                                       | nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>73%<br>77%<br>77%<br>77.0%<br>2.2%<br>2.2%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>36%<br>41%<br>45%<br>50%<br>55%<br>45.4%                                                                                                                     | $\begin{array}{c} {\rm Kmeans, 5\ c}\\ 70\%\\ {\rm QDA, Prior}\\ \hline \\ {\rm Selectivity}\\ 32\%\\ 32\%\\ 32\%\\ 35\%\\ 35\%\\ \hline \\ 35\%\\ \hline \\ 32.2\%\\ \hline \\ 32.0\%\\ \hline \\ 32.0\%\\ \hline \\ 33.0\%\\ \hline \\ \hline \\ {\rm Without\ DC}\\ {\rm Kmeans, 5\ c}\\ 70\%\\ {\rm QDA, Prior}\\ \hline \\ {\rm Selectivity}\\ 12\%\\ 18\%\\ 17\%\\ 26\%\\ 32\%\\ \hline \\ 21.0\%\\ \hline \end{array}$                                                                                           | A and VM<br>lusters<br>prob. weight:<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                                   | s [1 10]<br>Found seiz<br>16<br>16<br>17<br>17<br>17<br>16.6<br>17.0<br>0.5<br>s [1 10]<br>Found seiz<br>8<br>9<br>10<br>11<br>12<br>10.0                                                                                                                                                                                 | Found non seiz<br>34<br>34<br>45<br>32<br>31<br>35.2<br>34.0<br>5.6<br>Found non seiz<br>59<br>40<br>50<br>31<br>26<br>41.2                                                                                 |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Mean                                                                       | nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>73%<br>77%<br>77%<br>75.4%<br>77.0%<br>2.2%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>36%<br>41%<br>45%<br>50%<br>55%<br>45.4%<br>45.0%<br>7.4%                                                                                                   | Kmeans, 5 c<br>70%<br>QDA, Prior<br>Selectivity<br>32%<br>32%<br>35%<br>35%<br>35%<br>35%<br>32.2%<br>32.0%<br>32.0%<br>32.0%<br>33.3%<br>Without DC<br>Kmeans, 5 c<br>70%<br>QDA, Prior<br>Selectivity<br>12%<br>18%<br>17%<br>26%<br>32%<br>21.0%<br>18.0%                                                                                                                                                                                                                                                            | A and VM<br>lusters<br>prob. weight:<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                                   | s [1 10]<br>Found seiz<br>16<br>16<br>17<br>17<br>17<br>16.6<br>17.0<br>0.5<br>s [1 10]<br>Found seiz<br>8<br>9<br>10<br>11<br>12<br>10.0<br>10.0                                                                                                                                                                         | Found non seiz<br>34<br>34<br>35<br>32<br>31<br>35.2<br>34.0<br>5.6<br>Found non seiz<br>59<br>40<br>50<br>31<br>26<br>41.2<br>40.0                                                                         |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD                                                              | nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>73%<br>77%<br>77%<br>77%<br>75.4%<br>77.0%<br>2.2%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>36%<br>41%<br>45%<br>50%<br>55%<br>55%<br>55%<br>45.4%<br>45.4%<br>45.0%<br>7.4%<br>used:<br>nalysis:                                                | Kmeans, 5 c<br>70%<br>QDA, Prior<br>Selectivity<br>32%<br>35%<br>35%<br>35%<br>35%<br>32.2%<br>32.0%<br>32.2%<br>32.0%<br>3.3%<br>Without DC<br>Kmeans, 5 c<br>70%<br>QDA, Prior<br>Selectivity<br>12%<br>18%<br>17%<br>26%<br>32%<br>32%<br>32%<br>32%<br>32%<br>32%<br>32%<br>32%<br>32%<br>32                                                                                                                                                                                                                        | A and VM<br>lusters<br>prob. weight.<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                                   | s [1 10]<br>Found seiz<br>16<br>16<br>17<br>17<br>17<br>16.6<br>17.0<br>0.5<br>s [1 10]<br>Found seiz<br>8<br>9<br>10<br>11<br>12<br>10.0<br>10.0                                                                                                                                                                         | Found non seiz<br>34<br>34<br>35<br>32<br>31<br>35.2<br>34.0<br>5.6<br>Found non seiz<br>59<br>40<br>50<br>31<br>26<br>41.2<br>40.0                                                                         |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                         | nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>73%<br>77%<br>75.4%<br>77.0%<br>2.2%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>36%<br>41%<br>45%<br>45%<br>45%<br>45.4%<br>45.0%<br>7.4%<br>used:<br>nalysis:<br>variance:                                                                        | $\begin{array}{c} {\rm Kmeans, 5\ c}\\ {\rm 70\%}\\ {\rm QDA, Prior}\\ {\rm Selectivity}\\ 32\%\\ 32\%\\ 32\%\\ 35\%\\ 35\%\\ 35\%\\ 32.2\%\\ 35\%\\ 32.2\%\\ 33.0\%\\ \hline \\ {\rm Without\ DC}\\ {\rm Kmeans, 5\ c}\\ 70\%\\ {\rm QDA,\ Prior}\\ {\rm Selectivity}\\ 12\%\\ 18\%\\ 17\%\\ 26\%\\ 32\%\\ 21.0\%\\ 18.0\%\\ 7.9\%\\ \hline \\ {\rm Without\ CO}\\ {\rm Kmeans, 5\ c}\\ 70\%\\ \hline \end{array}$                                                                                                     | A and VM<br>lusters<br>prob. weight:<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                                   | s [1 10]<br>Found seiz<br>16<br>16<br>17<br>17<br>16.6<br>17.0<br>0.5<br>s [1 10]<br>Found seiz<br>8<br>9<br>10<br>11<br>12<br>10.0<br>1.6<br>1.6                                                                                                                                                                         | Found non seiz<br>34<br>34<br>35<br>32<br>31<br>35.2<br>34.0<br>5.6<br>Found non seiz<br>59<br>40<br>50<br>31<br>26<br>41.2<br>40.0                                                                         |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD                                                              | nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>73%<br>77%<br>77%<br>77%<br>75.4%<br>77.0%<br>2.2%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>36%<br>41%<br>45%<br>50%<br>45.4%<br>45.0%<br>7.4%<br>used:<br>nalysis:<br>variance:<br>:                                                            | Kmeans, 5 c           70%           QDA, Prior           Selectivity           32%           27%           35%           35%           32.2%           32.0%           33.3%           Without DC           Kmeans, 5 c           70%           QDA, Prior           Selectivity           12%           18%           17%           26%           32%           21.0%           18.0%           7.9%           Without CO           Kmeans, 5 c           70%           QDA, Prior                                     | A and VM<br>lusters<br>prob. weight.<br>Num seiz<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                       | s [1 10]<br>Found seiz<br>16<br>16<br>17<br>17<br>17<br>16.6<br>17.0<br>0.5<br>s [1 10]<br>Found seiz<br>8<br>9<br>10<br>11<br>12<br>10.0<br>1.6<br>s [1 10]                                                                                                                                                              | Found non seiz<br>34<br>34<br>35<br>31<br>35.2<br>34.0<br>5.6<br>Found non seiz<br>59<br>40<br>50<br>31<br>26<br>41.2<br>40.0<br>13.5                                                                       |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                         | nalysis:<br>variance:<br>Sensitivity<br>73%<br>73%<br>77%<br>77%<br>75.4%<br>77.0%<br>2.2%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>36%<br>41%<br>45%<br>41%<br>45%<br>55%<br>45.4%<br>45.0%<br>7.4%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>55%                                              | $\begin{array}{c} {\rm Kmeans, 5\ c}\\ {\rm 70\%}\\ {\rm QDA, Prior}\\ {\rm Selectivity}\\ 32\%\\ 32\%\\ 32\%\\ 35\%\\ 35\%\\ 35\%\\ 32.2\%\\ 35\%\\ 32.2\%\\ 33.0\%\\ \hline \\ {\rm Without\ DC}\\ {\rm Kmeans, 5\ c}\\ 70\%\\ {\rm QDA,\ Prior}\\ {\rm Selectivity}\\ 12\%\\ 18\%\\ 17\%\\ 26\%\\ 32\%\\ 21.0\%\\ 18.0\%\\ 7.9\%\\ \hline \\ {\rm Without\ CO}\\ {\rm Kmeans, 5\ c}\\ 70\%\\ \hline \end{array}$                                                                                                     | A and VM<br>lusters<br>prob. weight:<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                                   | s [1 10]<br>Found seiz<br>16<br>16<br>17<br>17<br>16.6<br>17.0<br>0.5<br>s [1 10]<br>Found seiz<br>8<br>9<br>10<br>11<br>12<br>10.0<br>1.6<br>1.6                                                                                                                                                                         | Found non seiz<br>34<br>34<br>35<br>32<br>31<br>35.2<br>34.0<br>5.6<br>Found non seiz<br>59<br>40<br>50<br>31<br>26<br>41.2<br>40.0                                                                         |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                         | nalysis:<br>variance:<br>Sensitivity<br>73%<br>73%<br>77%<br>77%<br>77%<br>75.4%<br>77.0%<br>2.2%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>36%<br>41%<br>45%<br>50%<br>45.4%<br>45.0%<br>7.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>55%<br>59%                                    | Kmeans, 5 c           70%           QDA, Prior           Selectivity           32%           27%           35%           35%           32.2%           32.0%           33.3%           Without DC           Kmeans, 5 c           70%           QDA, Prior           Selectivity           12%           18%           17%           26%           21.0%           18.0%           7.9%           Without CO           Kmeans, 5 c           70%           20.0%                                                        | A and VM<br>lusters<br>prob. weight.<br>Num seiz<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                       | s [1 10]<br>Found seiz<br>16<br>16<br>17<br>17<br>17<br>16.6<br>17.0<br>0.5<br>s [1 10]<br>Found seiz<br>8<br>9<br>10<br>11<br>12<br>10.0<br>1.6<br>s [1 10]<br>Found seiz<br>12<br>13                                                                                                                                    | Found non seiz<br>34<br>34<br>35.2<br>34.0<br>5.6<br>Found non seiz<br>59<br>40<br>50<br>31<br>26<br>41.2<br>40.0<br>13.5<br>Found non seiz<br>20<br>32                                                     |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                         | nalysis:<br>variance:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:                                                                                                                                                                                                      | Kmeans, 5 c<br>70%<br>QDA, Prior<br>Selectivity<br>32%<br>35%<br>35%<br>35%<br>32.2%<br>32.0%<br>32.0%<br>32.0%<br>32.0%<br>32.0%<br>32.0%<br>32.0%<br>32.0%<br>32.0%<br>32.0%<br>20%<br>20%<br>20%<br>20%<br>20%<br>20%<br>20%<br>20%<br>20%                                                                                                                                                                                                                                                                           | A and VM<br>lusters<br>prob. weight:<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                                   | s [1 10]<br>Found seiz<br>16<br>16<br>17<br>17<br>16.6<br>17.0<br>0.5<br>s [1 10]<br>Found seiz<br>8<br>9<br>10<br>11<br>12<br>10.0<br>1.6<br>s [1 10]<br>Found seiz<br>12<br>13<br>13                                                                                                                                    | Found non seiz<br>34<br>34<br>35<br>32<br>31<br>35.2<br>34.0<br>5.6<br>Found non seiz<br>59<br>40<br>50<br>31<br>26<br>41.2<br>40.0<br>13.5<br>Found non seiz<br>20<br>32<br>28                             |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                         | nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>73%<br>77%<br>75.4%<br>77.0%<br>2.2%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>36%<br>41%<br>45%<br>41%<br>45%<br>50%<br>55%<br>45.4%<br>45.0%<br>7.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>55%<br>59%<br>59%<br>73%          | $\begin{array}{c} {\rm Kmeans, 5\ c}\\ 70\%\\ {\rm QDA, Prior}\\ \hline\\ 32\%\\ 32\%\\ 32\%\\ 35\%\\ 35\%\\ \hline\\ 32.2\%\\ 35.\%\\ \hline\\ 32.2\%\\ \hline\\ 32.0\%\\ \hline\\ 32.0\%\\ \hline\\ 32.0\%\\ \hline\\ 33\%\\ \hline\\ \hline\\$                                                                                                                                                                    | A and VM<br>lusters<br>prob. weight.<br>Num seiz<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                       | s [1 10]<br>Found seiz<br>16<br>16<br>17<br>17<br>16.6<br>17.0<br>0.5<br>s [1 10]<br>Found seiz<br>8<br>9<br>10<br>11<br>12<br>10.0<br>10.0<br>1.6<br>s [1 10]<br>Found seiz<br>12<br>13<br>16                                                                                                                            | Found non seiz<br>34<br>34<br>35<br>32<br>31<br>35.2<br>34.0<br>5.6<br>Found non seiz<br>59<br>40<br>50<br>31<br>26<br>41.2<br>40.0<br>13.5<br>Found non seiz<br>20<br>32<br>28<br>32                       |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                         | nalysis:<br>variance:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:                                                                                                                                                                                                      | Kmeans, 5 c<br>70%<br>QDA, Prior<br>Selectivity<br>32%<br>35%<br>35%<br>35%<br>32.2%<br>32.0%<br>32.0%<br>32.0%<br>32.0%<br>32.0%<br>32.0%<br>32.0%<br>32.0%<br>32.0%<br>32.0%<br>20%<br>20%<br>20%<br>20%<br>20%<br>20%<br>20%<br>20%<br>20%                                                                                                                                                                                                                                                                           | A and VM<br>lusters<br>prob. weight:<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                                   | s [1 10]<br>Found seiz<br>16<br>16<br>17<br>17<br>16.6<br>17.0<br>0.5<br>s [1 10]<br>Found seiz<br>8<br>9<br>10<br>11<br>12<br>10.0<br>1.6<br>s [1 10]<br>Found seiz<br>12<br>13<br>13                                                                                                                                    | Found non seiz<br>34<br>34<br>35<br>32<br>31<br>35.2<br>34.0<br>5.6<br>Found non seiz<br>59<br>40<br>50<br>31<br>26<br>41.2<br>40.0<br>13.5<br>Found non seiz<br>20<br>32<br>28                             |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Gluster a<br>PLS-DA<br>Classifier<br>Features<br>Cluster a<br>PLS-DA<br>Classifier | nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>73%<br>77%<br>77%<br>75.4%<br>77.0%<br>2.2%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>36%<br>41%<br>45%<br>50%<br>55%<br>45.4%<br>45.0%<br>7.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>55%<br>59%<br>73%<br>73%<br>73%<br>59.0% | $\begin{array}{c} {\rm Kmeans, 5\ c}\\ {\rm 70\%}\\ {\rm QDA, Prior}\\ {\rm Selectivity}\\ 32\%\\ 32\%\\ 27\%\\ 35\%\\ 35\%\\ 32.2\%\\ 35\%\\ 32.2\%\\ 33.3\%\\ \hline \\ {\rm Without\ DC}\\ {\rm Kmeans, 5\ c}\\ 70\%\\ {\rm QDA,\ Prior}\\ {\rm Selectivity}\\ 12\%\\ 18\%\\ 17\%\\ 18\%\\ 17\%\\ 26\%\\ 32\%\\ 21.0\%\\ 18.0\%\\ 7.9\%\\ \hline \\ {\rm Without\ CO}\\ {\rm Kmeans, 5\ c}\\ 70\%\\ {\rm QDA,\ Prior}\\ {\rm Selectivity}\\ 32\%\\ 29\%\\ 32\%\\ 33\%\\ 36\%\\ 33.6\%\\ 33.0\%\\ \hline \end{array}$ | A and VM<br>lusters<br>prob. weight:<br>Num seiz<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                       | s [1 10]<br>Found seiz<br>16<br>16<br>17<br>17<br>16.6<br>17.0<br>0.5<br>s [1 10]<br>Found seiz<br>8<br>9<br>10<br>11<br>12<br>10.0<br>1.6<br>s [1 10]<br>Found seiz<br>12<br>13<br>16<br>16<br>16<br>16<br>17<br>17<br>17<br>17<br>17<br>16.6<br>17.0<br>0.5<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | Found non seiz<br>34<br>34<br>35<br>32<br>31<br>35.2<br>34.0<br>5.6<br>Found non seiz<br>59<br>40<br>50<br>31<br>26<br>41.2<br>40.0<br>13.5<br>Found non seiz<br>20<br>32<br>28<br>32<br>29<br>28.2<br>29.0 |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier             | nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>73%<br>77%<br>77%<br>77%<br>77.0%<br>2.2%<br>2.2%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>36%<br>41%<br>45%<br>50%<br>55%<br>45.4%<br>45.0%<br>7.4%<br>variance:<br>:<br>Sensitivity<br>55%<br>59%<br>59%<br>59%<br>73%<br>63.8%                | $\begin{array}{c} {\rm Kmeans, 5\ c}\\ {\rm 70\%}\\ {\rm QDA, Prior}\\ {\rm Selectivity}\\ 32\%\\ 32\%\\ 32\%\\ 35\%\\ 35\%\\ 35\%\\ 35\%\\ 35\%\\ 32.2\%\\ 32.0\%\\ 33.0\%\\ \hline \\ {\rm Without\ DC}\\ {\rm Kmeans, 5\ c}\\ 70\%\\ {\rm QDA, Prior}\\ {\rm Selectivity}\\ 12\%\\ 18\%\\ 17\%\\ 26\%\\ 32\%\\ 32\%\\ 32\%\\ 32\%\\ 32\%\\ 32\%\\ 32\%\\ 33\%\\ 36\%\\ 33.6\%\\ \hline \end{array}$                                                                                                                  | A and VM<br>lusters<br>prob. weight:<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                                   | s [1 10]<br>Found seiz<br>16<br>16<br>17<br>17<br>17<br>16.6<br>17.0<br>0.5<br>s [1 10]<br>Found seiz<br>8<br>9<br>10<br>11<br>12<br>10.0<br>10.0<br>1.6<br>s [1 10]<br>Found seiz<br>12<br>13<br>13<br>16<br>16<br>14.0                                                                                                  | Found non seiz<br>34<br>34<br>34<br>35.2<br>31<br>35.2<br>34.0<br>5.6<br>Found non seiz<br>59<br>40<br>50<br>31<br>26<br>41.2<br>40.0<br>13.5<br>Found non seiz<br>20<br>32<br>28<br>32<br>29<br>28.2       |

| Features                                                                                                                                                                              | used:                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Without PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cluster a                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Kmeans, 5 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lusters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                               |
| PLS-DA                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                               |
| Classifier                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | prob. weight:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                               |
|                                                                                                                                                                                       | Sensitivity<br>59%                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Selectivity<br>22%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Num seiz<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Found seiz<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Found non seiz<br>45                                                                                                                                                                          |
|                                                                                                                                                                                       | 64%                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 49                                                                                                                                                                                            |
|                                                                                                                                                                                       | 64%                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 42                                                                                                                                                                                            |
|                                                                                                                                                                                       | 64%                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 29%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34                                                                                                                                                                                            |
|                                                                                                                                                                                       | 73%                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 43                                                                                                                                                                                            |
| Mean                                                                                                                                                                                  | 64.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42.6                                                                                                                                                                                          |
| Median<br>STD                                                                                                                                                                         | 64.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 43.0                                                                                                                                                                                          |
| SID                                                                                                                                                                                   | 5.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.5                                                                                                                                                                                           |
| Features                                                                                                                                                                              | used:                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Without FR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                               |
| Cluster a                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Kmeans, 5 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                               |
| PLS-DA                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                               |
| Classifier                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | prob. weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                               |
|                                                                                                                                                                                       | Sensitivity<br>41%                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Selectivity<br>27%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Num seiz<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Found seiz<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Found non seiz<br>24                                                                                                                                                                          |
|                                                                                                                                                                                       | 41%<br>50%                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24 21                                                                                                                                                                                         |
|                                                                                                                                                                                       | 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 34%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21                                                                                                                                                                                            |
|                                                                                                                                                                                       | 55%                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 37                                                                                                                                                                                            |
|                                                                                                                                                                                       | 59%                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 37%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22                                                                                                                                                                                            |
| Mean                                                                                                                                                                                  | 51.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 31.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25.0                                                                                                                                                                                          |
| Median<br>STD                                                                                                                                                                         | 50.0%<br>6.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 34.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22.0                                                                                                                                                                                          |
| עופ                                                                                                                                                                                   | 0.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.8                                                                                                                                                                                           |
| Features                                                                                                                                                                              | used:                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Without hig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | hest FREQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                               |
| Cluster a                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Kmeans, 5 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                               |
| PLS-DA                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                               |
| Classifier                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | prob. weight:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                               |
|                                                                                                                                                                                       | Sensitivity<br>55%                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Selectivity<br>23%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Num seiz<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Found seiz<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Found non seiz<br>40                                                                                                                                                                          |
|                                                                                                                                                                                       | 55%<br>68%                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40 43                                                                                                                                                                                         |
|                                                                                                                                                                                       | 73%                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40                                                                                                                                                                                            |
|                                                                                                                                                                                       | 73%                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41                                                                                                                                                                                            |
|                                                                                                                                                                                       | 73%                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28                                                                                                                                                                                            |
| Mean                                                                                                                                                                                  | 68.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39.2                                                                                                                                                                                          |
| Median<br>STD                                                                                                                                                                         | 73.0%<br>7.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27.0%<br>4.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41.0<br>6.5                                                                                                                                                                                   |
| SID                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                               |
|                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                           |
| Features                                                                                                                                                                              | used:                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 010                                                                                                                                                                                           |
| Features<br>Cluster a                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Without sen<br>Kmeans, 5 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sor 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 010                                                                                                                                                                                           |
| Cluster a<br>PLS-DA                                                                                                                                                                   | nalysis:<br>variance:                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Without sen<br>Kmeans, 5 c<br>70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lsor 1<br>clusters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                               |
| Cluster a                                                                                                                                                                             | nalysis:<br>variance:<br>:                                                                                                                                                                                                                                                                                                                                                                                                                                            | Without sen<br>Kmeans, 5 c<br>70%<br>QDA, Prior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | sor 1<br>clusters<br>prob. weight:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s [1 10]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                               |
| Cluster a<br>PLS-DA                                                                                                                                                                   | nalysis:<br>variance:<br>:<br>Sensitivity                                                                                                                                                                                                                                                                                                                                                                                                                             | Without sen<br>Kmeans, 5 c<br>70%<br>QDA, Prior<br>Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sor 1<br>clusters<br>prob. weight:<br>Num seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s [1 10]<br>Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Found non seiz                                                                                                                                                                                |
| Cluster a<br>PLS-DA                                                                                                                                                                   | nalysis:<br>variance:<br>:<br>Sensitivity<br>45%                                                                                                                                                                                                                                                                                                                                                                                                                      | Without sen<br>Kmeans, 5 c<br>70%<br>QDA, Prior<br>Selectivity<br>14%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sor 1<br>clusters<br>prob. weight:<br>Num seiz<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s [1 10]<br>Found seiz<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Found non seiz<br>59                                                                                                                                                                          |
| Cluster a<br>PLS-DA                                                                                                                                                                   | nalysis:<br>variance:<br>:<br>Sensitivity                                                                                                                                                                                                                                                                                                                                                                                                                             | Without sen<br>Kmeans, 5 c<br>70%<br>QDA, Prior<br>Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sor 1<br>clusters<br>prob. weight:<br>Num seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s [1 10]<br>Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Found non seiz                                                                                                                                                                                |
| Cluster a<br>PLS-DA                                                                                                                                                                   | nalysis:<br>variance:<br>:<br>Sensitivity<br>45%<br>50%<br>55%<br>55%                                                                                                                                                                                                                                                                                                                                                                                                 | Without sen<br>Kmeans, 5 c<br>70%<br>QDA, Prior<br>Selectivity<br>14%<br>22%<br>15%<br>16%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sor 1<br>lusters<br>prob. weight:<br>22<br>22<br>22<br>22<br>22<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s [1 10]<br>Found seiz<br>10<br>11<br>12<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Found non seiz<br>59<br>38<br>70<br>64                                                                                                                                                        |
| Cluster a<br>PLS-DA<br>Classifier                                                                                                                                                     | nalysis:<br>variance:<br>:<br>Sensitivity<br>45%<br>50%<br>55%<br>55%<br>55%<br>59%                                                                                                                                                                                                                                                                                                                                                                                   | Without sen<br>Kmeans, 5 c<br>70%<br>QDA, Prior<br>Selectivity<br>14%<br>22%<br>15%<br>16%<br>24%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | sor 1<br>lusters<br>prob. weight:<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s [1 10]<br>Found seiz<br>10<br>11<br>12<br>12<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Found non seiz<br>59<br>38<br>70<br>64<br>42                                                                                                                                                  |
| Cluster a<br>PLS-DA<br>Classifier                                                                                                                                                     | nalysis:<br>variance:<br>:<br>Sensitivity<br>45%<br>50%<br>55%<br>55%<br>59%<br>52.8%                                                                                                                                                                                                                                                                                                                                                                                 | Without sen<br>Kmeans, 5 o<br>70%<br>QDA, Prior<br>Selectivity<br>14%<br>22%<br>15%<br>16%<br>24%<br>18.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sor 1<br>clusters<br>prob. weight:<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s [1 10]<br>Found seiz<br>10<br>11<br>12<br>12<br>13<br>11.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Found non seiz<br>59<br>38<br>70<br>64<br>42<br>54.6                                                                                                                                          |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median                                                                                                                                   | $\begin{array}{c} {\rm nalysis:} \\ {\rm variance:} \\ \vdots \\ \hline \\ {\rm Sensitivity} \\ 45\% \\ 50\% \\ 55\% \\ 55\% \\ 55\% \\ 59\% \\ 52.8\% \\ 55.0\% \end{array}$                                                                                                                                                                                                                                                                                         | Without sen<br>Kmeans, 5 o<br>70%<br>QDA, Prior<br>Selectivity<br>14%<br>22%<br>15%<br>16%<br>24%<br>18.2%<br>16.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | sor 1<br>lusters<br>prob. weight:<br>Num seiz<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s [1 10]<br>Found seiz<br>10<br>11<br>12<br>12<br>13<br>11.6<br>12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Found non seiz<br>59<br>38<br>70<br>64<br>42<br>54.6<br>59.0                                                                                                                                  |
| Cluster a<br>PLS-DA<br>Classifier                                                                                                                                                     | nalysis:<br>variance:<br>:<br>Sensitivity<br>45%<br>50%<br>55%<br>55%<br>59%<br>52.8%                                                                                                                                                                                                                                                                                                                                                                                 | Without sen<br>Kmeans, 5 o<br>70%<br>QDA, Prior<br>Selectivity<br>14%<br>22%<br>15%<br>16%<br>24%<br>18.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sor 1<br>clusters<br>prob. weight:<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s [1 10]<br>Found seiz<br>10<br>11<br>12<br>12<br>13<br>11.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Found non seiz<br>59<br>38<br>70<br>64<br>42<br>54.6                                                                                                                                          |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median                                                                                                                                   | nalysis:<br>variance:<br>:<br>Sensitivity<br>45%<br>50%<br>55%<br>55%<br>55%<br>59%<br>52.8%<br>55.0%<br>5.4%                                                                                                                                                                                                                                                                                                                                                         | Without sen<br>Kmeans, 5 o<br>70%<br>QDA, Prior<br>Selectivity<br>14%<br>22%<br>15%<br>16%<br>24%<br>18.2%<br>16.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | sor 1<br>elusters<br>prob. weight:<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s [1 10]<br>Found seiz<br>10<br>11<br>12<br>12<br>13<br>11.6<br>12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Found non seiz<br>59<br>38<br>70<br>64<br>42<br>54.6<br>59.0                                                                                                                                  |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a                                                                                                   | nalysis:<br>variance:<br>:<br>Sensitivity<br>45%<br>50%<br>55%<br>55%<br>59%<br>52.8%<br>55.0%<br>5.4%<br>used:<br>nalysis:                                                                                                                                                                                                                                                                                                                                           | Without ser           Kmeans, 5 or 70%           QDA, Prior           Selectivity           14%           22%           15%           16%           24%           18.2%           16.0%           4.5%           Without ser           Kmeans, 5 or 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sor 1<br>ilusters<br>prob. weight:<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s [1 10]<br>Found seiz<br>10<br>11<br>12<br>12<br>13<br>11.6<br>12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Found non seiz<br>59<br>38<br>70<br>64<br>42<br>54.6<br>59.0                                                                                                                                  |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                         | nalysis:<br>variance:<br>:<br>Sensitivity<br>45%<br>50%<br>55%<br>55%<br>55%<br>55%<br>55.0%<br>55.0%<br>5.4%<br>used:<br>nalysis:<br>variance:                                                                                                                                                                                                                                                                                                                       | Without ser           Kmeans, 5 c           70%           QDA, Prior           Selectivity           14%           22%           15%           16%           24%           18.2%           16.0%           4.5%           Without ser           Kmeans, 5 c           70%                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Isor 1<br>Isor 1<br>Prob. weight:<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>0<br>0<br>Isor 2<br>Isusters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s [1 10]<br>Found seiz<br>10<br>11<br>12<br>12<br>13<br>11.6<br>12.0<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Found non seiz<br>59<br>38<br>70<br>64<br>42<br>54.6<br>59.0                                                                                                                                  |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a                                                                                                   | nalysis:<br>variance:<br>:<br>Sensitivity<br>45%<br>50%<br>55%<br>55%<br>55%<br>55%<br>55%<br>55%<br>55.4%<br>55.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>:                                                                                                                                                                                                                                                                                                    | Without ser           Kmeans, 5 c           70%           QDA, Prior           Selectivity           14%           12%           15%           16%           24%           18.2%           16.0%           4.5%           Without ser           Kmeans, 5 c           70%           QDA, Prior                                                                                                                                                                                                                                                                                                                                                                                                                                       | Isor 1<br>ilusters<br>prob. weight:<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s [1 10]<br>Found seiz<br>10<br>11<br>12<br>13<br>11.6<br>12.0<br>1.1<br>s [1 10]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Found non seiz<br>59<br>38<br>70<br>64<br>42<br>54.6<br>59.0<br>14.0                                                                                                                          |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                         | nalysis:<br>variance:<br>Sensitivity<br>45%<br>50%<br>55%<br>55%<br>59%<br>52.8%<br>55.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>Sensitivity                                                                                                                                                                                                                                                                                                                    | Without ser           Kmeans, 5 or           70%           QDA, Prior           Selectivity           14%           22%           15%           16%           24%           18.2%           16.0%           4.5%           Without ser           Kmeans, 5 or           70%           QDA, Prior           Selectivity                                                                                                                                                                                                                                                                                                                                                                                                               | Isor 1<br>Isoters<br>prob. weight:<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s [1 10]<br>Found seiz<br>10<br>11<br>12<br>12<br>13<br>11.6<br>12.0<br>1.1<br>s [1 10]<br>Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Found non seiz<br>59<br>38<br>70<br>64<br>42<br>54.6<br>59.0<br>14.0<br>Found non seiz                                                                                                        |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                         | nalysis:<br>variance:<br>:<br>Sensitivity<br>45%<br>50%<br>55%<br>55%<br>55%<br>55%<br>55%<br>55%<br>55.4%<br>55.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>:                                                                                                                                                                                                                                                                                                    | Without ser           Kmeans, 5 c           70%           QDA, Prior           Selectivity           14%           12%           15%           16%           24%           18.2%           16.0%           4.5%           Without ser           Kmeans, 5 c           70%           QDA, Prior                                                                                                                                                                                                                                                                                                                                                                                                                                       | Isor 1<br>ilusters<br>prob. weight:<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s [1 10]<br>Found seiz<br>10<br>11<br>12<br>13<br>11.6<br>12.0<br>1.1<br>s [1 10]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Found non seiz<br>59<br>38<br>70<br>64<br>42<br>54.6<br>59.0<br>14.0                                                                                                                          |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                         | nalysis:<br>variance:<br>:<br>Sensitivity<br>45%<br>50%<br>55%<br>59%<br>52.8%<br>55.0%<br>52.8%<br>55.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>23%<br>27%                                                                                                                                                                                                                                                                                         | Without ser           Kmeans, 5 or           70%           QDA, Prior           Selectivity           14%           22%           16%           24%           18.2%           16.0%           4.5%           Without ser           Kmeans, 5 or           70%           QDA, Prior           Selectivity           12%           17%                                                                                                                                                                                                                                                                                                                                                                                                 | isor 1           ibusters           prob. weight:           22           22           22           22           22           22           22           22           22           22           22           22           22           22           0           stor 2           clusters           prob. weight:           Num seiz           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s [1 10]<br>Found seiz<br>10<br>11<br>12<br>12<br>13<br>11.6<br>12.0<br>1.1<br>s [1 10]<br>Found seiz<br>5<br>6<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Found non seiz<br>59<br>38<br>70<br>64<br>42<br>54.6<br>59.0<br>14.0<br>Found non seiz<br>37<br>29<br>29                                                                                      |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                         | nalysis:<br>variance:<br>:<br>Sensitivity<br>45%<br>50%<br>55%<br>55%<br>59%<br>52.8%<br>55.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>23%<br>27%<br>32%                                                                                                                                                                                                                                                                                     | Without ser           Kmeans, 5 or           70%           QDA, Prior           Selectivity           14%           22%           15%           16%           24%           18.2%           16.0%           4.5%           Without ser           Kmeans, 5 or           70%           QDA, Prior           Selectivity           12%           17%           20%                                                                                                                                                                                                                                                                                                                                                                     | In the second se | s [1 10]<br>Found seiz<br>10<br>11<br>12<br>13<br>11.6<br>12.0<br>1.1<br>s [1 10]<br>Found seiz<br>5<br>6<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Found non seiz<br>59<br>38<br>70<br>64<br>42<br>54.6<br>59.0<br>14.0<br>Found non seiz<br>37<br>29<br>28                                                                                      |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                           | nalysis:<br>variance:<br>:<br>Sensitivity<br>45%<br>55%<br>55%<br>55%<br>55%<br>55%<br>55%<br>55%<br>55%<br>55%                                                                                                                                                                                                                                                                                                                                                       | Without ser           Kmeans, 5 c           70%           QDA, Prior           Selectivity           14%           22%           15%           16%           24%           18.2%           16.0%           4.5%           Without ser           Kmeans, 5 c           70%           QDA, Prior           Selectivity           12%           17%           17%           17%                                                                                                                                                                                                                                                                                                                                                         | sor 1           clusters           prob. weight:           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s [1 10]<br>Found seiz<br>10<br>11<br>12<br>13<br>11.6<br>12.0<br>1.1<br>s [1 10]<br>Found seiz<br>5<br>6<br>6<br>6<br>7<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Found non seiz<br>59<br>38<br>70<br>64<br>42<br>54.6<br>59.0<br>14.0<br>Found non seiz<br>37<br>29<br>29<br>28<br>38                                                                          |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean                                                                   | nalysis:<br>variance:<br>:<br>Sensitivity<br>45%<br>50%<br>55%<br>55%<br>59%<br>52.8%<br>55.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>23%<br>27%<br>27%<br>32%<br>36%<br>29.0%                                                                                                                                                                                                                                                              | Without ser           Kmeans, 5 c           70%           QDA, Prior           Selectivity           14%           22%           15%           16%           24%           18.2%           16.0%           4.5%           Without ser           Kmeans, 5 c           70%           QDA, Prior           Selectivity           12%           17%           17%           16.6%                                                                                                                                                                                                                                                                                                                                                       | sor 1           chusters           prob. weight:           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s [1 10]<br>Found seiz<br>10<br>11<br>12<br>13<br>11.6<br>12.0<br>1.1<br>s [1 10]<br>Found seiz<br>5<br>6<br>6<br>7<br>8<br>6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Found non seiz<br>59<br>38<br>70<br>64<br>42<br>54.6<br>59.0<br>14.0<br>Found non seiz<br>37<br>29<br>29<br>28<br>38<br>38<br>32.2                                                            |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                           | nalysis:<br>variance:<br>:<br>Sensitivity<br>45%<br>55%<br>55%<br>55%<br>55%<br>55%<br>55%<br>55%<br>55%<br>55%                                                                                                                                                                                                                                                                                                                                                       | Without ser           Kmeans, 5 c           70%           QDA, Prior           Selectivity           14%           22%           15%           16%           24%           18.2%           16.0%           4.5%           Without ser           Kmeans, 5 c           70%           QDA, Prior           Selectivity           12%           17%           17%           17%                                                                                                                                                                                                                                                                                                                                                         | sor 1           clusters           prob. weight:           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s [1 10]<br>Found seiz<br>10<br>11<br>12<br>12<br>13<br>11.6<br>12.0<br>1.1<br>s [1 10]<br>Found seiz<br>5<br>6<br>6<br>6<br>7<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Found non seiz<br>59<br>38<br>70<br>64<br>42<br>54.6<br>59.0<br>14.0<br>Found non seiz<br>37<br>29<br>29<br>28<br>38                                                                          |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median                                                         | $\begin{array}{c} \text{nalysis:} \\ \text{variance:} \\ \vdots \\ \hline \text{Sensitivity} \\ 45\% \\ 50\% \\ 55\% \\ 55\% \\ 55\% \\ 55\% \\ 55\% \\ 55\% \\ 54\% \\ \hline \\ \text{solution} \\ \hline \\ \hline \\ \text{solution} \\ \hline \\ \hline \\ \text{variance:} \\ \vdots \\ \hline \\ \hline \\ \text{sensitivity} \\ 23\% \\ 27\% \\ 27\% \\ 32\% \\ 27\% \\ 32\% \\ 36\% \\ 29.0\% \\ \hline \\ \hline \\ 29.0\% \\ 27.0\% \\ \hline \end{array}$ | Without ser<br>Kmeans, 5 or<br>70%<br>QDA, Prior<br>Selectivity<br>14%<br>22%<br>15%<br>16%<br>24%<br>18.2%<br>16.0%<br>4.5%<br>Without ser<br>Kmeans, 5 or<br>70%<br>QDA, Prior<br>Selectivity<br>12%<br>17%<br>20%<br>17%<br>16.6%<br>17.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sor 1           clusters           prob. weight:           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22      22      24 <tr td=""></tr>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s [1 10] Found seiz 10 11 12 12 13 11.6 12.0 1.1 s [1 10] Found seiz 5 6 6 7 8 8 6.4 6.0 ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Found non seiz<br>59<br>38<br>70<br>64<br>42<br>54.6<br>59.0<br>14.0<br>Found non seiz<br>37<br>29<br>28<br>38<br>32.2<br>29.0                                                                |
|                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                               |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median                                                         | nalysis:<br>variance:<br>:<br>Sensitivity<br>45%<br>50%<br>55%<br>55%<br>52.8%<br>52.8%<br>55.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>23%<br>27%<br>27%<br>32%<br>36%<br>29.0%<br>5.0%                                                                                                                                                                                                                                                    | Without ser           Kmeans, 5 or 70%           QDA, Prior           Selectivity           14%           22%           15%           16.0%           4.5%           Without ser           Kmeans, 5 or 70%           QDA, Prior           Selectivity           12%           17%           20%           17%           20%           17%           20%           17.0%           2.9%           Without ser                                                                                                                                                                                                                                                                                                                        | sor 1           clusters           prob. weight:           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22      22      23      24 <t< td=""><td>s [1 10] Found seiz 10 11 12 12 13 11.6 12.0 1.1 s [1 10] Found seiz 5 6 6 7 8 8 6.4 6.0 ( )</td><td>Found non seiz<br/>59<br/>38<br/>70<br/>64<br/>42<br/>54.6<br/>59.0<br/>14.0<br/>Found non seiz<br/>37<br/>29<br/>28<br/>38<br/>32.2<br/>29.0</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s [1 10] Found seiz 10 11 12 12 13 11.6 12.0 1.1 s [1 10] Found seiz 5 6 6 7 8 8 6.4 6.0 ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Found non seiz<br>59<br>38<br>70<br>64<br>42<br>54.6<br>59.0<br>14.0<br>Found non seiz<br>37<br>29<br>28<br>38<br>32.2<br>29.0                                                                |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD                                                  | nalysis:<br>variance:<br>:<br>Sensitivity<br>45%<br>50%<br>55%<br>55%<br>59%<br>52.8%<br>55.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>23%<br>27%<br>32%<br>36%<br>29.0%<br>29.0%<br>27.0%<br>5.0%<br>used:<br>nalysis:                                                                                                                                                                                                                      | Without ser           Kmeans, 5 or           70%           QDA, Prior           Selectivity           14%           22%           15%           16%           24%           18.2%           16.0%           4.5%           Without ser           Kmeans, 5 or           70%           QDA, Prior           Selectivity           12%           17%           20%           17%           20%           17%           20%           17.0%           2.9%           Without ser           Kmeans, 5 or                                                                                                                                                                                                                                 | sor 1           clusters           prob. weight:           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22      22      23      24 <t< td=""><td>s [1 10] Found seiz 10 11 12 12 13 11.6 12.0 1.1 s [1 10] Found seiz 5 6 6 7 8 8 6.4 6.0 ( )</td><td>Found non seiz<br/>59<br/>38<br/>70<br/>64<br/>42<br/>54.6<br/>59.0<br/>14.0<br/>Found non seiz<br/>37<br/>29<br/>28<br/>38<br/>32.2<br/>29.0</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s [1 10] Found seiz 10 11 12 12 13 11.6 12.0 1.1 s [1 10] Found seiz 5 6 6 7 8 8 6.4 6.0 ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Found non seiz<br>59<br>38<br>70<br>64<br>42<br>54.6<br>59.0<br>14.0<br>Found non seiz<br>37<br>29<br>28<br>38<br>32.2<br>29.0                                                                |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Mean<br>Median<br>STD                                                                | nalysis:<br>variance:<br>:<br>Sensitivity<br>45%<br>55%<br>55%<br>55%<br>52.8%<br>52.8%<br>52.8%<br>55.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>23%<br>26%<br>27%<br>27%<br>27%<br>27%<br>32%<br>36%<br>29.0%<br>5.0%<br>5.0%<br>5.0%                                                                                                                                                                                                      | Without ser           Kmeans, 5 or           70%           QDA, Prior           Selectivity           14%           22%           15%           16%           24%           18.2%           16.0%           4.5%           Without ser           Kmeans, 5 or           70%           QDA, Prior           Selectivity           12%           17%           17%           20%           17%           20%           17.0%           2.9%           Without ser           Kmeans, 5 or           70%                                                                                                                                                                                                                                 | sor 1           clusters           prob. weight:           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           23           24           25 </td <td>s [1 10]<br/>Found seiz<br/>10<br/>11<br/>12<br/>13<br/>11.6<br/>12.0<br/>1.1<br/>s [1 10]<br/>Found seiz<br/>5<br/>6<br/>6<br/>7<br/>8<br/>6.4<br/>6.0<br/>1.1</td> <td>Found non seiz<br/>59<br/>38<br/>70<br/>64<br/>42<br/>54.6<br/>59.0<br/>14.0<br/>Found non seiz<br/>37<br/>29<br/>28<br/>38<br/>32.2<br/>29.0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s [1 10]<br>Found seiz<br>10<br>11<br>12<br>13<br>11.6<br>12.0<br>1.1<br>s [1 10]<br>Found seiz<br>5<br>6<br>6<br>7<br>8<br>6.4<br>6.0<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Found non seiz<br>59<br>38<br>70<br>64<br>42<br>54.6<br>59.0<br>14.0<br>Found non seiz<br>37<br>29<br>28<br>38<br>32.2<br>29.0                                                                |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD                                                  | nalysis:<br>variance:<br>:<br>Sensitivity<br>45%<br>50%<br>55%<br>55%<br>59%<br>52.8%<br>55.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>23%<br>27%<br>27%<br>32%<br>36%<br>29.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>:                                                                                                                                                                                                               | Without ser           Kmeans, 5 or           70%           QDA, Prior           Selectivity           15%           16%           24%           18.2%           16.0%           4.5%           Without ser           Kmeans, 5 or           70%           QDA, Prior           Selectivity           12%           17%           20%           17%           20%           29%           Without ser           Kmeans, 5 or           70%           Q.DA, Prior           Stheat, 5 or           70%           Q.DA, Prior                                                                                                                                                                                                           | sor 1           :lusters           prob. weight:           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22      22      23      24 <t< td=""><td>s [1 10]<br/>Found seiz<br/>10<br/>11<br/>12<br/>13<br/>11.6<br/>12.0<br/>1.1<br/>s [1 10]<br/>Found seiz<br/>5<br/>6<br/>6<br/>7<br/>8<br/>6.4<br/>6.0<br/>1.1<br/>s [1 10]<br/>s [1 10]<br/>s [1 10]</td><td>Found non seiz<br/>59<br/>38<br/>70<br/>64<br/>42<br/>54.6<br/>59.0<br/>14.0<br/>Found non seiz<br/>37<br/>29<br/>29<br/>28<br/>38<br/>32.2<br/>29.0<br/>4.9</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s [1 10]<br>Found seiz<br>10<br>11<br>12<br>13<br>11.6<br>12.0<br>1.1<br>s [1 10]<br>Found seiz<br>5<br>6<br>6<br>7<br>8<br>6.4<br>6.0<br>1.1<br>s [1 10]<br>s [1 10]<br>s [1 10]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Found non seiz<br>59<br>38<br>70<br>64<br>42<br>54.6<br>59.0<br>14.0<br>Found non seiz<br>37<br>29<br>29<br>28<br>38<br>32.2<br>29.0<br>4.9                                                   |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Mean<br>Median<br>STD                                                                | nalysis:<br>variance:<br>:<br>Sensitivity<br>45%<br>55%<br>55%<br>55%<br>52.8%<br>52.8%<br>52.8%<br>52.8%<br>52.8%<br>23%<br>23%<br>27%<br>23%<br>32%<br>32%<br>32%<br>36%<br>29.0%<br>27.0%<br>5.0%<br>29.0%<br>25.0%                                                                                                                                                                                                                                                | Without ser           Kmeans, 5 or           70%           QDA, Prior           Selectivity           14%           22%           15%           16%           24%           18.2%           16.0%           4.5%           Without ser           Kmeans, 5 or           70%           QDA, Prior           Selectivity           12%           17%           17%           20%           17%           20%           17.0%           2.9%           Without ser           Kmeans, 5 or           70%                                                                                                                                                                                                                                 | sor 1           clusters           prob. weight:           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           23           24           25 </td <td>s [1 10]<br/>Found seiz<br/>10<br/>11<br/>12<br/>13<br/>11.6<br/>12.0<br/>1.1<br/>s [1 10]<br/>Found seiz<br/>5<br/>6<br/>6<br/>7<br/>8<br/>6.4<br/>6.0<br/>1.1</td> <td>Found non seiz<br/>59<br/>38<br/>70<br/>64<br/>42<br/>54.6<br/>59.0<br/>14.0<br/>Found non seiz<br/>37<br/>29<br/>28<br/>38<br/>32.2<br/>29.0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s [1 10]<br>Found seiz<br>10<br>11<br>12<br>13<br>11.6<br>12.0<br>1.1<br>s [1 10]<br>Found seiz<br>5<br>6<br>6<br>7<br>8<br>6.4<br>6.0<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Found non seiz<br>59<br>38<br>70<br>64<br>42<br>54.6<br>59.0<br>14.0<br>Found non seiz<br>37<br>29<br>28<br>38<br>32.2<br>29.0                                                                |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Mean<br>Median<br>STD                                                                | nalysis:<br>variance:<br>:<br>Sensitivity<br>45%<br>50%<br>55%<br>55%<br>59%<br>52.8%<br>55.0%<br>54%<br>25%<br>27%<br>27%<br>27%<br>27%<br>227%<br>227%<br>32%<br>36%<br>29.0%<br>27.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>23%<br>36%<br>29.0%<br>27.0%<br>5.0%                                                                                                                                                                        | Without ser           Kmeans, 5 or           70%           QDA, Prior           Selectivity           15%           16%           24%           18.2%           16.0%           4.5%           Without ser           Kmeans, 5 or           70%           QDA, Prior           Selectivity           12%           17%           16.6%           17.0%           20%           Without ser           Kmeans, 5 or           QDA, Prior           Selectivity           17%           16.6%           17.0%           QDA, Prior           Selectivity           37%           38%                                                                                                                                                    | sor 1           :lusters           prob. weight:           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s [1 10]<br>Found seiz<br>10<br>11<br>12<br>12<br>13<br>11.6<br>12.0<br>1.1<br>s [1 10]<br>Found seiz<br>5<br>6<br>6<br>7<br>8<br>6.4<br>6.0<br>1.1<br>s [1 10]<br>Found seiz<br>16<br>17<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Found non seiz<br>59<br>38<br>70<br>64<br>42<br>54.6<br>59.0<br>14.0<br>Found non seiz<br>37<br>29<br>28<br>38<br>32.2<br>29.0<br>4.9<br>Found non seiz<br>27<br>26                           |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Mean<br>Median<br>STD                                                                | nalysis:<br>variance:<br>:<br>Sensitivity<br>45%<br>50%<br>55%<br>55%<br>59%<br>52.8%<br>55.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>23%<br>27%<br>27%<br>32%<br>27%<br>32%<br>36%<br>36%<br>29.0%<br>27.0%<br>5.0%                                                                                                                                                                                                                        | Without ser           Kmeans, 5 or           70%           QDA, Prior           Selectivity           14%           22%           15%           16%           24%           18.2%           16.0%           4.5%           Without ser           Kmeans, 5 or           70%           QDA, Prior           Selectivity           12%           17%           20%           17%           20%           17%           20%           17%           20%           17%           20%           17%           20%           Without ser           Kmeans, 5 or           70%           QDA, Prior           Selectivity           37%           38%           48%                                                                         | sor 1           clusters           prob. weight:           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22      22      24      22     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s [1 10]<br>Found seiz<br>10<br>11<br>12<br>13<br>11.6<br>12.0<br>1.1<br>Found seiz<br>5<br>6<br>7<br>8<br>6.4<br>6.0<br>1.1<br>s [1 10]<br>Found seiz<br>16<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Found non seiz<br>59<br>38<br>70<br>64<br>42<br>54.6<br>59.0<br>14.0<br>Found non seiz<br>37<br>29<br>28<br>38<br>32.2<br>29.0<br>4.9<br>Found non seiz<br>27<br>26<br>17                     |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Mean<br>Median<br>STD                                                                | nalysis:<br>variance:<br>:<br>Sensitivity<br>45%<br>55%<br>55%<br>55%<br>55%<br>55%<br>55%<br>55%<br>55%<br>55%                                                                                                                                                                                                                                                                                                                                                       | Without ser           Kmeans, 5 or           70%           QDA, Prior           Selectivity           14%           22%           15%           16%           24%           18.2%           16.0%           24%           18.2%           16.0%           24%           18.2%           16.0%           QDA, Prior           Selectivity           17%           20%           17%           20%           17%           20%           17%           20%           Without ser           Kmeans, 5 or           70%           QDA, Prior           Selectivity           37%           38%                                                                                                                                           | sor 1           clusters           prob. weight:           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22      22      22     22     22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s [1 10]<br>Found seiz<br>10<br>11<br>12<br>13<br>11.6<br>12.0<br>1.1<br>5<br>5<br>6<br>6<br>7<br>8<br>6.4<br>6.0<br>1.1<br>5<br>5<br>6<br>7<br>8<br>6<br>6<br>7<br>8<br>6<br>6<br>7<br>8<br>6<br>6<br>7<br>8<br>6<br>1.1<br>5<br>1.1<br>5<br>6<br>6<br>7<br>8<br>6<br>1.1<br>5<br>6<br>6<br>7<br>8<br>6<br>6<br>7<br>8<br>6<br>1.1<br>5<br>6<br>6<br>7<br>8<br>6<br>6<br>7<br>8<br>6<br>6<br>7<br>8<br>6<br>6<br>7<br>8<br>6<br>6<br>7<br>8<br>6<br>6<br>7<br>8<br>6<br>6<br>7<br>8<br>6<br>6<br>7<br>8<br>6<br>6<br>7<br>8<br>6<br>6<br>7<br>8<br>6<br>6<br>7<br>8<br>6<br>6<br>7<br>8<br>6<br>6<br>7<br>8<br>8<br>6<br>7<br>8<br>6<br>6<br>7<br>8<br>8<br>6<br>7<br>8<br>6<br>7<br>8<br>6<br>7<br>8<br>6<br>7<br>8<br>6<br>7<br>8<br>6<br>7<br>8<br>6<br>7<br>8<br>6<br>7<br>8<br>6<br>7<br>8<br>6<br>7<br>8<br>6<br>7<br>8<br>6<br>7<br>8<br>6<br>7<br>8<br>6<br>7<br>8<br>6<br>7<br>8<br>6<br>7<br>8<br>6<br>7<br>8<br>6<br>7<br>8<br>6<br>7<br>8<br>6<br>7<br>8<br>6<br>7<br>8<br>6<br>7<br>8<br>6<br>7<br>7<br>8<br>6<br>7<br>7<br>8<br>6<br>7<br>7<br>8<br>6<br>7<br>7<br>8<br>6<br>7<br>7<br>8<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | Found non seiz<br>59<br>38<br>70<br>64<br>42<br>54.6<br>59.0<br>14.0<br>Found non seiz<br>37<br>29<br>29<br>28<br>38<br>32.2<br>29.0<br>4.9<br>Found non seiz<br>27<br>26<br>17<br>28         |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier | nalysis:<br>variance:<br>:<br>Sensitivity<br>45%<br>50%<br>55%<br>55%<br>55%<br>55%<br>55%<br>52.8%<br>55.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>23%<br>27%<br>27%<br>27%<br>27%<br>227%<br>32%<br>36%<br>29.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%                                                                                                                                                                                          | Without ser           Kmeans, 5 or           70%           QDA, Prior           Selectivity           15%           16%           24%           18.2%           16.0%           4.5%           Without ser           Kmeans, 5 or           70%           QDA, Prior           Selectivity           12%           17%           17%           16.6%           17.0%           2.9%           Without ser           Kmeans, 5 or           70%           38%           48%           38%           41% | sor 1<br>elusters<br>prob. weight:<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s [1 10]<br>Found seiz<br>10<br>11<br>12<br>12<br>13<br>11.6<br>12.0<br>1.1<br>s [1 10]<br>Found seiz<br>5<br>6<br>7<br>8<br>6.4<br>6.0<br>1.1<br>s [1 10]<br>Found seiz<br>16<br>16<br>16<br>16<br>16<br>17<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Found non seiz<br>59<br>38<br>70<br>64<br>42<br>54.6<br>59.0<br>14.0<br>Found non seiz<br>37<br>29<br>28<br>38<br>32.2<br>29.0<br>4.9<br>Found non seiz<br>27<br>26<br>17<br>28<br>24         |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier | nalysis:<br>variance:<br>:<br>Sensitivity<br>45%<br>55%<br>55%<br>55%<br>55%<br>55%<br>55%<br>55%<br>55%<br>55%                                                                                                                                                                                                                                                                                                                                                       | Without ser           Kmeans, 5 or           70%           QDA, Prior           Selectivity           14%           22%           15%           16%           24%           18.2%           16.0%           4.5%           Without ser           Kmeans, 5 or           70%           QDA, Prior           Selectivity           12%           17%           20%           17%           20%           17%           20%           17%           20%           17%           20%           17%           20%           Without ser           Kmeans, 5 or           70%           QDA, Prior           Selectivity           37%           48%           48%           41%           40.4%                                           | sor 1           clusters           prob. weight:           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22           22      22      22      22 </td <td>s [1 10]<br/>Found seiz<br/>10<br/>11<br/>12<br/>13<br/>11.6<br/>12.0<br/>1.1<br/>Found seiz<br/>5<br/>6<br/>7<br/>8<br/>6<br/>7<br/>8<br/>6<br/>7<br/>8<br/>6<br/>7<br/>8<br/>6<br/>7<br/>8<br/>6<br/>7<br/>8<br/>6<br/>7<br/>8<br/>6<br/>6<br/>7<br/>8<br/>8<br/>6<br/>6<br/>7<br/>8<br/>8<br/>6<br/>6<br/>1.1<br/>1.1<br/>5<br/>1.1<br/>5<br/>6<br/>6<br/>7<br/>8<br/>8<br/>6<br/>6<br/>7<br/>8<br/>8<br/>6<br/>6<br/>7<br/>8<br/>8<br/>6<br/>1.1<br/>1.1<br/>5<br/>6<br/>6<br/>7<br/>8<br/>8<br/>6<br/>6<br/>7<br/>8<br/>8<br/>6<br/>6<br/>7<br/>8<br/>8<br/>6<br/>6<br/>7<br/>8<br/>8<br/>6<br/>6<br/>7<br/>8<br/>8<br/>6<br/>6<br/>7<br/>8<br/>8<br/>6<br/>6<br/>7<br/>8<br/>8<br/>6<br/>6<br/>7<br/>8<br/>8<br/>8<br/>6<br/>6<br/>1.1<br/>1.1<br/>5<br/>6<br/>6<br/>7<br/>8<br/>8<br/>8<br/>6<br/>6<br/>7<br/>8<br/>8<br/>8<br/>6<br/>1.1<br/>1.1<br/>1.1<br/>1.1<br/>1.1<br/>1.1<br/>1.1</td> <td>Found non seiz<br/>59<br/>38<br/>70<br/>64<br/>42<br/>54.6<br/>59.0<br/>14.0<br/>Found non seiz<br/>37<br/>29<br/>28<br/>38<br/>32.2<br/>29.0<br/>4.9<br/>Found non seiz<br/>27<br/>26<br/>17<br/>28<br/>24<br/>24.4</td>                                                                                                                                                                                                                                                                       | s [1 10]<br>Found seiz<br>10<br>11<br>12<br>13<br>11.6<br>12.0<br>1.1<br>Found seiz<br>5<br>6<br>7<br>8<br>6<br>7<br>8<br>6<br>7<br>8<br>6<br>7<br>8<br>6<br>7<br>8<br>6<br>7<br>8<br>6<br>7<br>8<br>6<br>6<br>7<br>8<br>8<br>6<br>6<br>7<br>8<br>8<br>6<br>6<br>1.1<br>1.1<br>5<br>1.1<br>5<br>6<br>6<br>7<br>8<br>8<br>6<br>6<br>7<br>8<br>8<br>6<br>6<br>7<br>8<br>8<br>6<br>1.1<br>1.1<br>5<br>6<br>6<br>7<br>8<br>8<br>6<br>6<br>7<br>8<br>8<br>6<br>6<br>7<br>8<br>8<br>6<br>6<br>7<br>8<br>8<br>6<br>6<br>7<br>8<br>8<br>6<br>6<br>7<br>8<br>8<br>6<br>6<br>7<br>8<br>8<br>6<br>6<br>7<br>8<br>8<br>8<br>6<br>6<br>1.1<br>1.1<br>5<br>6<br>6<br>7<br>8<br>8<br>8<br>6<br>6<br>7<br>8<br>8<br>8<br>6<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                   | Found non seiz<br>59<br>38<br>70<br>64<br>42<br>54.6<br>59.0<br>14.0<br>Found non seiz<br>37<br>29<br>28<br>38<br>32.2<br>29.0<br>4.9<br>Found non seiz<br>27<br>26<br>17<br>28<br>24<br>24.4 |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier | nalysis:<br>variance:<br>:<br>Sensitivity<br>45%<br>50%<br>55%<br>55%<br>55%<br>55%<br>52.8%<br>55.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>23%<br>27%<br>32%<br>36%<br>27.0%<br>5.0%<br>27.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>73%<br>73%<br>73%<br>77%<br>74.6%                                                                                                                                          | Without ser           Kmeans, 5 or           70%           QDA, Prior           Selectivity           15%           16%           24%           18.2%           16.0%           4.5%           Without ser           Kmeans, 5 or           70%           QDA, Prior           Selectivity           12%           17%           17%           16.6%           17.0%           2.9%           Without ser           Kmeans, 5 or           70%           38%           48%           38%           41% | sor 1<br>elusters<br>prob. weight:<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s [1 10]<br>Found seiz<br>10<br>11<br>12<br>12<br>13<br>11.6<br>12.0<br>1.1<br>s [1 10]<br>Found seiz<br>5<br>6<br>7<br>8<br>6.4<br>6.0<br>1.1<br>s [1 10]<br>Found seiz<br>16<br>16<br>16<br>16<br>16<br>17<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Found non seiz<br>59<br>38<br>70<br>64<br>42<br>54.6<br>59.0<br>14.0<br>Found non seiz<br>37<br>29<br>28<br>38<br>32.2<br>29.0<br>4.9<br>Found non seiz<br>27<br>26<br>17<br>28<br>24         |

| Features              |                     | Without sen          |                |            |                |
|-----------------------|---------------------|----------------------|----------------|------------|----------------|
| Cluster a             |                     | Kmeans, 5 c          | lusters        |            |                |
| PLS-DA                |                     | 70%                  |                | [1 10]     |                |
| Classifier            |                     |                      | prob. weight:  |            | <b>D</b> 1 .   |
|                       | Sensitivity         | Selectivity          | Num seiz       | Found seiz | Found non seiz |
|                       | 59%                 | 13%                  | 22             | 13         | 89             |
|                       | 64%                 | 12%                  | 22             | 14         | 100            |
|                       | $\frac{68\%}{73\%}$ | 14%<br>13%           | 22             | 15         | 93             |
|                       | 86%                 | 13%                  | 22             | 16         | 103            |
| M                     | 70.0%               | 14%                  | 22 22          | 19         | 118            |
| Mean<br>Median        | 68.0%               | 13.2%                | 22             | 15.4       | 100.6          |
| STD                   | 10.3%               | 0.8%                 | 0              | 15.0       | 100.0          |
| SID                   | 10.3%               | 0.8%                 | 0              | 2.3        | 11.2           |
| <b>E</b>              | 1                   | Without sen          |                |            |                |
| Features<br>Cluster a |                     | Kmeans, 5 c          |                |            |                |
| PLS-DA                |                     | 70%                  | lusters        |            |                |
| Classifier            |                     |                      | prob. weights  | [1 10]     |                |
| Classifier            | Sensitivity         | Selectivity          | Num seiz       | Found seiz | Found non seiz |
|                       | 55%                 | 27%                  | 22             | 12         | 33             |
|                       | 55%                 | 27%                  | 22             | 12         | 32             |
|                       | 59%                 | 26%                  | 22             | 12         | 37             |
|                       | 59%                 | 27%                  | 22             | 13         | 35             |
|                       | 59%                 | 29%                  | 22             | 13         | 32             |
| Mean                  | 57.4%               | 27.2%                | 22             | 12.6       | 33.8           |
| Median                | 59.0%               | 27.0%                | 22             | 13.0       | 33.0           |
| STD                   | 2.2%                | 1.1%                 | 0              | 0.5        | 2.2            |
| ~                     | ,0                  | 2.270                | ÷              | 0.0        |                |
| Features              | used                | Without sen          | sor 1 and 3    |            |                |
| Cluster a             |                     | Kmeans, 5 c          |                |            |                |
| PLS-DA                |                     | 70%                  |                |            |                |
| Classifier            |                     |                      | prob. weights  | s [1 10]   |                |
|                       | Sensitivity         | Selectivity          | Num seiz       | Found seiz | Found non seiz |
|                       | 41%                 | 22%                  | 22             | 9          | 32             |
|                       | 41%                 | 23%                  | 22             | 9          | 31             |
|                       | 45%                 | 23%                  | 22             | 10         | 33             |
|                       | 50%                 | 25%                  | 22             | 11         | 33             |
|                       | 64%                 | 25%                  | 22             | 14         | 42             |
| Mean                  | 48.2%               | 23.6%                | 22             | 10.6       | 34.2           |
| Median                | 45.0%               | 23.0%                | 22             | 10.0       | 33.0           |
| STD                   | 9.6%                | 1.3%                 | 0              | 2.1        | 4.4            |
|                       |                     |                      |                |            |                |
| Features              |                     |                      | e differential | 5          |                |
| Cluster a             |                     | Kmeans, 5 c          | lusters        |            |                |
| PLS-DA                |                     | 70%                  |                |            |                |
| Classifier            |                     |                      | prob. weights  |            |                |
|                       | Sensitivity         | Selectivity          | Num seiz       | Found seiz | Found non seiz |
|                       | 95%                 | 30%                  | 22             | 21         | 49             |
|                       | 95%                 | 39%                  | 22             | 21         | 33             |
|                       | 95%                 | 43%                  | 22             | 21         | 28             |
|                       | 95%                 | 47%                  | 22             | 21         | 24             |
|                       | 100%                | 32%                  | 22             | 22         | 46             |
| Mean                  | 96.0%               | 38.2%                | 22             | 21.2       | 36.0           |
| Median                | 95.0%               | 39.0%                | 22             | 21.0       | 33.0           |
| STD                   | 2.2%                | 7.2%                 | 0              | 0.4        | 11.0           |
|                       |                     |                      |                |            |                |
| Features              | used:               | Optimal set          |                |            |                |
|                       |                     |                      |                |            |                |
| Cluster a<br>PLS-DA   |                     | No clusterin<br>100% | g              |            |                |

|   | Cluster a  | nalysis:    | No clusterin                          | g        |            |                |  |  |
|---|------------|-------------|---------------------------------------|----------|------------|----------------|--|--|
|   | PLS-DA     | variance:   | 100%                                  |          |            |                |  |  |
|   | Classifier | :           | Old method, Prior prob. weights [1 1] |          |            |                |  |  |
|   |            | Sensitivity | Selectivity                           | Num seiz | Found seiz | Found non seiz |  |  |
| ſ |            | 82%         | 4%                                    | 22       | 18         | 476            |  |  |
|   |            | 82%         | 4%                                    | 22       | 18         | 476            |  |  |
|   |            | 82%         | 4%                                    | 22       | 18         | 463            |  |  |
|   |            | 82%         | 4%                                    | 22       | 18         | 458            |  |  |
|   |            | 82%         | 4%                                    | 22       | 18         | 448            |  |  |
| ĺ | Mean       | 82.0%       | 4.0%                                  | 22       | 18.0       | 464.2          |  |  |
| ſ | Median     | 82.0%       | 4.0%                                  | 22       | 18.0       | 463.0          |  |  |
| ĺ | STD        | 0.0%        | 0.0%                                  | 0        | 0.0        | 12.0           |  |  |
|   |            |             |                                       |          |            |                |  |  |

| Features   | used:       | Optimal set           |             |                 |                |  |
|------------|-------------|-----------------------|-------------|-----------------|----------------|--|
| Cluster a  | nalysis:    | No clustering<br>100% |             |                 |                |  |
| PLS-DA     | variance:   |                       |             |                 |                |  |
| Classifier | :           | Old method            | Prior prob. | weights [1 2] c | pen radius 10  |  |
|            | Sensitivity | Selectivity           | Num seiz    | Found seiz      | Found non seiz |  |
|            | 73%         | 10%                   | 22          | 16              | 138            |  |
|            | 73%         | 11%                   | 22          | 16              | 136            |  |
|            | 73%         | 11%                   | 22          | 16              | 133            |  |
|            | 73%         | 11%                   | 22          | 16              | 127            |  |
|            | 82%         | 12%                   | 22          | 18              | 130            |  |
| Mean       | 74.8%       | 11.0%                 | 22          | 16.4            | 132.8          |  |
| Median     | 73.0%       | 11.0%                 | 22          | 16.0            | 133.0          |  |
| STD        | 4.0%        | 0.7%                  | 0           | 0.9             | 4.4            |  |

## A.3 Patient F1

| Features<br>Cluster a                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | All features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lustors                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cluster a<br>PLS-DA                                                                                                                                                                                                                                                      | nalysis:<br>variance:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Kmeans, 4 c<br>70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | iusters                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                |
| Classifier                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | KNN, k = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                          | Sensitivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Num seiz                                                                                                                                                                             | Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Found non seiz                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                          | 96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28                                                                                                                                                                                   | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                          | 96%<br>93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28                                                                                                                                                                                   | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{2}{2}$                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                          | 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 93%<br>90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28<br>28                                                                                                                                                                             | 26<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                          | 89%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28                                                                                                                                                                                   | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                              |
| Mean                                                                                                                                                                                                                                                                     | 93.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 92.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28                                                                                                                                                                                   | 26.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.2                                                                                                                                                                                                                                                                                                                                                                            |
| Median                                                                                                                                                                                                                                                                   | 93.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 93.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28                                                                                                                                                                                   | 26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.0                                                                                                                                                                                                                                                                                                                                                                            |
| STD                                                                                                                                                                                                                                                                      | 2.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                    | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.4                                                                                                                                                                                                                                                                                                                                                                            |
| <b>D</b> (                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A 11 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                |
| Features<br>Cluster a                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | All features<br>Kmeans, 5 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | luetore                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                |
| PLS-DA                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lusters                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                |
| Classifier                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | KNN, $k = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                          | Sensitivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Num seiz                                                                                                                                                                             | Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Found non seiz                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                          | 96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28                                                                                                                                                                                   | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                          | 96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 87%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28                                                                                                                                                                                   | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                          | 93%<br>93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 93%<br>93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28<br>28                                                                                                                                                                             | 26<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{2}{2}$                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                          | 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28                                                                                                                                                                                   | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                              |
| Mean                                                                                                                                                                                                                                                                     | 94.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 91.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28                                                                                                                                                                                   | 26.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.6                                                                                                                                                                                                                                                                                                                                                                            |
| Median                                                                                                                                                                                                                                                                   | 93.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 93.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28                                                                                                                                                                                   | 26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.0                                                                                                                                                                                                                                                                                                                                                                            |
| STD                                                                                                                                                                                                                                                                      | 1.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                    | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.9                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                |
| Features                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | All features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                |
| Cluster a                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Kmeans, 3 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lusters                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                |
| PLS-DA<br>Classifier                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 70%<br>KNN, k = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                |
| Jaasmer                                                                                                                                                                                                                                                                  | :<br>Sensitivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Num seiz                                                                                                                                                                             | Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Found non seiz                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                          | 96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28                                                                                                                                                                                   | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                          | 96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28                                                                                                                                                                                   | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                          | 96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 84%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28                                                                                                                                                                                   | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                          | 96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28                                                                                                                                                                                   | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                          | 96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28                                                                                                                                                                                   | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28                                                                                                                                                                                   | 27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.0                                                                                                                                                                                                                                                                                                                                                                            |
| Mean                                                                                                                                                                                                                                                                     | 96.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 90.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                |
| Median                                                                                                                                                                                                                                                                   | 96.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 90.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28                                                                                                                                                                                   | 27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.0                                                                                                                                                                                                                                                                                                                                                                            |
| Median<br>STD<br>Features                                                                                                                                                                                                                                                | 96.0%<br>0.0%<br>used:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 90.0%<br>3.7%<br>All features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28<br>0                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                          | 96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 90.0%<br>3.7%<br>All features<br>Gm fuzzy, 4<br>70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28<br>0<br>clusters                                                                                                                                                                  | 27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.0                                                                                                                                                                                                                                                                                                                                                                            |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                                                                                         | 96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 90.0%<br>3.7%<br>All features<br>Gm fuzzy, 4<br>70%<br>KNN, k = 3<br>Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28<br>0<br>clusters                                                                                                                                                                  | 27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.0                                                                                                                                                                                                                                                                                                                                                                            |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                                                                                         | 96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 90.0%<br>3.7%<br>All features<br>Gm fuzzy, 4<br>70%<br>KNN, k = 3<br>Selectivity<br>56%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28<br>0<br>clusters<br>Num seiz<br>28                                                                                                                                                | 27.0<br>0.0<br>Found seiz<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.0<br>1.2<br>Found non seiz<br>21                                                                                                                                                                                                                                                                                                                                             |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                                                                                         | 96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>89%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90.0%<br>3.7%<br>All features<br>Gm fuzzy, 4<br>70%<br>KNN, k = 3<br>Selectivity<br>56%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28<br>0<br>clusters<br>Num seiz<br>28<br>28                                                                                                                                          | 27.0<br>0.0<br>Found seiz<br>27<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.0<br>1.2<br>Found non seiz<br>21<br>20                                                                                                                                                                                                                                                                                                                                       |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                                                                                         | 96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>89%<br>89%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 90.0%<br>3.7%<br>All features<br>Gm fuzzy, 4<br>70%<br>KNN, k = 3<br>Selectivity<br>56%<br>56%<br>53%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28<br>0<br>clusters<br>Num seiz<br>28<br>28<br>28                                                                                                                                    | 27.0<br>0.0<br>Found seiz<br>27<br>25<br>25<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.0<br>1.2<br>Found non seiz<br>21<br>20<br>22                                                                                                                                                                                                                                                                                                                                 |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                                                                                         | 96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>89%<br>89%<br>82%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 90.0%<br>3.7%<br>All features<br>Gm fuzzy, 4<br>70%<br>KNN, k = 3<br>Selectivity<br>56%<br>56%<br>53%<br>50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28<br>0<br>clusters<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                                              | 27.0<br>0.0<br>Found seiz<br>27<br>25<br>25<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.0<br>1.2<br>Found non seiz<br>21<br>20<br>22<br>23                                                                                                                                                                                                                                                                                                                           |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                                                                                                                                                           | 96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>89%<br>89%<br>82%<br>79%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 90.0\% \\ \hline 3.7\% \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28<br>0<br>clusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                                  | 27.0<br>0.0<br>Found seiz<br>27<br>25<br>25<br>23<br>22<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.0<br>1.2<br>Found non seiz<br>21<br>20<br>22<br>23<br>23<br>23                                                                                                                                                                                                                                                                                                               |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean                                                                                                                                                                                                   | 96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>89%<br>89%<br>82%<br>79%<br>87.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 90.0\% \\ \hline 3.7\% \\ \hline \\ \text{All features} \\ \text{Gm fuzzy, 4} \\ 70\% \\ \text{KNN, k = 3} \\ \hline \\ \text{Selectivity} \\ \hline 56\% \\ 56\% \\ 53\% \\ 50\% \\ 49\% \\ \hline \\ 52.8\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28<br>0<br>clusters<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                                              | 27.0<br>0.0<br>Found seiz<br>27<br>25<br>25<br>25<br>23<br>22<br>22<br>24.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.0<br>1.2<br>Found non seiz<br>21<br>20<br>22<br>23<br>23<br>21.8                                                                                                                                                                                                                                                                                                             |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                                                                                                                                                           | 96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>89%<br>89%<br>82%<br>79%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 90.0\% \\ \hline 3.7\% \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28<br>0<br>clusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                            | 27.0<br>0.0<br>Found seiz<br>27<br>25<br>25<br>23<br>22<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.0<br>1.2<br>Found non seiz<br>21<br>20<br>22<br>23<br>23<br>23                                                                                                                                                                                                                                                                                                               |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Mean                                                                                                                                                                                           | 96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>89%<br>89%<br>82%<br>79%<br>87.0%<br>89.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 90.0\% \\ \hline 3.7\% \\ \hline \\ \mbox{All features} \\ \mbox{Gm fuzzy, 4} \\ 70\% \\ \mbox{KNN, k = 3} \\ \hline \mbox{Selectivity} \\ \hline 56\% \\ 56\% \\ 56\% \\ 56\% \\ 53\% \\ 50\% \\ 49\% \\ 52.8\% \\ \hline 53.0\% \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28<br>0<br>clusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                | 27.0<br>0.0<br>Found seiz<br>27<br>25<br>25<br>23<br>22<br>24.4<br>25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.0<br>1.2<br>Found non seiz<br>21<br>20<br>22<br>23<br>23<br>21.8<br>22.0                                                                                                                                                                                                                                                                                                     |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a                                                                                                                                                         | 96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>89%<br>89%<br>82%<br>79%<br>87.0%<br>87.0%<br>87.0%<br>0.0%<br>6.7%<br>used:<br>nalysis:<br>used:<br>nalysis:<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0 | 90.0%<br>3.7%<br>All features<br>Gm fuzzy, 4<br>70%<br>KNN, k = 3<br>Selectivity<br>56%<br>56%<br>56%<br>56%<br>53%<br>50%<br>49%<br>52.8%<br>53.0%<br>3.3%<br>All features<br>Gm fuzzy, 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28<br>0<br>clusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0                                                                                                 | 27.0<br>0.0<br>Found seiz<br>27<br>25<br>25<br>23<br>22<br>24.4<br>25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.0<br>1.2<br>Found non seiz<br>21<br>20<br>22<br>23<br>23<br>21.8<br>22.0                                                                                                                                                                                                                                                                                                     |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                               | 96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>89%<br>89%<br>82%<br>79%<br>87.0%<br>89.0%<br>6.7%<br>used:<br>nalysis:<br>variance:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 90.0\% \\ \hline 3.7\% \\ \hline \\ \text{All features} \\ \text{Gm fuzzy, 4} \\ 70\% \\ \text{KNN, k = 3} \\ \hline \\ \text{Selectivity} \\ \hline 56\% \\ 56\% \\ 56\% \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ 53\% \\ \hline \\ 3.3\% \\ \hline \\ \text{All features} \\ \text{Gm fuzzy, 3} \\ 70\% \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28<br>0<br>clusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>0<br>clusters                                                                                      | 27.0<br>0.0<br>Found seiz<br>27<br>25<br>25<br>23<br>22<br>24.4<br>25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.0<br>1.2<br>Found non seiz<br>21<br>20<br>22<br>23<br>23<br>21.8<br>22.0                                                                                                                                                                                                                                                                                                     |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a                                                                                                                                                         | 96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>89%<br>89%<br>82%<br>79%<br>87.0%<br>6.7%<br>used:<br>nalysis:<br>variance:<br>:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 90.0\% \\ \hline 3.7\% \\ \hline \\ \mbox{All features} \\ \mbox{Gm fuzzy, 4} \\ 70\% \\ \mbox{KNN, k = 3} \\ \hline \\ \mbox{Selectivity} \\ \hline 56\% \\ \mbox{56\%} \\ \mbox{53\%} \\ \mbox{50\%} \\ \mbox{50\%} \\ \mbox{53.0\%} \\ \mbo$           | 28<br>0<br>clusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>0<br>clusters                                                                                      | 27.0<br>0.0<br>Found seiz<br>27<br>25<br>25<br>23<br>22<br>24.4<br>25.0<br>1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.0<br>1.2<br>Found non seiz<br>21<br>20<br>22<br>23<br>21.8<br>22.0<br>1.3                                                                                                                                                                                                                                                                                                    |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                               | 96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>89%<br>89%<br>82%<br>79%<br>87.0%<br>89.0%<br>6.7%<br>used:<br>nalysis:<br>variance:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 90.0\% \\ \hline 3.7\% \\ \hline \\ \text{All features} \\ \text{Gm fuzzy, 4} \\ 70\% \\ \text{KNN, k = 3} \\ \hline \\ \text{Selectivity} \\ \hline 56\% \\ 56\% \\ 56\% \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ 53\% \\ \hline \\ 3.3\% \\ \hline \\ \text{All features} \\ \text{Gm fuzzy, 3} \\ 70\% \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28<br>0<br>clusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>0<br>clusters                                                                                      | 27.0<br>0.0<br>Found seiz<br>27<br>25<br>25<br>23<br>22<br>24.4<br>25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.0<br>1.2<br>Found non seiz<br>21<br>20<br>22<br>23<br>21.8<br>22.0<br>1.3                                                                                                                                                                                                                                                                                                    |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                               | 96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>89%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 90.0\% \\ \hline 3.7\% \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28<br>0<br>clusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>clusters<br>Num seiz                                                                         | 27.0<br>0.0<br>Found seiz<br>27<br>25<br>25<br>23<br>22<br>24.4<br>25.0<br>1.9<br>Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.0<br>1.2<br>Found non seiz<br>21<br>20<br>22<br>23<br>21.8<br>22.0<br>1.3<br>Found non seiz                                                                                                                                                                                                                                                                                  |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                               | 96.0%<br>0.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>89%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>89%<br>82%<br>80%<br>82%<br>80%<br>80%<br>82%<br>80%<br>80%<br>80%<br>80%<br>80%<br>80%<br>80%<br>80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 90.0\% \\ \hline 3.7\% \\ \hline \\ \hline \\ \mbox{All features} \\ \mbox{Gm fuzzy, 4} \\ 70\% \\ \mbox{KNN, k = 3} \\ \hline \\ \mbox{Selectivity} \\ \hline 56\% \\ 53\% \\ 56\% \\ 53\% \\ 50\% \\ 49\% \\ \hline \\ \mbox{52.8\%} \\ \hline \\ \mbox{53.0\%} \\ \hline \\ \mbox{53.0\%} \\ \hline \\ \mbox{3.3\%} \\ \hline \\ \hline \\ \mbox{All features} \\ \mbox{Gm fuzzy, 3} \\ \mbox{70\%} \\ \mbox{KNN, k = 3} \\ \hline \\ \mbox{Selectivity} \\ \hline \\ \mbox{53\%} \\ \hline \\ \mbox{48\%} \\ \mbox{48\%} \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28<br>0<br>clusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>clusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28 | 27.0<br>0.0<br>27<br>25<br>25<br>25<br>22<br>24.4<br>25.0<br>1.9<br>Found seiz<br>27<br>26<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.0<br>1.2<br>Found non seiz<br>21<br>20<br>22<br>23<br>21.8<br>22.0<br>1.3<br>Found non seiz<br>24<br>28<br>28                                                                                                                                                                                                                                                                |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                               | 96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>89%<br>82%<br>79%<br>87.0%<br>88.0%<br>6.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>93%<br>89%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90.0%<br>3.7%<br>All features<br>Gm fuzzy, 4<br>70%<br>KNN, k = 3<br>Selectivity<br>56%<br>56%<br>56%<br>50%<br>49%<br>52.8%<br>52.8%<br>53.0%<br>3.3%<br>All features<br>Gm fuzzy, 3<br>70%<br>KNN, k = 3<br>Selectivity<br>53%<br>48%<br>48%<br>52%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28<br>0<br>clusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>clusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28 | 27.0<br>0.0<br>7<br>25<br>25<br>25<br>23<br>22<br>24.4<br>25.0<br>1.9<br>Found seiz<br>27<br>26<br>26<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.0<br>1.2<br>Found non seiz<br>21<br>20<br>22<br>23<br>21.8<br>22.0<br>1.3<br>Found non seiz<br>24<br>28<br>23<br>23                                                                                                                                                                                                                                                          |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                                                                                         | 96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>89%<br>82%<br>79%<br>87.0%<br>89.0%<br>6.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>93%<br>89%<br>89%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 90.0\% \\ \hline 3.7\% \\ \hline \\ \mbox{All features} \\ \mbox{Gm fuzzy, 4} \\ 70\% \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \hline 56\% \\ 53\% \\ 50\% \\ 53\% \\ 50\% \\ \mbox{49\%} \\ \mbox{52.8\%} \\ \mbox{53.0\%} \\ \mbox{53.0\%} \\ \mbox{3.3\%} \\ \hline \\ \mbox{All features} \\ \mbox{Gm fuzzy, 3} \\ \mbox{70\%} \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \mbox{52\%} \\ \mbox{48\%} \\ \mbox{48\%} \\ \mbox{48\%} \\ \mbox{52\%} \\ \mbox{50\%} \\ \mbox{50\%} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28<br>0<br>clusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>clusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28       | 27.0<br>0.0<br>27<br>25<br>25<br>25<br>23<br>22<br>24.4<br>25.0<br>1.9<br>Found seiz<br>27<br>26<br>26<br>26<br>25<br>25<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.0<br>1.2<br>Found non seiz<br>21<br>20<br>22<br>23<br>21.8<br>22.0<br>1.3<br>Found non seiz<br>24<br>28<br>28<br>23<br>23<br>21.8<br>22.0<br>1.3                                                                                                                                                                                                                             |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                                                                                 | 96.0%<br>0.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>89%<br>82%<br>82%<br>82%<br>82%<br>89%<br>82.0%<br>6.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>89.0%<br>89.0%<br>89%<br>89%<br>89%<br>89%<br>89%<br>89%<br>89%<br>89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{r} 90.0\% \\ \hline 3.7\% \\ \hline \\ \mbox{All features} \\ \mbox{Gm fuzzy, 4} \\ 70\% \\ \mbox{KNN, k = 3} \\ \hline \mbox{Selectivity} \\ \hline 56\% \\ 53\% \\ 50\% \\ \hline 50\% \\ \hline 53.0\% \\ \hline 53.0\% \\ \hline 3.3\% \\ \hline \\ \mbox{All features} \\ \mbox{Gm fuzzy, 3} \\ \mbox{70\%} \\ \mbox{KNN, k = 3} \\ \hline \mbox{Selectivity} \\ \hline 53\% \\ \hline 48\% \\ \mbox{48\%} \\ \hline 48\% \\ \hline 52\% \\ \hline 50\% \\ \hline 50.2\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28<br>0<br>clusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>clusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28       | 27.0<br>0.0<br>27<br>25<br>25<br>25<br>23<br>22<br>24.4<br>25.0<br>1.9<br>Found seiz<br>27<br>26<br>26<br>26<br>25<br>25<br>25<br>25.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.0<br>1.2<br>Found non seiz<br>21<br>20<br>22<br>23<br>21.8<br>22.0<br>1.3<br>Found non seiz<br>24<br>28<br>28<br>28<br>23<br>25<br>25.6                                                                                                                                                                                                                                      |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Mean<br>Median                                                                                                               | 96.0%<br>0.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>89%<br>82%<br>87.0%<br>87.0%<br>87.0%<br>87.0%<br>0.7%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>93%<br>93%<br>89%<br>89%<br>89%<br>92.0%<br>93.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 90.0\% \\ \hline 3.7\% \\ \hline \\ \\ \hline \\ \mbox{All features} \\ \mbox{Gm fuzzy, 4} \\ 70\% \\ \mbox{KNN, k = 3} \\ \hline \\ \mbox{Selectivity} \\ \hline 56\% \\ 56\% \\ 56\% \\ 56\% \\ 56\% \\ 56\% \\ 56\% \\ 50\% \\ \hline \\ \mbox{3.3\%} \\ \hline \\ \hline \\ \mbox{All features} \\ \mbox{Gm fuzzy, 3} \\ \mbox{70\% } \\ \mbox{KNN, k = 3} \\ \hline \\ \mbox{Selectivity} \\ \hline \\ \mbox{53\% } \\ \mbox{48\% } \\ \mbox{52\% } \\ \mbox{50, 2\% } \\ \mbox{50, 0\% } \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28<br>0<br>clusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>clusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28 | 27.0<br>0.0<br>7<br>25<br>25<br>25<br>25<br>23<br>22<br>24.4<br>25.0<br>1.9<br>7<br>26<br>26<br>26<br>25<br>25.8<br>26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.0<br>1.2<br>Found non seiz<br>21<br>20<br>22<br>23<br>21.8<br>22.0<br>1.3<br>Found non seiz<br>24<br>28<br>23<br>25.6<br>25.6<br>25.0                                                                                                                                                                                                                                        |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Mean<br>Median                                                                                                               | 96.0%<br>0.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>89%<br>82%<br>82%<br>82%<br>82%<br>89%<br>82.0%<br>6.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>89.0%<br>89.0%<br>89%<br>89%<br>89%<br>89%<br>89%<br>89%<br>89%<br>89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{r} 90.0\% \\ \hline 3.7\% \\ \hline \\ \mbox{All features} \\ \mbox{Gm fuzzy, 4} \\ 70\% \\ \mbox{KNN, k = 3} \\ \hline \mbox{Selectivity} \\ \hline 56\% \\ 53\% \\ 50\% \\ \hline 50\% \\ \hline 53.0\% \\ \hline 53.0\% \\ \hline 3.3\% \\ \hline \\ \mbox{All features} \\ \mbox{Gm fuzzy, 3} \\ \mbox{70\%} \\ \mbox{KNN, k = 3} \\ \hline \mbox{Selectivity} \\ \hline 53\% \\ \hline 48\% \\ \mbox{48\%} \\ \hline 48\% \\ \hline 52\% \\ \hline 50\% \\ \hline 50.2\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28<br>0<br>clusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>clusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28       | 27.0<br>0.0<br>7<br>25<br>25<br>25<br>25<br>22<br>24.4<br>25.0<br>1.9<br>Found seiz<br>27<br>26<br>26<br>26<br>25<br>25<br>25<br>25.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.0<br>1.2<br>Found non seiz<br>21<br>20<br>22<br>23<br>21.8<br>22.0<br>1.3<br>Found non seiz<br>24<br>28<br>28<br>28<br>23<br>25<br>25.6                                                                                                                                                                                                                                      |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                                                                                 | 96.0%<br>0.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>89%<br>82%<br>79%<br>87.0%<br>89.0%<br>6.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>93%<br>93%<br>89%<br>89%<br>89%<br>89%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 90.0\% \\ \hline 3.7\% \\ \hline \\ \\ \hline \\ \mbox{All features} \\ \mbox{Gm fuzzy, 4} \\ 70\% \\ \mbox{KNN, k = 3} \\ \hline \\ \mbox{Selectivity} \\ \hline 56\% \\ 56\% \\ 56\% \\ 56\% \\ 56\% \\ 56\% \\ 56\% \\ 50\% \\ \hline \\ \mbox{3.3\%} \\ \hline \\ \hline \\ \mbox{All features} \\ \mbox{Gm fuzzy, 3} \\ \mbox{70\% } \\ \mbox{KNN, k = 3} \\ \hline \\ \mbox{Selectivity} \\ \hline \\ \mbox{53\% } \\ \mbox{48\% } \\ \mbox{52\% } \\ \mbox{50, 2\% } \\ \mbox{50, 0\% } \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28<br>0<br>clusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>clusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28 | 27.0<br>0.0<br>7<br>25<br>25<br>25<br>25<br>23<br>22<br>24.4<br>25.0<br>1.9<br>7<br>26<br>26<br>26<br>25<br>25.8<br>26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.0<br>1.2<br>Found non seiz<br>21<br>20<br>22<br>23<br>21.8<br>22.0<br>1.3<br>Found non seiz<br>24<br>28<br>23<br>25.6<br>25.6<br>25.0                                                                                                                                                                                                                                        |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD                                                                                                        | 96.0%<br>0.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>89%<br>82%<br>82%<br>82%<br>82%<br>89%<br>82%<br>80%<br>6.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>89.0%<br>6.7%<br>93%<br>93%<br>89%<br>89%<br>89%<br>93%<br>89%<br>89%<br>93%<br>89%<br>89%<br>89%<br>93%<br>80%<br>80%<br>80%<br>80%<br>80%<br>80%<br>80%<br>80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 90.0\% \\ \hline 3.7\% \\ \hline \\ \mbox{All features} \\ \mbox{Gm fuzzy, 4} \\ 70\% \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \hline 56\% \\ \mbox{53\%} \\ \mbox{50\%} \\ \mbox{53\%} \\ \mbox{50\%} \\ \mbox{53.0\%} \\ \mbox{52.8\%} \\ \mbox{53.0\%} \\ \mbox{53.0\%} \\ \mbox{53.0\%} \\ \mbox{53.0\%} \\ \mbox{53.0\%} \\ \mbox{63.3\%} \\ \hline \\ \mbox{All features} \\ \mbox{Gm fuzzy, 3} \\ \mbox{70\%} \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \mbox{53\%} \\ \mbox{48\%} \\ \mbox{48\%} \\ \mbox{48\%} \\ \mbox{48\%} \\ \mbox{52\%} \\ \mbox{50.0\%} \\ \mbox{50.0\%} \\ \mbox{50.0\%} \\ \mbox{50.0\%} \\ \mbox{50.0\%} \\ \mbox{2.3\%} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28<br>0<br>clusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>clusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28 | 27.0<br>0.0<br>7<br>25<br>25<br>25<br>25<br>23<br>22<br>24.4<br>25.0<br>1.9<br>7<br>26<br>26<br>26<br>25<br>25.8<br>26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.0<br>1.2<br>Found non seiz<br>21<br>20<br>22<br>23<br>21.8<br>22.0<br>1.3<br>Found non seiz<br>24<br>28<br>23<br>25.6<br>25.6<br>25.0                                                                                                                                                                                                                                        |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                     | 96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>89%<br>82%<br>79%<br>87.0%<br>89.0%<br>6.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>93%<br>89%<br>89%<br>89%<br>89%<br>89%<br>89%<br>89%<br>89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 90.0\% \\ \hline 3.7\% \\ \hline \\ \mbox{All features} \\ \mbox{Gm fuzzy, 4} \\ 70\% \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \hline 56\% \\ 53\% \\ 50\% \\ 50\% \\ \mbox{49\%} \\ \hline 52.8\% \\ \hline 53.0\% \\ \mbox{3.3\%} \\ \hline \\ \mbox{All features} \\ \mbox{Gm fuzzy, 3} \\ \mbox{70\%} \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \mbox{53\%} \\ \mbox{48\%} \\ \mbox{48\%} \\ \mbox{48\%} \\ \mbox{48\%} \\ \mbox{48\%} \\ \mbox{50.2\%} \\ \mbox{50.2\%} \\ \mbox{50.0\%} \\ \mbox{50.0\%} \\ \mbox{50.0\%} \\ \mbox{2.3\%} \\ \hline \\ \mbox{All features} \\ \mbox{Gm hard, 4} \\ \mbox{70\%} \\ \mbox{All features} \\ \mbox{Gm hard, 4} \\ \mbox{70\%} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28<br>0<br>clusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>clusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28 | 27.0<br>0.0<br>7<br>25<br>25<br>25<br>25<br>23<br>22<br>24.4<br>25.0<br>1.9<br>7<br>26<br>26<br>26<br>25<br>25.8<br>26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.0<br>1.2<br>Found non seiz<br>21<br>20<br>22<br>23<br>21.8<br>22.0<br>1.3<br>Found non seiz<br>24<br>28<br>23<br>25.6<br>25.6<br>25.0                                                                                                                                                                                                                                        |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a                                                                               | 96.0%<br>0.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>89%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>6.7%<br>87.0%<br>89.0%<br>6.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>93%<br>93%<br>89%<br>89%<br>89%<br>89%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 90.0\% \\ \hline 3.7\% \\ \hline \\ \mbox{All features} \\ \mbox{Gm fuzzy, 4} \\ 70\% \\ \mbox{KNN, k = 3} \\ \hline \mbox{Selectivity} \\ \hline 56\% \\ 53\% \\ 50\% \\ 56\% \\ 53\% \\ 50\% \\ 49\% \\ \hline 52.8\% \\ \hline 53.0\% \\ 3.3\% \\ \hline \\ \mbox{All features} \\ \mbox{Gm fuzzy, 3} \\ 70\% \\ \mbox{KNN, k = 3} \\ \hline \mbox{Selectivity} \\ \hline 53\% \\ \hline 50\% \\ \hline 50.2\% \\ \hline 50.0\% \\ \hline 2.3\% \\ \hline \\ \mbox{All features} \\ \mbox{Gm hard, 4} \\ 70\% \\ \mbox{KNN, k = 3} \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28<br>0<br>clusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>clusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28       | 27.0<br>0.0<br>Found seiz<br>27<br>25<br>25<br>23<br>22<br>24.4<br>25.0<br>1.9<br>Found seiz<br>27<br>26<br>26<br>25<br>25<br>25<br>25<br>25<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.0<br>1.2<br>Found non seiz<br>21<br>20<br>22<br>23<br>21.8<br>22.0<br>1.3<br>Found non seiz<br>24<br>28<br>28<br>28<br>23<br>25<br>25.6<br>25.0<br>2.3                                                                                                                                                                                                                       |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                     | 96.0%<br>96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>89%<br>89.0%<br>87.0%<br>87.0%<br>89.0%<br>6.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>93%<br>89%<br>89%<br>89%<br>89%<br>89%<br>89%<br>89%<br>89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 90.0\% \\ \hline 3.7\% \\ \hline \\ & \mbox{ All features } \\ & \mbox{ Gm fuzzy, 4 } \\ & \mbox{ 70\% } \\ & \mbox{ KNN, k = 3 } \\ & \mbox{ Selectivity } \\ \hline & \mbox{ 56\% } \\ & \mbox{ 56\% } \\ & \mbox{ 50\% } \\ & \mbox{ 50\% } \\ & \mbox{ 50\% } \\ & \mbox{ 52.8\% } \\ & \mbox{ 50\% } \\ & \mbox{ 52.8\% } \\ & \mbox{ 50\% } \\ & \mbox{ 52.8\% } \\ & \mbox{ 53.0\% } \\ & \mbox{ 52.8\% } \\ & \mbox{ 53.0\% } \\ & \mbox{ 53.0\% } \\ & \mbox{ 6m fuzzy, 3 } \\ & \mbox{ 70\% } \\ & \mbox{ 50.2\% } \\ & \mbox{ 50.0\% } \\ & \mbox{ 50.2\% } \\ & \mbox{ 50.0\% } \\ & \mbox{ 50.2\% } \\ & \mbox{ 50.0\% } \\ &  $                                                                                  | 28<br>0<br>clusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>clusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                   | 27.0<br>0.0<br>7<br>25<br>25<br>25<br>23<br>22<br>24.4<br>25.0<br>1.9<br>Found seiz<br>27<br>26<br>25<br>25<br>25<br>25<br>25.8<br>26.0<br>0.8<br>Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.0<br>1.2<br>Found non seiz<br>21<br>20<br>22<br>23<br>21.8<br>22.0<br>1.3<br>Found non seiz<br>24<br>28<br>28<br>23<br>25.6<br>25.6<br>25.0<br>2.3<br>Found non seiz                                                                                                                                                                                                         |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>CLASTER A<br>PLS-DA                                                                                     | 96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>89%<br>89%<br>82%<br>79%<br>87.0%<br>89.0%<br>6.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{r} 90.0\% \\ \hline 3.7\% \\ \hline \\ \mbox{All features} \\ \mbox{Gm fuzzy, 4} \\ 70\% \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \hline 56\% \\ \mbox{53\%} \\ \mbox{50\%} \\ \mbox{50\%} \\ \mbox{50\%} \\ \mbox{50\%} \\ \mbox{53.0\%} \\ \mbox{52.\%} \\ \mbox{53.0\%} \\ \mbox{52.\%} \\ \mbox{52.\%} \\ \mbox{53.0\%} \\ \mbox{52.\%} \\ \mbox{53.0\%} \\ \mbox{52.\%} \\ \mb$ | 28<br>0<br>clusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>clusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                   | 27.0<br>0.0<br>Found seiz<br>27<br>25<br>25<br>23<br>22<br>24.4<br>25.0<br>1.9<br>Found seiz<br>27<br>26<br>26<br>26<br>25<br>25<br>25<br>25<br>25<br>27<br>26<br>26<br>26<br>27<br>26<br>26<br>27<br>28<br>29<br>20<br>29<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.0<br>1.2<br>Found non seiz<br>21<br>20<br>22<br>23<br>21.8<br>22.0<br>1.3<br>Found non seiz<br>24<br>28<br>28<br>23<br>25.6<br>25.0<br>2.3<br>Found non seiz<br>18                                                                                                                                                                                                           |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                     | 96.0%<br>0.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>89%<br>82%<br>89%<br>82%<br>89%<br>82%<br>6.7%<br>87.0%<br>89.0%<br>6.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>93%<br>93.0%<br>3.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{r} 90.0\% \\ \hline 3.7\% \\ \hline \\ \mbox{All features} \\ \mbox{Gm fuzzy, 4} \\ 70\% \\ \mbox{KNN, k = 3} \\ \hline \\ \mbox{Selectivity} \\ \hline 56\% \\ \mbox{53\%} \\ \mbox{50\%} \\ \mbox{53\%} \\ \mbox{50\%} \\ \mbox{53\%} \\ \mbox{53\%} \\ \mbox{53\%} \\ \mbox{53.0\%} \\ \mbox{53.0\%} \\ \mbox{53.0\%} \\ \mbox{53.0\%} \\ \mbox{53.0\%} \\ \mbox{64\%} \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \mbox{50.0\%} \\ \mbox{50.2\%} \\ \mbox{50.0\%} \\ \mbox{50.2\%} \\ \$             | 28<br>0<br>clusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>clusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                   | 27.0<br>0.0<br>Found seiz<br>27<br>25<br>25<br>23<br>22<br>24.4<br>25.0<br>1.9<br>Found seiz<br>26<br>26<br>26<br>25<br>25<br>25<br>25<br>26<br>26<br>26<br>26<br>25<br>25<br>27<br>26<br>26<br>26<br>26<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.0<br>1.2<br>Found non seiz<br>21<br>20<br>22<br>23<br>21.8<br>22.0<br>1.3<br>Found non seiz<br>24<br>28<br>28<br>23<br>25<br>25.6<br>25.0<br>2.3<br>Found non seiz<br>18<br>22<br>23<br>24<br>28<br>28<br>23<br>25<br>25.6<br>25.0<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3                                                                                   |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>CLASTER A<br>PLS-DA                                                                                     | 96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>89%<br>89%<br>82%<br>79%<br>87.0%<br>89.0%<br>6.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>93%<br>93.0%<br>3.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{r} 90.0\% \\ \hline 3.7\% \\ \hline \\ \mbox{All features} \\ \mbox{Gm fuzzy, 4} \\ 70\% \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \hline 56\% \\ \mbox{53\%} \\ \mbox{50\%} \\ \mbox{50\%} \\ \mbox{50\%} \\ \mbox{50\%} \\ \mbox{53.0\%} \\ \mbox{52.\%} \\ \mbox{53.0\%} \\ \mbox{52.\%} \\ \mbox{52.\%} \\ \mbox{53.0\%} \\ \mbox{52.\%} \\ \mbox{53.0\%} \\ \mbox{52.\%} \\ \mb$ | 28<br>0<br>clusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>clusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                   | 27.0<br>0.0<br>Found seiz<br>27<br>25<br>25<br>23<br>22<br>24.4<br>25.0<br>1.9<br>Found seiz<br>27<br>26<br>26<br>26<br>25<br>25<br>25<br>25<br>25<br>27<br>26<br>26<br>26<br>27<br>26<br>26<br>27<br>28<br>29<br>20<br>29<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.0<br>1.2<br>Found non seiz<br>21<br>20<br>22<br>23<br>21.8<br>22.0<br>1.3<br>Found non seiz<br>24<br>28<br>28<br>23<br>25.6<br>25.0<br>2.3<br>Found non seiz<br>18                                                                                                                                                                                                           |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                     | 96.0%<br>96.0%<br>0.0%<br>used:<br>nalysis:<br>yariance:<br>:<br>Sensitivity<br>96%<br>89%<br>89%<br>89%<br>89.0%<br>6.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>93%<br>89%<br>89%<br>89%<br>89%<br>92.0%<br>93.0%<br>3.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{r} 90.0\% \\ \hline 3.7\% \\ \hline \\ 3.7\% \\ \hline \\ All features \\ Gm fuzzy, 4 \\ 70\% \\ KNN, k = 3 \\ \hline \\ Selectivity \\ \hline 56\% \\ 56\% \\ 56\% \\ 56\% \\ 50\% \\ 50\% \\ 49\% \\ \hline \\ 52.8\% \\ 50\% \\ \hline \\ 50\% \\ \hline \\ 53\% \\ 49\% \\ \hline \\ 52.8\% \\ \hline \\ 53\% \\ 48\% \\ 48\% \\ 48\% \\ 48\% \\ 52\% \\ 50\% \\ \hline \\ 50.2\% \\ \hline \\ 50.2\% \\ \hline \\ 50.0\% \\ \hline \\ 50.2\% \\ \hline \\ 50\% \\ \hline \\ \\ 54\% \\ 54\% \\ \hline \\ \\ 54\% \\ \hline \\ 54\% \\ \hline \\ 54\% \\ \hline \\ 54\% \\ \hline \\ \\ \\ 54\% \\ \hline \\ \\ \\ \\ \\ 54\% \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28<br>0<br>clusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                    | 27.0<br>0.0<br>Found seiz<br>27<br>25<br>25<br>23<br>22<br>24.4<br>25.0<br>1.9<br>Found seiz<br>27<br>26<br>26<br>25<br>25<br>25<br>25<br>27<br>26<br>26<br>0.0<br>0.8<br>Found seiz<br>27<br>27<br>27<br>26<br>27<br>27<br>26<br>27<br>27<br>27<br>26<br>26<br>27<br>27<br>27<br>26<br>27<br>27<br>27<br>27<br>26<br>27<br>27<br>27<br>26<br>27<br>27<br>26<br>27<br>27<br>26<br>27<br>27<br>26<br>26<br>27<br>27<br>27<br>26<br>26<br>27<br>27<br>26<br>26<br>26<br>27<br>27<br>26<br>26<br>26<br>26<br>27<br>27<br>26<br>26<br>26<br>26<br>27<br>26<br>26<br>26<br>26<br>26<br>27<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26                                                                                    | 3.0<br>1.2<br>Found non seiz<br>21<br>20<br>22<br>23<br>21.8<br>22.0<br>1.3<br>Found non seiz<br>24<br>28<br>28<br>23<br>25<br>25.6<br>25.0<br>2.3<br>Found non seiz<br>18<br>23<br>23<br>23                                                                                                                                                                                   |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Features<br>Classifier<br>Features<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Classifier<br>Mean<br>Median<br>STD | 96.0%<br>0.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>89%<br>82%<br>82%<br>82%<br>89%<br>82%<br>82%<br>6.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>93%<br>89%<br>92.0%<br>93.0%<br>3.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%<br>96%<br>89%<br>89%<br>89%<br>89%<br>89%<br>89%<br>89%<br>89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{r} 90.0\% \\ \hline 3.7\% \\ \hline \\ \hline \\ \mbox{All features} \\ \mbox{Gm fuzzy, 4} \\ 70\% \\ \mbox{KNN, k = 3} \\ \hline \\ \mbox{Selectivity} \\ \hline \\ \mbox{56\%} \\ \mbox{56\%} \\ \mbox{56\%} \\ \mbox{53\%} \\ \mbox{50.2\%} \\ \hline \\ \mbox{51.2\%} \\ \mbox{61.2\%} \\ \mbox{All features} \\ \mbox{Gm fuzzy, 3} \\ \mbox{70\%} \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \mbox{53\%} \\ \mbox{50.2\%} \\ 50.2$              | 28<br>0<br>clusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                    | 27.0<br>0.0<br>Found seiz<br>27<br>25<br>25<br>23<br>22<br>24.4<br>25.0<br>1.9<br>Found seiz<br>27<br>26<br>26<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>26<br>26<br>26<br>26<br>26<br>25<br>27<br>26<br>26<br>26<br>27<br>27<br>26<br>26<br>27<br>27<br>26<br>26<br>27<br>27<br>26<br>26<br>27<br>27<br>26<br>26<br>27<br>27<br>26<br>26<br>27<br>27<br>26<br>26<br>26<br>26<br>27<br>27<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26                                                                                                                                                                                                                                                                            | 3.0<br>1.2<br>Found non seiz<br>21<br>20<br>22<br>23<br>21.8<br>22.0<br>1.3<br>Found non seiz<br>24<br>28<br>28<br>28<br>23<br>25<br>25.6<br>25.0<br>2.3<br>Found non seiz<br>18<br>23<br>23<br>18<br>24<br>25<br>25.6<br>25.0<br>2.3<br>18<br>22<br>25<br>25.6<br>25.0<br>2.3<br>18<br>22<br>23<br>23<br>23<br>24<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28 |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                                | 96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>89%<br>89%<br>82%<br>79%<br>87.0%<br>89.0%<br>6.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>93%<br>89%<br>89%<br>89%<br>89%<br>80%<br>93.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{r} 90.0\% \\ \hline 3.7\% \\ \hline \\ \mbox{All features} \\ \mbox{Gm fuzzy, 4} \\ 70\% \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \hline 56\% \\ 53\% \\ 50\% \\ 50\% \\ \mbox{53.0\%} \\ \mbox{64.0\%} \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \mbox{53.0\%} \\ \mbox{50.0\%} \\ \mbox{50.2\%} \\ \mbox{50.0\%} \\ \mbox{50.2\%} \\ \mbox{50.0\%} \\ \mbox{50.2\%} \\ \$                 | 28<br>0<br>clusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                    | 27.0<br>0.0<br>Found seiz<br>27<br>25<br>25<br>23<br>22<br>24.4<br>25.0<br>1.9<br>Found seiz<br>27<br>26<br>26<br>26<br>25<br>25<br>25.8<br>26.0<br>0.8<br>Found seiz<br>27<br>27<br>27<br>25<br>25<br>25<br>25<br>25<br>22<br>22<br>24.4<br>25<br>27<br>26<br>26<br>26<br>26<br>27<br>27<br>26<br>26<br>26<br>27<br>27<br>26<br>26<br>26<br>26<br>25<br>27<br>27<br>26<br>26<br>26<br>25<br>25<br>27<br>27<br>26<br>26<br>26<br>26<br>25<br>25<br>26<br>26<br>26<br>26<br>26<br>26<br>25<br>25<br>26<br>26<br>26<br>26<br>26<br>26<br>25<br>25<br>25<br>26<br>26<br>26<br>26<br>25<br>25<br>25<br>25<br>26<br>26<br>26<br>25<br>25<br>25<br>25<br>25<br>26<br>26<br>26<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25 | 3.0<br>1.2<br>Found non seiz<br>21<br>20<br>22<br>23<br>21.8<br>22.0<br>1.3<br>Found non seiz<br>24<br>28<br>28<br>23<br>25<br>25.6<br>25.0<br>2.3<br>Found non seiz<br>18<br>23<br>23<br>18<br>23<br>25<br>25.6<br>25.0<br>2.3<br>18<br>23<br>25<br>25.6<br>25.0<br>2.3<br>18<br>23<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25                               |

| Cluster a                                                                                                                                                                                                          | used:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | All features<br>Gm hard, 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | clustors                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PLS-DA                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | clusters                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Classifier:                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $_{\text{KNN}, k = 3}^{7070}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Classifier                                                                                                                                                                                                         | Sensitivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Num seiz                                                                                                                                                                                      | Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Found non sei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                    | 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 53%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28                                                                                                                                                                                            | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28                                                                                                                                                                                            | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23<br>29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                    | 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 47%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                    | 96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 53%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28                                                                                                                                                                                            | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                    | 96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 48%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28                                                                                                                                                                                            | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                    | 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 47%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28                                                                                                                                                                                            | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Mean                                                                                                                                                                                                               | 94.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 49.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28                                                                                                                                                                                            | 26.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Median                                                                                                                                                                                                             | 93.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 48.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28                                                                                                                                                                                            | 26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STD                                                                                                                                                                                                                | 1.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                             | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Features                                                                                                                                                                                                           | used:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | All features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Cluster a                                                                                                                                                                                                          | nalysis:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PLS-DA                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Classifier                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | KNN, k = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                    | Sensitivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Num seiz                                                                                                                                                                                      | Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Found non sei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                    | 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 81%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28                                                                                                                                                                                            | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                    | 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 74%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28                                                                                                                                                                                            | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                    | 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 72%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28                                                                                                                                                                                            | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                    | 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 72%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28                                                                                                                                                                                            | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                    | 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 72%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28                                                                                                                                                                                            | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Mean                                                                                                                                                                                                               | 93.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 74.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                               | 26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Median                                                                                                                                                                                                             | 93.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 72.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28                                                                                                                                                                                            | 26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STD                                                                                                                                                                                                                | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Features                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | All features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Cluster a                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Min value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PLS-DA                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Classifier                                                                                                                                                                                                         | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | KNN, k = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                    | Sensitivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Num seiz                                                                                                                                                                                      | Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Found non sei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                    | 96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 79%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28                                                                                                                                                                                            | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                    | 96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28                                                                                                                                                                                            | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                    | 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 76%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28                                                                                                                                                                                            | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                    | 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28                                                                                                                                                                                            | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                    | 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 68%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28                                                                                                                                                                                            | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Moon                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Mean                                                                                                                                                                                                               | 94.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 73.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28                                                                                                                                                                                            | 26.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Median                                                                                                                                                                                                             | 93.0%<br>1.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 73.6%<br>75.0%<br>4.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28<br>28<br>0                                                                                                                                                                                 | 26.4<br>26.0<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.4<br>9.0<br>2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Median<br>STD<br>Features                                                                                                                                                                                          | 93.0%<br>1.6%<br>used:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 75.0%<br>4.5%<br>All features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28<br>0                                                                                                                                                                                       | 26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                                   | 93.0%<br>1.6%<br>used:<br>nalysis:<br>variance:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75.0%<br>4.5%<br>All features<br>Kmeans, 4 c<br>50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28<br>0                                                                                                                                                                                       | 26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Median<br>STD<br>Features<br>Cluster a                                                                                                                                                                             | 93.0%<br>1.6%<br>used:<br>nalysis:<br>variance:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75.0%<br>4.5%<br>All features<br>Kmeans, 4 c<br>50%<br>KNN, k = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28<br>0<br>lusters                                                                                                                                                                            | 26.0<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.0<br>2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                                   | 93.0%<br>1.6%<br>used:<br>nalysis:<br>variance:<br>Sensitivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 75.0\% \\ \hline 4.5\% \\ \hline \\ \text{All features} \\ \text{Kmeans, 4 c} \\ 50\% \\ \text{KNN, k = 3} \\ \hline \\ \text{Selectivity} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28<br>0<br>lusters<br>Num seiz                                                                                                                                                                | 26.0<br>0.5<br>Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.0<br>2.1<br>Found non sei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                                   | 93.0%<br>1.6%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 75.0%<br>4.5%<br>All features<br>Kmeans, 4 c<br>50%<br>KNN, k = 3<br>Selectivity<br>90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28<br>0<br>lusters<br>Num seiz<br>28                                                                                                                                                          | 26.0<br>0.5<br>Found seiz<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.0<br>2.1<br>Found non sei<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                                   | 93.0%<br>1.6%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 75.0%<br>4.5%<br>All features<br>Kmeans, 4 c<br>50%<br>KNN, k = 3<br>Selectivity<br>90%<br>88%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28<br>0<br>lusters<br>28<br>28                                                                                                                                                                | 26.0<br>0.5<br>Found seiz<br>28<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.0<br>2.1<br>Found non sei<br>3<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                                   | 93.0%<br>1.6%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 75.0%<br>4.5%<br>All features<br>Kmeans, 4 c<br>50%<br>KNN, k = 3<br>Selectivity<br>90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28<br>0<br>lusters<br>Num seiz<br>28                                                                                                                                                          | 26.0<br>0.5<br>Found seiz<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.0<br>2.1<br>Found non sei<br>3<br>4<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                                   | 93.0%<br>1.6%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>100%<br>96%<br>93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 75.0%<br>4.5%<br>All features<br>Kmeans, 4 c<br>50%<br>KNN, k = 3<br>Selectivity<br>90%<br>88%<br>90%<br>96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28<br>0<br>lusters<br>28<br>28                                                                                                                                                                | 26.0<br>0.5<br>Found seiz<br>28<br>28<br>28<br>27<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.0<br>2.1<br>Found non sei<br>3<br>4<br>3<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                                   | 93.0%<br>1.6%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>100%<br>96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75.0%<br>4.5%<br>All features<br>Kmeans, 4 c<br>50%<br>KNN, k = 3<br>Selectivity<br>90%<br>88%<br>90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28<br>0<br>lusters<br>28<br>28<br>28                                                                                                                                                          | 26.0<br>0.5<br>Found seiz<br>28<br>28<br>28<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.0<br>2.1<br>Found non sei<br>3<br>4<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                                   | 93.0%<br>1.6%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>100%<br>96%<br>93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 75.0%<br>4.5%<br>All features<br>Kmeans, 4 c<br>50%<br>KNN, k = 3<br>Selectivity<br>90%<br>88%<br>90%<br>96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28<br>0<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                                                        | 26.0<br>0.5<br>Found seiz<br>28<br>28<br>28<br>27<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.0<br>2.1<br>Found non sei<br>3<br>4<br>3<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                                                                                                     | 93.0%<br>1.6%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>96%<br>93%<br>93%<br>96.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 75.0\% \\ \hline 4.5\% \\ \hline \\ \text{All features} \\ \text{Kmeans, 4 c} \\ 50\% \\ \text{KNN, k = 3} \\ \hline \\ \text{Selectivity} \\ 90\% \\ 88\% \\ 90\% \\ 96\% \\ 96\% \\ 93\% \\ \hline \\ 91.4\% \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28<br>0<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                                      | 26.0<br>0.5<br>Found seiz<br>28<br>28<br>28<br>27<br>26<br>26<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.0<br>2.1<br>Found non sei<br>3<br>4<br>3<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median                                                                                                                                   | 93.0%<br>1.6%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>100%<br>96%<br>93%<br>93%<br>93%<br>96.4%<br>96.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 75.0\% \\ \hline 4.5\% \\ \hline \\ \text{All features} \\ \text{Kmeans, 4 c} \\ 50\% \\ \text{KNN, k = 3} \\ \hline \\ \text{Selectivity} \\ 90\% \\ 88\% \\ 90\% \\ 90\% \\ 96\% \\ 93\% \\ 91.4\% \\ 90.0\% \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28<br>0<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                          | 26.0<br>0.5<br>Found seiz<br>28<br>27<br>26<br>27<br>26<br>27.0<br>27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.0<br>2.1<br>Found non sei<br>3<br>4<br>3<br>1<br>2<br>2.6<br>3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean                                                                                                                                             | 93.0%<br>1.6%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>96%<br>93%<br>93%<br>96.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 75.0\% \\ \hline 4.5\% \\ \hline \\ \text{All features} \\ \text{Kmeans, 4 c} \\ 50\% \\ \text{KNN, k = 3} \\ \hline \\ \text{Selectivity} \\ 90\% \\ 88\% \\ 90\% \\ 96\% \\ 96\% \\ 93\% \\ \hline \\ 91.4\% \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28<br>0<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                                      | 26.0<br>0.5<br>Found seiz<br>28<br>28<br>27<br>26<br>26<br>27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.0<br>2.1<br>Found non sei<br>3<br>4<br>3<br>1<br>2<br>2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD                                                                                                                            | 93.0%<br>1.6%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>96%<br>93%<br>93%<br>96.4%<br>96.0%<br>3.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 75.0\% \\ \hline 4.5\% \\ \hline \\ \text{All features} \\ \text{Kmeans, 4 c} \\ 50\% \\ \text{KNN, k = 3} \\ \text{Selectivity} \\ 90\% \\ 88\% \\ 90\% \\ 96\% \\ 96\% \\ 93\% \\ 91.4\% \\ \hline \\ 90.0\% \\ 3.1\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28<br>0<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                          | 26.0<br>0.5<br>Found seiz<br>28<br>27<br>26<br>27<br>26<br>27.0<br>27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.0<br>2.1<br>Found non sei<br>3<br>4<br>3<br>1<br>2<br>2.6<br>3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features                                                                                                                | 93.0%<br>1.6%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>96%<br>93%<br>96.4%<br>96.0%<br>3.5%<br>used:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 75.0\% \\ \hline 4.5\% \\ \hline \\ \text{All features} \\ \text{Kmeans, 4 c} \\ 50\% \\ \text{KNN, k = 3} \\ \hline \\ \text{Selectivity} \\ 90\% \\ 90\% \\ 96\% \\ 96\% \\ 96\% \\ 93\% \\ 91.4\% \\ 90.0\% \\ 3.1\% \\ \hline \\ \text{All features} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28<br>0<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0                                                                                                           | 26.0<br>0.5<br>Found seiz<br>28<br>27<br>26<br>27<br>26<br>27.0<br>27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.0<br>2.1<br>Found non sei<br>3<br>4<br>3<br>1<br>2<br>2.6<br>3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a                                                                                                   | 93.0%<br>1.6%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>100%<br>96%<br>93%<br>93%<br>93%<br>96.4%<br>96.0%<br>3.5%<br>used:<br>nalysis:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 75.0%<br>4.5%<br>All features<br>Kmeans, 4 c<br>50%<br>KNN, k = 3<br>Selectivity<br>90%<br>88%<br>90%<br>90%<br>90%<br>93%<br>91.4%<br>91.4%<br>91.4%<br>91.4%<br>All features<br>Kmeans, 4 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28<br>0<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0                                                                                                           | 26.0<br>0.5<br>Found seiz<br>28<br>27<br>26<br>27<br>26<br>27.0<br>27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.0<br>2.1<br>Found non sei<br>3<br>4<br>3<br>1<br>2<br>2.6<br>3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>Cluster a                                                                                              | 93.0%<br>1.6%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>96%<br>93%<br>96.4%<br>96.0%<br>3.5%<br>used:<br>nalysis:<br>variance:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 75.0\% \\ \hline 4.5\% \\ \hline \\ \text{All features} \\ \text{Kmeans, 4 c} \\ 50\% \\ \text{KNN, k = 3} \\ \text{Selectivity} \\ 90\% \\ 88\% \\ 90\% \\ 96\% \\ 96\% \\ 96\% \\ 93\% \\ 91.4\% \\ 90.0\% \\ \hline 3.1\% \\ \hline \\ \text{All features} \\ \text{Kmeans, 4 c} \\ 80\% \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28<br>0<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0                                                                                                           | 26.0<br>0.5<br>Found seiz<br>28<br>27<br>26<br>27<br>26<br>27.0<br>27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.0<br>2.1<br>Found non sei<br>3<br>4<br>3<br>1<br>2<br>2.6<br>3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>Cluster a                                                                                              | 93.0%<br>1.6%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>96%<br>93%<br>96.4%<br>96.0%<br>3.5%<br>used:<br>nalysis:<br>variance:<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 75.0\% \\ \hline 4.5\% \\ \hline \\ \text{All features} \\ \text{Kmeans, 4 c} \\ 50\% \\ \text{KNN, k = 3} \\ \hline \\ \text{Selectivity} \\ 90\% \\ 90\% \\ 90\% \\ 96\% \\ 90\% \\ 96\% \\ 93\% \\ 91.4\% \\ \hline \\ 90.0\% \\ 3.1\% \\ \hline \\ \text{All features} \\ \text{Kmeans, 4 c} \\ 80\% \\ \text{KNN, k = 3} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28<br>0<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>0<br>lusters                                                                                                       | 26.0<br>0.5<br>Found seiz<br>28<br>27<br>26<br>27<br>26<br>27.0<br>27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.0<br>2.1<br>Found non sei<br>3<br>4<br>3<br>1<br>2<br>2.6<br>3.0<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>Cluster a                                                                                              | 93.0%<br>1.6%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>100%<br>96%<br>93%<br>93%<br>93%<br>96.4%<br>96.0%<br>3.5%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>Sensitivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75.0%<br>4.5%<br>All features<br>Kmeans, 4 c<br>50%<br>KNN, k = 3<br>Selectivity<br>90%<br>88%<br>90%<br>96%<br>93%<br>93%<br>91.4%<br>90.0%<br>3.1%<br>All features<br>Kmeans, 4 c<br>80%<br>KNN, k = 3<br>Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28<br>0<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>1<br>usters<br>Num seiz                                                                                            | 26.0<br>0.5<br>Found seiz<br>28<br>27<br>26<br>27.0<br>27.0<br>1.0<br>Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.0<br>2.1<br>Found non sei<br>3<br>4<br>3<br>1<br>2<br>2.6<br>3.0<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>Cluster a                                                                                              | 93.0%<br>1.6%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>100%<br>96%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 75.0%<br>4.5%<br>All features<br>Kmeans, 4 c<br>50%<br>KNN, k = 3<br>Selectivity<br>90%<br>88%<br>90%<br>90%<br>90%<br>93%<br>91.4%<br>90.0%<br>3.1%<br>All features<br>Kmeans, 4 c<br>80%<br>KNN, k = 3<br>Selectivity<br>93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28<br>0<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>0<br>lusters<br>Num seiz<br>28                                                                               | 26.0<br>0.5<br>7<br>28<br>28<br>27<br>26<br>26<br>26<br>27.0<br>27.0<br>1.0<br>Found seiz<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.0<br>2.1<br>Found non sei<br>3<br>4<br>3<br>1<br>2<br>2.6<br>3.0<br>1.1<br>Found non sei<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a                                                                                                   | 93.0%<br>1.6%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>96%<br>93%<br>96.4%<br>96.0%<br>3.5%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 75.0\% \\ \hline 4.5\% \\ \hline \\ \mbox{All features} \\ \mbox{Kmeans, 4 c} \\ 50\% \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \mbox{90\%} \\ \mbox{90\%} \\ \mbox{90\%} \\ \mbox{90\%} \\ \mbox{90.0\%} \\ \mbox{91.4\%} \\ \mbox{90.0\%} \\ \mbox{3.1\%} \\ \hline \\ \mbox{All features} \\ \mbox{Kmeans, 4 c} \\ \mbox{80\%} \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \mbox{93\%} \\ \mbox{93\%} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28<br>0<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>1<br>usters<br>Num seiz                                                                                            | 26.0<br>0.5<br>Found seiz<br>28<br>27<br>26<br>27.0<br>27.0<br>1.0<br>Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.0<br>2.1<br>Found non sei<br>3<br>4<br>3<br>1<br>2<br>2.6<br>3.0<br>1.1<br>Found non sei<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>Cluster a                                                                                              | 93.0%<br>1.6%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>100%<br>96%<br>93%<br>93%<br>93%<br>93%<br>96.4%<br>96.0%<br>3.5%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 75.0%<br>4.5%<br>All features<br>Kmeans, 4 c<br>50%<br>KNN, k = 3<br>Selectivity<br>90%<br>98%<br>90%<br>90%<br>93%<br>93%<br>91.4%<br>90.0%<br>3.1%<br>All features<br>Kmeans, 4 c<br>80%<br>KNN, k = 3<br>Selectivity<br>93%<br>87%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28<br>0<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>1<br>usters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28        | 26.0<br>0.5<br>Found seiz<br>28<br>27<br>26<br>27.0<br>1.0<br>Found seiz<br>27<br>27<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.0<br>2.1<br>Found non sei<br>3<br>4<br>3<br>1<br>2<br>2.6<br>3.0<br>1.1<br>Found non sei<br>2<br>2<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>Cluster a                                                                                              | 93.0%<br>1.6%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>96%<br>93%<br>96.4%<br>96.0%<br>3.5%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 75.0\% \\ \hline 4.5\% \\ \hline \\ \mbox{All features} \\ \mbox{Kmeans, 4 c} \\ 50\% \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \mbox{90\%} \\ \mbox{90\%} \\ \mbox{90\%} \\ \mbox{90\%} \\ \mbox{90.0\%} \\ \mbox{91.4\%} \\ \mbox{90.0\%} \\ \mbox{3.1\%} \\ \hline \\ \mbox{All features} \\ \mbox{Kmeans, 4 c} \\ \mbox{80\%} \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \mbox{93\%} \\ \mbox{93\%} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28<br>0<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>lusters<br>Num seiz<br>28<br>28<br>28                                                                              | 26.0<br>0.5<br>28<br>28<br>27<br>26<br>26<br>27.0<br>27.0<br>1.0<br>Found seiz<br>27<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.0<br>2.1<br>Found non sei<br>3<br>4<br>3<br>1<br>2<br>2.6<br>3.0<br>1.1<br>Found non sei<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>Cluster a                                                                                              | 93.0%<br>1.6%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>100%<br>96%<br>93%<br>93%<br>93%<br>93%<br>96.4%<br>96.0%<br>3.5%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 75.0%<br>4.5%<br>All features<br>Kmeans, 4 c<br>50%<br>KNN, k = 3<br>Selectivity<br>90%<br>98%<br>90%<br>90%<br>93%<br>93%<br>91.4%<br>90.0%<br>3.1%<br>All features<br>Kmeans, 4 c<br>80%<br>KNN, k = 3<br>Selectivity<br>93%<br>87%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28<br>0<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>1<br>usters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28        | 26.0<br>0.5<br>Found seiz<br>28<br>27<br>26<br>27.0<br>1.0<br>Found seiz<br>27<br>27<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.0<br>2.1<br>Found non sei<br>3<br>4<br>3<br>1<br>2<br>2.6<br>3.0<br>1.1<br>Found non sei<br>2<br>2<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>Cluster a                                                                                              | 93.0%<br>1.6%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>100%<br>96%<br>93%<br>93%<br>93%<br>93%<br>96.4%<br>96.4%<br>96.0%<br>3.5%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 75.0%<br>4.5%<br>All features<br>Kmeans, 4 c<br>50%<br>KNN, k = 3<br>Selectivity<br>90%<br>88%<br>90%<br>90%<br>93%<br>93%<br>91.4%<br>90.0%<br>3.1%<br>All features<br>Kmeans, 4 c<br>80%<br>KNN, k = 3<br>Selectivity<br>93%<br>93%<br>93%<br>87%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28<br>0<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>0<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28       | 26.0<br>0.5<br>28<br>28<br>27<br>26<br>26<br>27.0<br>27.0<br>1.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.0<br>2.1<br>Found non sei<br>3<br>4<br>3<br>1<br>2<br>2.6<br>3.0<br>1.1<br>Found non sei<br>2<br>2<br>4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                                   | 93.0%<br>1.6%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>100%<br>96%<br>93%<br>93%<br>96.4%<br>96.4%<br>96.0%<br>3.5%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 75.0\% \\ \hline 4.5\% \\ \hline \\ \mbox{All features} \\ \mbox{Kmeans, 4 c} \\ 50\% \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ 90\% \\ 90\% \\ 96\% \\ 96\% \\ 96\% \\ 93\% \\ 91.4\% \\ \mbox{90.0\%} \\ 3.1\% \\ \hline \\ \mbox{All features} \\ \mbox{Kmeans, 4 c} \\ 80\% \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ 93\% \\ \mbox{87\%} \\ 84\% \\ \mbox{84\%} \\ \mbox{83\%} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28<br>0<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>1<br>usters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28        | 26.0<br>0.5<br>Found seiz<br>28<br>27<br>26<br>27.0<br>1.0<br>Found seiz<br>27<br>27<br>27<br>27<br>25<br>26.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.0<br>2.1<br>Found non sei<br>3<br>4<br>3<br>1<br>2<br>2.6<br>3.0<br>1.1<br>Found non sei<br>2<br>2<br>4<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                           | 93.0%<br>1.6%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>100%<br>96%<br>93%<br>93%<br>96.4%<br>96.0%<br>3.5%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 75.0\% \\ \hline 4.5\% \\ \hline \\ \mbox{All features} \\ \mbox{Kmeans, 4 c} \\ 50\% \\ \mbox{KNN, k = 3} \\ \hline \\ \mbox{Selectivity} \\ \hline \\ \mbox{90\%} \\ \mbox{90\%} \\ \mbox{90\%} \\ \mbox{90\%} \\ \mbox{90\%} \\ \mbox{93\%} \\ \mbox{91.4\%} \\ \hline \\ \mbox{90.0\%} \\ \mbox{93\%} \\ \mbox{93.1\%} \\ \hline \\ \mbox{All features} \\ \mbox{Kmeans, 4 c} \\ \mbox{80\%} \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \mbox{93\%} \\ \mbox{93\%} \\ \mbox{93\%} \\ \mbox{93\%} \\ \mbox{87\%} \\ \mbox{84\%} \\ \mbox{88.0\%} \\ \mbox{88.0\%} \\ \mbox{87.0\%} \\ \mbox{87.0\%} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28<br>0<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                  | 26.0<br>0.5<br>Found seiz<br>28<br>27<br>26<br>27.0<br>27.0<br>1.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>25<br>26.6<br>27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.0<br>2.1<br>Found non sei<br>3<br>4<br>3<br>1<br>2<br>2.6<br>3.0<br>1.1<br>Found non sei<br>2<br>2<br>4<br>5<br>5<br>5<br>3.6<br>4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean                                                                   | 93.0%<br>1.6%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>100%<br>96%<br>93%<br>93%<br>96.4%<br>96.4%<br>96.0%<br>3.5%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 75.0\% \\ \hline 4.5\% \\ \hline \\ \mbox{All features} \\ \mbox{Kmeans, 4 c} \\ 50\% \\ \mbox{KNN, k = 3} \\ \hline \\ \mbox{Selectivity} \\ \hline \\ \mbox{90\%} \\ \mbox{90\%} \\ \mbox{90\%} \\ \mbox{90\%} \\ \mbox{90\%} \\ \mbox{91.4\%} \\ \mbox{90.0\%} \\ \mbox{93\%} \\ \mbox{91.4\%} \\ \mbox{90.0\%} \\ \mbox{93\%} \\ \mbox{81.6\%} \\ \mbox{81.6\%} \\ \mbox{83\%} \\ \mbox{88.0\%} \\ \mbox{88.0\%} \\ \mbox{88.0\%} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28<br>0<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>0<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28             | 26.0<br>0.5<br>Found seiz<br>28<br>27<br>26<br>27.0<br>1.0<br>Found seiz<br>27<br>27<br>27<br>27<br>25<br>26.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.0<br>2.1<br>Found non sei<br>3<br>4<br>3<br>1<br>2<br>2.6<br>3.0<br>1.1<br>Found non sei<br>2<br>4<br>5<br>5<br>3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                           | 93.0%<br>1.6%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>96%<br>93%<br>96.4%<br>96.0%<br>3.5%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 75.0\% \\ \hline 4.5\% \\ \hline \\ \mbox{All features} \\ \mbox{Kmeans, 4 c} \\ 50\% \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \mbox{90\%} \\ \mbox{90\%} \\ \mbox{90\%} \\ \mbox{90\%} \\ \mbox{90\%} \\ \mbox{90.0\%} \\ \mbox{91.4\%} \\ \mbox{90.0\%} \\ \mbox{91.4\%} \\ \mbox{90.0\%} \\ \mbox{3.1\%} \\ \mbox{All features} \\ \mbox{Kmeans, 4 c} \\ \mbox{80\%} \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \mbox{93\%} \\ \mbox{87\%} \\ \mbox{84\%} \\ \mbox{88.0\%} \\ \mbox{87.0\%} \\ \mbox{4.8\%} \\ \mbox{4.8\%} \\ \mbox{4.8\%} \\ \mbox{4.8\%} \\ \mbox{6.5\%} $                                                                                                                                                                                                                                                        | 28<br>0<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                  | 26.0<br>0.5<br>Found seiz<br>28<br>27<br>26<br>27.0<br>27.0<br>1.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>25<br>26.6<br>27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.0<br>2.1<br>Found non sei<br>3<br>4<br>3<br>1<br>2<br>2.6<br>3.0<br>1.1<br>Found non sei<br>2<br>2<br>4<br>5<br>5<br>5<br>3.6<br>4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Mean<br>Median<br>STD<br>Features             | 93.0%<br>1.6%<br>1.6%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>96%<br>93%<br>93%<br>93%<br>96.4%<br>96.4%<br>96.0%<br>3.5%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 75.0\% \\ \hline 4.5\% \\ \hline \\ \mbox{All features} \\ \mbox{Kmeans, 4 c} \\ 50\% \\ \mbox{KNN, k = 3} \\ \hline \\ \mbox{Selectivity} \\ \hline \\ \mbox{90\%} \\ \mbox{90\%} \\ \mbox{90\%} \\ \mbox{90\%} \\ \mbox{90\%} \\ \mbox{90.0\%} \\ \mbox{93\%} \\ \mbox{91.4\%} \\ \mbox{90.0\%} \\ \mbox{93\%} \\ \mbox{91.4\%} \\ \mbox{90.0\%} \\ \mbox{91.4\%} \\ \mbox{90.0\%} \\ \mbox{93\%} \\ \mbox{93\%} \\ \mbox{81.6\%} \\ \mbox{81.0\%} \\ \mbox{88.0\%} \\ \mbox{88.0\%} \\ \mbox{88.0\%} \\ \mbox{88.0\%} \\ \mbox{87.0\%} \\ \mbox{4.8\%} \\ \mbox{All features} \\ All feature$                                                                                                                                                                                                                                                                                                                                                                                                      | 28<br>0<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>0<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28 | 26.0<br>0.5<br>Found seiz<br>28<br>27<br>26<br>27.0<br>27.0<br>1.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>25<br>26.6<br>27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.0<br>2.1<br>Found non sei<br>3<br>4<br>3<br>1<br>2<br>2.6<br>3.0<br>1.1<br>Found non sei<br>2<br>2<br>4<br>5<br>5<br>5<br>3.6<br>4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Cluster a<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>STD                           | 93.0%<br>1.6%<br>1.6%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>96%<br>93%<br>96.4%<br>96.0%<br>3.5%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 75.0\% \\ \hline 4.5\% \\ \hline \\ 4.5\% \\ \hline \\ \text{All features} \\ \text{Kmeans, 4 c} \\ 50\% \\ \text{KNN, k = 3} \\ \text{Selectivity} \\ 90\% \\ 90\% \\ 90\% \\ 90\% \\ 90\% \\ 90\% \\ 90\% \\ 91.4\% \\ 90.0\% \\ 3.1\% \\ \hline \\ Marked and a state of the set of the$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28<br>0<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>0<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28 | 26.0<br>0.5<br>Found seiz<br>28<br>27<br>26<br>27.0<br>27.0<br>1.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>25<br>26.6<br>27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.0<br>2.1<br>Found non sei<br>3<br>4<br>3<br>1<br>2<br>2.6<br>3.0<br>1.1<br>Found non sei<br>2<br>4<br>5<br>5<br>5<br>3.6<br>4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>STD                  | 93.0%<br>1.6%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>96%<br>93%<br>96.4%<br>96.0%<br>3.5%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 75.0\% \\ \hline 4.5\% \\ \hline \\ 4.5\% \\ \hline \\ \text{All features} \\ \text{Kmeans, 4 c} \\ 50\% \\ \text{KNN, k = 3} \\ \hline \\ \text{Selectivity} \\ 90\% \\ 90\% \\ 96\% \\ 96\% \\ 93\% \\ 91.4\% \\ \hline \\ 90.0\% \\ 3.1\% \\ \hline \\ \hline \\ \text{All features} \\ \text{Kmeans, 4 c} \\ 80\% \\ \hline \\ \text{KNN, k = 3} \\ \hline \\ \text{Selectivity} \\ 93\% \\ 87\% \\ \hline \\ 84\% \\ \hline \\ 88.0\% \\ \hline \\ 88.0\% \\ \hline \\ 87.0\% \\ \hline \\ 4.8\% \\ \hline \\ \text{All features} \\ \text{Kmeans, 4 c} \\ 70\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28<br>0<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>0<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28 | 26.0<br>0.5<br>Found seiz<br>28<br>27<br>26<br>27.0<br>27.0<br>1.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>25<br>26.6<br>27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.0<br>2.1<br>Found non sei<br>3<br>4<br>3<br>1<br>2<br>2.6<br>3.0<br>1.1<br>Found non sei<br>2<br>4<br>5<br>5<br>5<br>3.6<br>4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Cluster a<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>STD                           | 93.0%<br>1.6%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>100%<br>96%<br>93%<br>96.4%<br>96.4%<br>96.4%<br>96.0%<br>3.5%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 75.0\% \\ \hline 4.5\% \\ \hline \\ \mbox{All features} \\ \mbox{Kmeans, 4 c} \\ 50\% \\ \mbox{KNN, k = 3} \\ \hline \\ \mbox{Selectivity} \\ \hline \\ \mbox{90\%} \\ \mbox{91.4\%} \\ \mbox{90\%} \\ \mbox{90\%} \\ \mbox{90\%} \\ \mbox{91.4\%} \\ \mbox{90\%} \\ \mbox{90\%} \\ \mbox{91.4\%} \\ \mbox{90.0\%} \\ \mbox{90\%} \\ \mbox{91.4\%} \\ \mbox{90.0\%} \\ \mbox{91.4\%} \\ \mbox{90\%} \\ \mbox{91.4\%} \\ \mbox{90.0\%} \\ \mbox{91.4\%} \\ \mbox{90.0\%} \\ \mbox{91.4\%} \\ \mbox{90.0\%} \\ \mbox{93\%} \\ \mbox{81.6\%} \\ \mbox{81.6\%} \\ \mbox{83\%} \\ \mbox{88.0\%} \\ \mbox{88.0\%} \\ \mbox{88.0\%} \\ \mbox{88.0\%} \\ \mbox{88.0\%} \\ \mbox{88.0\%} \\ \mbox{81.6\%} \\ \m$                                                                                                                                                                                                                                                   | 28<br>0<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>0<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                         | 26.0<br>0.5<br>Found seiz<br>28<br>28<br>27<br>26<br>26<br>27.0<br>1.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>25<br>26.6<br>27.0<br>0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.0<br>2.1<br>Found non sei<br>3<br>4<br>3<br>1<br>2<br>2.6<br>3.0<br>1.1<br>Found non sei<br>2<br>2<br>4<br>5<br>5<br>5<br>3.6<br>4.0<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>STD                  | 93.0%<br>1.6%<br>1.6%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>96%<br>93%<br>96.4%<br>96.0%<br>3.5%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 75.0\% \\ \hline 4.5\% \\ \hline \\ 4.5\% \\ \hline \\ All features \\ Kmeans, 4 c \\ 50\% \\ KNN, k = 3 \\ Selectivity \\ 90\% \\ 90\% \\ 90\% \\ 90\% \\ 90\% \\ 90\% \\ 91.4\% \\ 90.0\% \\ 3.1\% \\ \hline \\ 91.4\% \\ 90.0\% \\ 3.1\% \\ \hline \\ 91.4\% \\ 90.0\% \\ 3.1\% \\ \hline \\ 81\% \\ 83\% \\ 84\% \\ 83\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0$ | 28<br>0<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                              | 26.0<br>0.5<br>Found seiz<br>28<br>28<br>27<br>26<br>26<br>27.0<br>1.0<br>1.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.0<br>2.1<br>Found non sei<br>3<br>4<br>3<br>1<br>2<br>2.6<br>3.0<br>1.1<br>Found non sei<br>2<br>2<br>4<br>5<br>5<br>3.6<br>4.0<br>1.5<br>Found non sei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>STD                  | 93.0%<br>1.6%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>100%<br>96%<br>93%<br>96.4%<br>96.4%<br>96.4%<br>96.0%<br>3.5%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 75.0\% \\ \hline 4.5\% \\ \hline \\ \mbox{All features} \\ \mbox{Kmeans, 4 c} \\ 50\% \\ \mbox{KNN, k = 3} \\ \hline \\ \mbox{Selectivity} \\ \hline \\ \mbox{90\%} \\ \mbox{91.4\%} \\ \mbox{90\%} \\ \mbox{90\%} \\ \mbox{90\%} \\ \mbox{91.4\%} \\ \mbox{90\%} \\ \mbox{90\%} \\ \mbox{91.4\%} \\ \mbox{90.0\%} \\ \mbox{90\%} \\ \mbox{91.4\%} \\ \mbox{90.0\%} \\ \mbox{91.4\%} \\ \mbox{90\%} \\ \mbox{91.4\%} \\ \mbox{90.0\%} \\ \mbox{91.4\%} \\ \mbox{90.0\%} \\ \mbox{91.4\%} \\ \mbox{90.0\%} \\ \mbox{93\%} \\ \mbox{81.6\%} \\ \mbox{81.6\%} \\ \mbox{83\%} \\ \mbox{88.0\%} \\ \mbox{88.0\%} \\ \mbox{88.0\%} \\ \mbox{88.0\%} \\ \mbox{88.0\%} \\ \mbox{88.0\%} \\ \mbox{81.6\%} \\ \m$                                                                                                                                                                                                                                                   | 28<br>0<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>0<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                         | 26.0<br>0.5<br>Found seiz<br>28<br>28<br>27<br>26<br>26<br>27.0<br>1.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>25<br>26.6<br>27.0<br>0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.0<br>2.1<br>Found non sei<br>3<br>4<br>3<br>1<br>2<br>2.6<br>3.0<br>1.1<br>Found non sei<br>2<br>2<br>4<br>5<br>5<br>5<br>3.6<br>4.0<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>STD                  | 93.0%<br>1.6%<br>1.6%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>96%<br>93%<br>96.4%<br>96.0%<br>3.5%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 75.0\% \\ \hline 4.5\% \\ \hline \\ 4.5\% \\ \hline \\ All features \\ Kmeans, 4 c \\ 50\% \\ KNN, k = 3 \\ Selectivity \\ 90\% \\ 90\% \\ 90\% \\ 90\% \\ 90\% \\ 90\% \\ 91.4\% \\ 90.0\% \\ 3.1\% \\ \hline \\ 91.4\% \\ 90.0\% \\ 3.1\% \\ \hline \\ 91.4\% \\ 90.0\% \\ 3.1\% \\ \hline \\ 81\% \\ 83\% \\ 84\% \\ 83\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0\% \\ 88.0$ | 28<br>0<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                              | 26.0<br>0.5<br>Found seiz<br>28<br>28<br>27<br>26<br>26<br>27.0<br>1.0<br>1.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.0<br>2.1<br>Found non sei<br>3<br>4<br>3<br>1<br>2<br>2.6<br>3.0<br>1.1<br>Found non sei<br>2<br>2<br>4<br>5<br>5<br>3.6<br>4.0<br>1.5<br>Found non sei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>STD                  | 93.0%<br>1.6%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>96%<br>93%<br>96.4%<br>96.0%<br>3.5%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96.0%<br>3.1%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 75.0\% \\ \hline 4.5\% \\ \hline \\ \mbox{All features} \\ \mbox{Kmeans, 4 c} \\ 50\% \\ \mbox{KNN, k = 3} \\ \mbox{Selectivity} \\ \mbox{90\%} \\ \mbox{90\%} \\ \mbox{90\%} \\ \mbox{90\%} \\ \mbox{90\%} \\ \mbox{90.0\%} \\ \mbox{91.4\%} \\ \mbox{90.0\%} \\ \mbox{81.6\%} \\ \mbox{Rmeans, 4 c} \\ \mbox{88.0\%} \\ \mbox{88.0\%}$                                                                                                                                                                                                                                                                   | 28<br>0<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                              | 26.0<br>0.5<br>Found seiz<br>28<br>27<br>26<br>26<br>27.0<br>1.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.0<br>2.1<br>Found non sei<br>3<br>4<br>3<br>1<br>2<br>2.6<br>3.0<br>1.1<br>Found non sei<br>2<br>4<br>5<br>5<br>3.6<br>4.0<br>1.5<br>Found non sei<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>STD                  | 93.0%<br>1.6%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>100%<br>96%<br>93%<br>96.4%<br>96.4%<br>96.4%<br>96.0%<br>3.5%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96.0%<br>3.1%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96.0%<br>96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 75.0\% \\ \hline 4.5\% \\ \hline \\ 4.5\% \\ \hline \\ \text{All features} \\ \text{Kmeans, 4 c} \\ 50\% \\ \text{KNN, k = 3} \\ \text{Selectivity} \\ 90\% \\ 90\% \\ 90\% \\ 90\% \\ 90\% \\ 91.4\% \\ 90\% \\ 90\% \\ 91.4\% \\ 90\% \\ 90\% \\ 91.4\% \\ 90\% \\ 90\% \\ 90\% \\ 90\% \\ 90\% \\ 90\% \\ 90\% \\ 90\% \\ 90\% \\ 90\% \\ 90\% \\ 90\% \\ 90\% \\ 90\% \\ 90\% \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28<br>0<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>1<br>usters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                          | 26.0<br>0.5<br>Found seiz<br>28<br>28<br>27<br>26<br>26<br>27.0<br>1.0<br>Found seiz<br>27<br>27<br>27<br>25<br>26.6<br>27.0<br>0.9<br>Found seiz<br>27<br>27<br>27<br>25<br>26.6<br>27.0<br>0.9<br>Found seiz<br>27<br>27<br>27<br>27<br>25<br>26<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.0<br>2.1<br>Found non sei<br>3<br>4<br>3<br>1<br>2<br>2.6<br>3.0<br>1.1<br>Found non sei<br>2<br>4<br>5<br>5<br>3.6<br>4.0<br>1.5<br>Found non sei<br>2<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>STD                  | 93.0%<br>1.6%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>96%<br>93%<br>96.4%<br>96.0%<br>3.5%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96.0%<br>3.1%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 75.0\% \\ \hline 4.5\% \\ \hline \\ 4.5\% \\ \hline \\ All features \\ Kmeans, 4 c \\ 50\% \\ KNN, k = 3 \\ \hline \\ Selectivity \\ 90\% \\ 96\% \\ 96\% \\ 96\% \\ 93\% \\ 90\% \\ 96\% \\ 93\% \\ 91.4\% \\ \hline \\ 90.0\% \\ 3.1\% \\ \hline \\ All features \\ Kmeans, 4 c \\ 80\% \\ KNN, k = 3 \\ \hline \\ Selectivity \\ 93\% \\ 87\% \\ \hline \\ 88.0\% \\ \hline \\ 88.0\% \\ \hline \\ 87.0\% \\ \hline \\ 88.0\% \\ \hline \\ 88.0\% \\ \hline \\ 87.0\% \\ \hline \\ 88.0\% \\ \hline \\ 87.0\% \\ \hline \\ RNN, k = 1 \\ \hline \\ Selectivity \\ 93\% \\ 90\% \\ 87\% \\ \hline \\ 90\% \\ 87\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28<br>0<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                              | 26.0<br>0.5<br>Found seiz<br>28<br>28<br>27<br>26<br>26<br>27.0<br>27.0<br>1.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.0<br>2.1<br>Found non sei<br>3<br>4<br>3<br>1<br>2<br>2.6<br>3.0<br>1.1<br>Found non sei<br>2<br>4<br>5<br>5<br>3.6<br>4.0<br>1.5<br>Found non sei<br>2<br>3<br>3<br>4<br>5<br>5<br>3.6<br>4.0<br>1.5<br>5<br>5<br>3.6<br>4.0<br>1.5<br>5<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                        |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier | 93.0%<br>1.6%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>96%<br>93%<br>96.4%<br>96%<br>96.0%<br>3.5%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96.0%<br>3.1%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>93.0%<br>93.0%<br>93.0%<br>89.0%<br>93.0%<br>89.0%<br>89.0%<br>89.0%<br>89.0%<br>89.0%<br>89.0%<br>89.0%<br>89.0%<br>89.0%<br>89.0%<br>89.0%<br>89.0%<br>89.0%<br>89.0%<br>89.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0%<br>80.0% | $\begin{array}{c} 75.0\% \\ \hline 4.5\% \\ \hline \\ 4.5\% \\ \hline \\ All features \\ Kmeans, 4 c \\ 50\% \\ KNN, k = 3 \\ Selectivity \\ 90\% \\ 96\% \\ 96\% \\ 96\% \\ 93\% \\ 91.4\% \\ 90.0\% \\ 3.1\% \\ \hline \\ All features \\ Kmeans, 4 c \\ 80\% \\ \hline \\ KNN, k = 3 \\ Selectivity \\ 93\% \\ 87\% \\ 84\% \\ \hline \\ 88.0\% \\ \hline \\ All features \\ Kmeans, 4 c \\ 83\% \\ \hline \\ \hline \\ 88.0\% \\ \hline \\ 81.0\% \\ \hline \\ 87.0\% \\ \hline \\ 88.0\% \\ \hline \\ \hline \\ 87.0\% \\ \hline \\ 88.0\% \\ \hline \\ \\ 87.0\% \\ \hline \\ 89.0\% \\ \hline \\ 89\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28<br>0<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>0<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                   | 26.0<br>0.5<br>Found seiz<br>28<br>28<br>27<br>26<br>26<br>27.0<br>1.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>25<br>26.6<br>27.0<br>0.9<br>Found seiz<br>27<br>25<br>26.6<br>27.0<br>0.9<br>Found seiz<br>27<br>25<br>26.6<br>27.0<br>0.9<br>Found seiz<br>27<br>25<br>26.6<br>27.0<br>0.9<br>Found seiz<br>27<br>25<br>26.6<br>27.0<br>0.9<br>Found seiz<br>27<br>26<br>26<br>27<br>27<br>25<br>26<br>27<br>26<br>27<br>25<br>26<br>27<br>27<br>25<br>26<br>27<br>27<br>26<br>27<br>27<br>25<br>26<br>27<br>27<br>27<br>25<br>26<br>27<br>27<br>27<br>26<br>27<br>27<br>27<br>26<br>27<br>27<br>27<br>26<br>27<br>27<br>27<br>26<br>27<br>27<br>27<br>26<br>27<br>27<br>27<br>27<br>26<br>27<br>27<br>27<br>26<br>27<br>27<br>26<br>27<br>27<br>26<br>27<br>27<br>26<br>27<br>27<br>27<br>26<br>27<br>27<br>26<br>27<br>27<br>26<br>27<br>27<br>26<br>27<br>26<br>27<br>27<br>26<br>27<br>27<br>26<br>27<br>27<br>26<br>27<br>27<br>26<br>27<br>27<br>27<br>27<br>26<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>26<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27 | 9.0<br>2.1<br>Found non sei<br>3<br>4<br>3<br>1<br>2<br>2.6<br>3.0<br>1.1<br>Found non sei<br>2<br>4<br>5<br>5<br>3.6<br>4.0<br>1.5<br>Found non sei<br>3<br>4<br>3<br>4<br>5<br>5<br>3.6<br>4.0<br>1.5<br>Found non sei<br>3<br>4<br>3<br>4<br>5<br>5<br>5<br>3.6<br>4.0<br>1.5<br>Found non sei<br>3<br>4<br>3<br>4<br>5<br>5<br>5<br>3<br>6<br>4<br>3<br>6<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                      |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>STD                  | 93.0%<br>1.6%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>96%<br>93%<br>96.4%<br>96.0%<br>3.5%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96.0%<br>3.1%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 75.0\% \\ \hline 4.5\% \\ \hline \\ 4.5\% \\ \hline \\ All features \\ Kmeans, 4 c \\ 50\% \\ KNN, k = 3 \\ \hline \\ Selectivity \\ 90\% \\ 96\% \\ 96\% \\ 96\% \\ 93\% \\ 90\% \\ 96\% \\ 93\% \\ 91.4\% \\ \hline \\ 90.0\% \\ 3.1\% \\ \hline \\ All features \\ Kmeans, 4 c \\ 80\% \\ KNN, k = 3 \\ \hline \\ Selectivity \\ 93\% \\ 87\% \\ \hline \\ 88.0\% \\ \hline \\ 88.0\% \\ \hline \\ 87.0\% \\ \hline \\ 88.0\% \\ \hline \\ 88.0\% \\ \hline \\ 87.0\% \\ \hline \\ 88.0\% \\ \hline \\ 87.0\% \\ \hline \\ RNN, k = 1 \\ \hline \\ Selectivity \\ 93\% \\ 90\% \\ 87\% \\ \hline \\ 90\% \\ 87\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28<br>0<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                              | 26.0<br>0.5<br>Found seiz<br>28<br>28<br>27<br>26<br>26<br>27.0<br>27.0<br>1.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.0<br>9.0<br>2.1<br>Found non sei<br>3<br>4<br>3<br>1<br>2<br>2.6<br>3.0<br>1.1<br>Found non sei<br>2<br>2<br>4<br>5<br>5<br>3.6<br>4.0<br>1.5<br>Found non sei<br>2<br>4<br>5<br>5<br>3.6<br>4.0<br>1.5<br>Found non sei<br>2<br>4<br>5<br>5<br>5<br>5<br>5<br>6<br>4.0<br>1.5<br>Found non sei<br>2<br>4<br>5<br>5<br>5<br>5<br>6<br>4.0<br>1.5<br>Found non sei<br>2<br>4<br>5<br>5<br>5<br>5<br>6<br>4.0<br>1.5<br>Found non sei<br>2<br>4<br>5<br>5<br>5<br>5<br>5<br>6<br>4.0<br>1.5<br>Found non sei<br>2<br>4<br>5<br>5<br>5<br>5<br>5<br>5<br>6<br>4.0<br>1.5<br>Found non sei<br>2<br>4<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |

| Features                                                                                               | used:                                                                                                                                                                                                                                                                                                                                                                                           | All features                                                                                                                                                                                                                      |                                                                                                                     |                                                                                      |                                                                   |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Cluster a                                                                                              | nalysis:                                                                                                                                                                                                                                                                                                                                                                                        | Kmeans, 4 c                                                                                                                                                                                                                       | lusters                                                                                                             |                                                                                      |                                                                   |
| PLS-DA                                                                                                 | variance:                                                                                                                                                                                                                                                                                                                                                                                       | 70%                                                                                                                                                                                                                               |                                                                                                                     |                                                                                      |                                                                   |
| Classifier                                                                                             | :                                                                                                                                                                                                                                                                                                                                                                                               | KNN, $k = 5$                                                                                                                                                                                                                      |                                                                                                                     |                                                                                      |                                                                   |
|                                                                                                        | Sensitivity                                                                                                                                                                                                                                                                                                                                                                                     | Selectivity                                                                                                                                                                                                                       | Num seiz                                                                                                            | Found seiz                                                                           | Found non seiz                                                    |
|                                                                                                        | 96%                                                                                                                                                                                                                                                                                                                                                                                             | 90%                                                                                                                                                                                                                               | 28                                                                                                                  | 27                                                                                   | 3                                                                 |
|                                                                                                        | 96%                                                                                                                                                                                                                                                                                                                                                                                             | 87%                                                                                                                                                                                                                               | 28                                                                                                                  | 27                                                                                   | 4                                                                 |
|                                                                                                        | 96%                                                                                                                                                                                                                                                                                                                                                                                             | 84%                                                                                                                                                                                                                               | 28                                                                                                                  | 27                                                                                   | 5                                                                 |
|                                                                                                        | 93%                                                                                                                                                                                                                                                                                                                                                                                             | 93%                                                                                                                                                                                                                               | 28                                                                                                                  | 26                                                                                   | 2                                                                 |
|                                                                                                        | 93%                                                                                                                                                                                                                                                                                                                                                                                             | 87%                                                                                                                                                                                                                               | 28                                                                                                                  | 26                                                                                   | 4                                                                 |
| Mean                                                                                                   | 94.8%                                                                                                                                                                                                                                                                                                                                                                                           | 88.2%                                                                                                                                                                                                                             | 28                                                                                                                  | 26.6                                                                                 | 3.6                                                               |
| Median                                                                                                 | 96.0%                                                                                                                                                                                                                                                                                                                                                                                           | 87.0%                                                                                                                                                                                                                             | 28                                                                                                                  | 27.0                                                                                 | 4.0                                                               |
| STD                                                                                                    | 1.6%                                                                                                                                                                                                                                                                                                                                                                                            | 3.4%                                                                                                                                                                                                                              | 0                                                                                                                   | 0.5                                                                                  | 1.1                                                               |
|                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                   |                                                                                                                     |                                                                                      |                                                                   |
| Features                                                                                               | used:                                                                                                                                                                                                                                                                                                                                                                                           | All features                                                                                                                                                                                                                      |                                                                                                                     |                                                                                      |                                                                   |
| Cluster a                                                                                              | nalysis:                                                                                                                                                                                                                                                                                                                                                                                        | Kmeans, 4 c                                                                                                                                                                                                                       | lusters                                                                                                             |                                                                                      |                                                                   |
| PLS-DA                                                                                                 | variance:                                                                                                                                                                                                                                                                                                                                                                                       | 70%                                                                                                                                                                                                                               |                                                                                                                     |                                                                                      |                                                                   |
| Classifier                                                                                             | :                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                   | prob. weights                                                                                                       | s [1 1]                                                                              |                                                                   |
|                                                                                                        | Sensitivity                                                                                                                                                                                                                                                                                                                                                                                     | Selectivity                                                                                                                                                                                                                       | Num seiz                                                                                                            | Found seiz                                                                           | Found non seiz                                                    |
|                                                                                                        | 100%                                                                                                                                                                                                                                                                                                                                                                                            | 82%                                                                                                                                                                                                                               | 28                                                                                                                  | 28                                                                                   | 6                                                                 |
|                                                                                                        | 100%                                                                                                                                                                                                                                                                                                                                                                                            | 82%                                                                                                                                                                                                                               | 28                                                                                                                  | 28                                                                                   | 6                                                                 |
|                                                                                                        | 100%                                                                                                                                                                                                                                                                                                                                                                                            | 78%                                                                                                                                                                                                                               | 28                                                                                                                  | 28                                                                                   | 8                                                                 |
|                                                                                                        | 100%                                                                                                                                                                                                                                                                                                                                                                                            | 78%                                                                                                                                                                                                                               | 28                                                                                                                  | 28                                                                                   | 8                                                                 |
|                                                                                                        | 100%                                                                                                                                                                                                                                                                                                                                                                                            | 72%                                                                                                                                                                                                                               | 28                                                                                                                  | 28                                                                                   | 11                                                                |
| Mean                                                                                                   | 100.0%                                                                                                                                                                                                                                                                                                                                                                                          | 78.4%                                                                                                                                                                                                                             | 28                                                                                                                  | 28.0                                                                                 | 7.8                                                               |
| Median                                                                                                 | 100.0%                                                                                                                                                                                                                                                                                                                                                                                          | 78.0%                                                                                                                                                                                                                             | 28                                                                                                                  | 28.0                                                                                 | 8.0                                                               |
| STD                                                                                                    | 0.0%                                                                                                                                                                                                                                                                                                                                                                                            | 4.1%                                                                                                                                                                                                                              | 0                                                                                                                   | 0.0                                                                                  | 2.0                                                               |
|                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                 |                                                                                                                     |                                                                                      |                                                                   |
| Features                                                                                               | used:                                                                                                                                                                                                                                                                                                                                                                                           | All features                                                                                                                                                                                                                      |                                                                                                                     |                                                                                      |                                                                   |
| Cluster a                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                 | Kmeans, 4 c                                                                                                                                                                                                                       | lusters                                                                                                             |                                                                                      |                                                                   |
| PLS-DA                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                 | 70%                                                                                                                                                                                                                               | rabberb                                                                                                             |                                                                                      |                                                                   |
| Classifier                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                   | prob. weight:                                                                                                       | s [10_1]                                                                             |                                                                   |
|                                                                                                        | Sensitivity                                                                                                                                                                                                                                                                                                                                                                                     | Selectivity                                                                                                                                                                                                                       | Num seiz                                                                                                            | Found seiz                                                                           | Found non seiz                                                    |
|                                                                                                        | 100%                                                                                                                                                                                                                                                                                                                                                                                            | 80%                                                                                                                                                                                                                               | 28                                                                                                                  | 28                                                                                   | 7                                                                 |
|                                                                                                        | 100%                                                                                                                                                                                                                                                                                                                                                                                            | 80%                                                                                                                                                                                                                               | 28                                                                                                                  | 28                                                                                   | 7                                                                 |
|                                                                                                        | 100%                                                                                                                                                                                                                                                                                                                                                                                            | 76%                                                                                                                                                                                                                               | 28                                                                                                                  | 28                                                                                   | 9                                                                 |
|                                                                                                        | 100%                                                                                                                                                                                                                                                                                                                                                                                            | 74%                                                                                                                                                                                                                               | 28                                                                                                                  | 28                                                                                   | 10                                                                |
|                                                                                                        | 96%                                                                                                                                                                                                                                                                                                                                                                                             | 75%                                                                                                                                                                                                                               | 28                                                                                                                  | 27                                                                                   | 9                                                                 |
| Mean                                                                                                   | 99.2%                                                                                                                                                                                                                                                                                                                                                                                           | 77.0%                                                                                                                                                                                                                             | 28                                                                                                                  | 27.8                                                                                 | 8.4                                                               |
| Median                                                                                                 | 100.0%                                                                                                                                                                                                                                                                                                                                                                                          | 76.0%                                                                                                                                                                                                                             | 28                                                                                                                  | 28.0                                                                                 | 9.0                                                               |
| STD                                                                                                    | 1.8%                                                                                                                                                                                                                                                                                                                                                                                            | 2.8%                                                                                                                                                                                                                              | 0                                                                                                                   | 0.4                                                                                  | 1.3                                                               |
| 51D                                                                                                    | 1.070                                                                                                                                                                                                                                                                                                                                                                                           | 2.870                                                                                                                                                                                                                             | 0                                                                                                                   | 0.4                                                                                  | 1.5                                                               |
| Features                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                               | All features                                                                                                                                                                                                                      |                                                                                                                     |                                                                                      |                                                                   |
|                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                   | 1                                                                                                                   |                                                                                      |                                                                   |
| Cluster a                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                 | Kmeans, 4 c                                                                                                                                                                                                                       | lusters                                                                                                             |                                                                                      |                                                                   |
| PLS-DA<br>Classifier                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                 | 70%                                                                                                                                                                                                                               |                                                                                                                     | . [1 10]                                                                             |                                                                   |
| Classifier                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                   | prob. weight:                                                                                                       |                                                                                      | Farmal man asia                                                   |
|                                                                                                        | Sensitivity                                                                                                                                                                                                                                                                                                                                                                                     | Selectivity                                                                                                                                                                                                                       | Num seiz                                                                                                            | Found seiz                                                                           | Found non seiz                                                    |
|                                                                                                        | 100%                                                                                                                                                                                                                                                                                                                                                                                            | 82%<br>80%                                                                                                                                                                                                                        | 28                                                                                                                  | 28<br>28                                                                             | 6<br>7                                                            |
|                                                                                                        | 100%<br>100%                                                                                                                                                                                                                                                                                                                                                                                    | 80%                                                                                                                                                                                                                               | 28                                                                                                                  | 28                                                                                   |                                                                   |
|                                                                                                        | 100%                                                                                                                                                                                                                                                                                                                                                                                            | 78%                                                                                                                                                                                                                               | 28<br>28                                                                                                            | 28<br>28                                                                             | 8<br>10                                                           |
|                                                                                                        | 96%                                                                                                                                                                                                                                                                                                                                                                                             | 74%                                                                                                                                                                                                                               | 28<br>28                                                                                                            | 28<br>27                                                                             | 10 7                                                              |
| Mean                                                                                                   | 96%                                                                                                                                                                                                                                                                                                                                                                                             | 79%                                                                                                                                                                                                                               | 28                                                                                                                  | 27                                                                                   | 7.6                                                               |
|                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                 | 78.6%                                                                                                                                                                                                                             | 28                                                                                                                  |                                                                                      | 7.6                                                               |
|                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                   |                                                                                                                     |                                                                                      |                                                                   |
| Median                                                                                                 | 100.0%                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                   |                                                                                                                     | 28.0                                                                                 |                                                                   |
| Median<br>STD                                                                                          | 100.0%                                                                                                                                                                                                                                                                                                                                                                                          | 3.0%                                                                                                                                                                                                                              | 0                                                                                                                   | 28.0                                                                                 | 1.5                                                               |
| STD                                                                                                    | 1.8%                                                                                                                                                                                                                                                                                                                                                                                            | 3.0%                                                                                                                                                                                                                              | 0                                                                                                                   | 0.4                                                                                  |                                                                   |
| STD<br>Features                                                                                        | 1.8%<br>used:                                                                                                                                                                                                                                                                                                                                                                                   | 3.0%<br>Without VM                                                                                                                                                                                                                | 0<br>I and MAME                                                                                                     | 0.4                                                                                  |                                                                   |
| STD<br>Features<br>Cluster a                                                                           | 1.8%<br>used:<br>nalysis:                                                                                                                                                                                                                                                                                                                                                                       | 3.0%<br>Without VM<br>Kmeans, 3 c                                                                                                                                                                                                 | 0<br>I and MAME                                                                                                     | 0.4                                                                                  |                                                                   |
| STD<br>Features<br>Cluster a<br>PLS-DA                                                                 | 1.8%<br>used:<br>nalysis:<br>variance:                                                                                                                                                                                                                                                                                                                                                          | 3.0%<br>Without VM<br>Kmeans, 3 c<br>70%                                                                                                                                                                                          | 0<br>I and MAME                                                                                                     | 0.4                                                                                  |                                                                   |
| STD<br>Features<br>Cluster a                                                                           | 1.8%<br>used:<br>nalysis:<br>variance:<br>:                                                                                                                                                                                                                                                                                                                                                     | 3.0%<br>Without VM<br>Kmeans, 3 c<br>70%<br>KNN, k = 3                                                                                                                                                                            | 0<br>I and MAMD<br>lusters                                                                                          | 0.4                                                                                  | 1.5                                                               |
| STD<br>Features<br>Cluster a<br>PLS-DA                                                                 | 1.8%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity                                                                                                                                                                                                                                                                                                                                      | 3.0%<br>Without VM<br>Kmeans, 3 c<br>70%<br>KNN, k = 3<br>Selectivity                                                                                                                                                             | 0<br>I and MAMD<br>lusters<br>Num seiz                                                                              | 0.4<br>Found seiz                                                                    | 1.5<br>Found non seiz                                             |
| STD<br>Features<br>Cluster a<br>PLS-DA                                                                 | 1.8%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%                                                                                                                                                                                                                                                                                                                               | 3.0%<br>Without VM<br>Kmeans, 3 c<br>70%<br>KNN, k = 3<br>Selectivity<br>87%                                                                                                                                                      | 0<br>I and MAMD<br>lusters<br>Num seiz<br>28                                                                        | 0.4<br>Found seiz<br>27                                                              | 1.5<br>Found non seiz<br>4                                        |
| STD<br>Features<br>Cluster a<br>PLS-DA                                                                 | 1.8%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%                                                                                                                                                                                                                                                                                                                        | 3.0%<br>Without VM<br>Kmeans, 3 c<br>70%<br>KNN, k = 3<br>Selectivity<br>87%<br>90%                                                                                                                                               | 0<br>I and MAME<br>lusters<br>Num seiz<br>28<br>28                                                                  | 0.4<br>Found seiz<br>27<br>27                                                        | 1.5<br>Found non seiz<br>4<br>3                                   |
| STD<br>Features<br>Cluster a<br>PLS-DA                                                                 | 1.8%           used:           nalysis:           variance:           :           Sensitivity           96%           96%                                                                                                                                                                                                                                                                       | 3.0%<br>Without VM<br>Kmeans, 3 c<br>70%<br>KNN, k = 3<br>Selectivity<br>87%<br>90%<br>93%                                                                                                                                        | 0<br>I and MAMD<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28                                                      | 0.4<br>Found seiz<br>27<br>27<br>27                                                  | 1.5<br>Found non seiz<br>4<br>3<br>2                              |
| STD<br>Features<br>Cluster a<br>PLS-DA                                                                 | 1.8%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%<br>96%                                                                                                                                                                                                                                                                                                                 | 3.0%<br>Without VM<br>Kmeans, 3 c<br>70%<br>KNN, k = 3<br>Selectivity<br>87%<br>90%<br>93%<br>93%                                                                                                                                 | 0<br>I and MAME<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28                                                      | 0.4<br>Found seiz<br>27<br>27<br>27<br>27<br>27                                      | 1.5<br>Found non seiz<br>4<br>3<br>2<br>2                         |
| STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                   | 1.8%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 3.0\% \\ \hline \\ Without VN \\ Kmeans, 3 c \\ 70\% \\ KNN, k = 3 \\ Selectivity \\ 87\% \\ 90\% \\ 93\% \\ 93\% \\ 93\% \end{array}$                                                                          | 0<br>I and MAMD<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                    | 0.4<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27<br>27                          | 1.5<br>Found non seiz<br>4<br>3<br>2<br>2<br>2<br>2               |
| STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean                                           | 1.8%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%                                                                                                                                                                                                                                                                                            | 3.0%<br>Without VN<br>Kmeans, 3 c<br>70%<br>KNN, k = 3<br>Selectivity<br>87%<br>90%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>91.2%                                                                                            | 0<br>I and MAMD<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28            | 0.4<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27.0            | 1.5<br>Found non seiz<br>4<br>3<br>2<br>2<br>2<br>2<br>2.6        |
| STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Mean                                   | 1.8%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96.0%                                                                                                                                                                                                                                                                                          | 3.0%<br>Without VN<br>Kmeans, 3 c<br>70%<br>KNN, k = 3<br>Selectivity<br>87%<br>90%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93.0%                                                                                     | 0<br>I and MAMD<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                    | 0.4<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>27.0              | 1.5<br>Found non seiz<br>4<br>3<br>2<br>2<br>2<br>2<br>2.6<br>2.0 |
| STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean                                           | 1.8%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%                                                                                                                                                                                                                                                                                            | 3.0%<br>Without VN<br>Kmeans, 3 c<br>70%<br>KNN, k = 3<br>Selectivity<br>87%<br>90%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>91.2%                                                                                            | 0<br>I and MAMD<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28            | 0.4<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27.0            | 1.5<br>Found non seiz<br>4<br>3<br>2<br>2<br>2<br>2<br>2.6        |
| STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Mean                                   | 1.8%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96.0%                                                                                                                                                                                                                                                                                          | 3.0%<br>Without VN<br>Kmeans, 3 c<br>70%<br>KNN, k = 3<br>Selectivity<br>87%<br>90%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93.0%                                                                                     | 0<br>I and MAME<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                              | 0.4<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>27.0              | 1.5<br>Found non seiz<br>4<br>3<br>2<br>2<br>2<br>2<br>2.6<br>2.0 |
| STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Mean                                   | 1.8%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96.0%<br>96.0%<br>0.0%                                                                                                                                                                                                                                                                  | $\begin{array}{c} 3.0\% \\ \hline \\ \text{Without VN} \\ \text{Kmeans, 3 c} \\ 70\% \\ \text{KNN, k = 3} \\ \text{Selectivity} \\ 87\% \\ 90\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 91.2\% \\ 93.0\% \\ 2.7\% \end{array}$ | 0<br>I and MAME<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                              | 0.4<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>27.0<br>0.0 | 1.5<br>Found non seiz<br>4<br>3<br>2<br>2<br>2<br>2.6<br>2.0      |
| STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD                          | 1.8%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%                                                                                                                                                                                                                                                                              | $\begin{array}{c} 3.0\% \\ \hline \\ \text{Without VN} \\ \text{Kmeans, 3 c} \\ 70\% \\ \text{KNN, k = 3} \\ \text{Selectivity} \\ 87\% \\ 90\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 91.2\% \\ 93.0\% \\ 2.7\% \end{array}$ | 0<br>I and MAME<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>0<br>A and MAM | 0.4<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>27.0<br>0.0 | 1.5<br>Found non seiz<br>4<br>3<br>2<br>2<br>2<br>2<br>2.6<br>2.0 |
| STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features              | 1.8%           used:           nalysis:           variance:           :           Sensitivity           96%           96%           96%           96%           96%           96%           96%           96%           96%           96%           96%           96%           96%           96%           96%           96%           96.0%           0.0%           used:           nalysis: | 3.0%<br>Without VN<br>Kmeans, 3 c<br>70%<br>KNN, k = 3<br>Selectivity<br>87%<br>90%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93.0%<br>2.7%<br>Without SM                                                        | 0<br>I and MAME<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>0<br>A and MAM | 0.4<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>27.0<br>0.0 | 1.5<br>Found non seiz<br>4<br>3<br>2<br>2<br>2<br>2.6<br>2.0      |
| STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a | 1.8%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96.0%<br>96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:                                                                                                                                                                                                                                              | 3.0%<br>Without VN<br>Kmeans, 3 c<br>70%<br>KNN, k = 3<br>Selectivity<br>87%<br>90%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93                                                                          | 0<br>I and MAMD<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                              | 0.4<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>27.0<br>0.0 | 1.5<br>Found non seiz<br>4<br>3<br>2<br>2<br>2<br>2.6<br>2.0      |

| PLS-DA     | variance:   | 70%         |          |            |                |
|------------|-------------|-------------|----------|------------|----------------|
| Classifier | :           | KNN, k = 3  |          |            |                |
|            | Sensitivity | Selectivity | Num seiz | Found seiz | Found non seiz |
|            | 100%        | 88%         | 28       | 28         | 4              |
|            | 100%        | 90%         | 28       | 28         | 3              |
|            | 100%        | 90%         | 28       | 28         | 3              |
|            | 100%        | 93%         | 28       | 28         | 2              |
|            | 100%        | 93%         | 28       | 28         | 2              |
| Mean       | 100.0%      | 90.8%       | 28       | 28.0       | 2.8            |
| Median     | 100.0%      | 90.0%       | 28       | 28.0       | 3.0            |
| STD        | 0.0%        | 2.2%        | 0        | 0.0        | 0.8            |

|                                                                                                                                                                                                                    | used:                                                                                                                                                                                                                                                                     | Without SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cluster a<br>PLS-DA                                                                                                                                                                                                |                                                                                                                                                                                                                                                                           | Kmeans, 3 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lusters                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                       |
| Classifier:                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                           | 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                       |
| Classifier                                                                                                                                                                                                         | Sensitivity                                                                                                                                                                                                                                                               | KNN, k = 3<br>Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Num seiz                                                                                                                                                                                                                                                          | Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Found non seiz                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                    | 93%                                                                                                                                                                                                                                                                       | 90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28                                                                                                                                                                                                                                                                | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                    | 96%                                                                                                                                                                                                                                                                       | 90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28                                                                                                                                                                                                                                                                | 20 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                    | 96%                                                                                                                                                                                                                                                                       | 90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28                                                                                                                                                                                                                                                                | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                    | 96%                                                                                                                                                                                                                                                                       | 90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28                                                                                                                                                                                                                                                                | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                    | 96%                                                                                                                                                                                                                                                                       | 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28                                                                                                                                                                                                                                                                | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                     |
| Mean                                                                                                                                                                                                               | 95.4%                                                                                                                                                                                                                                                                     | 90.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28                                                                                                                                                                                                                                                                | 26.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.8                                                                                                                                                                                                                                                                                                                                   |
| Median                                                                                                                                                                                                             | 96.0%                                                                                                                                                                                                                                                                     | 90.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28                                                                                                                                                                                                                                                                | 27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.0                                                                                                                                                                                                                                                                                                                                   |
| STD                                                                                                                                                                                                                | 1.3%                                                                                                                                                                                                                                                                      | 1.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                 | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.4                                                                                                                                                                                                                                                                                                                                   |
| 010                                                                                                                                                                                                                | 11070                                                                                                                                                                                                                                                                     | 11070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ů                                                                                                                                                                                                                                                                 | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1                                                                                                                                                                                                                                                                                                                                   |
| Features                                                                                                                                                                                                           | used.                                                                                                                                                                                                                                                                     | Without DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                       |
| Cluster a                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                           | Kmeans, 3 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                       |
| PLS-DA                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                           | 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lusters                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                       |
| Classifier                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                           | KNN, k = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                    | Sensitivity                                                                                                                                                                                                                                                               | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Num seiz                                                                                                                                                                                                                                                          | Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Found non seiz                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                    | 96%                                                                                                                                                                                                                                                                       | 84%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28                                                                                                                                                                                                                                                                | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                    | 96%                                                                                                                                                                                                                                                                       | 87%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28                                                                                                                                                                                                                                                                | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                    | 96%                                                                                                                                                                                                                                                                       | 90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28                                                                                                                                                                                                                                                                | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                    | 96%                                                                                                                                                                                                                                                                       | 90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28                                                                                                                                                                                                                                                                | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                    | 100%                                                                                                                                                                                                                                                                      | 88%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28                                                                                                                                                                                                                                                                | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                     |
| Mean                                                                                                                                                                                                               | 96.8%                                                                                                                                                                                                                                                                     | 87.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28                                                                                                                                                                                                                                                                | 27.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.8                                                                                                                                                                                                                                                                                                                                   |
| Median                                                                                                                                                                                                             | 96.0%                                                                                                                                                                                                                                                                     | 88.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28                                                                                                                                                                                                                                                                | 27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.0                                                                                                                                                                                                                                                                                                                                   |
| STD                                                                                                                                                                                                                | 1.8%                                                                                                                                                                                                                                                                      | 2.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                 | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                       |
| Features                                                                                                                                                                                                           | used:                                                                                                                                                                                                                                                                     | Without CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B.B.                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                       |
| Cluster a                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                           | Kmeans, 3 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                       |
| PLS-DA                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                           | 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                       |
| Classifier                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                           | KNN, $k = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                    | Sensitivity                                                                                                                                                                                                                                                               | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Num seiz                                                                                                                                                                                                                                                          | Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Found non seiz                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                    | 96%                                                                                                                                                                                                                                                                       | 90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28                                                                                                                                                                                                                                                                | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                    | 96%                                                                                                                                                                                                                                                                       | 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28                                                                                                                                                                                                                                                                | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                    | 96%                                                                                                                                                                                                                                                                       | 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28                                                                                                                                                                                                                                                                | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                    | 96%                                                                                                                                                                                                                                                                       | 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28                                                                                                                                                                                                                                                                | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                    | 96%                                                                                                                                                                                                                                                                       | 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28                                                                                                                                                                                                                                                                | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                     |
| Mean                                                                                                                                                                                                               | 96.0%                                                                                                                                                                                                                                                                     | 92.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28                                                                                                                                                                                                                                                                | 27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.2                                                                                                                                                                                                                                                                                                                                   |
| mean                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                       |
| Median                                                                                                                                                                                                             | 96.0%                                                                                                                                                                                                                                                                     | 93.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28                                                                                                                                                                                                                                                                | 27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.0                                                                                                                                                                                                                                                                                                                                   |
| Median<br>STD<br>Features<br>Cluster a                                                                                                                                                                             | 0.0%<br>used:<br>nalysis:                                                                                                                                                                                                                                                 | 1.3%<br>Without PE<br>Kmeans, 3 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>R                                                                                                                                                                                                                                                            | 27.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.0<br>0.4                                                                                                                                                                                                                                                                                                                            |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                                   | 0.0%<br>used:<br>nalysis:<br>variance:                                                                                                                                                                                                                                    | 1.3%<br>Without PE<br>Kmeans, 3 c<br>70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0<br>R                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                       |
| Median<br>STD<br>Features<br>Cluster a                                                                                                                                                                             | 0.0%<br>used:<br>nalysis:<br>variance:                                                                                                                                                                                                                                    | 1.3%<br>Without PE<br>Kmeans, 3 c<br>70%<br>KNN, k = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>R<br>lusters                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.4                                                                                                                                                                                                                                                                                                                                   |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                                   | 0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity                                                                                                                                                                                                                | 1.3%<br>Without PE<br>Kmeans, 3 c<br>70%<br>KNN, k = 3<br>Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0<br>R                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.4                                                                                                                                                                                                                                                                                                                                   |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                                   | 0.0%<br>used:<br>nalysis:<br>variance:                                                                                                                                                                                                                                    | 1.3%<br>Without PE<br>Kmeans, 3 c<br>70%<br>KNN, k = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>R<br>lusters<br>Num seiz                                                                                                                                                                                                                                     | 0.0<br>Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.4<br>Found non seiz                                                                                                                                                                                                                                                                                                                 |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                                   | 0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%                                                                                                                                                                                                         | 1.3%<br>Without PE<br>Kmeans, 3 c<br>70%<br>KNN, k = 3<br>Selectivity<br>87%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0<br>R<br>lusters<br>Num seiz<br>28                                                                                                                                                                                                                               | 0.0<br>Found seiz<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.4<br>Found non seiz<br>4                                                                                                                                                                                                                                                                                                            |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                                   | 0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%                                                                                                                                                                                                  | 1.3%<br>Without PE<br>Kmeans, 3 c<br>70%<br>KNN, k = 3<br>Selectivity<br>87%<br>90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>R<br>lusters<br>28<br>28                                                                                                                                                                                                                                     | 0.0<br>Found seiz<br>27<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.4<br>Found non seiz<br>4<br>3                                                                                                                                                                                                                                                                                                       |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                                   | 0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%                                                                                                                                                                                                  | 1.3%           Without PE           Kmeans, 3 c           70%           KNN, k = 3           Selectivity           87%           90%           93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0<br>R<br>lusters<br>28<br>28<br>28<br>28                                                                                                                                                                                                                         | 0.0<br>Found seiz<br>27<br>27<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.4<br>Found non seiz<br>4<br>3<br>2                                                                                                                                                                                                                                                                                                  |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                                   | 0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%<br>96%                                                                                                                                                                                           | 1.3%<br>Without PE<br>Kmeans, 3 c<br>70%<br>KNN, k = 3<br>Selectivity<br>87%<br>90%<br>93%<br>93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>R<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                                                                                                                             | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.4<br>Found non seiz<br>4<br>3<br>2<br>2                                                                                                                                                                                                                                                                                             |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                                                                                                     | 0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%                                                                                                                                                                                         | 1.3%<br>Without PE<br>Kmeans, 3 c<br>70%<br>KNN, k = 3<br>Selectivity<br>87%<br>90%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>R<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                                                                                                                 | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.4<br>Found non seiz<br>4<br>3<br>2<br>2<br>1                                                                                                                                                                                                                                                                                        |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean                                                                                                                                             | 0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%                                                                                                                                                                    | $\begin{array}{c} 1.3\% \\ \hline \\ Without PE \\ Kmeans, 3 c \\ 70\% \\ KNN, k = 3 \\ \hline \\ Selectivity \\ 87\% \\ 90\% \\ 93\% \\ 93\% \\ 93\% \\ 96\% \\ 91.8\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>R<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                                                                                               | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.4<br>Found non seiz<br>4<br>3<br>2<br>1<br>2.4                                                                                                                                                                                                                                                                                      |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Mean                                                                                                                                     | 0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%                                                                                                                                                             | 1.3%<br>Without PE<br>Kmeans, 3 c<br>70%<br>KNN, k = 3<br>Selectivity<br>87%<br>90%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>R<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                                                                                               | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27<br>27.0<br>27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.4<br>Found non seiz<br>4<br>3<br>2<br>2<br>1<br>2.4<br>2.0                                                                                                                                                                                                                                                                          |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD                                                                                                                            | 0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96.0%<br>0.0%                                                                                                                                                   | 1.3%<br>Without PE<br>Kmeans, 3 c<br>70%<br>KNN, k = 3<br>Selectivity<br>87%<br>90%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>R<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0                                                                                                                                                                          | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27<br>27.0<br>27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.4<br>Found non seiz<br>4<br>3<br>2<br>2<br>1<br>2.4<br>2.0                                                                                                                                                                                                                                                                          |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Mean                                                                                                                                     | 0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%                                                                                                                                                             | $\begin{array}{c} 1.3\% \\ \hline \\ \text{Without PE} \\ \text{Kmeans, 3 c} \\ 70\% \\ \text{KNN, k = 3} \\ \text{Selectivity} \\ 87\% \\ 90\% \\ 93\% \\ 93\% \\ 93\% \\ 96\% \\ 91.8\% \\ 93.0\% \\ 3.4\% \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0<br>R<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>EQ                                                                                                                                                                          | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27<br>27.0<br>27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.4<br>Found non seiz<br>4<br>3<br>2<br>2<br>1<br>2.4<br>2.0                                                                                                                                                                                                                                                                          |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                 | 0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:                                                                                                                        | $\begin{array}{c} 1.3\% \\ \hline \\ \text{Without PE} \\ \text{Kmeans, 3 c} \\ 70\% \\ \text{KNN, k = 3} \\ \text{Selectivity} \\ 87\% \\ 90\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 96\% \\ 91.8\% \\ 93.0\% \\ 3.4\% \\ \hline \\ \text{Without FR} \\ \text{Kmeans, 3 c} \\ 70\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>R<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>EQ                                                                                                                                                                          | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27<br>27.0<br>27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.4<br>Found non seiz<br>4<br>3<br>2<br>2<br>1<br>1<br>2.4<br>2.0                                                                                                                                                                                                                                                                     |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a                                                                                                   | 0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:                                                                                                                        | $\begin{array}{c} 1.3\% \\ \hline \\ & 1.3\% \\ \hline \\ & Without PE \\ & Kmeans, 3 c \\ & 70\% \\ & KNN, k = 3 \\ & Selectivity \\ & 87\% \\ & 90\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ &$                                                                                                                                                                         | 0<br>R<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>EQ                                                                                                                                                                          | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27<br>27.0<br>27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.4<br>Found non seiz<br>4<br>3<br>2<br>2<br>1<br>2.4<br>2.0                                                                                                                                                                                                                                                                          |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                 | 0.0% used: nalysis: variance: Sensitivity 96% 96% 96% 96% 96% 96.0% 96.0% 0.0% used: nalysis: variance: Sensitivity                                                                                                                                                       | $\begin{array}{c} 1.3\% \\ \hline \\ Without PE \\ Kmeans, 3 c \\ 70\% \\ KNN, k = 3 \\ Selectivity \\ 87\% \\ 90\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ $       | 0<br>R<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>EQ<br>lusters<br>Num seiz                                                                                                                                                         | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>0.0<br>Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.4<br>Found non seiz<br>4<br>3<br>2<br>2<br>1<br>2.4<br>2.0<br>1.1<br>Found non seiz                                                                                                                                                                                                                                                 |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                 | 0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96.0%<br>96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%                                                                                                              | $\begin{array}{c} 1.3\% \\ \hline \\ \text{Without PE} \\ \text{Kmeans, 3 c} \\ 70\% \\ \text{KNN, k = 3} \\ \text{Selectivity} \\ 87\% \\ 90\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 96\% \\ 91.8\% \\ 93.0\% \\ 3.4\% \\ \hline \\ \text{Without FR} \\ \text{Kmeans, 3 c} \\ 70\% \\ \text{KNN, k = 3} \\ \text{Selectivity} \\ 84\% \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>R<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>EQ<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                         | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27.0<br>0.0<br>Found seiz<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.4<br>Found non seiz<br>4<br>3<br>2<br>1<br>2.4<br>2.0<br>1.1<br>Found non seiz<br>5                                                                                                                                                                                                                                                 |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                 | 0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%                                                                                                                | $\begin{array}{c} 1.3\% \\ \hline \\ & 1.3\% \\ \hline \\ & Without PE \\ & Kmeans, 3 c \\ & 70\% \\ & KNN, k = 3 \\ & Selectivity \\ & 87\% \\ & 90\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ &$                                                                                                                                                                         | 0<br>R<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>EQ<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                   | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>0.0<br>Found seiz<br>27<br>27<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.4<br>Found non seiz<br>4<br>3<br>2<br>1<br>2.4<br>2.0<br>1.1<br>Found non seiz<br>5<br>4                                                                                                                                                                                                                                            |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                 | 0.0% used: nalysis: variance: Sensitivity 96% 96% 96% 96% 96.0% 96.0% 0.0% used: nalysis: variance: Sensitivity 96% 96%                                                                                                                                                   | 1.3%           Without PE           Kmeans, 3 c           70%           KNN, k = 3           Selectivity           87%           90%           93%           96%           91.8%           93.0%           3.4%           Without FR           Kmeans, 3 c           70%           KNN, k = 3           Selectivity           84%           87%           87%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>R<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>EQ<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                         | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>27.0<br>0.0<br>Found seiz<br>27<br>27<br>27.2<br>27.2<br>27.2<br>27.2<br>27.2<br>27.2<br>27.2<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.4<br>Found non seiz<br>4<br>3<br>2<br>2<br>1<br>2.4<br>2.0<br>1.1<br>Found non seiz<br>5<br>4<br>4                                                                                                                                                                                                                                  |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                 | 0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%                                                                                                         | $\begin{array}{c} 1.3\% \\ \hline \\ & \text{Without PE} \\ & \text{Kmeans, 3 c} \\ & 70\% \\ & \text{KNN, k = 3} \\ & \text{Selectivity} \\ & 87\% \\ & 90\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & 10\% \\ & $                                                                                                                                                                 | 0<br>R<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>EQ<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                   | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27.2<br>27.2<br>27.2<br>27.2<br>27.2<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.4<br>Found non seiz<br>4<br>3<br>2<br>2<br>1<br>2.4<br>2.0<br>1.1<br>Found non seiz<br>5<br>4<br>4<br>4                                                                                                                                                                                                                             |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                                   | 0.0%<br>used:<br>nalysis:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%                                                                            | $\begin{array}{c} 1.3\% \\ \hline \\ & \text{Without PE} \\ & \text{Kmeans, 3 c} \\ & 70\% \\ & \text{KNN, k = 3} \\ & \text{Selectivity} \\ & 90\% \\ & 90\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 81\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 85\% \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>R<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                                                                                                     | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>0.0<br>Found seiz<br>27<br>27<br>27<br>27.2<br>27.2<br>27.2<br>27.2<br>27.2<br>27.2<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.4<br>Found non seiz<br>4<br>3<br>2<br>2<br>1<br>2.4<br>2.0<br>1.1<br>Found non seiz<br>5<br>4<br>4<br>4<br>5                                                                                                                                                                                                                        |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                           | 0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96.0%<br>96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%                                                             | $\begin{array}{c} 1.3\% \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>R<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>EQ<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                   | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>27.0<br>0.0<br>Found seiz<br>27<br>27<br>27<br>27.2<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.2<br>27.2<br>28.0<br>27.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.4<br>Found non seiz<br>4<br>3<br>2<br>2<br>1<br>2.4<br>2.0<br>1.1<br>Found non seiz<br>5<br>4<br>4<br>4<br>5<br>4.4                                                                                                                                                                                                                 |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                           | 0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%                                                                      | $\begin{array}{c} 1.3\% \\ \hline \\ & \text{Without PE} \\ & \text{Kmeans, 3 c} \\ & 70\% \\ & \text{KNN, k = 3} \\ & \text{Selectivity} \\ & 87\% \\ & 90\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & $                                                                                                                                                                 | 0<br>R<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>EQ<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                         | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4<br>Found non seiz<br>4<br>3<br>2<br>1<br>2.4<br>2.0<br>1.1<br>Found non seiz<br>5<br>4<br>4<br>4<br>5<br>4.4<br>4.0                                                                                                                                                                                                               |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                           | 0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96.0%<br>96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%                                                             | $\begin{array}{c} 1.3\% \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>R<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>EQ<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                   | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>27.0<br>0.0<br>Found seiz<br>27<br>27<br>27<br>27.2<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.2<br>27.2<br>28.0<br>27.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.4<br>Found non seiz<br>4<br>3<br>2<br>2<br>1<br>2.4<br>2.0<br>1.1<br>Found non seiz<br>5<br>4<br>4<br>4<br>5<br>4.4                                                                                                                                                                                                                 |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                           | 0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96.0%<br>96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%                                                             | $\begin{array}{c} 1.3\% \\ \hline \\ & 1.3\% \\ \hline \\ & \text{Without PE} \\ & \text{Kmeans, 3 c} \\ & 70\% \\ & \text{KNN, k = 3} \\ & \text{Selectivity} \\ & 87\% \\ & 90\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 85\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 85\% \\ & 86.0\% \\ & 87.0\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ & 1.4\% \\ &$                                                                                                                                                                                         | 0<br>R<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>EQ<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>0<br>EQ<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                     | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4<br>Found non seiz<br>4<br>3<br>2<br>1<br>2.4<br>2.0<br>1.1<br>Found non seiz<br>5<br>4<br>4<br>4<br>5<br>4.4<br>4.0                                                                                                                                                                                                               |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Mean<br>Median<br>STD<br>Features             | 0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96.0%<br>96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%                                                      | $\begin{array}{c} 1.3\% \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>R<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>EQ<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>0<br>EQ<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                     | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4<br>Found non seiz<br>4<br>3<br>2<br>1<br>2.4<br>2.0<br>1.1<br>Found non seiz<br>5<br>4<br>4<br>4<br>5<br>4.4<br>4.0                                                                                                                                                                                                               |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Cluster a<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>STD                   | 0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%                                                                      | 1.3%           Without PE           Kmeans, 3 c           70%           KNN, k = 3           Selectivity           97%           90%           93%           93%           93%           93%           93%           93%           93%           93%           93%           93%           93%           93%           93%           93%           93%           93%           93%           93%           93%           93%           93%           93%           93%           93%           93%           93.4%           87%           87%           86.0%           87.0%           1.4%           Without hig           Kmeans, 3 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0<br>R<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>EQ<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>0<br>EQ<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                     | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4<br>Found non seiz<br>4<br>3<br>2<br>1<br>2.4<br>2.0<br>1.1<br>Found non seiz<br>5<br>4<br>4<br>4<br>5<br>4.4<br>4.0                                                                                                                                                                                                               |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Cluster a<br>STD                                        | 0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%                                                               | $\begin{array}{c} 1.3\% \\ \hline \\ & 1.3\% \\ \hline \\ & Without PE \\ & Kmeans, 3 c \\ 70\% \\ & KNN, k = 3 \\ & Selectivity \\ \hline & 87\% \\ 90\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 34\% \\ \hline & 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 87\% \\ 83\% \\ \hline & KNN, k = 3 \\ & Selectivity \\ \hline & Without FR \\ & Kmeans, 3 c \\ 70\% \\ \hline & 87.0\% \\ \hline & 1.4\% \\ \hline & Without hig \\ & Kmeans, 3 c \\ 70\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>R<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>EQ<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>0<br>EQ<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                               | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4<br>Found non seiz<br>4<br>3<br>2<br>2<br>1<br>2.4<br>2.0<br>1.1<br>Found non seiz<br>5<br>4<br>4<br>4<br>5<br>4.4<br>4.0                                                                                                                                                                                                          |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Cluster a<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>STD                   | 0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%                                                               | $\begin{array}{c} 1.3\% \\ \hline \\ & 1.3\% \\ \hline \\ & \text{Without PE} \\ & \text{Kmeans, 3 c} \\ & 70\% \\ & \text{KNN, k = 3} \\ \hline \\ & \text{Selectivity} \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 95\% \\ & 95\% \\ & 95\% \\ & 95\% \\ & 95\% \\ & 95\% \\ & 95\% \\ & 95\% \\ & 95\% \\ & 95\% \\ & 95\% \\ & 95\% \\ & 95\% \\ & 95\% \\ & 95\% \\ & 95\% \\ & 95\% \\ & 95\% \\ & 95\% \\ & 95\% \\ & 95\% \\ & 95\% \\ & 95\% \\ & 95\% \\ & 95\% \\ & 95\% \\ & 95\% \\ & 95\% \\ & 95\% \\ & 95\% \\ & 95\% \\ & 95\% \\ & 95\% \\ & 95\% \\ & 95\% \\ & 95\% \\ & 95\% \\ & 95\% \\ & 95\% \\ & 95\% \\ &$                                                                                                                                                       | 0<br>R<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>EQ<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>EQ<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                               | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27<br>27.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.4<br>Found non seiz<br>4<br>2<br>2<br>1<br>2.4<br>2.0<br>1.1<br>Found non seiz<br>5<br>4<br>4<br>4<br>5<br>4.4<br>4.0<br>0.5                                                                                                                                                                                                        |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Cluster a<br>STD                                        | 0.0% 0.0% used: nalysis: variance: Sensitivity 96% 96% 96% 96.0% 0.0% 0.0% used: nalysis: variance: Sensitivity 96% 96% 96% 96% 96% 96% 96% 96% 100% 1.8% used: nalysis: variance: Sensitivity Sensitivity Sensitivity Sensitivity Sensitivity Sensitivity                | $\begin{array}{c} 1.3\% \\ \hline \\ & \text{Without PE} \\ & \text{Kmeans, 3 c} \\ & 70\% \\ & \text{KNN, k = 3} \\ & \text{Selectivity} \\ & 87\% \\ & 90\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 84\% \\ & 87\% \\ & 87\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 85\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & 14\% \\ & $                                                                                                                                                                 | 0<br>R<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>EQ<br>lusters<br>EQ<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                              | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.4<br>Found non seiz<br>4<br>3<br>2<br>2<br>1<br>2.4<br>2.0<br>1.1<br>Found non seiz<br>5<br>4<br>4<br>4<br>5<br>4<br>4<br>4<br>0<br>0.5<br>Found non seiz                                                                                                                                                                           |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Cluster a<br>STD                                        | 0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96.0%<br>96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96.0%<br>100%<br>96.8%<br>96.0%<br>96.0%<br>100%<br>96.8%<br>96.0%<br>96.0%<br>96.0%<br>96% | $\begin{array}{c} 1.3\% \\ \hline \\ 1.3\% \\ \hline \\ Without PE \\ Kmeans, 3 c \\ 70\% \\ KNN, k = 3 \\ 87\% \\ 90\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93\% \\ 93.0\% \\ 3.4\% \\ \hline \\ \hline \\ Without FR \\ Kmeans, 3 c \\ 70\% \\ KNN, k = 3 \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ $ | 0<br>R<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>EQ<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>EQ<br>lusters<br>28<br>28<br>0<br>EQ<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28 | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.4<br>Found non seiz<br>4<br>3<br>2<br>2<br>1<br>2.4<br>2.0<br>1.1<br>Found non seiz<br>5<br>4<br>4<br>4<br>5<br>4<br>4<br>4<br>0.5<br>Found non seiz<br>2<br>5<br>4<br>4<br>4<br>5<br>4<br>4<br>5<br>4<br>4<br>5<br>5<br>4<br>4<br>5<br>5<br>4<br>4<br>5<br>5<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Cluster a<br>STD                                        | 0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96.0%<br>1.8%<br>used:<br>nalysis:<br>sensitivity<br>96%<br>96%<br>96%                 | $\begin{array}{c} 1.3\% \\ \hline \\ & 1.3\% \\ \hline \\ & \text{Without PE} \\ & \text{Kmeans, 3 c} \\ & 70\% \\ & \text{KNN, k = 3} \\ & \text{Selectivity} \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ \hline \\ & 91.8\% \\ & 93\% \\ & 93\% \\ & 93\% \\ \hline \\ & \text{Without FR} \\ & \text{Kmeans, 3 c} \\ & 70\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% $                                                                                                                                                  | 0<br>R<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>EQ<br>lusters<br>R<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                          | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27.0<br>0.0<br>Found seiz<br>27<br>27<br>27.0<br>0.0<br>27.0<br>0.0<br>Found seiz<br>27<br>27<br>27.0<br>0.0<br>27.0<br>27.0<br>27.0<br>0.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.2<br>27.0<br>27.0<br>27.0<br>27.2<br>27.0<br>27.0<br>27.0<br>27.0<br>27.2<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0 | 0.4<br>Found non seiz<br>4<br>3<br>2<br>2<br>1<br>2.4<br>2.0<br>1.1<br>Found non seiz<br>5<br>4<br>4<br>4<br>5<br>4.4<br>4.0<br>0.5<br>Found non seiz<br>2<br>2                                                                                                                                                                       |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Cluster a<br>STD                                        | 0.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96.0%<br>0.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96.0%<br>1.8%<br>used:<br>nalysis:<br>Sensitivity<br>96%<br>96%<br>96%                      | $\begin{array}{c} 1.3\% \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>R<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>EQ<br>lusters<br>EQ<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>EQ<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                              | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.4<br>Found non seiz<br>4<br>3<br>2<br>1<br>2.4<br>2.0<br>1.1<br>Found non seiz<br>5<br>4<br>4<br>4<br>4<br>5<br>4<br>4<br>4<br>0<br>0.5<br>Found non seiz<br>2<br>2<br>2<br>2                                                                                                                                                       |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Cluster a<br>STD                                        | 0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96                                                                                            | $\begin{array}{c} 1.3\% \\ \hline \\ & 1.3\% \\ \hline \\ & Without PE \\ & Kmeans, 3 c \\ 70\% \\ & KNN, k = 3 \\ \hline \\ & Selectivity \\ \hline \\ & 87\% \\ & 90\% \\ & 93\% \\ & 93\% \\ & 93\% \\ \hline \\ & 93.0\% \\ \hline \\ & 93\% \\ \hline \\ & 0\% \\ \hline \\ & Without hig \\ & Kmeans, 3 c \\ & 70\% \\ & KNN, k = 3 \\ & S5\% \\ \hline \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ \hline \\ & 87\% \\ & 87\% \\ \hline \\ & 87\% \\ & 87\% \\ \hline \\ \\ & 87\% \\ \hline \\ \\ & 87\% \\ \hline \\ \\ & 87\% \\ \hline \\ & 87\% \\ \hline \\ \\ \\ & 87\% \\ \hline \\ \\ \\ & 87\% \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0<br>R<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>EQ<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>EQ<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                       | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27.0<br>0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4<br>Found non seiz<br>4<br>3<br>2<br>2<br>1<br>2.4<br>2.0<br>1.1<br>Found non seiz<br>5<br>4<br>4<br>4<br>5<br>4.4<br>4.0<br>0.5<br>Found non seiz<br>2<br>2<br>2<br>2<br>2                                                                                                                                                        |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier | 0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96                                                                                              | $\begin{array}{c} 1.3\% \\ \hline \\ & 1.3\% \\ \hline \\ & Without PE \\ & Kmeans, 3 c \\ 70\% \\ & KNN, k = 3 \\ \hline \\ & Selectivity \\ & 87\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93.0\% \\ \hline \\ & 93.0\% \\ \hline \\ & 93.0\% \\ \hline \\ & 93\% \\ & 93.0\% \\ \hline \\ & 93\% \\ & 93\% \\ & 93\% \\ & 93\% \\ \hline \\ & 93\% \\ & 93\% \\ \hline \\ & Without PR \\ & KnN, k = 3 \\ & Selectivity \\ \hline \\ & Without hig \\ & Kmeans, 3 c \\ & 70\% \\ & KNN, k = 3 \\ & Selectivity \\ \hline \\ & Without hig \\ & Kmeans, 3 c \\ & 70\% \\ & KNN, k = 3 \\ & Selectivity \\ \hline \\ & Without hig \\ & KnN, k = 3 \\ & Selectivity \\ & 93\% \\ & 93\% \\ & 93\% \\ \hline \\ & 93\% \\ \hline \\ & 93\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>R<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>EQ<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>EQ<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                 | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.4<br>Found non seiz<br>4<br>3<br>2<br>2<br>1<br>2.4<br>2.0<br>1.1<br>Found non seiz<br>5<br>4<br>4<br>4<br>5<br>4.4<br>4.0<br>0.5<br>Found non seiz<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                    |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Cluster a<br>STD                                        | 0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96                                                                                            | $\begin{array}{c} 1.3\% \\ \hline \\ & 1.3\% \\ \hline \\ & Without PE \\ & Kmeans, 3 c \\ 70\% \\ & KNN, k = 3 \\ \hline \\ & Selectivity \\ \hline \\ & 87\% \\ & 90\% \\ & 93\% \\ & 93\% \\ & 93\% \\ \hline \\ & 93.0\% \\ \hline \\ & 93\% \\ \hline \\ & 0\% \\ \hline \\ & Without hig \\ & Kmeans, 3 c \\ & 70\% \\ & KNN, k = 3 \\ & S5\% \\ \hline \\ & 87\% \\ & 87\% \\ & 87\% \\ & 87\% \\ \hline \\ & 87\% \\ & 87\% \\ \hline \\ & 87\% \\ & 87\% \\ \hline \\ \\ & 87\% \\ \hline \\ \\ & 87\% \\ \hline \\ \\ & 87\% \\ \hline \\ & 87\% \\ \hline \\ \\ \\ & 87\% \\ \hline \\ \\ \\ & 87\% \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0<br>R<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>EQ<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>EQ<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                       | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27.0<br>0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4<br>Found non seiz<br>4<br>3<br>2<br>2<br>1<br>2.4<br>2.0<br>1.1<br>Found non seiz<br>5<br>4<br>4<br>4<br>5<br>4.4<br>4.0<br>0.5<br>Found non seiz<br>2<br>2<br>2<br>2<br>2                                                                                                                                                        |

| <b>G1</b>                                                                                                                                                                                            | used:                                                                                                                                                                                                                                                                                                                        | Without sen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cluster a                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                              | Kmeans, 3 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lusters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                        |
| PLS-DA                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                              | 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                        |
| Classifier                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                              | KNN, $k = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>D</b>                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                      | Sensitivity                                                                                                                                                                                                                                                                                                                  | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Num seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Found seiz                                                                                                                                                           | Found non seiz                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                      | 93%                                                                                                                                                                                                                                                                                                                          | 90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26                                                                                                                                                                   | 3                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                      | 96%                                                                                                                                                                                                                                                                                                                          | 84%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27                                                                                                                                                                   | 5                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                      | 96%<br>96%                                                                                                                                                                                                                                                                                                                   | 90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27                                                                                                                                                                   | 3                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                              | 90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27                                                                                                                                                                   | 3                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                      | 100%                                                                                                                                                                                                                                                                                                                         | 90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28                                                                                                                                                                   | 3                                                                                                                                                                                                                                                                                                                      |
| Mean                                                                                                                                                                                                 | 96.2%                                                                                                                                                                                                                                                                                                                        | 88.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27.0                                                                                                                                                                 | 3.4                                                                                                                                                                                                                                                                                                                    |
| Median                                                                                                                                                                                               | 96.0%                                                                                                                                                                                                                                                                                                                        | 90.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27.0                                                                                                                                                                 | 3.0                                                                                                                                                                                                                                                                                                                    |
| STD                                                                                                                                                                                                  | 2.5%                                                                                                                                                                                                                                                                                                                         | 2.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.7                                                                                                                                                                  | 0.9                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                        |
| Features                                                                                                                                                                                             | used:                                                                                                                                                                                                                                                                                                                        | Without sen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                        |
| Cluster a                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                              | Kmeans, 3 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lusters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                        |
| PLS-DA                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                              | 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                        |
| Classifier                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                              | KNN, $k = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                      | Sensitivity                                                                                                                                                                                                                                                                                                                  | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Num seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Found seiz                                                                                                                                                           | Found non seiz                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                      | 93%                                                                                                                                                                                                                                                                                                                          | 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                      | 93%                                                                                                                                                                                                                                                                                                                          | 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                      | 93%                                                                                                                                                                                                                                                                                                                          | 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                      | 96%                                                                                                                                                                                                                                                                                                                          | 90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27                                                                                                                                                                   | 3                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                      | 96%                                                                                                                                                                                                                                                                                                                          | 90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27                                                                                                                                                                   | 3                                                                                                                                                                                                                                                                                                                      |
| Mean                                                                                                                                                                                                 | 94.2%                                                                                                                                                                                                                                                                                                                        | 91.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26.4                                                                                                                                                                 | 2.4                                                                                                                                                                                                                                                                                                                    |
| Median                                                                                                                                                                                               | 93.0%                                                                                                                                                                                                                                                                                                                        | 93.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26.0                                                                                                                                                                 | 2.0                                                                                                                                                                                                                                                                                                                    |
| STD                                                                                                                                                                                                  | 1.6%                                                                                                                                                                                                                                                                                                                         | 1.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.5                                                                                                                                                                  | 0.5                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                        |
| Features                                                                                                                                                                                             | used                                                                                                                                                                                                                                                                                                                         | Without sen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sor 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                        |
| Cluster a                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                              | Kmeans, 3 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                        |
| PLS-DA                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                              | 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                        |
| Classifier                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                              | KNN, k = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                      | Sensitivity                                                                                                                                                                                                                                                                                                                  | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Num seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Found seiz                                                                                                                                                           | Found non seiz                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                      | 100%                                                                                                                                                                                                                                                                                                                         | 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                      | 100%                                                                                                                                                                                                                                                                                                                         | 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                      | 100%                                                                                                                                                                                                                                                                                                                         | 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                      | 100%                                                                                                                                                                                                                                                                                                                         | 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                      | 100%                                                                                                                                                                                                                                                                                                                         | 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28                                                                                                                                                                   | $\frac{2}{2}$                                                                                                                                                                                                                                                                                                          |
| M                                                                                                                                                                                                    | 100%                                                                                                                                                                                                                                                                                                                         | 93.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28.0                                                                                                                                                                 | 2.0                                                                                                                                                                                                                                                                                                                    |
| 0/1022                                                                                                                                                                                               | 100.070                                                                                                                                                                                                                                                                                                                      | 1 200.U.Z0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>∠0</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40.0                                                                                                                                                                 | 2.0                                                                                                                                                                                                                                                                                                                    |
| Mean                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28.0                                                                                                                                                                 | 9.0                                                                                                                                                                                                                                                                                                                    |
| Median                                                                                                                                                                                               | 100.0%                                                                                                                                                                                                                                                                                                                       | 93.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28.0                                                                                                                                                                 | 2.0                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                      | 100.0%<br>0.0%<br>used:                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>sor 1 and 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28.0<br>0.0                                                                                                                                                          | 2.0<br>0.0                                                                                                                                                                                                                                                                                                             |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                     | 100.0%<br>0.0%<br>used:<br>nalysis:<br>variance:                                                                                                                                                                                                                                                                             | 93.0%<br>0.0%<br>Without sen<br>Kmeans, 3 c<br>70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>sor 1 and 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                        |
| Median<br>STD<br>Features<br>Cluster a                                                                                                                                                               | 100.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:                                                                                                                                                                                                                                                                        | 93.0%<br>0.0%<br>Without sen<br>Kmeans, 3 c<br>70%<br>KNN, k = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>sor 1 and 2<br>lusters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                    |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                     | 100.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity                                                                                                                                                                                                                                                         | $\begin{array}{c} 93.0\%\\ 0.0\%\\ \hline \\ Without sen\\ Kmeans, 3 c\\ 70\%\\ KNN, k = 3\\ \hline \\ Selectivity \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>sor 1 and 2<br>lusters<br>Num seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0<br>Found seiz                                                                                                                                                    | 0.0<br>Found non seiz                                                                                                                                                                                                                                                                                                  |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                     | 100.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%                                                                                                                                                                                                                                                  | 93.0%<br>0.0%<br>Without sen<br>Kmeans, 3 c<br>70%<br>KNN, k = 3<br>Selectivity<br>82%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>sor 1 and 2<br>lusters<br>Num seiz<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0<br>Found seiz<br>27                                                                                                                                              | 0.0<br>Found non seiz<br>6                                                                                                                                                                                                                                                                                             |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                     | 100.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%                                                                                                                                                                                                                                           | 93.0%<br>0.0%<br>Without sen<br>Kmeans, 3 c<br>70%<br>KNN, k = 3<br>Selectivity<br>82%<br>84%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0<br>sor 1 and 2<br>lusters<br>Num seiz<br>28<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0<br>Found seiz<br>27<br>27                                                                                                                                        | 0.0<br>Found non seiz<br>6<br>5                                                                                                                                                                                                                                                                                        |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                     | 100.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%                                                                                                                                                                                                                                           | $\begin{array}{c} 93.0\% \\ \hline 0.0\% \\ \hline 0.0\% \\ \hline Without sen \\ Kmeans, 3 c \\ 70\% \\ KNN, k = 3 \\ \hline Selectivity \\ 82\% \\ 84\% \\ 84\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0<br>sor 1 and 2<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0<br>Found seiz<br>27<br>27<br>27                                                                                                                                  | 0.0<br>Found non seiz<br>6<br>5<br>5                                                                                                                                                                                                                                                                                   |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                     | 100.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%<br>96%                                                                                                                                                                                                                                    | 93.0%<br>0.0%<br>Without sen<br>Kmeans, 3 c<br>70%<br>KNN, k = 3<br>Selectivity<br>82%<br>84%<br>84%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>sor 1 and 2<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27                                                                                                                      | 0.0<br>Found non seiz<br>6<br>5<br>5<br>5                                                                                                                                                                                                                                                                              |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                                                                                       | 100.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%                                                                                                                                                                                                                             | $\begin{array}{c} 93.0\% \\ 0.0\% \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>sor 1 and 2<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27<br>27                                                                                                          | 0.0<br>Found non seiz<br>6<br>5<br>5<br>5<br>4                                                                                                                                                                                                                                                                         |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean                                                                                                                               | 100.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%                                                                                                                                                                                                        | $\begin{array}{c} 93.0\% \\ \hline 0.0\% \hline 0.0\% \\ \hline 0.0\% \\ \hline 0.0\% \hline 0.0\% \\ 0.0\% \hline 0.0\% \hline 0.0\% \\ \hline 0.0\% \hline 0.$     | 0<br>sor 1 and 2<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27.0                                                                                                  | 0.0<br>Found non seiz<br>6<br>5<br>5<br>5<br>4<br>5.0                                                                                                                                                                                                                                                                  |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median                                                                                                                     | $\begin{array}{c} 100.0\% \\ \hline 0.0\% \\ \hline 0.0\% \\ \hline used: \\ nalysis: \\ variance: \\ \vdots \\ \hline Sensitivity \\ 96\% \\ 96\% \\ 96\% \\ 96\% \\ 96\% \\ 96.0\% \\ \hline 96.0\% \\ \hline 96.0\% \\ \end{array}$                                                                                       | 93.0%<br>0.0%<br>Without sen<br>Kmeans, 3 c<br>70%<br>KNN, k = 3<br>Selectivity<br>82%<br>84%<br>84%<br>84%<br>84%<br>84%<br>84%<br>84%<br>84%<br>84.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0<br>sor 1 and 2<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27<br>27.0<br>27.0                                                                                                | 0.0<br>Found non seiz<br>6<br>5<br>5<br>5<br>4<br>5.0<br>5.0                                                                                                                                                                                                                                                           |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean                                                                                                                               | 100.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%                                                                                                                                                                                                        | $\begin{array}{c} 93.0\% \\ \hline 0.0\% \hline 0.0\% \\ \hline 0.0\% \\ \hline 0.0\% \hline 0.0\% \\ 0.0\% \hline 0.0\% \hline 0.0\% \\ \hline 0.0\% \hline 0.$     | 0<br>sor 1 and 2<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27<br>27.0                                                                                                        | 0.0<br>Found non seiz<br>6<br>5<br>5<br>5<br>4<br>5.0                                                                                                                                                                                                                                                                  |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD                                                                                                              | 100.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%                                                                                                                                                                                                 | $\begin{array}{c} 93.0\% \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ Without sen \\ Kmeans, 3 c \\ 70\% \\ KNN, k = 3 \\ \hline \\ 82\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84.2\% \\ 84.0\% \\ \hline \\ 84.0\% \\ \hline \\ 1.8\% \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>sor 1 and 2<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27<br>27.0<br>27.0                                                                                                | 0.0<br>Found non seiz<br>6<br>5<br>5<br>5<br>4<br>5.0<br>5.0                                                                                                                                                                                                                                                           |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features                                                                                                  | 100.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%                                                                                                                                                                                                 | $\begin{array}{c} 93.0\% \\ \hline 0.0\% \hline 0.0\% \\ \hline 0.0\% \\ \hline 0.0\% \hline 0.0\% \\ 0.0\% \hline 0.0\% \hline 0.0\% \\ \hline 0.0\% \hline 0.$     | 0<br>sor 1 and 2<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>507 2 and 3                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27<br>27.0<br>27.0                                                                                                | 0.0<br>Found non seiz<br>6<br>5<br>5<br>5<br>4<br>5.0<br>5.0                                                                                                                                                                                                                                                           |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a                                                                                     | 100.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96.0%<br>0.0%<br>used:<br>nalysis:                                                                                                                                                                       | 93.0%<br>0.0%<br>Without sen<br>Kmeans, 3 c<br>70%<br>KNN, k = 3<br>Selectivity<br>82%<br>84%<br>84%<br>84%<br>84%<br>84%<br>84%<br>84.0%<br>1.8%<br>Without sen<br>Kmeans, 3 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>sor 1 and 2<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>5<br>0<br>5<br>5<br>7 2 and 3                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27<br>27.0<br>27.0                                                                                                | 0.0<br>Found non seiz<br>6<br>5<br>5<br>5<br>4<br>5.0<br>5.0                                                                                                                                                                                                                                                           |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                           | 100.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%                                                                                                                                                                                                 | $\begin{array}{c} 93.0\% \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ 0.0\% \\ 81\% \\ 82\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84.0\% \\ \hline \\ 1.8\% \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>sor 1 and 2<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>5<br>0<br>5<br>5<br>7 2 and 3                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27<br>27.0<br>27.0                                                                                                | 0.0<br>Found non seiz<br>6<br>5<br>5<br>5<br>4<br>5.0<br>5.0                                                                                                                                                                                                                                                           |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a                                                                                     | 100.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%                                                                                                                                                                                                 | $\begin{array}{c} 93.0\% \\ \hline 0.0\% \hline 0.0\% \\ \hline 0.0\% \\ 0.0\% \hline 0.0\% \hline 0.0\% \hline 0.0\% \\ 0.0\% \hline 0.0\%$         | 0<br>sor 1 and 2<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>5<br>0<br>5<br>5<br>7 2 and 3                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27<br>27.0<br>27.0                                                                                                | 0.0<br>Found non seiz<br>6<br>5<br>5<br>5<br>4<br>5.0<br>5.0                                                                                                                                                                                                                                                           |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                           | 100.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%                                                                                                                                                                                                 | $\begin{array}{c} 93.0\% \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ Without sen \\ KnN, k = 3 \\ Selectivity \\ 82\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84.0\% \\ \hline \\ 1.8\% \\ \hline \\ \hline \\ Without sen \\ Kmeans, 3 \\ c \\ 70\% \\ KNN, k = 3 \\ Selectivity \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>sor 1 and 2<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>50r 2 and 3<br>lusters<br>Num seiz                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>27.0<br>0.0                                                                                             | 0.0<br>Found non seiz<br>6<br>5<br>5<br>4<br>5.0<br>5.0<br>5.0<br>0.7<br>Found non seiz                                                                                                                                                                                                                                |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                   | 100.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%                                                                                                                                                                                                 | $\begin{array}{c} 93.0\% \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ Without sen \\ KNN, k = 3 \\ Selectivity \\ 82\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>sor 1 and 2<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>sor 2 and 3<br>lusters<br>Num seiz<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27<br>27.0<br>0.0<br>Found seiz<br>26                                                                             | 0.0<br>Found non seiz<br>6<br>5<br>5<br>4<br>5.0<br>5.0<br>0.7<br>Found non seiz<br>3                                                                                                                                                                                                                                  |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                           | 100.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%                                                                                                                                                                                                 | $\begin{array}{c} 93.0\% \\ \hline 0.0\% \\ 0.0\% \\ \hline 0.0\% \\ 0.0\% \hline 0.0\% \\ 0.0\% \hline 0.0\% \\ 0.0\% \hline 0$              | 0<br>sor 1 and 2<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>0.0<br>Found seiz<br>26                                                                           | 0.0<br>Found non seiz<br>6<br>5<br>5<br>4<br>5.0<br>5.0<br>0.7<br>Found non seiz<br>3<br>3                                                                                                                                                                                                                             |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                           | 100.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%                                                                                                                                                                                                 | $\begin{array}{c} 93.0\% \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ 81\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ \hline \\ 81\% \\ \hline \\ \hline \\ 84.2\% \\ \hline \\ 84.0\% \\ \hline \\ 1.8\% \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>sor 1 and 2<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>sor 2 and 3<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                                                                                                                                                                                                                                                                                                      | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.2<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>2 | 0.0<br>Found non seiz<br>6<br>5<br>5<br>4<br>5.0<br>5.0<br>5.0<br>0.7<br>Found non seiz<br>3<br>3<br>3                                                                                                                                                                                                                 |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                           | 100.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%                                                                                                                                                                                                      | $\begin{array}{c} 93.0\% \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>sor 1 and 2<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>sor 2 and 3<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                                                                                                                                                                                                                                                                                                | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>0.0<br>Found seiz<br>26<br>26<br>26<br>26                                                               | 0.0<br>Found non seiz<br>6<br>5<br>5<br>4<br>5.0<br>5.0<br>0.7<br>Found non seiz<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                              |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                     | 100.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96.0%<br>96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>93%<br>93%<br>93%<br>96%                                                                                                          | $\begin{array}{c} 93.0\% \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ 0.0\% \\ 81\% \\ 82\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ \hline \\ 84.0\% \\ \hline \\ 1.8\% \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>sor 1 and 2<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>sor 2 and 3<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                                                                                                                                                                                                                                                                                          | 0.0<br>Found seiz<br>27<br>27<br>27<br>27.0<br>27.0<br>0.0<br>Found seiz<br>26<br>26<br>26<br>26<br>27<br>27<br>27.0<br>0.0                                          | 0.0<br>Found non seiz<br>6<br>5<br>5<br>4<br>5.0<br>5.0<br>0.7<br>Found non seiz<br>3<br>3<br>3<br>4                                                                                                                                                                                                                   |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                             | 100.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%<br>96%<br>96.0%<br>96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%                                                                                            | $\begin{array}{c} 93.0\% \\ \hline 93.0\% \\ \hline 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0<br>sor 1 and 2<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>sor 2 and 3<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                                                                                                                                                                                                                                                                                                | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>27.0<br>0.0<br>Found seiz<br>26<br>26<br>26<br>26<br>26<br>26<br>27<br>26.2                             | 0.0<br>Found non seiz<br>6<br>5<br>5<br>4<br>5.0<br>5.0<br>0.7<br>Found non seiz<br>3<br>3<br>3<br>4<br>3.2                                                                                                                                                                                                            |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Mean<br>Mean                                             | 100.0%<br>0.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93.6%<br>93.0%                                                                                | $\begin{array}{c} 93.0\% \\ \hline 93.0\% \\ \hline 0.0\% \\ 0.0\% \\ \hline 0.0\% \\ 0.0\% \hline 0.0\% \\ 0.0\% \hline 0.0\% \\ 0.0\% \hline 0.0\%$               | 0<br>sor 1 and 2<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>0<br>sor 2 and 3<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                                                                                                                                                                                                                                                                                                 | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>27.0<br>0.0<br>Found seiz<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26                   | 0.0<br>Found non seiz<br>6<br>5<br>5<br>4<br>5.0<br>5.0<br>0.7<br>Found non seiz<br>3<br>3<br>3<br>4<br>3.2<br>3.0                                                                                                                                                                                                     |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                             | 100.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%<br>96%<br>96.0%<br>96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%                                                                                            | $\begin{array}{c} 93.0\% \\ \hline 93.0\% \\ \hline 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0<br>sor 1 and 2<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>sor 2 and 3<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                                                                                                                                                                                                                                                                                                | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>27.0<br>0.0<br>Found seiz<br>26<br>26<br>26<br>26<br>26<br>26<br>27<br>26.2                             | 0.0<br>Found non seiz<br>6<br>5<br>5<br>4<br>5.0<br>5.0<br>0.7<br>Found non seiz<br>3<br>3<br>3<br>4<br>3.2                                                                                                                                                                                                            |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Mean<br>Mean                                             | 100.0%<br>0.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93.6%<br>93.0%                                                                           | $\begin{array}{c} 93.0\% \\ \hline 93.0\% \\ \hline 0.0\% \\ 0.0\% \\ \hline 0.0\% \\ 0.0\% \hline 0.0\% \\ 0.0\% \hline 0.0\% \\ 0.0\% \hline 0.0\%$               | 0<br>sor 1 and 2<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>0<br>sor 2 and 3<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                                                                                                                                                                                                                                                                                                 | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>27.0<br>0.0<br>Found seiz<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26                   | 0.0<br>Found non seiz<br>6<br>5<br>5<br>4<br>5.0<br>5.0<br>0.7<br>Found non seiz<br>3<br>3<br>3<br>4<br>3.2<br>3.0                                                                                                                                                                                                     |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Features                    | 100.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%                                                                                              | $\begin{array}{c} 93.0\% \\ \hline 93.0\% \\ \hline 0.0\% \\ 0.0\% \\ \hline 0.0\% \\ 0.0\% \hline 0.0\% \\ 0.0\% \hline 0.0\% \\ 0.0\% \hline 0.0\%$               | 0<br>sor 1 and 2<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>sor 2 and 3<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>0<br>sor 2 and 3<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                                                                                                                                                                                                                                               | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>27.0<br>0.0<br>Found seiz<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26                   | 0.0<br>Found non seiz<br>6<br>5<br>5<br>4<br>5.0<br>5.0<br>0.7<br>Found non seiz<br>3<br>3<br>3<br>4<br>3.2<br>3.0                                                                                                                                                                                                     |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                             | 100.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%                                                                                              | $\begin{array}{c} 93.0\% \\ \hline 0.0\% \hline 0.0\% \\ \hline 0.0\% \hline 0.0\% \\ \hline 0.0\% \hline 0.0\%$ | 0<br>sor 1 and 2<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>sor 2 and 3<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>sor 2 and 3<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                                                                                                                                                                                                                                   | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>27.0<br>0.0<br>Found seiz<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26                   | 0.0<br>Found non seiz<br>6<br>5<br>5<br>4<br>5.0<br>5.0<br>0.7<br>Found non seiz<br>3<br>3<br>3<br>4<br>3.2<br>3.0                                                                                                                                                                                                     |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA | 100.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96.0%<br>96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%                                                                              | $\begin{array}{c} 93.0\% \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ \hline \\ 84.0\% \\ \hline \\ 1.8\% \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0<br>sor 1 and 2<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>sor 2 and 3<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>sor 2 and 3<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                                                                                                                                                                                                                                   | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>27.0<br>0.0<br>Found seiz<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26                   | 0.0<br>Found non seiz<br>6<br>5<br>5<br>4<br>5.0<br>5.0<br>0.7<br>Found non seiz<br>3<br>3<br>3<br>4<br>3.2<br>3.0                                                                                                                                                                                                     |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                     | 100.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96.0%<br>96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%                                                                              | $\begin{array}{c} 93.0\% \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ 81\% \\ 82\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ \hline \\ 84.0\% \\ \hline \\ 1.8\% \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0<br>sor 1 and 2<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>sor 2 and 3<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>sor 2 and 3<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                                                                                                                                                                                                                                   | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>27.0<br>0.0<br>Found seiz<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26                   | 0.0<br>Found non seiz<br>6<br>5<br>5<br>4<br>5.0<br>5.0<br>0.7<br>Found non seiz<br>3<br>3<br>3<br>4<br>3.2<br>3.0                                                                                                                                                                                                     |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA | 100.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96.0%<br>96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%                                                                              | $\begin{array}{c} 93.0\% \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ \hline \\ 84.0\% \\ \hline \\ 1.8\% \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0<br>sor 1 and 2<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>sor 2 and 3<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>sor 2 and 3<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                                                                                                                                                                                                                                   | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>27.0<br>0.0<br>Found seiz<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26                   | 0.0<br>Found non seiz<br>6<br>5<br>5<br>4<br>5.0<br>5.0<br>0.7<br>Found non seiz<br>3<br>3<br>3<br>4<br>3.2<br>3.0                                                                                                                                                                                                     |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA | 100.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%<br>96%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>93.0%<br>1.3%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>9                                                                                                                | $\begin{array}{c} 93.0\% \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>sor 1 and 2<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>sor 2 and 3<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>0<br>sor 2 and 3<br>lusters<br>28<br>28<br>28<br>0<br>sor 2 and 3<br>lusters<br>28<br>28<br>28<br>0<br>sor 2 and 3<br>lusters<br>28<br>28<br>28<br>0<br>sor 2 and 3<br>lusters<br>28<br>28<br>28<br>0<br>sor 2 and 3<br>lusters<br>28<br>28<br>28<br>28<br>0<br>sor 2 and 3<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>sor 2 and 3<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28 | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>27.0<br>0.0<br>Found seiz<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26                   | 0.0<br>Found non seiz<br>6<br>5<br>5<br>4<br>5.0<br>5.0<br>0.7<br>Found non seiz<br>3<br>3<br>3<br>4<br>3.2<br>3.0<br>0.4                                                                                                                                                                                              |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA | 100.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%                                                                                                                                                                                                 | $\begin{array}{c} 93.0\% \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ 81\% \\ 82\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ \hline \\ 84.0\% \\ \hline \\ 1.8\% \\ \hline \\ \hline \\ \hline \\ \hline \\ 84.0\% \\ \hline \\ \hline \\ 89.0\% \\ 90\% \\ 90\% \\ 90\% \\ 90\% \\ 90\% \\ 90\% \\ 90\% \\ 90\% \\ \hline \\ 90\% \\ 87\% \\ \hline \\ 89.4\% \\ \hline \\ 90.0\% \\ \hline \\ 1.3\% \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0<br>sor 1 and 2<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>sor 2 and 3<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                                                                                                                                                                                                                                                                                                | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>27.0<br>0.0<br>Found seiz<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26                   | 0.0<br>Found non seiz<br>6<br>5<br>5<br>4<br>5.0<br>5.0<br>0.7<br>Found non seiz<br>3<br>3<br>4<br>3.2<br>3.0<br>0.4<br>Found non seiz                                                                                                                                                                                 |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA | 100.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96%<br>96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>93%<br>93%<br>93%<br>93%<br>93%                                                                                                     | $\begin{array}{c} 93.0\% \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ 8100000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0<br>sor 1 and 2<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>sor 2 and 3<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>0<br>sor 2 and 3<br>lusters<br>28<br>28<br>28<br>0<br>sor 2 and 3<br>lusters<br>28<br>28<br>0<br>sor 2 and 3<br>lusters<br>28<br>28<br>28<br>0<br>sor 2 and 3<br>lusters<br>28<br>28<br>28<br>0<br>sor 2 and 3<br>lusters<br>28<br>28<br>28<br>28<br>0<br>sor 2 and 3<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                    | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>0.0<br>Found seiz<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26                           | 0.0<br>Found non seiz<br>6<br>5<br>5<br>4<br>5.0<br>0.7<br>Found non seiz<br>3<br>3<br>4<br>3.2<br>3.0<br>0.4<br>Found non seiz<br>4                                                                                                                                                                                   |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA | 100.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93                                                                                    | $\begin{array}{c} 93.0\% \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ 8100000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0<br>sor 1 and 2<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>sor 2 and 3<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                                                                                                                                                                                                                                                                                                      | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>27.0<br>0.0<br>Found seiz<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26                   | 0.0<br>Found non seiz<br>6<br>5<br>5<br>4<br>5.0<br>5.0<br>0.7<br>Found non seiz<br>3<br>3<br>4<br>3.2<br>3.0<br>0.4<br>Found non seiz<br>4<br>4<br>4<br>4                                                                                                                                                             |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA | 100.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96.0%<br>96.0%<br>96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%                                                                            | $\begin{array}{c} 93.0\% \\ 0.0\% \\ \hline \\ 81\% \\ 82\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ \hline \\ 84\% \\ \hline \\ 84\% \\ \hline \\ 84.0\% \\ \hline \\ 1.8\% \\ \hline \\ \hline \\ \hline \\ \hline \\ 84.0\% \\ \hline \\ 89.0\% \\ \hline \\ \hline \\ 89.4\% \\ \hline \\ 90\% \\ \hline \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 87\% \\ 90\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>sor 1 and 2<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>sor 2 and 3<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                                                                                                                                                                                                                                                                                                | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>27.0<br>0.0<br>Found seiz<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26                   | 0.0<br>Found non seiz<br>6<br>5<br>5<br>4<br>5.0<br>5.0<br>0.7<br>Found non seiz<br>3<br>3<br>4<br>3.2<br>3.0<br>0.4<br>Found non seiz<br>4<br>3                                                                                                                                                                       |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA | 100.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>96.0%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93                                                                                                                         | $\begin{array}{c} 93.0\% \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ 0.0\% \\ 81\% \\ 82\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ \hline \\ 84\% \\ \hline \\ 84\% \\ \hline \\ 84.0\% \\ \hline \\ 1.8\% \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0<br>sor 1 and 2<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>sor 2 and 3<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>sor 2 and 3<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                                                                                                                                                                                                                       | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>0.0<br>Found seiz<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26                           | 0.0<br>Found non seiz<br>6<br>5<br>5<br>4<br>5.0<br>0.7<br>Found non seiz<br>3<br>3<br>4<br>3.2<br>3.0<br>0.4<br>Found non seiz<br>4<br>3.2<br>3.0<br>0.4<br>Solution seiz<br>4<br>3.2<br>3.0<br>0.4<br>Solution seiz<br>4<br>3.2<br>3.0<br>0.4<br>Solution seiz<br>4<br>3.3<br>3.3<br>3.3<br>3.3<br>3.3<br>3.3<br>3.3 |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier            | 100.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>96%<br>96%<br>96%<br>96%<br>96.0%<br>0.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93%<br>93.0%<br>1.3%<br>used:<br>nalysis:<br>variance:<br>:<br>:<br>Sensitivity<br>93%<br>93.0%<br>1.3% | $\begin{array}{c} 93.0\% \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ 0.0\% \\ \hline \\ 0.0\% \\ 81\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ 84\% \\ \hline \\ 84.0\% \\ \hline \\ 1.8\% \\ \hline \\ \hline \\ \hline \\ 84.0\% \\ \hline \\ 84.0\% \\ \hline \\ 88\% \\ \hline \\ 90\% \\ 90\% \\ \hline \\ 90\% \\ 90\% \\ \hline \\ 87\% \\ 90\% \\ 90\% \\ 90\% \\ 90\% \\ 90\% \\ \hline \\ 90\% \\ 90\% \\ 90\% \\ 90\% \\ 90\% \\ 90\% \\ 90\% \\ 90\% \\ 90\% \\ 90\% \\ \hline \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>sor 1 and 2<br>lusters<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>0<br>sor 2 and 3<br>lusters<br>Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                                                                                                                                                                                                                                                                                                | 0.0<br>Found seiz<br>27<br>27<br>27<br>27<br>27<br>27.0<br>27.0<br>27.0<br>0.0<br>Found seiz<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26             | 0.0<br>Found non seiz<br>6<br>5<br>5<br>4<br>5.0<br>5.0<br>0.7<br>Found non seiz<br>3<br>3<br>3<br>4<br>3.2<br>3.0<br>0.4<br>Found non seiz<br>4<br>3.3<br>3<br>4<br>3.2<br>3.0<br>0.4<br>Found non seiz<br>4<br>3.3<br>3.3<br>4<br>3.3<br>3.3<br>4<br>3.3<br>3.3                                                      |

| Features   |             |              | e differential | S              |                |
|------------|-------------|--------------|----------------|----------------|----------------|
| Cluster a  |             | Kmeans, 3 c  | lusters        |                |                |
| PLS-DA     | variance:   | 70%          |                |                |                |
| Classifier | :           | KNN, k = 3   |                |                |                |
|            | Sensitivity | Selectivity  | Num seiz       | Found seiz     | Found non seiz |
|            | 86%         | 67%          | 28             | 24             | 12             |
|            | 86%         | 75%          | 28             | 24             | 8              |
|            | 89%         | 66%          | 28             | 25             | 13             |
|            | 89%         | 68%          | 28             | 25             | 12             |
|            | 96%         | 64%          | 28             | 27             | 15             |
| Mean       | 89.2%       | 68.0%        | 28             | 25.0           | 12.0           |
| Median     | 89.0%       | 67.0%        | 28             | 25.0           | 12.0           |
| STD        | 4.1%        | 4.2%         | 0              | 1.2            | 2.5            |
|            |             |              |                |                |                |
| Features   | used:       | Optimal set  |                |                |                |
| Cluster a  | nalysis:    | No clusterin | g              |                |                |
| PLS-DA     | variance:   | 100%         |                |                |                |
| Classifier | :           | Old method   | with prior p   | rob. weight [1 | 1]             |
|            | Sensitivity | Selectivity  | Num seiz       | Found seiz     | Found non seiz |
|            | 93%         | 40%          | 28             | 26             | 39             |
|            | 93%         | 42%          | 28             | 26             | 36             |
|            | 93%         | 43%          | 28             | 26             | 35             |
|            | 93%         | 43%          | 28             | 26             | 34             |
|            | 93%         | 44%          | 28             | 26             | 33             |
| Mean       | 93.0%       | 42.4%        | 28             | 26.0           | 35.4           |
| Median     | 93.0%       | 43.0%        | 28             | 26.0           | 35.0           |
| STD        | 0.0%        | 1.5%         | 0              | 0.0            | 2.3            |

|   |                | 93%                      | 44%                                            | 28                                                 | 26                                             | 33                                                       |
|---|----------------|--------------------------|------------------------------------------------|----------------------------------------------------|------------------------------------------------|----------------------------------------------------------|
|   | Mean           | 93.0%                    | 42.4%                                          | 28                                                 | 26.0                                           | 35.4                                                     |
| ĺ | Median         | 93.0%                    | 43.0%                                          | 28                                                 | 26.0                                           | 35.0                                                     |
| ĺ | STD            | 0.0%                     | 1.5%                                           | 0                                                  | 0.0                                            | 2.3                                                      |
|   |                |                          |                                                |                                                    |                                                |                                                          |
|   | Features       | used:                    | Optimal set                                    |                                                    |                                                |                                                          |
|   | Cluster a      | nalysis:                 | No clusterin                                   | g                                                  |                                                |                                                          |
|   | PLS-DA         | variance:                | 100%                                           |                                                    |                                                |                                                          |
|   | Classifier     | :                        | Old method                                     | with prior p                                       | rob. weight [1                                 | $10^{20}$                                                |
|   |                |                          |                                                |                                                    |                                                |                                                          |
|   |                | Sensitivity              | Selectivity                                    | Num seiz                                           | Found seiz                                     | Found non seiz                                           |
|   |                | Sensitivity<br>86%       | Selectivity<br>71%                             | Num seiz<br>28                                     | Found seiz<br>24                               | Found non seiz<br>10                                     |
|   |                |                          | Selectivity                                    | Num seiz                                           | Found seiz                                     | Found non seiz                                           |
|   |                | 86%                      | Selectivity<br>71%                             | Num seiz<br>28                                     | Found seiz<br>24                               | Found non seiz<br>10                                     |
|   |                | 86%<br>86%               | Selectivity<br>71%<br>71%                      | Num seiz<br>28<br>28                               | Found seiz<br>24<br>24                         | Found non seiz<br>10<br>10                               |
|   |                | 86%<br>86%<br>86%        | Selectivity<br>71%<br>71%<br>71%               | Num seiz<br>28<br>28<br>28<br>28                   | Found seiz<br>24<br>24<br>24<br>24             | Found non seiz<br>10<br>10<br>10<br>10                   |
|   | Mean           | 86%<br>86%<br>86%<br>86% | Selectivity<br>71%<br>71%<br>71%<br>71%        | Num seiz<br>28<br>28<br>28<br>28<br>28             | Found seiz<br>24<br>24<br>24<br>24<br>24<br>24 | Found non seiz<br>10<br>10<br>10<br>10<br>10             |
|   | Mean<br>Median | 86%<br>86%<br>86%<br>89% | Selectivity<br>71%<br>71%<br>71%<br>71%<br>71% | Num seiz<br>28<br>28<br>28<br>28<br>28<br>28<br>28 | Found seiz<br>24<br>24<br>24<br>24<br>24<br>25 | Found non seiz<br>10<br>10<br>10<br>10<br>10<br>10<br>10 |

### A.4 Patient F2

| Features   | Features used:    |            | All features         |            |                |  |  |  |
|------------|-------------------|------------|----------------------|------------|----------------|--|--|--|
| Cluster a  | Cluster analysis: |            | Gm fuzzy, 4 clusters |            |                |  |  |  |
| PLS-DA     | PLS-DA variance:  |            |                      |            |                |  |  |  |
| Classifier | :                 | KNN, k = 3 |                      |            |                |  |  |  |
|            | Sensitivity       |            | Num seiz             | Found seiz | Found non seiz |  |  |  |
|            | 100%              | 77%        | 17                   | 17         | 5              |  |  |  |
|            | 100%              | 77%        | 17                   | 17         | 5              |  |  |  |
|            | 100%              | 74%        | 17                   | 17         | 6              |  |  |  |
|            | 94%               | 80%        | 17                   | 16         | 4              |  |  |  |
|            | 82%               | 82%        | 17                   | 14         | 3              |  |  |  |
| Mean       | 95.2%             | 78.0%      | 17                   | 16.2       | 4.6            |  |  |  |
| Median     | 100.0%            | 77.0%      | 77.0% 17 17.0 5.0    |            | 5.0            |  |  |  |
| STD        | 7.8%              | 3.1%       | 0                    | 1.3        | 1.1            |  |  |  |
|            |                   |            |                      |            |                |  |  |  |

| Features   | Features used:    |             | All features         |            |                |  |  |  |
|------------|-------------------|-------------|----------------------|------------|----------------|--|--|--|
| Cluster a  | Cluster analysis: |             | Gm fuzzy, 3 clusters |            |                |  |  |  |
| PLS-DA     | PLS-DA variance:  |             |                      |            |                |  |  |  |
| Classifier | :                 | KNN, k = 3  |                      |            |                |  |  |  |
|            | Sensitivity       | Selectivity | Num seiz             | Found seiz | Found non seiz |  |  |  |
|            | 100%              | 94%         | 17                   | 17         | 1              |  |  |  |
|            | 100%              | 85%         | 17                   | 17         | 3              |  |  |  |
|            | 100%              | 81%         | 17                   | 17         | 4              |  |  |  |
|            | 94%               | 94%         | 17                   | 16         | 1              |  |  |  |
|            | 94%               |             | 17                   | 16         | 3              |  |  |  |
| Mean       | Mean 97.6%        |             | 17                   | 16.6       | 2.4            |  |  |  |
| Median     | 100.0%            | 85.0%       | 17                   | 17.0       | 3.0            |  |  |  |
| STD        | 3.3%              | 6.0%        | 0                    | 0.5        | 1.3            |  |  |  |

| Features<br>Cluster a                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                      | K means, 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | clusters                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PLS-DA                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                      | 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lusters                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                              |
| Classifier                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                      | KNN, k = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                           | Sensitivity                                                                                                                                                                                                                                                                                                                          | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Num seiz                                                                                                                                               | Found seiz                                                                                                                                                                                                                                                                                                                             | Found non sei                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                           | 82%                                                                                                                                                                                                                                                                                                                                  | 67%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17                                                                                                                                                     | 14                                                                                                                                                                                                                                                                                                                                     | 7                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                           | 82%                                                                                                                                                                                                                                                                                                                                  | 56%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17                                                                                                                                                     | 14                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                           | 82%                                                                                                                                                                                                                                                                                                                                  | 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17                                                                                                                                                     | 14                                                                                                                                                                                                                                                                                                                                     | 14                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                           | 76%                                                                                                                                                                                                                                                                                                                                  | 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17                                                                                                                                                     | 13                                                                                                                                                                                                                                                                                                                                     | 13                                                                                                                                                                                                                                                                                                                                                           |
| M                                                                                                                                                                                         | 76%                                                                                                                                                                                                                                                                                                                                  | 48%<br>54.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17                                                                                                                                                     | 13                                                                                                                                                                                                                                                                                                                                     | 14                                                                                                                                                                                                                                                                                                                                                           |
| Mean<br>Median                                                                                                                                                                            | 79.6%<br>82.0%                                                                                                                                                                                                                                                                                                                       | 54.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17<br>17                                                                                                                                               | 13.6<br>14.0                                                                                                                                                                                                                                                                                                                           | 11.8<br>13.0                                                                                                                                                                                                                                                                                                                                                 |
| STD                                                                                                                                                                                       | 3.3%                                                                                                                                                                                                                                                                                                                                 | 7.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                      | 0.5                                                                                                                                                                                                                                                                                                                                    | 2.9                                                                                                                                                                                                                                                                                                                                                          |
| 51D                                                                                                                                                                                       | 3.370                                                                                                                                                                                                                                                                                                                                | 1.870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                      | 0.5                                                                                                                                                                                                                                                                                                                                    | 2.9                                                                                                                                                                                                                                                                                                                                                          |
| Features                                                                                                                                                                                  | used:                                                                                                                                                                                                                                                                                                                                | All features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                              |
| Cluster a                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                      | K means, 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | clusters                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                              |
| PLS-DA                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                      | 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                              |
| Classifier                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                      | KNN, k = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                           | Sensitivity                                                                                                                                                                                                                                                                                                                          | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Num seiz                                                                                                                                               | Found seiz                                                                                                                                                                                                                                                                                                                             | Found non seiz                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                           | 88%                                                                                                                                                                                                                                                                                                                                  | 60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17                                                                                                                                                     | 15                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                           | 82%                                                                                                                                                                                                                                                                                                                                  | 64%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17                                                                                                                                                     | 14                                                                                                                                                                                                                                                                                                                                     | 8                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                           | 71%                                                                                                                                                                                                                                                                                                                                  | 57%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17                                                                                                                                                     | 12                                                                                                                                                                                                                                                                                                                                     | 9                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                           | 65%                                                                                                                                                                                                                                                                                                                                  | 69%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17<br>17                                                                                                                                               | 11<br>10                                                                                                                                                                                                                                                                                                                               | 5<br>10                                                                                                                                                                                                                                                                                                                                                      |
| Mean                                                                                                                                                                                      | 59%<br>73.0%                                                                                                                                                                                                                                                                                                                         | 50%<br>60.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17 17                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                     | 8.4                                                                                                                                                                                                                                                                                                                                                          |
| Median                                                                                                                                                                                    | 73.0%                                                                                                                                                                                                                                                                                                                                | 60.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17                                                                                                                                                     | 12.4                                                                                                                                                                                                                                                                                                                                   | 9.0                                                                                                                                                                                                                                                                                                                                                          |
| STD                                                                                                                                                                                       | 11.9%                                                                                                                                                                                                                                                                                                                                | 7.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                      | 2.1                                                                                                                                                                                                                                                                                                                                    | 2.1                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                           | 11.370                                                                                                                                                                                                                                                                                                                               | 1.2/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                      | <i>2.1</i>                                                                                                                                                                                                                                                                                                                             | 4.1                                                                                                                                                                                                                                                                                                                                                          |
| Features                                                                                                                                                                                  | used:                                                                                                                                                                                                                                                                                                                                | All features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                              |
| Cluster a                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                      | Max values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                              |
| PLS-DA                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                      | 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                              |
| Classifier                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                      | KNN, $k = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NT :                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                           | Sensitivity                                                                                                                                                                                                                                                                                                                          | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Num seiz                                                                                                                                               | Found seiz                                                                                                                                                                                                                                                                                                                             | Found non seiz                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                           | 82%                                                                                                                                                                                                                                                                                                                                  | 41%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17                                                                                                                                                     | 14                                                                                                                                                                                                                                                                                                                                     | 20                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                           | 76%<br>76%                                                                                                                                                                                                                                                                                                                           | 43%<br>43%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17<br>17                                                                                                                                               | 13<br>13                                                                                                                                                                                                                                                                                                                               | 17<br>17                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                           | 76%                                                                                                                                                                                                                                                                                                                                  | 43%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17                                                                                                                                                     | 13                                                                                                                                                                                                                                                                                                                                     | 18                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                           | 76%                                                                                                                                                                                                                                                                                                                                  | 41%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17                                                                                                                                                     | 13                                                                                                                                                                                                                                                                                                                                     | 19                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                              |
| Mean                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                        | 18.2                                                                                                                                                                                                                                                                                                                                                         |
| Mean<br>Median                                                                                                                                                                            | 77.2%<br>76.0%                                                                                                                                                                                                                                                                                                                       | 42.0%<br>42.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17<br>17                                                                                                                                               | 13.2<br>13.0                                                                                                                                                                                                                                                                                                                           | 18.2<br>18.0                                                                                                                                                                                                                                                                                                                                                 |
| Median<br>STD<br>Features<br>Cluster a                                                                                                                                                    | 77.2%<br>76.0%<br>2.7%<br>used:<br>nalysis:                                                                                                                                                                                                                                                                                          | 42.0%<br>42.0%<br>1.0%<br>All features<br>Min values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17                                                                                                                                                     | 13.2                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                              |
| Median<br>STD<br>Features                                                                                                                                                                 | 77.2%<br>76.0%<br>2.7%<br>used:<br>nalysis:<br>variance:                                                                                                                                                                                                                                                                             | 42.0%<br>42.0%<br>1.0%<br>All features<br>Min values<br>70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17<br>17                                                                                                                                               | 13.2<br>13.0                                                                                                                                                                                                                                                                                                                           | 18.0                                                                                                                                                                                                                                                                                                                                                         |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                          | 77.2%<br>76.0%<br>2.7%<br>used:<br>nalysis:<br>variance:                                                                                                                                                                                                                                                                             | 42.0%<br>42.0%<br>1.0%<br>All features<br>Min values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17<br>17                                                                                                                                               | 13.2<br>13.0                                                                                                                                                                                                                                                                                                                           | 18.0<br>1.3                                                                                                                                                                                                                                                                                                                                                  |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                          | 77.2%<br>76.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>88%                                                                                                                                                                                                                                                  | 42.0%<br>42.0%<br>1.0%<br>All features<br>Min values<br>70%<br>KNN, k = 3<br>Selectivity<br>38%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17<br>17<br>0<br>Num seiz<br>17                                                                                                                        | 13.2<br>13.0<br>0.4<br>Found seiz<br>15                                                                                                                                                                                                                                                                                                | 18.0<br>1.3<br>Found non seiz<br>25                                                                                                                                                                                                                                                                                                                          |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                          | 77.2%<br>76.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>82%                                                                                                                                                                                                                                           | $\begin{array}{c} 42.0\% \\ 42.0\% \\ 1.0\% \\ \hline \\ \text{All features} \\ \text{Min values} \\ 70\% \\ \text{KNN, } k = 3 \\ \text{Selectivity} \\ 38\% \\ 38\% \\ 38\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17<br>17<br>0<br>Num seiz<br>17<br>17                                                                                                                  | 13.2<br>13.0<br>0.4<br>Found seiz<br>15<br>14                                                                                                                                                                                                                                                                                          | 18.0<br>1.3<br>Found non seiz<br>25<br>23                                                                                                                                                                                                                                                                                                                    |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                          | 77.2%<br>76.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>82%                                                                                                                                                                                                                                           | 42.0%<br>42.0%<br>1.0%<br>All features<br>Min values<br>70%<br>KNN, k = 3<br>Selectivity<br>38%<br>38%<br>37%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17<br>17<br>0<br>Num seiz<br>17<br>17<br>17                                                                                                            | 13.2<br>13.0<br>0.4<br>Found seiz<br>15<br>14<br>14                                                                                                                                                                                                                                                                                    | 18.0<br>1.3<br>Found non seiz<br>25<br>23<br>24                                                                                                                                                                                                                                                                                                              |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                          | 77.2%<br>76.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>82%<br>82%<br>76%                                                                                                                                                                                                                             | $\begin{array}{c} 42.0\% \\ 42.0\% \\ 1.0\% \\ \hline \\ \text{All features} \\ \text{Min values} \\ 70\% \\ \text{KNN, } k = 3 \\ \text{Selectivity} \\ 38\% \\ 38\% \\ 38\% \\ 37\% \\ 35\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17<br>17<br>0<br>Num seiz<br>17<br>17<br>17<br>17                                                                                                      | 13.2<br>13.0<br>0.4<br>Found seiz<br>15<br>14<br>14<br>13                                                                                                                                                                                                                                                                              | 18.0<br>1.3<br>Found non seiz<br>25<br>23<br>24<br>24                                                                                                                                                                                                                                                                                                        |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                                                                            | 77.2%<br>76.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:                                                                                                                                                                                   | 42.0%<br>42.0%<br>1.0%<br>All features<br>Min values<br>70%<br>KNN, k = 3<br>Selectivity<br>38%<br>38%<br>37%<br>35%<br>33%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17<br>17<br>0                                                                                                                                          | 13.2<br>13.0<br>0.4<br>Found seiz<br>15<br>14<br>14<br>14<br>13<br>13                                                                                                                                                                                                                                                                  | 18.0<br>1.3<br>Found non seiz<br>25<br>23<br>24<br>24<br>26                                                                                                                                                                                                                                                                                                  |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean                                                                                                                    | 77.2%<br>76.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>82%<br>82%<br>82%<br>76%<br>76%<br>80.8%                                                                                                                                                                                                      | $\begin{array}{c} 42.0\% \\ 42.0\% \\ 1.0\% \\ \hline \\ \text{All features} \\ \text{Min values} \\ 70\% \\ \text{KNN, k = 3} \\ \text{Selectivity} \\ 38\% \\ 38\% \\ 37\% \\ 35\% \\ 33\% \\ 36.2\% \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17<br>17<br>0<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                                          | 13.2<br>13.0<br>0.4<br>Found seiz<br>15<br>14<br>14<br>13<br>13<br>13.8                                                                                                                                                                                                                                                                | 18.0<br>1.3<br>Found non seiz<br>25<br>23<br>24<br>24<br>26<br>24.4                                                                                                                                                                                                                                                                                          |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Mean                                                                                                            | 77.2%<br>76.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>82%<br>82%<br>76%<br>76%<br>76%<br>80.8%<br>82.0%                                                                                                                                                                                             | $\begin{array}{r} 42.0\% \\ 42.0\% \\ 1.0\% \\ \hline \\ 1.0\% \\ \hline \\ \text{All features} \\ \text{Min values} \\ 70\% \\ \text{KNN, } k = 3 \\ \hline \\ \text{Selectivity} \\ 38\% \\ 38\% \\ 37\% \\ 35\% \\ 33\% \\ 36.2\% \\ 37.0\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17<br>17<br>0<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                                    | 13.2<br>13.0<br>0.4<br>Found seiz<br>15<br>14<br>14<br>13<br>13.8<br>14.0                                                                                                                                                                                                                                                              | 18.0<br>1.3<br>Found non seiz<br>25<br>23<br>24<br>24<br>24<br>26<br>24.4<br>24.0                                                                                                                                                                                                                                                                            |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean                                                                                                                    | 77.2%<br>76.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>82%<br>82%<br>82%<br>76%<br>76%<br>80.8%                                                                                                                                                                                                      | $\begin{array}{c} 42.0\% \\ 42.0\% \\ 1.0\% \\ \hline \\ \text{All features} \\ \text{Min values} \\ 70\% \\ \text{KNN, k = 3} \\ \text{Selectivity} \\ 38\% \\ 38\% \\ 37\% \\ 35\% \\ 33\% \\ 36.2\% \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17<br>17<br>0<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                                          | 13.2<br>13.0<br>0.4<br>Found seiz<br>15<br>14<br>14<br>13<br>13<br>13.8                                                                                                                                                                                                                                                                | 18.0<br>1.3<br>Found non seiz<br>25<br>23<br>24<br>24<br>26<br>24.4                                                                                                                                                                                                                                                                                          |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD                                                                                                   | 77.2%<br>76.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:                                                                                                                                                                                   | $\begin{array}{r} 42.0\% \\ 42.0\% \\ 1.0\% \\ \hline \\ 1.0\% \\ \hline \\ \text{All features} \\ \text{Min values} \\ 70\% \\ \text{KNN, k = 3} \\ \text{Selectivity} \\ 38\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 35\% \\ 33\% \\ 36.2\% \\ \hline \\ 37.0\% \\ 2.2\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17<br>17<br>0<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                                    | 13.2<br>13.0<br>0.4<br>Found seiz<br>15<br>14<br>14<br>13<br>13.8<br>14.0                                                                                                                                                                                                                                                              | 18.0<br>1.3<br>Found non seiz<br>25<br>23<br>24<br>24<br>24<br>26<br>24.4<br>24.0                                                                                                                                                                                                                                                                            |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features                                                                                       | 77.2%<br>76.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>5.0%<br>5.0%<br>used:                                                                                                                                                                 | $\begin{array}{c} 42.0\% \\ 42.0\% \\ 1.0\% \\ \hline \\ 1.0\% \\ \hline \\ \text{All features} \\ \text{Min values} \\ 70\% \\ \text{KNN, } k = 3 \\ \text{Selectivity} \\ 38\% \\ 38\% \\ 38\% \\ 37\% \\ 35\% \\ 33\% \\ \hline \\ 35\% \\ 33\% \\ \hline \\ 36.2\% \\ 37.0\% \\ 2.2\% \\ \hline \\ \text{All features} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17<br>17<br>0<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0                                                                               | 13.2<br>13.0<br>0.4<br>Found seiz<br>15<br>14<br>14<br>13<br>13.8<br>14.0                                                                                                                                                                                                                                                              | 18.0<br>1.3<br>Found non seiz<br>25<br>23<br>24<br>24<br>24<br>26<br>24.4<br>24.0                                                                                                                                                                                                                                                                            |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD                                                                                                   | 77.2%<br>76.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>82%<br>82%<br>82%<br>76%<br>76%<br>76%<br>80.8%<br>82.0%<br>5.0%<br>used:<br>nalysis:                                                                                                                                                         | $\begin{array}{r} 42.0\% \\ 42.0\% \\ 1.0\% \\ \hline \\ 1.0\% \\ \hline \\ \text{All features} \\ \text{Min values} \\ 70\% \\ \text{KNN, k = 3} \\ \text{Selectivity} \\ 38\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 35\% \\ 33\% \\ 36.2\% \\ \hline \\ 37.0\% \\ 2.2\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17<br>17<br>0<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0                                                                               | 13.2<br>13.0<br>0.4<br>Found seiz<br>15<br>14<br>14<br>13<br>13.8<br>14.0                                                                                                                                                                                                                                                              | 18.0<br>1.3<br>Found non seiz<br>25<br>23<br>24<br>24<br>24<br>26<br>24.4<br>24.0                                                                                                                                                                                                                                                                            |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                  | 77.2%<br>76.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>5.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>:                                                                                                                                          | $\begin{array}{c} 42.0\% \\ 42.0\% \\ 1.0\% \\ \hline \\ 1.0\% \\ \hline \\ \text{All features} \\ \text{Min values} \\ 70\% \\ \text{KNN, } k = 3 \\ \hline \\ \text{Selectivity} \\ 38\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 33\% \\ 36.2\% \\ 33\% \\ 36.2\% \\ 37.0\% \\ 2.2\% \\ \hline \\ \text{All features} \\ \text{Gm hard, 4} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17<br>17<br>0<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0                                                                               | 13.2<br>13.0<br>0.4<br>Found seiz<br>15<br>14<br>14<br>13<br>13.8<br>14.0                                                                                                                                                                                                                                                              | 18.0<br>1.3<br>Found non seiz<br>25<br>23<br>24<br>24<br>24<br>26<br>24.4<br>24.0                                                                                                                                                                                                                                                                            |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                  | 77.2%<br>76.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>82%<br>82%<br>76%<br>82%<br>76%<br>80.8%<br>82.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity                                                                                                                               | $\begin{array}{c} 42.0\% \\ 42.0\% \\ 1.0\% \\ \hline \\ 1.0\% \\ \hline \\ \text{All features} \\ \text{Min values} \\ 70\% \\ \text{KNN, } k = 3 \\ \text{Selectivity} \\ 38\% \\ 38\% \\ 37\% \\ 35\% \\ 33\% \\ 33\% \\ 33\% \\ 33\% \\ 33\% \\ 33\% \\ 33\% \\ 33\% \\ 33\% \\ 33\% \\ 33\% \\ 33\% \\ 33\% \\ 31\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 35\% \\ 3$                                                                                                                                                                                                                                                                                 | 17<br>17<br>0<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0                                                                                     | 13.2<br>13.0<br>0.4<br>Found seiz<br>15<br>14<br>14<br>13<br>13.8<br>14.0<br>0.8<br>Found seiz                                                                                                                                                                                                                                         | 18.0<br>1.3<br>Found non seiz<br>25<br>23<br>24<br>24<br>26<br>24.4<br>24.0<br>1.1<br>Found non seiz                                                                                                                                                                                                                                                         |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                  | 77.2%<br>76.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>82%<br>82%<br>82%<br>82%<br>76%<br>76%<br>76%<br>76%<br>76%<br>80.8%<br>80.8%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>100%                                                                                           | $\begin{array}{r} 42.0\% \\ 42.0\% \\ 1.0\% \\ \hline \\ 1.0\% \\ \hline \\ \text{All features} \\ \text{Min values} \\ 70\% \\ \text{KNN, k = 3} \\ \text{Selectivity} \\ 38\% \\ 38\% \\ 37\% \\ 38\% \\ 35\% \\ 33\% \\ 36.2\% \\ 33\% \\ 36.2\% \\ 37.0\% \\ 2.2\% \\ \hline \\ \text{All features} \\ \text{Gm hard, 4} \\ 70\% \\ \text{KNN, k = 3} \\ \text{Selectivity} \\ 85\% \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17<br>17<br>0<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>clusters<br>Num seiz<br>17                                                             | 13.2<br>13.0<br>0.4<br>Found seiz<br>15<br>14<br>14<br>13<br>13<br>13.8<br>14.0<br>0.8<br>Found seiz<br>17                                                                                                                                                                                                                             | 18.0<br>1.3<br>Found non seiz<br>25<br>23<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24                                                                                                                                                                                                                                                        |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                  | 77.2%<br>76.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>82%<br>82%<br>82%<br>76%<br>76%<br>80.8%<br>82.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>100%                                                                                                                       | $\begin{array}{c} 42.0\% \\ 42.0\% \\ 1.0\% \\ \hline \\ 1.0\% \\ \hline \\ \text{All features} \\ \text{Min values} \\ 70\% \\ \text{KNN, k = 3} \\ \hline \\ \text{Selectivity} \\ 38\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 33\% \\ 36.2\% \\ \hline \\ 33\% \\ 36.2\% \\ \hline \\ 33\% \\ 36.2\% \\ \hline \\ 37.0\% \\ 2.2\% \\ \hline \\ \text{All features} \\ \text{Gm hard, 4} \\ 70\% \\ \text{KNN, k = 3} \\ \hline \\ \text{Selectivity} \\ 85\% \\ 85\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17<br>17<br>0<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>clusters<br>Num seiz<br>17<br>17                                           | 13.2<br>13.0<br>0.4<br>Found seiz<br>15<br>14<br>14<br>13<br>13<br>13.8<br>14.0<br>0.8<br>Found seiz<br>17<br>17                                                                                                                                                                                                                       | 18.0<br>1.3<br>Found non seiz<br>25<br>23<br>24<br>24<br>26<br>24.4<br>24.0<br>1.1<br>Found non seiz<br>3<br>3                                                                                                                                                                                                                                               |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                  | 77.2%<br>76.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>82%<br>82%<br>82%<br>76%<br>82%<br>82%<br>82%<br>82%<br>5.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>100%<br>100%                                                                                            | $\begin{array}{r} 42.0\% \\ 42.0\% \\ 1.0\% \\ \hline \\ 1.0\% \\ \hline \\ \text{All features} \\ \text{Min values} \\ 70\% \\ \text{KNN, } k = 3 \\ \hline \\ \text{Selectivity} \\ 38\% \\ 38\% \\ 38\% \\ 38\% \\ 37\% \\ 38\% \\ 38\% \\ 33\% \\ 36.2\% \\ 33\% \\ 33\% \\ 36.2\% \\ 33\% \\ 33\% \\ 36.2\% \\ 33\% \\ 36.2\% \\ 37\% \\ 33\% \\ 36.2\% \\ 37\% \\ 33\% \\ 36.2\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\% \\ 37\%$                                                                                                                                                                                                                                                                                | 17<br>17<br>0<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                  | 13.2           13.0           0.4           5           14           13           13.8           14.0           0.8           Found seiz           17           17           17                                                                                                                                                        | 18.0<br>1.3<br>Found non seiz<br>25<br>23<br>24<br>24<br>26<br>24.4<br>26<br>24.4<br>24.0<br>1.1<br>Found non seiz<br>3<br>3<br>4                                                                                                                                                                                                                            |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                  | 77.2%<br>76.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:                                                                                                                                                                                   | $\begin{array}{r} 42.0\% \\ 42.0\% \\ 1.0\% \\ \hline \\ 1.0\% \\ \hline \\ \text{All features} \\ \text{Min values} \\ 70\% \\ \text{KNN, k = 3} \\ \text{Selectivity} \\ 38\% \\ 37\% \\ 38\% \\ 35\% \\ 33\% \\ 36.2\% \\ 37.0\% \\ 2.2\% \\ \hline \\ \hline \\ \text{All features} \\ \text{Gm hard, 4} \\ 70\% \\ \text{KNN, k = 3} \\ \text{Selectivity} \\ 85\% \\ 81\% \\ 81\% \\ 84\% \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17<br>17<br>0<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>clusters<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17 | 13.2           13.0           0.4           5           14           14           13           13.8           14.0           0.8           Found seiz           17           17           16                                                                                                                                           | 18.0           1.3           Found non seiz           25           23           24           26           24.4           26           24.4           26           3           3           4           3                                                                                                                                                      |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                  | 77.2%<br>76.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>:<br>:<br>Sensitivity<br>88%<br>82%<br>82%<br>76%<br>76%<br>80.8%<br>82.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>:<br>:<br>:<br>Sensitivity<br>100%<br>100%<br>100%<br>100%<br>100%<br>88%                                                                        | $\begin{array}{c} 42.0\% \\ 42.0\% \\ 1.0\% \\ \hline \\ 1.0\% \\ \hline \\ \text{All features} \\ \text{Min values} \\ 70\% \\ \text{KNN, k = 3} \\ \hline \\ \text{Selectivity} \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 35\% \\ 33\% \\ 35\% \\ 33\% \\ 36.2\% \\ 37.0\% \\ 2.2\% \\ \hline \\ \text{All features} \\ \text{Gm hard, 4} \\ 70\% \\ \text{KNN, k = 3} \\ \hline \\ \text{Selectivity} \\ 85\% \\ 85\% \\ 81\% \\ 84\% \\ 71\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17<br>17<br>0<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>clusters<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17                         | 13.2<br>13.0<br>0.4<br>Found seiz<br>15<br>14<br>14<br>13<br>13<br>13.8<br>14.0<br>0.8<br>Found seiz<br>17<br>17<br>17<br>16<br>15                                                                                                                                                                                                     | 18.0<br>1.3<br>Found non seiz<br>25<br>23<br>24<br>24<br>24<br>26<br>24.4<br>24.0<br>1.1<br>Found non seiz<br>3<br>4<br>3<br>6                                                                                                                                                                                                                               |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean                                          | 77.2%<br>76.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%                                                                                                                                                                                   | $\begin{array}{c} 42.0\% \\ 42.0\% \\ 1.0\% \\ \hline \\ 1.0\% \\ 1.0\% \\ \hline \\ 1.0\% \\ \hline \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ $ | 17<br>17<br>0<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                  | 13.2<br>13.0<br>0.4<br>Found seiz<br>15<br>14<br>14<br>13<br>13.8<br>14.0<br>0.8<br>Found seiz<br>17<br>17<br>17<br>17<br>16<br>15<br>16.4                                                                                                                                                                                             | 18.0<br>1.3<br>Found non seiz<br>25<br>23<br>24<br>24<br>24<br>26<br>24.4<br>24.0<br>1.1<br>Found non seiz<br>3<br>4<br>3<br>4<br>3<br>6<br>3.8                                                                                                                                                                                                              |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Mean<br>Mean                          | 77.2%<br>76.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:                                                                                                                                                                                   | $\begin{array}{r} 42.0\% \\ 42.0\% \\ 1.0\% \\ \hline \\ 1.0\% \\ \hline \\ 1.0\% \\ \hline \\ \text{All features} \\ \text{Min values} \\ 70\% \\ \text{KNN, k = 3} \\ \hline \\ \text{Selectivity} \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 31\% \\ 81\% \\ 81\% \\ 81.2\% \\ 84.0\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17<br>17<br>0<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>clusters<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17             | $\begin{array}{c} 13.2\\ 13.0\\ 0.4\\ \hline \\ \hline \\ 13\\ 14\\ 14\\ 13\\ 13\\ 13.8\\ 14.0\\ 0.8\\ \hline \\ \hline \\ 17\\ 17\\ 17\\ 16\\ 15\\ 16.4\\ 17.0\\ \hline \end{array}$                                                                                                                                                  | 18.0<br>1.3<br>Found non seiz<br>25<br>23<br>24<br>24<br>24<br>26<br>24.4<br>24.0<br>1.1<br>Found non seiz<br>3<br>4<br>3<br>6<br>3.8<br>3.0                                                                                                                                                                                                                 |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean                                          | 77.2%<br>76.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%                                                                                                                                                                                   | $\begin{array}{c} 42.0\% \\ 42.0\% \\ 1.0\% \\ \hline \\ 1.0\% \\ 1.0\% \\ \hline \\ 1.0\% \\ \hline \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ $ | 17<br>17<br>0<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                  | 13.2<br>13.0<br>0.4<br>Found seiz<br>15<br>14<br>14<br>13<br>13.8<br>14.0<br>0.8<br>Found seiz<br>17<br>17<br>17<br>17<br>16<br>15<br>16.4                                                                                                                                                                                             | 18.0<br>1.3<br>Found non seiz<br>25<br>23<br>24<br>24<br>24<br>26<br>24.4<br>24.0<br>1.1<br>Found non seiz<br>3<br>4<br>3<br>4<br>3<br>6<br>3.8                                                                                                                                                                                                              |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Mean<br>Mean                          | 77.2%<br>76.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>:<br>:<br>Sensitivity<br>88%<br>82%<br>82%<br>82%<br>76%<br>76%<br>76%<br>80.8%<br>82.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>:<br>:<br>:<br>:<br>Sensitivity<br>100%<br>100%<br>100%<br>100%<br>100%<br>100%<br>100%<br>100                                     | $\begin{array}{r} 42.0\% \\ 42.0\% \\ 1.0\% \\ \hline \\ 1.0\% \\ \hline \\ 1.0\% \\ \hline \\ \text{All features} \\ \text{Min values} \\ 70\% \\ \text{KNN, k = 3} \\ \hline \\ \text{Selectivity} \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 31\% \\ 81\% \\ 81\% \\ 81.2\% \\ 84.0\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17<br>17<br>0<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>clusters<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17             | $\begin{array}{c} 13.2\\ 13.0\\ 0.4\\ \hline \\ \hline \\ 13\\ 14\\ 14\\ 13\\ 13\\ 13.8\\ 14.0\\ 0.8\\ \hline \\ \hline \\ 17\\ 17\\ 17\\ 16\\ 15\\ 16.4\\ 17.0\\ \hline \end{array}$                                                                                                                                                  | 18.0<br>1.3<br>Found non seiz<br>25<br>23<br>24<br>24<br>26<br>24.4<br>24.0<br>1.1<br>Found non seiz<br>3<br>4<br>3<br>6<br>3.8<br>3.0                                                                                                                                                                                                                       |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                  | 77.2%<br>76.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%                                                                                                                                                                                   | $\begin{array}{r} 42.0\% \\ 42.0\% \\ 1.0\% \\ \hline \\ 1.0\% \\ \hline \\ \text{All features} \\ \text{Min values} \\ 70\% \\ \text{KNN, k = 3} \\ \text{Selectivity} \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 35\% \\ 33\% \\ \hline \\ 35\% \\ 33\% \\ \hline \\ 36.2\% \\ 37.0\% \\ \hline \\ 2.2\% \\ \hline \\ \text{All features} \\ \text{Gm hard, 4} \\ 70\% \\ \text{KNN, k = 3} \\ \text{Selectivity} \\ \hline \\ 85\% \\ 81\% \\ 85\% \\ 81\% \\ 81\% \\ 84\% \\ 71\% \\ \hline \\ 81.2\% \\ \hline \\ 84.0\% \\ \hline \\ 5.9\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17<br>17<br>0<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                  | $\begin{array}{c} 13.2\\ 13.0\\ 0.4\\ \hline \\ \hline \\ 13\\ 14\\ 14\\ 13\\ 13\\ 13.8\\ 14.0\\ 0.8\\ \hline \\ \hline \\ 17\\ 17\\ 17\\ 16\\ 15\\ 16.4\\ 17.0\\ \hline \end{array}$                                                                                                                                                  | 18.0<br>1.3<br>Found non seiz<br>25<br>23<br>24<br>24<br>26<br>24.4<br>24.0<br>1.1<br>Found non seiz<br>3<br>4<br>3<br>6<br>3.8<br>3.0                                                                                                                                                                                                                       |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Features | 77.2%<br>76.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:                                                                                                                                                                                   | $\begin{array}{c} 42.0\% \\ 42.0\% \\ 1.0\% \\ \hline \\ 81 \\ 1.0\% \\ \hline \\ 88\% \\ 37\% \\ 38\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 33\% \\ 36.2\% \\ 33\% \\ 36.2\% \\ 33\% \\ 36.2\% \\ 33\% \\ 36.2\% \\ \hline \\ 37\% \\ 35\% \\ 31\% \\ 35\% \\ 31\% \\ \hline \\ 85\% \\ 81 \\ 81 \\ 85\% \\ 81\% \\ 85\% \\ 81\% \\ 85\% \\ 81\% \\ 85\% \\ 81\% \\ 81.2\% \\ 85\% \\ 81.2\% \\ 84.0\% \\ \hline \\ 5.9\% \\ \hline \\ \hline \\ All features \\ Gm hard, 3 \\ 70\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17<br>17<br>0<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                  | $\begin{array}{c} 13.2\\ 13.0\\ 0.4\\ \hline \\ \hline \\ 13\\ 14\\ 14\\ 13\\ 13\\ 13.8\\ 14.0\\ 0.8\\ \hline \\ \hline \\ 17\\ 17\\ 17\\ 16\\ 15\\ 16.4\\ 17.0\\ \hline \end{array}$                                                                                                                                                  | 18.0<br>1.3<br>Found non seiz<br>25<br>23<br>24<br>24<br>26<br>24.4<br>24.0<br>1.1<br>Found non seiz<br>3<br>4<br>3<br>4<br>3<br>6<br>3.8<br>3.0                                                                                                                                                                                                             |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>STD | 77.2%<br>76.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>5.0%<br>5.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>100%<br>100%<br>100%<br>100%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>:                     | $\begin{array}{c} 42.0\% \\ 42.0\% \\ 1.0\% \\ \hline \\ 38\% \\ 38\% \\ 38\% \\ 38\% \\ 38\% \\ 38\% \\ 38\% \\ 33\% \\ \hline \\ 33\% \\ \hline \\ 38\% \\ \hline \\ 33\% \\ \hline \\ 31\% \\ \hline \\ 85\% \\ 81\% \\ 85\% \\ 81\% \\ 85\% \\ 81\% \\ 85\% \\ 81\% \\ 85\% \\ 81\% \\ 81.2\% \\ \hline \\ \\ \\ 81.2\% \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17<br>17<br>0<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                  | 13.2         13.0         0.4         5         14         13         13.8         14.0         0.8         Found seiz         17         17         16         15         16.4         17.0         0.9                                                                                                                               | 18.0         1.3         Found non seiz         25         23         24         24         26         24.4         26         24.4         26         24.4         26         3         4         3         6         3.8         3.0         1.3                                                                                                           |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Classifier                     | 77.2%<br>76.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>:<br>:<br>Sensitivity<br>88%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>76%<br>76%<br>76%<br>76%<br>76%<br>76%<br>76%<br>76%<br>76%<br>76                                                                                                                       | $\begin{array}{r} 42.0\% \\ 42.0\% \\ 1.0\% \\ \hline \\ 1.0\% \\ \hline \\ 1.0\% \\ \hline \\ \text{All features} \\ \text{Min values} \\ 70\% \\ \text{KNN, k = 3} \\ \hline \\ \text{Selectivity} \\ 38\% \\ 35\% \\ 38\% \\ 37\% \\ 38\% \\ 35\% \\ 33\% \\ 36.2\% \\ 37\% \\ 33\% \\ 36.2\% \\ 37\% \\ 33\% \\ 36.2\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 31\% \\ \text{KNN, k = 3} \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 8$                                                                                                                                                                                                                                                                                                                                                                                                                              | 17<br>17<br>0<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>clusters<br>Num seiz<br>Num seiz<br>Num seiz                                     | 13.2           13.0           0.4           0.4           15           14           13           13.8           14.0           0.8           Found seiz           17           17           16           15           16.4           17.0           0.9                                                                                | 18.0           1.3           Found non seiz           25           23           24           26           24.4           26           24.4           26           24.4           3           4           3           6           3.8           3.0           1.3                                                                                             |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Classifier                     | 77.2%<br>76.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>88%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%                                                                                                                                                                                        | $\begin{array}{r} 42.0\% \\ 42.0\% \\ 1.0\% \\ \hline \\ 1.0\% \\ \hline \\ 1.0\% \\ \hline \\ \text{All features} \\ \text{Min values} \\ 70\% \\ \text{KNN, k = 3} \\ \hline \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 35\% \\ \hline \\ \text{KNN, k = 3} \\ \hline \\ \text{Selectivity} \\ 85\% \\ 81\% \\ 81.2\% \\ 85\% \\ 81.2\% \\ 81.2\% \\ 85\% \\ 81.2\% \\ 81.2\% \\ 85\% \\ 81.2\% \\ 81.2\% \\ 85\% \\ 81.2\% \\ 81.2\% \\ 85\% \\ 81.2\% \\ 81.2\% \\ 85\% \\ 81.2\% \\ 81.2\% \\ 85\% \\ 81.2\% \\ 81.2\% \\ 85\% \\ 81.2\% \\ 81.2\% \\ 85\% \\ 81.2\% \\ 81.2\% \\ 85\% \\ 81.2\% \\ 81.2\% \\ 85\% \\ 81.2\% \\ 81.2\% \\ 85\% \\ 81.2\% \\ 85\% \\ 81.2\% \\ 85\% \\ 81.2\% \\ 81.2\% \\ 85\% \\ 81.2\% \\ 85\% \\ 81.2\% \\ 85\% \\ 81.2\% \\ 85\% \\ 81.2\% \\ 85\% \\ 81.2\% \\ 85\% \\ 81.2\% \\ 85\% \\ 81.2\% \\ 85\% \\ 81.2\% \\ 85\% \\ 81.2\% \\ 85\% \\ 81.2\% \\ 85\% \\ 81.2\% \\ 85\% \\ 81.2\% \\ 85\% \\ 81.2\% \\ 85\% \\ 81.2\% \\ 81.2\% \\ 85\% \\ 81.2\% \\ 85\% \\ 81.2\% \\ 81.2\% \\ 85\% \\ 81.2\% \\ 81.2\% \\ 85\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.2\% \\ 81.$                                                                                                                                                                                                                                                                                                                                                                                                | 17<br>17<br>0<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                  | 13.2         13.0         0.4         5         15         14         13         13.8         14.0         0.8         Found seiz         17         16         15         16.4         17.0         0.9         Found seiz         17                                                                                                 | 18.0         1.3         25         23         24         26         24.4         26         24.4         26         3         4         3         4         3         6         3.8         3.0         1.3                                                                                                                                                 |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Classifier                     | 77.2%<br>76.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>82%<br>82%<br>82%<br>82%<br>76%<br>76%<br>80.8%<br>82.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>100%<br>94%<br>88%<br>96.4%<br>100.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>100% | $\begin{array}{r} 42.0\% \\ 42.0\% \\ 1.0\% \\ \hline \\ 8.0\% \\ 8.0\% \\ \hline \\ 38\% \\ 38\% \\ 38\% \\ 38\% \\ 38\% \\ 38\% \\ 38\% \\ 38\% \\ 38\% \\ 33\% \\ \hline \\ 38\% \\ \hline \\ 31\% \\ \hline \\ 81\% \\ 81\% \\ 81.2\% \\ \hline \\ 85\% \\ \hline \\ \hline \\ 81\% \\ \hline \\ 85\% \\ \hline \\ \hline \\ 85\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17<br>17<br>0<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                  | 13.2<br>13.0<br>0.4<br>Found seiz<br>15<br>14<br>14<br>13<br>13<br>13.8<br>14.0<br>0.8<br>Found seiz<br>17<br>17<br>16<br>15<br>16.4<br>17.0<br>0.9<br>Found seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                                                          | 18.0           1.3           Found non seiz           25           23           24           24           26           24.4           26           24.4           26           3           4           3           6           3.8           3.0           1.3                                                                                               |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Classifier                     | 77.2%<br>76.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:                                                                                                                                                                                   | $\begin{array}{r} 42.0\% \\ 42.0\% \\ 1.0\% \\ \hline \\ 1.0\% \\ \hline \\ 1.0\% \\ \hline \\ 1.0\% \\ \hline \\ 38\% \\ 35\% \\ 38\% \\ 37\% \\ 38\% \\ 35\% \\ 33\% \\ 36.2\% \\ 37.0\% \\ \hline \\ 2.2\% \\ \hline \\ \hline \\ 38\% \\ 37.0\% \\ \hline \\ 37.0\% \\ \hline \\ 2.2\% \\ \hline \\ \hline \\ 38\% \\ 36.2\% \\ \hline \\ 37.0\% \\ \hline \\ 85\% \\ 85\% \\ \hline \\ 81\% \\ 81\% \\ 81\% \\ 81\% \\ 81.2\% \\ 85\% \\ \hline \\ 81.2\% \\ 81.2\% \\ \hline \\ 85\% \\ \hline \\ \hline \\ \hline \\ 89\% \\ 85\% \\ \hline \\ 85\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17<br>17<br>0<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>clusters<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17 | 13.2         13.0         0.4         0.4         15         14         13         13.8         14.0         0.8         Found seiz         17         16         15         16.4         17.0         0.9         Found seiz         17         17         16.1         17.0         17.1         17         17         17         17 | 18.0           1.3           25           23           24           26           24.4           24.0           1.1           Found non seiz           3           4           3           6           3.8           3.0           1.3                                                                                                                        |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Classifier                     | 77.2%<br>76.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>88%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%                                                                                                                                                                                        | $\begin{array}{r} 42.0\% \\ 42.0\% \\ 1.0\% \\ \hline \\ 81\% \\ 81\% \\ 81\% \\ 38\% \\ 37\% \\ 38\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 36.2\% \\ 37\% \\ 33\% \\ 36.2\% \\ 37\% \\ 35\% \\ 81\% \\ 85\% \\ 81\% \\ 81.2\% \\ 85\% \\ 81.2\% \\ 85\% \\ 84.0\% \\ 5.9\% \\ \hline \\ \hline \\ RI1 features \\ Gm hard, 3 \\ 70\% \\ KNN, k = 3 \\ 5.9\% \\ \hline \\ RNN, k = 3 \\ 5.9\% \\ \hline \\ 84.0\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 84\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17<br>17<br>0<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                  | 13.2         13.0         0.4         0.4         15         14         13         13.8         14.0         0.8         Found seiz         17         17         16         15         16.4         17.0         0.9         Found seiz         17         16         16         17         16                                        | 18.0         1.3         25         23         24         26         24.4         24.0         1.1         Found non seiz         3         4         3         4         3         6         3.8         3.0         1.3                                                                                                                                    |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier | 77.2%<br>76.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>82%<br>82%<br>82%<br>76%<br>76%<br>80.8%<br>82.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>100%<br>100%<br>100.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>100%<br>100.0%<br>5.4%     | $\begin{array}{r} 42.0\% \\ 42.0\% \\ 1.0\% \\ \hline \\ 1.0\% \\ \hline \\ 1.0\% \\ \hline \\ 1.0\% \\ \hline \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 33\% \\ \hline \\ 38\% \\ 37\% \\ 33\% \\ \hline \\ 38\% \\ 37\% \\ 33\% \\ \hline \\ 38\% \\ 37\% \\ \hline \\ 38\% \\ 37\% \\ \hline \\ 38\% \\ 33\% \\ \hline \\ 38\% \\ 37\% \\ \hline \\ 81.2\% \\ 81\% \\ 81\% \\ 81\% \\ 81\% \\ 81\% \\ 81\% \\ 81\% \\ 81.2\% \\ 85\% \\ 85\% \\ 81\% \\ 81.2\% \\ \hline \\ 81.2\% \\ 81\% \\ 81\% \\ 81\% \\ 81\% \\ 81\% \\ 81\% \\ 81\% \\ 81\% \\ 81\% \\ 81\% \\ 81\% \\ 81\% \\ 81\% \\ 81\% \\ 81\% \\ 81\% \\ 81\% \\ 81\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 84\% \\ 73\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17<br>17<br>0<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                  | 13.2         13.0         0.4         0.4         15         14         13         13.8         14.0         0.8         7         17         16         15         16.4         17.0         0.9         Found seiz         17         16         16         16         16         16         16         16         16                | 18.0           1.3           25           23           24           24           24           24           26           24.4           24.0           1.1           6           3.4           3           6           3.8           3.0           1.3           Found non seiz           2           3           6           3.8           3.0           1.3 |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Classifier                     | 77.2%<br>76.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>88%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%<br>82%                                                                                                                                                                                        | $\begin{array}{r} 42.0\% \\ 42.0\% \\ 1.0\% \\ \hline \\ 81\% \\ 81\% \\ 81\% \\ 38\% \\ 37\% \\ 38\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 38\% \\ 37\% \\ 36.2\% \\ 37\% \\ 33\% \\ 36.2\% \\ 37\% \\ 35\% \\ 81\% \\ 85\% \\ 81\% \\ 81.2\% \\ 85\% \\ 81.2\% \\ 85\% \\ 84.0\% \\ 5.9\% \\ \hline \\ \hline \\ RI1 features \\ Gm hard, 3 \\ 70\% \\ KNN, k = 3 \\ 5.9\% \\ \hline \\ RNN, k = 3 \\ 5.9\% \\ \hline \\ 84.0\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 84\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17<br>17<br>0<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                  | 13.2         13.0         0.4         0.4         15         14         13         13.8         14.0         0.8         Found seiz         17         17         16         15         16.4         17.0         0.9         Found seiz         17         16         16         17         16                                        | 18.0         1.3         25         23         24         26         24.4         24.0         1.1         Found non seiz         3         4         3         4         3         6         3.8         3.0         1.3                                                                                                                                    |

| Features<br>Cluster a                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                  | All features<br>Gm fuzzy, 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | aluatora                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PLS-DA                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                  | 80%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | clusters                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Classifier:                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                  | KNN, k = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Classifier                                                                                                                                                                                                         | Sensitivity                                                                                                                                                                                                                                                                                                      | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Num seiz                                                                                                                                                                                                                                                                                                             | Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Found non sei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                    | 100%                                                                                                                                                                                                                                                                                                             | 77%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17                                                                                                                                                                                                                                                                                                                   | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                    | 94%                                                                                                                                                                                                                                                                                                              | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17                                                                                                                                                                                                                                                                                                                   | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                    | 94%                                                                                                                                                                                                                                                                                                              | 80%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17                                                                                                                                                                                                                                                                                                                   | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                    | 94%                                                                                                                                                                                                                                                                                                              | 76%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17                                                                                                                                                                                                                                                                                                                   | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                    | 88%                                                                                                                                                                                                                                                                                                              | 79%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17                                                                                                                                                                                                                                                                                                                   | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Mean                                                                                                                                                                                                               | 94.0%                                                                                                                                                                                                                                                                                                            | 82.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17                                                                                                                                                                                                                                                                                                                   | 16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Median                                                                                                                                                                                                             | 94.0%                                                                                                                                                                                                                                                                                                            | 79.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17                                                                                                                                                                                                                                                                                                                   | 16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| STD                                                                                                                                                                                                                | 4.2%                                                                                                                                                                                                                                                                                                             | 10.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                    | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Features                                                                                                                                                                                                           | used:                                                                                                                                                                                                                                                                                                            | All features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Cluster a                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                  | Gm fuzzy, 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | clusters                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PLS-DA                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                  | 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Classifier                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                  | KNN, $k = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                    | Sensitivity                                                                                                                                                                                                                                                                                                      | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Num seiz                                                                                                                                                                                                                                                                                                             | Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Found non seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                    | 100%                                                                                                                                                                                                                                                                                                             | 94%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17                                                                                                                                                                                                                                                                                                                   | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                    | 94%                                                                                                                                                                                                                                                                                                              | 89%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17                                                                                                                                                                                                                                                                                                                   | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                    | 94%                                                                                                                                                                                                                                                                                                              | 84%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17                                                                                                                                                                                                                                                                                                                   | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                    | $94\% \\ 82\%$                                                                                                                                                                                                                                                                                                   | 62%<br>82%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17                                                                                                                                                                                                                                                                                                                   | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Moor                                                                                                                                                                                                               | 92.8%                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                                                                                                                                                                                                                                                                                                                   | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Mean                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                  | 82.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17                                                                                                                                                                                                                                                                                                                   | 15.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Median<br>STD                                                                                                                                                                                                      | 94.0%                                                                                                                                                                                                                                                                                                            | 84.0%<br>12.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17<br>0                                                                                                                                                                                                                                                                                                              | 16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.0 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| UID                                                                                                                                                                                                                | 0.070                                                                                                                                                                                                                                                                                                            | 12.270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | U                                                                                                                                                                                                                                                                                                                    | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>D</b>                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                  | A 11 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Features                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                  | All features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | aluatora                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Cluster a<br>PLS-DA                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                  | Gm fuzzy, 4<br>70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | clusters                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Classifier:                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                  | 70%<br>KNN, k = 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Classifier                                                                                                                                                                                                         | Sensitivity                                                                                                                                                                                                                                                                                                      | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Num seiz                                                                                                                                                                                                                                                                                                             | Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Found non seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                    | 100%                                                                                                                                                                                                                                                                                                             | 81%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17                                                                                                                                                                                                                                                                                                                   | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                    | 94%                                                                                                                                                                                                                                                                                                              | 84%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17                                                                                                                                                                                                                                                                                                                   | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                    | 94%                                                                                                                                                                                                                                                                                                              | 80%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17                                                                                                                                                                                                                                                                                                                   | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                    | 88%                                                                                                                                                                                                                                                                                                              | 79%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17                                                                                                                                                                                                                                                                                                                   | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1                                                                                                                                                                                                                  | 88%                                                                                                                                                                                                                                                                                                              | 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17                                                                                                                                                                                                                                                                                                                   | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ů,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Mean                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                      | 15.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Mean                                                                                                                                                                                                               | 92.8%                                                                                                                                                                                                                                                                                                            | 79.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17                                                                                                                                                                                                                                                                                                                   | 15.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Median<br>STD<br>Features<br>Cluster a                                                                                                                                                                             | 92.8%<br>94.0%<br>5.0%<br>used:<br>nalysis:                                                                                                                                                                                                                                                                      | 79.8%<br>80.0%<br>3.3%<br>All features<br>Gm fuzzy, 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{array}{r} 17\\ 17\\ 0\end{array} $                                                                                                                                                                                                                                                                          | 15.8<br>16.0<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \begin{array}{r} 4.0 \\ 4.0 \\ 0.7 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                                   | 92.8%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:                                                                                                                                                                                                                                                         | 79.8%<br>80.0%<br>3.3%<br>All features<br>Gm fuzzy, 4<br>70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ \begin{array}{r} 17\\ 17\\ 0\end{array} $                                                                                                                                                                                                                                                                          | 16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Median<br>STD<br>Features<br>Cluster a                                                                                                                                                                             | 92.8%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:                                                                                                                                                                                                                                                         | 79.8%<br>80.0%<br>3.3%<br>All features<br>Gm fuzzy, 4<br>70%<br>KNN, k = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17<br>17<br>0<br>clusters                                                                                                                                                                                                                                                                                            | 16.0<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.0<br>0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                                   | 92.8%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:                                                                                                                                                                                                                                                         | 79.8%<br>80.0%<br>3.3%<br>All features<br>Gm fuzzy, 4<br>70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ \begin{array}{r} 17\\ 17\\ 0\end{array} $                                                                                                                                                                                                                                                                          | 16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.0<br>0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                                   | 92.8%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br><br>Sensitivity                                                                                                                                                                                                                                      | 79.8%<br>80.0%<br>3.3%<br>All features<br>Gm fuzzy, 4<br>70%<br>KNN, k = 1<br>Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17<br>17<br>0<br>clusters<br>Num seiz                                                                                                                                                                                                                                                                                | 16.0<br>0.8<br>Found seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.0<br>0.7<br>Found non seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                                   | 92.8%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>94%                                                                                                                                                                                                                                   | 79.8%<br>80.0%<br>3.3%<br>All features<br>Gm fuzzy, 4<br>70%<br>KNN, k = 1<br>Selectivity<br>84%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17<br>17<br>0<br>clusters<br>Num seiz<br>17                                                                                                                                                                                                                                                                          | 16.0<br>0.8<br>Found seiz<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.0<br>0.7<br>Found non seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                                   | 92.8%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>94%<br>94%                                                                                                                                                                                                                            | 79.8%<br>80.0%<br>3.3%<br>All features<br>Gm fuzzy, 4<br>70%<br>KNN, k = 1<br>Selectivity<br>84%<br>80%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17<br>17<br>0<br>clusters<br>Num seiz<br>17<br>17                                                                                                                                                                                                                                                                    | 16.0<br>0.8<br>Found seiz<br>16<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.0<br>0.7<br>Found non seiz<br>3<br>4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                                   | 92.8%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>94%<br>94%                                                                                                                                                                                                                       | 79.8%<br>80.0%<br>3.3%<br>All features<br>Gm fuzzy, 4<br>70%<br>KNN, k = 1<br>Selectivity<br>84%<br>80%<br>80%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17<br>17<br>0<br>clusters<br>Num seiz<br>17<br>17<br>17                                                                                                                                                                                                                                                              | 16.0<br>0.8<br>Found seiz<br>16<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.0<br>0.7<br>Found non seiz<br>3<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                                   | 92.8%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>94%<br>94%<br>94%<br>94%                                                                                                                                                                                                              | 79.8%<br>80.0%<br>3.3%<br>All features<br>Gm fuzzy, 4<br>70%<br>KNN, k = 1<br>Selectivity<br>84%<br>80%<br>80%<br>76%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17<br>17<br>0<br>clusters<br><u>Num seiz</u><br>17<br>17<br>17<br>17                                                                                                                                                                                                                                                 | 16.0<br>0.8<br>Found seiz<br>16<br>16<br>16<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.0<br>0.7<br>Found non seiz<br>3<br>4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Mean                                                                                                                                     | $\begin{array}{r} 92.8\% \\ 94.0\% \\ 5.0\% \\ \hline \\ \text{used:} \\ \text{nalysis:} \\ \text{variance:} \\ \hline \\ \text{Sensitivity} \\ 94\% \\ 94\% \\ 94\% \\ 94\% \\ 88\% \\ \hline 92.8\% \\ 94.0\% \\ \end{array}$                                                                                  | 79.8%<br>80.0%<br>3.3%<br>All features<br>Gm fuzzy, 4<br>70%<br>KNN, k = 1<br>Selectivity<br>84%<br>80%<br>80%<br>80%<br>88%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17<br>17<br>0<br>clusters<br>17<br>17<br>17<br>17<br>17                                                                                                                                                                                                                                                              | 16.0<br>0.8<br>Found seiz<br>16<br>16<br>16<br>16<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.0<br>0.7<br>Found non seiz<br>3<br>4<br>5<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean                                                                                                                                             | 92.8%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%                                                                                                                                                                    | $\begin{array}{c} 79.8\% \\ 80.0\% \\ 3.3\% \\ \hline \\ \text{All features} \\ \text{Gm fuzzy, 4} \\ 70\% \\ \text{KNN, k = 1} \\ \text{Selectivity} \\ 84\% \\ 80\% \\ 80\% \\ 80\% \\ 86\% \\ 81.6\% \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17<br>17<br>0<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                                                                                                                                                                                                  | 16.0<br>0.8<br>Found seiz<br>16<br>16<br>16<br>16<br>15<br>15.8                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.0<br>0.7<br>Found non seiz<br>3<br>4<br>4<br>5<br>2<br>3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Mean                                                                                                                                     | $\begin{array}{r} 92.8\% \\ 94.0\% \\ 5.0\% \\ \hline \\ \text{used:} \\ \text{nalysis:} \\ \text{variance:} \\ \hline \\ \text{Sensitivity} \\ 94\% \\ 94\% \\ 94\% \\ 94\% \\ 88\% \\ \hline 92.8\% \\ 94.0\% \\ \end{array}$                                                                                  | $\begin{array}{c} 79.8\% \\ \hline 80.0\% \\ \hline 3.3\% \\ \hline \\ \text{All features} \\ \text{Gm fuzzy, 4} \\ 70\% \\ \text{KNN, k = 1} \\ \hline \\ \text{Selectivity} \\ \hline \\ 84\% \\ 80\% \\ 80\% \\ 76\% \\ 88\% \\ \hline \\ 81.6\% \\ \hline \\ 80.0\% \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17<br>17<br>0<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                                                                                                                                                                                                  | 16.0<br>0.8<br>Found seiz<br>16<br>16<br>16<br>16<br>15<br>15.8<br>16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.0<br>0.7<br>Found non seiz<br>3<br>4<br>5<br>2<br>3.6<br>4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Mean                                                                                                                                     | 92.8%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%                                                                                                                                                                    | $\begin{array}{c} 79.8\% \\ \hline 80.0\% \\ \hline 3.3\% \\ \hline \\ \text{All features} \\ \text{Gm fuzzy, 4} \\ 70\% \\ \text{KNN, k = 1} \\ \hline \\ \text{Selectivity} \\ \hline \\ 84\% \\ 80\% \\ 80\% \\ 76\% \\ 88\% \\ \hline \\ 81.6\% \\ \hline \\ 80.0\% \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17<br>17<br>0<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                                                                                                                                                                                                  | 16.0<br>0.8<br>Found seiz<br>16<br>16<br>16<br>16<br>15<br>15.8<br>16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.0<br>0.7<br>Found non seiz<br>3<br>4<br>5<br>2<br>3.6<br>4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a                                                                                                   | 92.8%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%                                                                                                                                                                    | 79.8%<br>80.0%<br>3.3%<br>All features<br>Gm fuzzy, 4<br>70%<br>KNN, k = 1<br>Selectivity<br>84%<br>80%<br>80%<br>76%<br>88%<br>81.6%<br>81.6%<br>81.6%<br>4.6%<br>All features<br>Gm fuzzy, 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17<br>17<br>0<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0                                                                                                                                                                                                                                 | 16.0<br>0.8<br>Found seiz<br>16<br>16<br>16<br>16<br>15<br>15.8<br>16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.0<br>0.7<br>Found non seiz<br>3<br>4<br>5<br>2<br>3.6<br>4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                 | 92.8%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94.0%<br>2.7%<br>used:<br>nalysis:<br>variance:                                                                                                                        | 79.8%<br>80.0%<br>3.3%<br>All features<br>Gm fuzzy, 4<br>70%<br>KNN, k = 1<br>Selectivity<br>84%<br>80%<br>80%<br>80%<br>80%<br>88%<br>81.6%<br>81.6%<br>81.6%<br>81.6%<br>All features<br>Gm fuzzy, 4<br>70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17<br>17<br>0<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>0<br>clusters                                                                                                                                                                                                                            | 16.0<br>0.8<br>Found seiz<br>16<br>16<br>16<br>16<br>15<br>15.8<br>16.0<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.0<br>0.7<br>Found non seiz<br>3<br>4<br>5<br>2<br>3.6<br>4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a                                                                                                   | 92.8%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%                                                                                                                                                                    | 79.8%<br>80.0%<br>3.3%<br>All features<br>Gm fuzzy, 4<br>70%<br>KNN, k = 1<br>Selectivity<br>84%<br>80%<br>80%<br>76%<br>80%<br>76%<br>88%<br>81.6%<br>80.0%<br>4.6%<br>All features<br>Gm fuzzy, 4<br>70%<br>QDA, Prior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17<br>17<br>0<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>clusters<br>prob. weight:                                                                                                                                                                                                          | 16.0<br>0.8<br>Found seiz<br>16<br>16<br>16<br>15<br>15.8<br>16.0<br>0.4<br>s[1 1]                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.0<br>0.7<br>Found non seiz<br>3<br>4<br>5<br>2<br>3.6<br>4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                 | 92.8%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%                                                                                                                                                                    | $\begin{array}{c} 79.8\% \\ \hline 80.0\% \\ \hline 3.3\% \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17<br>17<br>0<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>clusters<br>prob. weight:<br>Num seiz                                                                                                                                                                                              | 16.0           0.8           16           16           16           16           16           16           16           16           16           16           16           15           15.8           16.0           0.4                                                                                                                                                                                                                                                                                              | 4.0<br>0.7<br>Found non seiz<br>3<br>4<br>4<br>5<br>2<br>3.6<br>4.0<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                 | 92.8%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>94%<br>94%<br>94%<br>94%<br>88%<br>92.8%<br>94.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%                                                                                                                    | 79.8%<br>80.0%<br>3.3%<br>All features<br>Gm fuzzy, 4<br>70%<br>KNN, k = 1<br>Selectivity<br>84%<br>80%<br>80%<br>80%<br>80%<br>80%<br>80%<br>80%<br>80%<br>80%<br>81.6%<br>81.6%<br>81.6%<br>81.6%<br>81.6%<br>81.6%<br>81.6%<br>80.0%<br>81.6%<br>80.0%<br>81.6%<br>81.6%<br>85%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17<br>17<br>0<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>clusters<br>prob. weight:<br>Num seiz<br>17                                                                                                                                                                                              | 16.0           0.8           16           16           16           16           16           16.0           0.4           s[1 1]           Found seiz           17                                                                                                                                                                                                                                                                                                                                                     | 4.0<br>0.7<br>Found non seiz<br>3<br>4<br>4<br>5<br>2<br>3.6<br>4.0<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                 | 92.8%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%                                                                                                                                                                    | 79.8%<br>80.0%<br>3.3%<br>All features<br>Gm fuzzy, 4<br>70%<br>KNN, k = 1<br>Selectivity<br>84%<br>80%<br>80%<br>76%<br>80%<br>76%<br>88%<br>81.6%<br>80.0%<br>4.6%<br>All features<br>Gm fuzzy, 4<br>70%<br>QDA, Prior<br>Selectivity<br>85%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17<br>17<br>0<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>clusters<br>prob. weight:<br>Num seiz<br>17<br>17                                                                                                                                                                                  | 16.0<br>0.8<br>Found seiz<br>16<br>16<br>16<br>15<br>15.8<br>16.0<br>0.4<br>s[1 1]<br>Found seiz<br>17<br>17                                                                                                                                                                                                                                                                                                                                                                                                            | 4.0<br>0.7<br>Found non seiz<br>3<br>4<br>4<br>5<br>2<br>3.6<br>4.0<br>1.1<br>Found non seiz<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                 | 92.8%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>92.8%<br>94.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>100%<br>94%                                                                                       | $\begin{array}{c} 79.8\% \\ \hline 80.0\% \\ \hline 3.3\% \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17<br>17<br>0<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                                                                                                                                                              | 16.0           0.8           16           16           16           15           15.8           16.0           0.4           s[1 1]           Found seiz           17           16                                                                                                                                                                                                                                                                                                                                      | 4.0<br>0.7<br>Found non seiz<br>3<br>4<br>4<br>5<br>2<br>3.6<br>4.0<br>1.1<br>Found non seiz<br>3<br>3<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                 | 92.8%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>94%<br>94%<br>94%<br>94%<br>88%<br>92.8%<br>94.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>100%<br>94%                                                                                                     | $\begin{array}{c} 79.8\% \\ 80.0\% \\ 3.3\% \\ \hline \\ 80.0\% \\ 3.3\% \\ \hline \\ \\ All features \\ Gm fuzzy, 4 \\ 70\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 81.6\% \\ 81.6\% \\ 81.6\% \\ 81.6\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 89\% \\ 76\% \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17<br>17<br>0<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>clusters<br>prob. weight:<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                                                                                                          | 16.0           0.8           16           16           16           16           16.0           0.4           s[1 1]           Found seiz           17           16           16                                                                                                                                                                                                                                                                                                                                        | 4.0<br>0.7<br>Found non seiz<br>3<br>4<br>4<br>5<br>2<br>3.6<br>4.0<br>1.1<br>Found non seiz<br>3<br>3<br>2<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                                   | 92.8%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%                                                                                                                                                                    | 79.8%<br>80.0%<br>3.3%<br>All features<br>Gm fuzzy, 4<br>70%<br>KNN, k = 1<br>Selectivity<br>84%<br>80%<br>80%<br>80%<br>80%<br>80%<br>88%<br>81.6%<br>88.0%<br>81.6%<br>80.0%<br>4.6%<br>All features<br>Gm fuzzy, 4<br>70%<br>QDA, Prior<br>Selectivity<br>85%<br>89%<br>76%<br>73%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17<br>17<br>0<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>clusters<br>prob. weight:<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                                                                                                          | 16.0<br>0.8<br>Found seiz<br>16<br>16<br>16<br>15<br>15.8<br>16.0<br>0.4<br>s[1 1]<br>Found seiz<br>17<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>15<br>15.8<br>16.0<br>0.4<br>17<br>17<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16                                                                                                                                                                                                                                                                   | 4.0<br>0.7<br>Found non seiz<br>3<br>4<br>4<br>5<br>2<br>3.6<br>4.0<br>1.1<br>Found non seiz<br>3<br>3<br>2<br>5<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                           | 92.8%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>94%<br>94%<br>94%<br>94%<br>94%                                                                                   | $\begin{array}{c} 79.8\% \\ \hline 80.0\% \\ \hline 3.3\% \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17<br>17<br>0<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                                                                                                                                                              | 16.0<br>0.8<br>Found seiz<br>16<br>16<br>16<br>15<br>15.8<br>16.0<br>0.4<br>s[1 1]<br>Found seiz<br>17<br>16<br>16<br>16<br>16<br>16<br>16<br>16.0<br>0.4                                                                                                                                                                                                                                                                                                                                                               | 4.0<br>0.7<br>Found non seiz<br>3<br>4<br>4<br>5<br>2<br>3.6<br>4.0<br>1.1<br>Found non seiz<br>3<br>3<br>2<br>5<br>6<br>3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                           | 92.8%<br>94.0%<br>5.0%<br>used:<br>malysis:<br>variance:<br>Sensitivity<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94.0%<br>2.7%<br>used:<br>malysis:<br>variance:<br>Sensitivity<br>100%<br>100%<br>100%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%                                       | $\begin{array}{c} 79.8\% \\ 80.0\% \\ 3.3\% \\ \hline \\ 80.0\% \\ 3.3\% \\ \hline \\ \\ All features \\ Gm fuzzy, 4 \\ 70\% \\ KNN, k = 1 \\ \hline \\ Selectivity \\ 84\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 81.6\% \\ \hline \\ All features \\ Gm fuzzy, 4 \\ 70\% \\ QDA, Prior \\ Selectivity \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 81.6\% \\ 81.6\% \\ 85.0\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17<br>17<br>0<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>0<br>clusters<br>prob. weight:<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                                                                                         | 16.0           0.8           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16                                                         | 4.0<br>0.7<br>Found non seiz<br>3<br>4<br>4<br>5<br>2<br>3.6<br>4.0<br>1.1<br>Found non seiz<br>3<br>3<br>2<br>5<br>6<br>3.8<br>3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                           | 92.8%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>94%<br>94%<br>94%<br>94%<br>94%                                                                                   | $\begin{array}{c} 79.8\% \\ \hline 80.0\% \\ \hline 3.3\% \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17<br>17<br>0<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                                                                                                                                                              | 16.0<br>0.8<br>Found seiz<br>16<br>16<br>16<br>15<br>15.8<br>16.0<br>0.4<br>s[1 1]<br>Found seiz<br>17<br>16<br>16<br>16<br>16<br>16<br>16<br>16.0<br>0.4                                                                                                                                                                                                                                                                                                                                                               | 4.0<br>0.7<br>Found non seiz<br>3<br>4<br>4<br>5<br>2<br>3.6<br>4.0<br>1.1<br>Found non seiz<br>3<br>3<br>2<br>5<br>6<br>3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                           | 92.8%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>94%<br>94%<br>94%<br>94%<br>94%<br>94.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94.0%<br>3.3%                                                           | $\begin{array}{c} 79.8\% \\ 80.0\% \\ 3.3\% \\ \hline \\ 80.0\% \\ 3.3\% \\ \hline \\ \\ All features \\ Gm fuzzy, 4 \\ 70\% \\ KNN, k = 1 \\ \hline \\ Selectivity \\ 84\% \\ 80\% \\ 80\% \\ 80\% \\ 86\% \\ \hline \\ 88\% \\ 81.6\% \\ 88.0\% \\ \hline \\ 88\% \\ 81.6\% \\ \hline \\ 88\% \\ \hline \\ 81.6\% \\ \hline \\ QDA, Prior \\ \hline \\ Selectivity \\ 85\% \\ 89\% \\ \hline \\ 85\% \\ 89\% \\ \hline \\ 76\% \\ 76\% \\ 76\% \\ 73\% \\ \hline \\ 81.6\% \\ \hline \\ 85.0\% \\ \hline \\ 6.8\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17<br>17<br>0<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>0<br>clusters<br>prob. weight:<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                                                                                         | 16.0           0.8           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16                                                         | 4.0<br>0.7<br>Found non seiz<br>3<br>4<br>4<br>5<br>2<br>3.6<br>4.0<br>1.1<br>Found non seiz<br>3<br>3<br>2<br>5<br>6<br>3.8<br>3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Mean<br>Median<br>STD<br>Features             | 92.8%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>94%<br>94%<br>94%<br>94%<br>94%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>100%<br>100%<br>100%<br>100%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94                                 | $\begin{array}{c} 79.8\% \\ 80.0\% \\ 3.3\% \\ \hline \\ 80.0\% \\ 3.3\% \\ \hline \\ \\ All features \\ Gm fuzzy, 4 \\ 70\% \\ KNN, k = 1 \\ \hline \\ Selectivity \\ 84\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 81.6\% \\ \hline \\ All features \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 6.8\% \\ \hline \\ All features \\ All features \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17<br>17<br>0<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>clusters<br>prob. weight:<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0                                                                                                                 | 16.0           0.8           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16                                                         | 4.0<br>0.7<br>Found non seiz<br>3<br>4<br>4<br>5<br>2<br>3.6<br>4.0<br>1.1<br>Found non seiz<br>3<br>3<br>2<br>5<br>6<br>3.8<br>3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Cluster a<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>STD                   | 92.8%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94.0%<br>2.7%<br>used:<br>nalysis:<br>Sensitivity<br>100%<br>100%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94                                                      | 79.8%<br>80.0%<br>3.3%<br>All features<br>Gm fuzzy, 4<br>70%<br>KNN, k = 1<br>Selectivity<br>84%<br>80%<br>80%<br>80%<br>80%<br>80%<br>80%<br>80%<br>80%<br>80%<br>80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17<br>17<br>0<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>clusters<br>prob. weight:<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0                                                                                                                 | 16.0           0.8           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16                                                         | 4.0<br>0.7<br>Found non seiz<br>3<br>4<br>4<br>5<br>2<br>3.6<br>4.0<br>1.1<br>Found non seiz<br>3<br>3<br>2<br>5<br>6<br>3.8<br>3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Mean<br>Median<br>STD<br>Features             | 92.8%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>94%<br>94%<br>94%<br>94%<br>94%<br>94.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94                                                        | 79.8%           80.0%           3.3%           All features           Gm fuzzy, 4           70%           KNN, k = 1           Selectivity           84%           80%           80%           80%           80%           80%           80%           80%           80%           80%           80%           80%           80%           81.6%           80.0%           QDA, Prior           Selectivity           85%           89%           76%           73%           81.6%           81.6%           85.0%           85.0%           85.0%           85.0%           81.6%           81.6%           All features           Gm fuzzy, 4           70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17<br>17<br>0<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>clusters<br>prob. weight:<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>0                                                                                                                  | 16.0<br>0.8<br>Found seiz<br>16<br>16<br>16<br>15<br>15.8<br>16.0<br>0.4<br>(17)<br>17<br>16<br>16<br>16<br>16<br>16<br>17<br>17<br>16<br>16<br>16<br>16<br>15<br>15.8<br>16.0<br>0.4<br>(16)<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15                                                                                                                                                                                                                                                               | 4.0<br>0.7<br>Found non seiz<br>3<br>4<br>4<br>5<br>2<br>3.6<br>4.0<br>1.1<br>Found non seiz<br>3<br>3<br>2<br>5<br>6<br>3.8<br>3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                             | 92.8%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>94%<br>94%<br>94%<br>94%<br>94%<br>94.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94                                                        | 79.8%<br>80.0%<br>3.3%<br>All features<br>Gm fuzzy, 4<br>70%<br>KNN, k = 1<br>Selectivity<br>84%<br>80%<br>80%<br>76%<br>88%<br>81.6%<br>80.0%<br>4.6%<br>All features<br>Gm fuzzy, 4<br>70%<br>85%<br>85%<br>85%<br>85%<br>85%<br>85%<br>85%<br>85%<br>85%<br>85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17<br>17<br>0<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>clusters<br>prob. weight:<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                                                                | 16.0<br>0.8<br>Found seiz<br>16<br>16<br>16<br>15<br>15.8<br>16.0<br>0.4<br>s[1 1]<br>Found seiz<br>17<br>16<br>16<br>16<br>16<br>16<br>0.4<br>s[1 1]<br>s[1 0]<br>s[10 1]                                                                                                                                                                                                                                                                                                                                              | 4.0<br>0.7<br>Found non seiz<br>3<br>4<br>4<br>5<br>2<br>3.6<br>4.0<br>1.1<br>5<br>6<br>3.8<br>3.0<br>1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                             | 92.8%<br>94.0%<br>5.0%<br>used:<br>malysis:<br>variance:<br>Sensitivity<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94.0%<br>2.7%<br>used:<br>malysis:<br>variance:<br>Sensitivity<br>100%<br>100%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94                                  | $\begin{array}{c} 79.8\% \\ 80.0\% \\ 3.3\% \\ \hline \\ 80.0\% \\ 3.3\% \\ \hline \\ \\ All features \\ Gm fuzzy, 4 \\ 70\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80.0\% \\ 4.6\% \\ \hline \\ All features \\ Gm fuzzy, 4 \\ 70\% \\ 81.6\% \\ 85.0\% \\ 6.8\% \\ \hline \\ All features \\ Gm fuzzy, 4 \\ 70\% \\ QDA, Prior \\ Selectivity \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17<br>17<br>0<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>clusters<br>prob. weight:<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>0<br>clusters<br>prob. weight:<br>Num seiz<br>Num seiz<br>Num seiz<br>Num seiz<br>Num seiz<br>Num seiz<br>Num seiz<br>Num seiz                                    | 16.0<br>0.8<br>Found seiz<br>16<br>16<br>16<br>15<br>15.8<br>16.0<br>0.4<br>(11)<br>Found seiz<br>17<br>17<br>16<br>16<br>16<br>16<br>16<br>16<br>15<br>15.8<br>16.0<br>0.4<br>(11)<br>Found seiz<br>[10 1]<br>Found seiz                                                                                                                                                                                                                                                                                               | 4.0<br>0.7<br>Found non seiz<br>3<br>4<br>4<br>5<br>2<br>3.6<br>4.0<br>1.1<br>Found non seiz<br>3<br>2<br>5<br>6<br>3.8<br>3.0<br>1.6<br>Found non seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                             | 92.8%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94                                                 | $\begin{array}{c} 79.8\% \\ 80.0\% \\ 3.3\% \\ \hline \\ 80.0\% \\ 3.3\% \\ \hline \\ \\ All features \\ Gm fuzzy, 4 \\ 70\% \\ KNN, k = 1 \\ Selectivity \\ 84\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 86\% \\ \hline \\ 88\% \\ 81.6\% \\ 81.6\% \\ \hline \\ 81.6\% \\ \hline \\ 81.6\% \\ \hline \\ 00\% \\ 4.6\% \\ \hline \\ 00\% \\ \hline \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ \hline \\ 85\% \\ \hline \\ 85\% \\ \hline \\ 85.0\% \\ \hline \\ 6.8\% \\ \hline \\ All features \\ Gm fuzzy, 4 \\ 70\% \\ \hline \\ QDA, Prior \\ Selectivity \\ 81\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17<br>17<br>0<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>clusters<br>prob. weight:<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                                                                | 16.0<br>0.8<br>Found seiz<br>16<br>16<br>16<br>15<br>15.8<br>16.0<br>0.4<br>(17)<br>17<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>15<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                           | 4.0<br>0.7<br>Found non seiz<br>3<br>4<br>4<br>5<br>2<br>3.6<br>4.0<br>1.1<br>5<br>6<br>3.8<br>3.0<br>1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                             | 92.8%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>94%<br>94%<br>94%<br>94%<br>94.0%<br>3.3%                                                           | 79.8%<br>80.0%<br>3.3%<br>All features<br>Gm fuzzy, 4<br>70%<br>KNN, k = 1<br>Selectivity<br>84%<br>80%<br>80%<br>80%<br>86%<br>88%<br>81.6%<br>80.0%<br>4.6%<br>All features<br>Gm fuzzy, 4<br>70%<br>QDA, Prior<br>Selectivity<br>85%<br>89%<br>76%<br>73%<br>81.6%<br>85.0%<br>6.8%<br>All features<br>Gm fuzzy, 4<br>70%<br>85.0%<br>6.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17<br>17<br>0<br>clusters<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                                                                                                                                                                    | 16.0<br>0.8<br>Found seiz<br>16<br>16<br>16<br>15<br>15.8<br>16.0<br>0.4<br>(11)<br>Found seiz<br>17<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>15<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                   | 4.0<br>0.7<br>Found non sei:<br>3<br>4<br>4<br>5<br>2<br>3.6<br>4.0<br>1.1<br>Found non sei:<br>3<br>2<br>5<br>6<br>3.8<br>3.0<br>1.6<br>Found non sei:<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                             | 92.8%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94                                                 | $\begin{array}{c} 79.8\% \\ 80.0\% \\ 3.3\% \\ \hline \\ 80.0\% \\ 3.3\% \\ \hline \\ \\ All features \\ Gm fuzzy, 4 \\ 70\% \\ KNN, k = 1 \\ Selectivity \\ 84\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 86\% \\ \hline \\ 88\% \\ 81.6\% \\ 81.6\% \\ \hline \\ 81.6\% \\ \hline \\ 81.6\% \\ \hline \\ 00\% \\ 4.6\% \\ \hline \\ 00\% \\ \hline \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ \hline \\ 85\% \\ \hline \\ 85\% \\ \hline \\ 85.0\% \\ \hline \\ 6.8\% \\ \hline \\ All features \\ Gm fuzzy, 4 \\ 70\% \\ \hline \\ QDA, Prior \\ Selectivity \\ 81\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17<br>17<br>0<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                                                                                                                                                                                | 16.0<br>0.8<br>Found seiz<br>16<br>16<br>16<br>15<br>15.8<br>16.0<br>0.4<br>(17)<br>17<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>15<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                           | 4.0<br>0.7<br>Found non sei:<br>3<br>4<br>4<br>5<br>2<br>3.6<br>4.0<br>1.1<br>Found non sei:<br>3<br>2<br>5<br>6<br>3.8<br>3.0<br>1.6<br>Found non sei:<br>3<br>4<br>4<br>5<br>5<br>6<br>3.8<br>3.0<br>1.6<br>5<br>6<br>3.8<br>3.0<br>1.6<br>5<br>6<br>3.8<br>3.0<br>1.6<br>5<br>6<br>3.8<br>3.0<br>1.6<br>5<br>6<br>3.8<br>3.0<br>1.6<br>5<br>5<br>6<br>5<br>6<br>5<br>6<br>5<br>6<br>5<br>6<br>5<br>6<br>5<br>6<br>5<br>6<br>5<br>6<br>5<br>6<br>5<br>6<br>5<br>6<br>5<br>6<br>5<br>5<br>6<br>5<br>5<br>6<br>5<br>5<br>6<br>5<br>5<br>6<br>5<br>5<br>6<br>5<br>5<br>5<br>6<br>5<br>5<br>5<br>6<br>5<br>5<br>5<br>5<br>5<br>6<br>5<br>5<br>5<br>6<br>5<br>5<br>5<br>5<br>5<br>6<br>5<br>5<br>5<br>5<br>5<br>6<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                             | 92.8%<br>94.0%<br>5.0%<br>used:<br>malysis:<br>variance:<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%                                                                                                                                                                                   | $\begin{array}{c} 79.8\% \\ 80.0\% \\ 3.3\% \\ \hline \\ 80.0\% \\ 3.3\% \\ \hline \\ \\ All features \\ Gm fuzzy, 4 \\ 70\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 81.6\% \\ 80.0\% \\ 4.6\% \\ \hline \\ All features \\ Gm fuzzy, 4 \\ 70\% \\ 80\% \\ 85\% \\ 89\% \\ 76\% \\ 85.0\% \\ 6.8\% \\ \hline \\ All features \\ Gm fuzzy, 4 \\ 70\% \\ 81.6\% \\ \hline \\ All features \\ Gm fuzzy, 4 \\ 70\% \\ QDA, Prior \\ Selectivity \\ 81\% \\ 84\% \\ 76\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17<br>17<br>0<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>clusters<br>prob. weight:<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>0<br>clusters<br>prob. weight:<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17 | 16.0           0.8           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16                                                                                                | 4.0<br>0.7<br>Found non sei:<br>3<br>4<br>4<br>5<br>2<br>3.6<br>4.0<br>1.1<br>Found non sei:<br>3<br>2<br>5<br>6<br>3.8<br>3.0<br>1.6<br>Found non sei:<br>4<br>3<br>5<br>6<br>4.0<br>1.1<br>5<br>6<br>6<br>5<br>7<br>7<br>8<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                             | 92.8%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94.0%<br>2.7%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>100%<br>94%<br>94%<br>94.0%<br>3.3%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>100%<br>94%<br>94% | $\begin{array}{c} 79.8\% \\ 80.0\% \\ 3.3\% \\ \hline \\ 80.0\% \\ 3.3\% \\ \hline \\ \\ All features \\ Gm fuzzy, 4 \\ 70\% \\ KNN, k = 1 \\ Selectivity \\ 84\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 86\% \\ \hline \\ 88\% \\ 81.6\% \\ 81.6\% \\ \hline \\ 81.6\% \\ 80.0\% \\ 4.6\% \\ \hline \\ \hline \\ 81.6\% \\ 80.0\% \\ 4.6\% \\ \hline \\ 85\% \\ 85\% \\ 89\% \\ 85\% \\ 89\% \\ 85\% \\ 89\% \\ 85\% \\ 89\% \\ 85\% \\ 89\% \\ 85\% \\ 89\% \\ 85\% \\ 89\% \\ 85\% \\ 89\% \\ 85\% \\ 80\% \\ \hline \\ 6.8\% \\ \hline \\ \hline \\ All features \\ Gm fuzzy, 4 \\ 70\% \\ QDA, Prior \\ Selectivity \\ 81\% \\ 84\% \\ 76\% \\ 73\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17<br>17<br>0<br>clusters<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                                                                                                                                                                    | 16.0<br>0.8<br>Found seiz<br>16<br>16<br>16<br>15<br>15.8<br>16.0<br>0.4<br>s[1 1]<br>Found seiz<br>17<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>17<br>17<br>16<br>16<br>16<br>16<br>16<br>15<br>15.8<br>16.0<br>0.4<br>s[1 1]<br>Found seiz<br>17<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16                                                                                                                                                                                                       | 4.0<br>0.7<br>Found non sein<br>3<br>4<br>4<br>5<br>2<br>3.6<br>4.0<br>1.1<br>Found non sein<br>3<br>2<br>5<br>6<br>3.8<br>3.0<br>1.6<br>Found non sein<br>4<br>3<br>5<br>6<br>3.8<br>3.0<br>1.6<br>5<br>6<br>3.8<br>3.0<br>1.6<br>5<br>6<br>3.8<br>3.0<br>1.6<br>5<br>6<br>3.8<br>3.0<br>1.6<br>5<br>6<br>3.8<br>3.0<br>1.6<br>5<br>6<br>3.8<br>3.0<br>1.6<br>5<br>6<br>5<br>6<br>6<br>3.8<br>3.0<br>1.6<br>5<br>6<br>5<br>6<br>6<br>5<br>6<br>6<br>5<br>6<br>6<br>5<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6                                                                                                                                                                                                                                          |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier | 92.8%<br>94.0%<br>5.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%                                                                                                                                                                           | $\begin{array}{c} 79.8\% \\ 80.0\% \\ \hline 3.3\% \\ \hline \\ 80.0\% \\ \hline 3.3\% \\ \hline \\ \\ All features \\ Gm fuzzy, 4 \\ 70\% \\ KNN, k = 1 \\ \hline \\ Selectivity \\ 84\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 80\% \\ 86\% \\ \hline \\ 81.6\% \\ \hline \\ 88\% \\ \hline \\ 81.6\% \\ \hline \\ 80.0\% \\ \hline \\ 4.6\% \\ \hline \\ All features \\ Gm fuzzy, 4 \\ 70\% \\ \hline \\ 85\% \\ 85\% \\ 85\% \\ 85\% \\ \hline \\ 80\% \\ \hline \\ All features \\ Gm fuzzy, 4 \\ 70\% \\ \hline \\ All features \\ Gm fuzzy, 4 \\ 70\% \\ \hline \\ All features \\ Gm fuzzy, 4 \\ 70\% \\ \hline \\ All features \\ Gm fuzzy, 4 \\ 70\% \\ \hline \\ All features \\ Gm fuzzy, 5\% \\ \hline \\ All features \\ Gm fuzzy, 5\% \\ \hline \\ All features \\ Gm fuzzy, 5\% \\ \hline \\ All features \\ Gm fuzzy, 5\% \\ \hline \\ All features \\ Gm fuzzy, 5\% \\ \hline \\ All features \\ Gm fuzzy, 5\% \\ \hline \\ All features \\ Gm fuzzy, 5\% \\ \hline \\ All features \\ Gm fuzzy, 5\% \\ \hline \\ All features \\ Gm fuzzy, 5\% \\ \hline \\ All features \\ Gm fuzzy, 5\% \\ \hline \\ All features \\ \hline \\ All features \\ Gm fuzzy, 5\% \\ \hline \\ All features \\ \hline \\ \\ All features \\ \hline \\ \\ All features \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $ | 17<br>17<br>0<br>clusters<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                                                                                                                                                                    | 16.0           0.8           16           16           16           15           15.8           16.0           0.4           s[1 1]           Found seiz           17           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16           16 | 4.0<br>0.7<br>Found non sei:<br>3<br>4<br>4<br>5<br>2<br>3.6<br>4.0<br>1.1<br>Found non sei:<br>3<br>2<br>5<br>6<br>3.8<br>3.0<br>1.6<br>Found non sei:<br>4<br>5<br>6<br>3.8<br>3.0<br>1.6<br>5<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| Features                                                                                                                                                                              | used:                                                                                                                                                                                                                                                                                                                                              | All features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                          |                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cluster a                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                    | Gm fuzzy, 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | clusters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                          |                                                                                                                                                                   |
| PLS-DA<br>Classifier                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                    | 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -[1 10]                                                                                                                                                                                  |                                                                                                                                                                   |
| Classifier                                                                                                                                                                            | Sensitivity                                                                                                                                                                                                                                                                                                                                        | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | prob. weight:<br>Num seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Found seiz                                                                                                                                                                               | Found non seiz                                                                                                                                                    |
|                                                                                                                                                                                       | 100%                                                                                                                                                                                                                                                                                                                                               | 94%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17                                                                                                                                                                                       | 1                                                                                                                                                                 |
|                                                                                                                                                                                       | 100%                                                                                                                                                                                                                                                                                                                                               | 85%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17                                                                                                                                                                                       | 3                                                                                                                                                                 |
|                                                                                                                                                                                       | 100%                                                                                                                                                                                                                                                                                                                                               | 85%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17                                                                                                                                                                                       | 3                                                                                                                                                                 |
|                                                                                                                                                                                       | 88%<br>88%                                                                                                                                                                                                                                                                                                                                         | 88%<br>83%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15<br>15                                                                                                                                                                                 | 2<br>3                                                                                                                                                            |
| Mean                                                                                                                                                                                  | 95.2%                                                                                                                                                                                                                                                                                                                                              | 87.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16.2                                                                                                                                                                                     | 2.4                                                                                                                                                               |
| Median                                                                                                                                                                                | 100.0%                                                                                                                                                                                                                                                                                                                                             | 85.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17.0                                                                                                                                                                                     | 3.0                                                                                                                                                               |
| STD                                                                                                                                                                                   | 6.6%                                                                                                                                                                                                                                                                                                                                               | 4.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.1                                                                                                                                                                                      | 0.9                                                                                                                                                               |
|                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                          | -                                                                                                                                                                 |
| Features                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 and MAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | )                                                                                                                                                                                        |                                                                                                                                                                   |
| Cluster a<br>PLS-DA                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                    | Gm fuzzy, 3<br>70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | clusters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                          |                                                                                                                                                                   |
| Classifier                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                    | KNN, k = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                          |                                                                                                                                                                   |
|                                                                                                                                                                                       | Sensitivity                                                                                                                                                                                                                                                                                                                                        | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Num seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Found seiz                                                                                                                                                                               | Found non seiz                                                                                                                                                    |
|                                                                                                                                                                                       | 82%                                                                                                                                                                                                                                                                                                                                                | 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14                                                                                                                                                                                       | 6                                                                                                                                                                 |
|                                                                                                                                                                                       | 88%<br>88%                                                                                                                                                                                                                                                                                                                                         | 83%<br>94%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15<br>15                                                                                                                                                                                 | 3<br>1                                                                                                                                                            |
|                                                                                                                                                                                       | 94%                                                                                                                                                                                                                                                                                                                                                | 73%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16                                                                                                                                                                                       | 6                                                                                                                                                                 |
|                                                                                                                                                                                       | 100%                                                                                                                                                                                                                                                                                                                                               | 81%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17                                                                                                                                                                                       | 4                                                                                                                                                                 |
| Mean                                                                                                                                                                                  | 90.4%                                                                                                                                                                                                                                                                                                                                              | 80.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.4                                                                                                                                                                                     | 4.0                                                                                                                                                               |
| Median                                                                                                                                                                                | 88.0%                                                                                                                                                                                                                                                                                                                                              | 81.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.0                                                                                                                                                                                     | 4.0                                                                                                                                                               |
| STD                                                                                                                                                                                   | 6.8%                                                                                                                                                                                                                                                                                                                                               | 9.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.1                                                                                                                                                                                      | 2.1                                                                                                                                                               |
| Features                                                                                                                                                                              | used                                                                                                                                                                                                                                                                                                                                               | Without SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A and MAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D                                                                                                                                                                                        |                                                                                                                                                                   |
| Cluster a                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                    | Gm fuzzy, 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D                                                                                                                                                                                        |                                                                                                                                                                   |
| PLS-DA                                                                                                                                                                                | variance:                                                                                                                                                                                                                                                                                                                                          | 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                          |                                                                                                                                                                   |
| Classifier                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                    | KNN, $k = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                          |                                                                                                                                                                   |
|                                                                                                                                                                                       | Sensitivity<br>94%                                                                                                                                                                                                                                                                                                                                 | Selectivity<br>76%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Num seiz<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Found seiz<br>16                                                                                                                                                                         | Found non seiz<br>5                                                                                                                                               |
|                                                                                                                                                                                       | 94%<br>94%                                                                                                                                                                                                                                                                                                                                         | 80%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16                                                                                                                                                                                       | 5<br>4                                                                                                                                                            |
|                                                                                                                                                                                       | 100%                                                                                                                                                                                                                                                                                                                                               | 74%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17                                                                                                                                                                                       | 6                                                                                                                                                                 |
|                                                                                                                                                                                       | 100%                                                                                                                                                                                                                                                                                                                                               | 81%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17                                                                                                                                                                                       | 4                                                                                                                                                                 |
|                                                                                                                                                                                       | 100%                                                                                                                                                                                                                                                                                                                                               | 81%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17                                                                                                                                                                                       | 4                                                                                                                                                                 |
| Mean<br>Median                                                                                                                                                                        | 97.6%<br>100.0%                                                                                                                                                                                                                                                                                                                                    | 78.4%<br>80.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16.6<br>17.0                                                                                                                                                                             | 4.6                                                                                                                                                               |
| STD                                                                                                                                                                                   | 3.3%                                                                                                                                                                                                                                                                                                                                               | 3.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.5                                                                                                                                                                                      | 0.9                                                                                                                                                               |
| 010                                                                                                                                                                                   | 0.070                                                                                                                                                                                                                                                                                                                                              | 0.270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                      | 0.0                                                                                                                                                               |
|                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                          |                                                                                                                                                                   |
| Features                                                                                                                                                                              | used:                                                                                                                                                                                                                                                                                                                                              | Without SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IA and VM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                          |                                                                                                                                                                   |
| Features<br>Cluster a                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                    | Without SM<br>Gm fuzzy, 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                          |                                                                                                                                                                   |
| Cluster a<br>PLS-DA                                                                                                                                                                   | nalysis:<br>variance:                                                                                                                                                                                                                                                                                                                              | Gm fuzzy, 3<br>70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | clusters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                          |                                                                                                                                                                   |
| Cluster a                                                                                                                                                                             | nalysis:<br>variance:<br>:                                                                                                                                                                                                                                                                                                                         | Gm fuzzy, 3<br>70%<br>KNN, k = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | clusters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Found soiz                                                                                                                                                                               | Found non soir                                                                                                                                                    |
| Cluster a<br>PLS-DA                                                                                                                                                                   | nalysis:<br>variance:<br>:<br>Sensitivity                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} \text{Gm fuzzy, 3} \\ 70\% \\ \text{KNN, } \mathbf{k} = 3 \\ \hline \text{Selectivity} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | clusters<br>Num seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Found seiz                                                                                                                                                                               | Found non seiz                                                                                                                                                    |
| Cluster a<br>PLS-DA                                                                                                                                                                   | nalysis:<br>variance:<br>:                                                                                                                                                                                                                                                                                                                         | Gm fuzzy, 3<br>70%<br>KNN, k = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | clusters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Found seiz<br>15<br>17                                                                                                                                                                   | Found non seiz<br>3<br>4                                                                                                                                          |
| Cluster a<br>PLS-DA                                                                                                                                                                   | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>100%<br>100%                                                                                                                                                                                                                                                                                   | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3} \\ {\rm 70\%} \\ {\rm KNN,\ k=3} \\ \hline \\ {\rm Selectivity} \\ 83\% \\ 81\% \\ 85\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | clusters<br>Num seiz<br>17<br>17<br>17<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15<br>17<br>17                                                                                                                                                                           | 3<br>4<br>3                                                                                                                                                       |
| Cluster a<br>PLS-DA                                                                                                                                                                   | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>100%<br>100%<br>100%                                                                                                                                                                                                                                                                           | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ \hline \\ {\rm Selectivity}\\ {\rm 83\%}\\ {\rm 81\%}\\ {\rm 85\%}\\ {\rm 89\%} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | clusters<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15<br>17<br>17<br>17<br>17                                                                                                                                                               | 3 $4$ $3$ $2$                                                                                                                                                     |
| Cluster a<br>PLS-DA<br>Classifier                                                                                                                                                     | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>100%<br>100%<br>100%<br>94%                                                                                                                                                                                                                                                                    | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ \hline \\ {\rm Selectivity}\\ 83\%\\ 81\%\\ 85\%\\ 89\%\\ 80\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Num seiz           17           17           17           17           17           17           17           17           17           17           17           17           17           17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $     15 \\     17 \\     17 \\     17 \\     16   $                                                                                                                                     | 3<br>4<br>3<br>2<br>4                                                                                                                                             |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean                                                                                                                                             | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>100%<br>100%<br>100%<br>94%<br>96.4%                                                                                                                                                                                                                                                           | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ 83\%\\ 81\%\\ 85\%\\ 89\%\\ 80\%\\ \hline 83.6\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | clusters<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $     15 \\     17 \\     17 \\     17 \\     16 \\     16.4 $                                                                                                                           | 3<br>4<br>3<br>2<br>4<br>3.2                                                                                                                                      |
| Cluster a<br>PLS-DA<br>Classifier                                                                                                                                                     | nalysis:<br>variance:<br>Sensitivity<br>88%<br>100%<br>100%<br>94%<br>96.4%<br>100.0%                                                                                                                                                                                                                                                              | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ 83\%\\ 81\%\\ 85\%\\ 89\%\\ 80\%\\ 83.6\%\\ 83.6\%\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Num seiz           17           17           17           17           17           17           17           17           17           17           17           17           17           17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $     15 \\     17 \\     17 \\     17 \\     16   $                                                                                                                                     | 3<br>4<br>3<br>2<br>4                                                                                                                                             |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Mean                                                                                                                                     | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>100%<br>100%<br>100%<br>94%<br>96.4%                                                                                                                                                                                                                                                           | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ 83\%\\ 81\%\\ 85\%\\ 89\%\\ 80\%\\ \hline 83.6\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | clusters<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $     \begin{array}{r}       15 \\       17 \\       17 \\       17 \\       16 \\       16.4 \\       17.0 \\     \end{array} $                                                         | $     \begin{array}{r}       3 \\       4 \\       3 \\       2 \\       4 \\       3.2 \\       3.0 \\       3.0 \\       \end{array} $                          |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features                                                                                                                | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>100%<br>100%<br>100%<br>94%<br>96.4%<br>100.0%<br>5.4%<br>used:                                                                                                                                                                                                                                | Gm fuzzy, 3<br>70%<br>KNN, k = 3<br>Selectivity<br>83%<br>81%<br>85%<br>80%<br>83.6%<br>83.6%<br>3.6%<br>Without DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | clusters<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $     \begin{array}{r}       15 \\       17 \\       17 \\       17 \\       16 \\       16.4 \\       17.0 \\     \end{array} $                                                         | $     \begin{array}{r}       3 \\       4 \\       3 \\       2 \\       4 \\       3.2 \\       3.0 \\       3.0 \\       \end{array} $                          |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a                                                                                                   | nalysis:<br>variance:<br>Sensitivity<br>88%<br>100%<br>100%<br>94%<br>96.4%<br>100.0%<br>5.4%<br>used:<br>nalysis:                                                                                                                                                                                                                                 | Gm fuzzy, 3<br>70%<br>KNN, k = 3<br>Selectivity<br>83%<br>81%<br>85%<br>89%<br>80%<br>83.6%<br>83.6%<br>83.6%<br>3.6%<br>Without DC<br>Gm fuzzy, 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | clusters<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $     \begin{array}{r}       15 \\       17 \\       17 \\       17 \\       16 \\       16.4 \\       17.0 \\     \end{array} $                                                         | $     \begin{array}{r}       3 \\       4 \\       3 \\       2 \\       4 \\       3.2 \\       3.0 \\       3.0 \\       \end{array} $                          |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                         | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>100%<br>100%<br>94%<br>96.4%<br>100.0%<br>5.4%<br>used:<br>nalysis:<br>variance:                                                                                                                                                                                                               | Gm fuzzy, 3<br>70%<br>KNN, k = 3<br>Selectivity<br>83%<br>81%<br>85%<br>89%<br>80%<br>83.6%<br>83.6%<br>3.6%<br>Without DC<br>Gm fuzzy, 3<br>70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Num seiz           17           17           17           17           17           17           17           clusters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $     \begin{array}{r}       15 \\       17 \\       17 \\       17 \\       16 \\       16.4 \\       17.0 \\     \end{array} $                                                         | $     \begin{array}{r}       3 \\       4 \\       3 \\       2 \\       4 \\       3.2 \\       3.0 \\       3.0 \\       \end{array} $                          |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a                                                                                                   | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>100%<br>100%<br>100%<br>94%<br>96.4%<br>100.0%<br>5.4%<br>used:<br>nalysis:<br>variance:                                                                                                                                                                                                       | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ {\rm 83\%}\\ {\rm 81\%}\\ {\rm 85\%}\\ {\rm 89\%}\\ {\rm 80\%}\\ {\rm 83.6\%}\\ {\rm 83.0\%}\\ {\rm 3.6\%}\\ \hline \\ {\rm Without\ DC}\\ {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Num seiz           17           17           17           17           17           17           17           clusters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $     \begin{array}{r}       15 \\       17 \\       17 \\       17 \\       16 \\       16.4 \\       17.0 \\     \end{array} $                                                         | $     \begin{array}{r}       3 \\       4 \\       3 \\       2 \\       4 \\       3.2 \\       3.0 \\       3.0 \\       \end{array} $                          |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                         | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>100%<br>100%<br>94%<br>96.4%<br>100.0%<br>5.4%<br>used:<br>nalysis:<br>variance:                                                                                                                                                                                                               | Gm fuzzy, 3<br>70%<br>KNN, k = 3<br>Selectivity<br>83%<br>81%<br>85%<br>89%<br>80%<br>83.6%<br>83.6%<br>3.6%<br>Without DC<br>Gm fuzzy, 3<br>70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Num seiz           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17                    | $ \begin{array}{c} 15\\ 17\\ 17\\ 16\\ 16.4\\ 17.0\\ 0.9\\ \end{array} $                                                                                                                 | 3<br>4<br>3<br>2<br>4<br>3.2<br>3.0<br>0.8                                                                                                                        |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                         | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>100%<br>100%<br>100%<br>94%<br>96.4%<br>100.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>88%                                                                                                                                                                     | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ 83\%\\ 81\%\\ 85\%\\ 89\%\\ 80\%\\ 83.6\%\\ 83.6\%\\ \hline\\ 83.6\%\\ \hline\\ {\rm Without\ DC}\\ {\rm Gm\ fuzzy,\ 3}\\ 70\%\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ 56\%\\ 58\%\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | clusters<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>clusters<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15<br>17<br>17<br>17<br>16<br>16.4<br>17.0<br>0.9<br>Found seiz<br>14<br>15                                                                                                              | 3<br>4<br>3<br>2<br>4<br>3.2<br>3.0<br>0.8<br>Found non seiz<br>11<br>11                                                                                          |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                         | nalysis:<br>variance:<br>Sensitivity<br>88%<br>100%<br>100%<br>94%<br>96.4%<br>100.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>88%                                                                                                                                                                                  | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ 83\%\\ 81\%\\ 85\%\\ 89\%\\ 80\%\\ 83.6\%\\ 83.6\%\\ \hline 83.6\%\\ \hline 3.6\%\\ \hline \\ {\rm Without\ DC}\\ {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ \hline 56\%\\ \hline \\ 65\%\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | clusters           Num seiz           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17                                                                                                                                                                                                                                                                                                                                                   | 15<br>17<br>17<br>16<br>16.4<br>17.0<br>0.9<br>Found seiz<br>14<br>15<br>15                                                                                                              | 3<br>4<br>3<br>2<br>4<br>3.2<br>3.0<br>0.8<br>Found non seiz<br>11<br>11<br>8                                                                                     |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                         | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>100%<br>100%<br>94%<br>96.4%<br>100.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>88%<br>88%                                                                                                                                                                      | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ {\rm 83\%}\\ {\rm 81\%}\\ {\rm 85\%}\\ {\rm 89\%}\\ {\rm 80\%}\\ {\rm 80\%}\\ {\rm 83.6\%}\\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | clusters           Num seiz           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 15\\ 17\\ 17\\ 17\\ 16\\ 16.4\\ 17.0\\ 0.9\\ \hline \\ \hline \\ 15\\ 15\\ 15\\ \end{array}$                                                                           | 3<br>4<br>3<br>2<br>4<br>3.2<br>3.0<br>0.8<br>Found non seiz<br>11<br>11<br>8<br>7                                                                                |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                           | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>100%<br>100%<br>100%<br>94%<br>96.4%<br>100.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>100%                                                                                                                                        | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ {\rm 83\%}\\ {\rm 81\%}\\ {\rm 85\%}\\ {\rm 89\%}\\ {\rm 80\%}\\ {\rm 83.6\%}\\ {\rm 83.0\%}\\ {\rm 3.6\%}\\ \hline \\ {\rm Without\ DC}\\ {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ {\rm 56\%}\\ {\rm 65\%}\\ {\rm 65\%}\\ {\rm 68\%}\\ {\rm 57\%}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | clusters           Num seiz           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17                                                                                                                                                                                                                                                                                                            | 15<br>17<br>17<br>16<br>16.4<br>17.0<br>0.9<br>Found seiz<br>14<br>15<br>15<br>15<br>17                                                                                                  | 3<br>4<br>3<br>2<br>4<br>3.2<br>3.0<br>0.8<br>Found non seiz<br>11<br>11<br>11<br>8<br>7<br>13                                                                    |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                         | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>100%<br>100%<br>94%<br>96.4%<br>100.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>88%<br>88%                                                                                                                                                                      | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ 83\%\\ 81\%\\ 85\%\\ 89\%\\ 80\%\\ 80\%\\ 83.6\%\\ 83.6\%\\ \hline 65\%\\ 65\%\\ 65\%\\ 65\%\\ 65\%\\ \hline 57\%\\ \hline 60.8\%\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | clusters           Num seiz           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 15\\ 17\\ 17\\ 17\\ 16\\ 16.4\\ 17.0\\ 0.9\\ \hline \\ \hline \\ 15\\ 15\\ 15\\ \end{array}$                                                                           | 3<br>4<br>3<br>2<br>4<br>3.2<br>3.0<br>0.8<br>Found non seiz<br>11<br>11<br>8<br>7                                                                                |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                           | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>100%<br>100%<br>94%<br>96.4%<br>100.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%                                                                                                                                          | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ {\rm 83\%}\\ {\rm 81\%}\\ {\rm 85\%}\\ {\rm 89\%}\\ {\rm 80\%}\\ {\rm 83.6\%}\\ {\rm 83.0\%}\\ {\rm 3.6\%}\\ \hline \\ {\rm Without\ DC}\\ {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ {\rm 56\%}\\ {\rm 65\%}\\ {\rm 65\%}\\ {\rm 68\%}\\ {\rm 57\%}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | clusters           Num seiz           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 15\\ 17\\ 17\\ 17\\ 16\\ 16.4\\ 17.0\\ 0.9\\ \hline \\ \hline \\ 15\\ 15\\ 15\\ 15\\ 17\\ 15.2\\ \end{array}$                                                          | 3<br>4<br>3<br>2<br>4<br>3.2<br>3.0<br>0.8<br>Found non seiz<br>11<br>11<br>8<br>7<br>13<br>10.0                                                                  |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Mean                                                           | nalysis:<br>variance:<br>Sensitivity<br>88%<br>100%<br>100%<br>94%<br>96.4%<br>100.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%                                                                                                                               | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ 70\%\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ 83\%\\ 81\%\\ 85\%\\ 80\%\\ 83.6\%\\ 83.6\%\\ 83.6\%\\ \hline \\ \\ 65\%\\ \hline \\ 58\%\\ \hline \\ 65\%\\ \hline \\ 58\%\\ \hline \\ 55\%\\ \hline \\ \\ 60.8\%\\ \hline \\ 5.4\%\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | clusters           Num seiz           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17                                                                                                                                                                                                                              | $\begin{array}{c} 15\\ 17\\ 17\\ 17\\ 16\\ 16.4\\ 17.0\\ 0.9\\ \hline \\ \hline \\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 1$                                                       | 3<br>4<br>3<br>2<br>4<br>3.2<br>3.0<br>0.8<br>Found non seiz<br>11<br>11<br>8<br>7<br>13<br>10.0<br>11.0                                                          |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Mean<br>Median<br>STD                                          | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>100%<br>100%<br>94%<br>96.4%<br>100.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%                                                                                                                     | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ 83\%\\ 81\%\\ 85\%\\ 89\%\\ 80\%\\ 80\%\\ 83.6\%\\ 83.6\%\\ \hline 83.6\%\\ \hline 83.6\%\\ \hline 3.6\%\\ \hline \\ \hline {\rm Without\ DC}\\ {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ \hline \\ {\rm Selectivity}\\ \hline 56\%\\ 65\%\\ 65\%\\ 65\%\\ 65\%\\ \hline 57\%\\ \hline \\ 60.8\%\\ \hline \\ 58.0\%\\ \hline \\ 5.4\%\\ \hline \\ \hline$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | clusters           Num seiz           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17 | $\begin{array}{c} 15\\ 17\\ 17\\ 17\\ 16\\ 16.4\\ 17.0\\ 0.9\\ \hline \\ \hline \\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 1$                                                       | 3<br>4<br>3<br>2<br>4<br>3.2<br>3.0<br>0.8<br>Found non seiz<br>11<br>11<br>8<br>7<br>13<br>10.0<br>11.0                                                          |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a                         | nalysis:<br>variance:<br>Sensitivity<br>88%<br>100%<br>100%<br>94%<br>96.4%<br>100.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%                                                                                                                               | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ 70\%\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ 83\%\\ 81\%\\ 85\%\\ 89\%\\ 80\%\\ 80\%\\ 83.6\%\\ 83.6\%\\ 83.6\%\\ 3.6\%\\ \hline \\ 83.6\%\\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \hline \hline \\ \hline \hline$ | clusters           Num seiz           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17 | $\begin{array}{c} 15\\ 17\\ 17\\ 17\\ 16\\ 16.4\\ 17.0\\ 0.9\\ \hline \\ \hline \\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 1$                                                       | 3<br>4<br>3<br>2<br>4<br>3.2<br>3.0<br>0.8<br>Found non seiz<br>11<br>11<br>8<br>7<br>13<br>10.0<br>11.0                                                          |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Mean<br>Median<br>STD                                          | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>100%<br>100%<br>100%<br>94%<br>96.4%<br>100.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%                                                                                                             | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ 70\%\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ 83\%\\ 81\%\\ 85\%\\ 89\%\\ 80\%\\ 83.6\%\\ 83.6\%\\ 83.0\%\\ 3.6\%\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | clusters           Num seiz           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17 | $\begin{array}{c} 15\\ 17\\ 17\\ 17\\ 16\\ 16.4\\ 17.0\\ 0.9\\ \hline \\ \hline \\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 1$                                                       | 3<br>4<br>3<br>2<br>4<br>3.2<br>3.0<br>0.8<br>Found non seiz<br>11<br>11<br>8<br>7<br>13<br>10.0<br>11.0                                                          |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Mean<br>Median<br>STD                                                                | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>100%<br>100%<br>100%<br>94%<br>96.4%<br>100.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%                                                                                                             | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ 70\%\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ 83\%\\ 81\%\\ 85\%\\ 89\%\\ 80\%\\ 80\%\\ 83.6\%\\ 83.6\%\\ 83.6\%\\ 3.6\%\\ \hline \\ {\rm Without\ DC}\\ {\rm Gm\ fuzzy,\ 3}\\ 70\%\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ 56\%\\ 65\%\\ 65\%\\ 66\%\\ 68\%\\ 57\%\\ 60.8\%\\ 55.0\%\\ \hline \\ 5.4\%\\ \hline \\ {\rm Without\ CC}\\ {\rm Gm\ fuzzy,\ 3}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | clusters           Num seiz           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17 | $\begin{array}{c} 15\\ 17\\ 17\\ 17\\ 16\\ 16.4\\ 17.0\\ 0.9\\ \hline \\ \hline \\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 1$                                                       | 3<br>4<br>3<br>2<br>4<br>3.2<br>3.0<br>0.8<br>Found non seiz<br>11<br>11<br>8<br>7<br>13<br>10.0<br>11.0                                                          |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Mean<br>Median<br>STD                                                                | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>100%<br>100%<br>100%<br>94%<br>96.4%<br>96.4%<br>100.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>88%<br>100%<br>6.6%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>88.0%                                                 | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ {\rm 83\%}\\ {\rm 81\%}\\ {\rm 85\%}\\ {\rm 89\%}\\ {\rm 80\%}\\ {\rm 83.6\%}\\ {\rm 83.0\%}\\ {\rm 3.6\%}\\ \hline \\ {\rm Without\ DC}\\ {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ {\rm 56\%}\\ {\rm 65\%}\\ {\rm 57\%}\\ {\rm 58.0\%}\\ {\rm 58.0\%}\\ {\rm 58.0\%}\\ {\rm 55.4\%}\\ \hline \\ \hline \\ {\rm Without\ CC}\\ {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ {\rm 83\%}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | clusters           Num seiz           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17 | 15<br>17<br>17<br>16<br>16.4<br>17.0<br>0.9<br>Found seiz<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15                                                                                | 3<br>4<br>3<br>2<br>4<br>3.2<br>3.0<br>0.8<br>Found non seiz<br>11<br>11<br>11<br>8<br>7<br>13<br>10.0<br>11.0<br>2.4<br>Found non seiz<br>3                      |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Mean<br>Median<br>STD                                                                | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>100%<br>100%<br>94%<br>96.4%<br>100.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>6.6%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>88.0%<br>6.6%                                             | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ 70\%\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ 83\%\\ 81\%\\ 85\%\\ 80\%\\ 80\%\\ 80\%\\ 80\%\\ 83.6\%\\ 83.6\%\\ 83.6\%\\ 3.6\%\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | clusters           Num seiz           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           0           ORR           clusters           Num seiz           17           17                                                                                                                                                                                                                                                                                                | 15<br>17<br>17<br>17<br>16<br>16.4<br>17.0<br>0.9<br>Found seiz<br>14<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15                                      | 3<br>4<br>3<br>2<br>4<br>3.2<br>3.0<br>0.8<br>Found non seiz<br>11<br>11<br>8<br>7<br>13<br>10.0<br>11.0<br>2.4<br>Found non seiz<br>3<br>5                       |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Mean<br>Median<br>STD                                                                | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>100%<br>100%<br>94%<br>96.4%<br>100.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>6.6%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>88.0%<br>6.6%                                                    | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ 70\%\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ 83\%\\ 81\%\\ 85\%\\ 89\%\\ 80\%\\ 80\%\\ 83.6\%\\ 83.6\%\\ 83.6\%\\ \hline 3.6\%\\ \hline \hline 83.6\%\\ \hline 60.8\%\\ \hline 55\%\\ 66\%\\ \hline 68\%\\ \hline 65\%\\ 66\%\\ \hline 68\%\\ \hline 57\%\\ \hline 60.8\%\\ \hline 5.4\%\\ \hline \hline \\ \hline \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | clusters           Num seiz           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17                                                                                            | 15<br>17<br>17<br>17<br>16<br>16.4<br>17.0<br>0.9<br>Found seiz<br>14<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15                                      | 3<br>4<br>3<br>2<br>4<br>3.2<br>3.0<br>0.8<br>Found non seiz<br>11<br>11<br>8<br>7<br>10.0<br>11.0<br>2.4<br>Found non seiz<br>3<br>5<br>3                        |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Mean<br>Median<br>STD                                                                | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>100%<br>100%<br>100%<br>94%<br>96.4%<br>96.4%<br>96.4%<br>96.4%<br>96.4%<br>96.4%<br>94%<br>94%                                                                                                                                                                                                | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ 70\%\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ 83\%\\ 81\%\\ 85\%\\ 89\%\\ 80\%\\ 83.6\%\\ 83.0\%\\ 3.6\%\\ \hline \\ \hline \\ {\rm Without\ DC}\\ {\rm Gm\ fuzzy,\ 3}\\ 70\%\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ 56\%\\ 65\%\\ 65\%\\ 65\%\\ 65\%\\ 65\%\\ 65\%\\ 65\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | clusters           Num seiz           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17                                        | 15<br>17<br>17<br>16<br>16.4<br>17.0<br>0.9<br>5<br>5<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15                                                            | 3<br>4<br>3<br>2<br>4<br>3.2<br>3.0<br>0.8<br>Found non seiz<br>11<br>11<br>11<br>8<br>7<br>13<br>10.0<br>11.0<br>2.4<br>Found non seiz<br>3<br>5<br>3<br>2       |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Mean<br>Median<br>STD                                                                | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>100%<br>100%<br>94%<br>96.4%<br>100.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>6.6%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>88.0%<br>6.6%                                                    | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ 70\%\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ 83\%\\ 81\%\\ 85\%\\ 89\%\\ 80\%\\ 80\%\\ 83.6\%\\ 83.6\%\\ 83.6\%\\ \hline 3.6\%\\ \hline \hline 83.6\%\\ \hline 60.8\%\\ \hline 55\%\\ 66\%\\ \hline 68\%\\ \hline 65\%\\ 66\%\\ \hline 68\%\\ \hline 57\%\\ \hline 60.8\%\\ \hline 5.4\%\\ \hline \hline \\ \hline \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | clusters           Num seiz           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17                                                                                            | 15<br>17<br>17<br>17<br>16<br>16.4<br>17.0<br>0.9<br>Found seiz<br>14<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15                                      | 3<br>4<br>3<br>2<br>4<br>3.2<br>3.0<br>0.8<br>Found non seiz<br>11<br>11<br>8<br>7<br>10.0<br>11.0<br>2.4<br>Found non seiz<br>3<br>5<br>3                        |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>100%<br>100%<br>100%<br>94%<br>96.4%<br>96.4%<br>100.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>100%<br>89.2%<br>88.0%<br>6.6%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>88.0%<br>6.6%<br>0%<br>94%<br>94%<br>94%<br>94.0% | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ 70\%\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ 83\%\\ 81\%\\ 85\%\\ 89\%\\ 80\%\\ 83.6\%\\ 83.0\%\\ 3.6\%\\ \hline \\ 83.0\%\\ 3.6\%\\ \hline \\ 83.0\%\\ 3.6\%\\ \hline \\ 83.0\%\\ \hline \\ 3.6\%\\ \hline \\ 83.0\%\\ \hline \\ 3.6\%\\ \hline \\ \hline \\ {\rm Without\ DC}\\ {\rm Gm\ fuzzy,\ 3}\\ 70\%\\ {\rm KNN,\ k=3}\\ 58\%\\ 65\%\\ 65\%\\ 65\%\\ 65\%\\ 65\%\\ 65\%\\ 65\%\\ 65$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | clusters           Num seiz           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17                                        | 15<br>17<br>17<br>17<br>16<br>16.4<br>17.0<br>0.9<br>Found seiz<br>14<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15                                      | 3<br>4<br>3<br>2<br>4<br>3.2<br>3.0<br>0.8<br>Found non seiz<br>11<br>11<br>8<br>7<br>13<br>10.0<br>11.0<br>2.4<br>Found non seiz<br>3<br>5<br>3<br>2<br>3        |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>100%<br>100%<br>94%<br>96.4%<br>100.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>6.6%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>88.0%<br>6.6%                                                    | $\begin{array}{l} {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ {\rm 83\%}\\ {\rm 81\%}\\ {\rm 85\%}\\ {\rm 89\%}\\ {\rm 80\%}\\ {\rm 80\%}\\ {\rm 80\%}\\ {\rm 83.6\%}\\ {\rm 83.6\%}\\ {\rm 83.6\%}\\ {\rm 33.6\%}\\ {\rm 3.6\%}\\ {\rm 5.8\%}\\ {\rm 65\%}\\ {\rm 66.8\%}\\ {\rm 57\%}\\ {\rm 55\%}\\ {\rm 60.8\%}\\ {\rm 55.4\%}\\ {\rm 5.4\%}\\ {\rm 83\%}\\ {\rm 76\%}\\ {\rm 84\%}\\ {\rm 89\%}\\ {\rm 85\%}\\ {\rm 83.4\%}\\ {\rm 83.4\%}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | clusters           Num seiz           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17                                                     | 15<br>17<br>17<br>17<br>16<br>16.4<br>17.0<br>0.9<br>Found seiz<br>14<br>15<br>15<br>15<br>15<br>15<br>15<br>17<br>15.2<br>15.0<br>1.1<br>Found seiz<br>15<br>16<br>16<br>16<br>16<br>16 | 3<br>4<br>3<br>2<br>4<br>3.2<br>3.0<br>0.8<br>Found non seiz<br>11<br>11<br>8<br>7<br>13<br>10.0<br>11.0<br>2.4<br>Found non seiz<br>3<br>5<br>3<br>2<br>3<br>3.2 |

| Features                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                            | Without PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                  |                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cluster a                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                            | Gm fuzzy, 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | clusters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                  |                                                                                                                                                                               |
| PLS-DA                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                            | 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                  |                                                                                                                                                                               |
| Classifier                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                            | KNN, k = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Num seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Found seiz                                                                                                                                                                       | Found man and                                                                                                                                                                 |
|                                                                                                                                                                                       | Sensitivity<br>88%                                                                                                                                                                                                                                                                                                                                         | Selectivity<br>71%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                                                                                                                                                                               | Found non seiz                                                                                                                                                                |
|                                                                                                                                                                                       | 94%                                                                                                                                                                                                                                                                                                                                                        | 80%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16                                                                                                                                                                               | $6\\4$                                                                                                                                                                        |
|                                                                                                                                                                                       | 94%                                                                                                                                                                                                                                                                                                                                                        | 84%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16                                                                                                                                                                               | 4 3                                                                                                                                                                           |
|                                                                                                                                                                                       | 94%                                                                                                                                                                                                                                                                                                                                                        | 84%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16                                                                                                                                                                               | 3                                                                                                                                                                             |
|                                                                                                                                                                                       | 100%                                                                                                                                                                                                                                                                                                                                                       | 81%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                               | 4                                                                                                                                                                             |
| Mean                                                                                                                                                                                  | 94.0%                                                                                                                                                                                                                                                                                                                                                      | 80.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.0                                                                                                                                                                             | 4.0                                                                                                                                                                           |
| Median                                                                                                                                                                                | 94.0%                                                                                                                                                                                                                                                                                                                                                      | 81.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.0                                                                                                                                                                             | 4.0                                                                                                                                                                           |
| STD                                                                                                                                                                                   | 4.2%                                                                                                                                                                                                                                                                                                                                                       | 5.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.7                                                                                                                                                                              | 1.2                                                                                                                                                                           |
| SID                                                                                                                                                                                   | 4.270                                                                                                                                                                                                                                                                                                                                                      | 0.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.1                                                                                                                                                                              | 1.2                                                                                                                                                                           |
| Features                                                                                                                                                                              | woodu                                                                                                                                                                                                                                                                                                                                                      | Without FR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                  |                                                                                                                                                                               |
| Cluster a                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                            | Gm fuzzy, 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                  |                                                                                                                                                                               |
| PLS-DA                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                            | 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | clusters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                  |                                                                                                                                                                               |
| Classifier                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                            | KNN, k = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                  |                                                                                                                                                                               |
| onabonnor                                                                                                                                                                             | Sensitivity                                                                                                                                                                                                                                                                                                                                                | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Num seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Found seiz                                                                                                                                                                       | Found non seiz                                                                                                                                                                |
|                                                                                                                                                                                       | 82%                                                                                                                                                                                                                                                                                                                                                        | 67%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14                                                                                                                                                                               | 7                                                                                                                                                                             |
|                                                                                                                                                                                       | 88%                                                                                                                                                                                                                                                                                                                                                        | 63%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                                                                                                                                                                               | 9                                                                                                                                                                             |
|                                                                                                                                                                                       | 88%                                                                                                                                                                                                                                                                                                                                                        | 63%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                                                                                                                                                                               | 9                                                                                                                                                                             |
|                                                                                                                                                                                       | 88%                                                                                                                                                                                                                                                                                                                                                        | 68%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                                                                                                                                                                               | 7                                                                                                                                                                             |
|                                                                                                                                                                                       | 100%                                                                                                                                                                                                                                                                                                                                                       | 63%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17                                                                                                                                                                               | 10                                                                                                                                                                            |
| Mean                                                                                                                                                                                  | 89.2%                                                                                                                                                                                                                                                                                                                                                      | 64.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.2                                                                                                                                                                             | 8.4                                                                                                                                                                           |
| Median                                                                                                                                                                                | 88.0%                                                                                                                                                                                                                                                                                                                                                      | 63.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.0                                                                                                                                                                             | 9.0                                                                                                                                                                           |
| STD                                                                                                                                                                                   | 6.6%                                                                                                                                                                                                                                                                                                                                                       | 2.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.1                                                                                                                                                                              | 1.3                                                                                                                                                                           |
| ~ • • •                                                                                                                                                                               | 0.070                                                                                                                                                                                                                                                                                                                                                      | 1 2.370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                  | 1.0                                                                                                                                                                           |
| Features                                                                                                                                                                              | waadu                                                                                                                                                                                                                                                                                                                                                      | Without hig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | host EPEO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                  |                                                                                                                                                                               |
| Cluster a                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                            | Gm fuzzy, 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                  |                                                                                                                                                                               |
| PLS-DA                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                            | 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01000010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                  |                                                                                                                                                                               |
| Classifier                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                            | KNN, k = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                  |                                                                                                                                                                               |
|                                                                                                                                                                                       | Sensitivity                                                                                                                                                                                                                                                                                                                                                | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Num seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Found seiz                                                                                                                                                                       | Found non seiz                                                                                                                                                                |
|                                                                                                                                                                                       | 88%                                                                                                                                                                                                                                                                                                                                                        | 79%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                                                                                                                                                                               | 4                                                                                                                                                                             |
|                                                                                                                                                                                       | 88%                                                                                                                                                                                                                                                                                                                                                        | 94%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                                                                                                                                                                               | 1                                                                                                                                                                             |
|                                                                                                                                                                                       | 94%                                                                                                                                                                                                                                                                                                                                                        | 84%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16                                                                                                                                                                               | 3                                                                                                                                                                             |
|                                                                                                                                                                                       | 94%                                                                                                                                                                                                                                                                                                                                                        | 94%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16                                                                                                                                                                               | 1                                                                                                                                                                             |
|                                                                                                                                                                                       | 100%                                                                                                                                                                                                                                                                                                                                                       | 89%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17                                                                                                                                                                               | 2                                                                                                                                                                             |
| Mean                                                                                                                                                                                  | 92.8%                                                                                                                                                                                                                                                                                                                                                      | 88.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.8                                                                                                                                                                             | 2.2                                                                                                                                                                           |
| Median                                                                                                                                                                                | 94.0%                                                                                                                                                                                                                                                                                                                                                      | 89.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.0                                                                                                                                                                             | 2.0                                                                                                                                                                           |
| STD                                                                                                                                                                                   | 5.0%                                                                                                                                                                                                                                                                                                                                                       | 6.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.8                                                                                                                                                                              | 1.3                                                                                                                                                                           |
| Features used:<br>Cluster analysis:                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                            | Without sen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                  |                                                                                                                                                                               |
| Cluster a<br>PLS-DA                                                                                                                                                                   | nalysis:<br>variance:                                                                                                                                                                                                                                                                                                                                      | Gm fuzzy, 3<br>70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | clusters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                  |                                                                                                                                                                               |
| Cluster a                                                                                                                                                                             | nalysis:<br>variance:<br>:                                                                                                                                                                                                                                                                                                                                 | Gm fuzzy, 3<br>70%<br>KNN, $k = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | clusters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Found seiz                                                                                                                                                                       | Found non seiz                                                                                                                                                                |
| Cluster a<br>PLS-DA                                                                                                                                                                   | nalysis:<br>variance:<br>:<br>Sensitivity                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} \text{Gm fuzzy, 3} \\ 70\% \\ \text{KNN, } k = 3 \\ \hline \text{Selectivity} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | clusters<br>Num seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Found seiz                                                                                                                                                                       | Found non seiz                                                                                                                                                                |
| Cluster a<br>PLS-DA                                                                                                                                                                   | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \mathrm{Gm} \ \mathrm{fuzzy,} \ 3\\ 70\%\\ \mathrm{KNN,} \ \mathrm{k} = 3\\ \hline \mathrm{Selectivity}\\ 83\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | clusters<br>Num seiz<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15                                                                                                                                                                               | 3                                                                                                                                                                             |
| Cluster a<br>PLS-DA                                                                                                                                                                   | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>94%                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \text{Gm fuzzy, 3} \\ 70\% \\ \text{KNN, } k = 3 \\ \hline \text{Selectivity} \\ 83\% \\ 59\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | clusters<br>Num seiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                  | 3<br>11                                                                                                                                                                       |
| Cluster a<br>PLS-DA                                                                                                                                                                   | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \mathrm{Gm} \ \mathrm{fuzzy,} \ 3\\ 70\%\\ \mathrm{KNN,} \ \mathrm{k} = 3\\ \hline \mathrm{Selectivity}\\ 83\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | clusters<br>Num seiz<br>17<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15<br>16                                                                                                                                                                         | 3                                                                                                                                                                             |
| Cluster a<br>PLS-DA                                                                                                                                                                   | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>94%<br>94%                                                                                                                                                                                                                                                                                             | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3} \\ {\rm 70\%} \\ {\rm KNN,\ k=3} \\ \hline \\ {\rm Selectivity} \\ 83\% \\ {\rm 59\%} \\ {\rm 67\%} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | clusters<br>Num seiz<br>17<br>17<br>17<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15<br>16<br>16                                                                                                                                                                   | 3<br>11<br>8                                                                                                                                                                  |
| Cluster a<br>PLS-DA                                                                                                                                                                   | nalysis:<br>variance:<br>:<br>Sensitivity<br>94%<br>94%<br>100%                                                                                                                                                                                                                                                                                            | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ \hline \\ {\rm Selectivity}\\ {\rm 83\%}\\ {\rm 59\%}\\ {\rm 67\%}\\ {\rm 71\%} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | clusters<br>Num seiz<br>17<br>17<br>17<br>17<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15     16     16     17                                                                                                                                                          | 3<br>11<br>8<br>7                                                                                                                                                             |
| Cluster a<br>PLS-DA<br>Classifier                                                                                                                                                     | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>94%<br>94%<br>100%<br>100%                                                                                                                                                                                                                                                                             | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ \hline \\ {\rm Selectivity}\\ 83\%\\ 59\%\\ 67\%\\ 71\%\\ 77\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Num seiz           17           17           17           17           17           17           17           17           17           17           17           17           17           17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15     16     16     17     17     17     17     1                                                                                                                               | 3<br>11<br>8<br>7<br>5                                                                                                                                                        |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean                                                                                                                                             | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>94%<br>94%<br>100%<br>100%<br>95.2%                                                                                                                                                                                                                                                                    | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ 83\%\\ 59\%\\ 67\%\\ 71\%\\ 71\%\\ 71.4\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Num seiz           17           17           17           17           17           17           17           17           17           17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $     \begin{array}{r}       15 \\       16 \\       17 \\       17 \\       16.2 \\     \end{array} $                                                                           | $     \begin{array}{r}       3 \\       11 \\       8 \\       7 \\       5 \\       6.8 \\     \end{array} $                                                                 |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median                                                                                                                                   | nalysis:<br>variance:<br>Sensitivity<br>88%<br>94%<br>100%<br>100%<br>95.2%<br>94.0%                                                                                                                                                                                                                                                                       | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ \hline \\ {\rm Selectivity}\\ 83\%\\ 59\%\\ 67\%\\ 71\%\\ 77\%\\ 77.4\%\\ 71.4\%\\ \hline \\ 71.0\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Num seiz           17           17           17           17           17           17           17           17           17           17           17           17           17           17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $     \begin{array}{r}       15 \\       16 \\       17 \\       17 \\       16.2 \\       16.0 \\       \end{array} $                                                           | $     \begin{array}{r}       3 \\       11 \\       8 \\       7 \\       5 \\       \hline       6.8 \\       7.0 \\       \end{array} $                                     |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median                                                                                                                                   | nalysis:<br>variance:<br>:<br>:<br>Sensitivity<br>88%<br>94%<br>94%<br>100%<br>100%<br>95.2%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:                                                                                                                                                                                                            | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ \hline \\ {\rm Selectivity}\\ 83\%\\ 59\%\\ 67\%\\ 71\%\\ 77\%\\ 77.4\%\\ 71.4\%\\ \hline \\ 71.0\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Num seiz           17           17           17           17           17           17           17           clusters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $     \begin{array}{r}       15 \\       16 \\       17 \\       17 \\       16.2 \\       16.0 \\       \end{array} $                                                           | $     \begin{array}{r}       3 \\       11 \\       8 \\       7 \\       5 \\       \hline       6.8 \\       7.0 \\       \end{array} $                                     |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                         | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>94%<br>94%<br>94%<br>100%<br>95.2%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>:                                                                                                                                                                                                             | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ \hline \\ {\rm Selectivity}\\ {\rm 83\%}\\ {\rm 59\%}\\ {\rm 67\%}\\ {\rm 71\%}\\ {\rm 71.6\%}\\ {\rm 71.4\%}\\ {\rm 71.0\%}\\ {\rm 9.2\%}\\ \hline \\ \hline \\ {\rm Without\ sen}\\ {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Num seiz           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17 | $     \begin{array}{r}       15 \\       16 \\       17 \\       17 \\       16.2 \\       16.0 \\       \end{array} $                                                           | $ \begin{array}{r} 3 \\ 11 \\ 8 \\ 7 \\ 5 \\ 6.8 \\ 7.0 \\ 3.0 \\ \end{array} $                                                                                               |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                         | nalysis:<br>variance:<br>:<br>:<br>Sensitivity<br>88%<br>94%<br>94%<br>100%<br>100%<br>95.2%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:                                                                                                                                                                                                            | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ {\rm 83\%}\\ {\rm 59\%}\\ {\rm 67\%}\\ {\rm 71\%}\\ {\rm 71.4\%}\\ {\rm 71.4\%}\\ {\rm 71.0\%}\\ {\rm 9.2\%}\\ \end{array}$<br>Without sem Gm fuzzy, 3 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Num seiz           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17 | $ \begin{array}{c} 15\\ 16\\ 17\\ 17\\ 16.2\\ 16.0\\ 0.8\\ \end{array} $                                                                                                         | $     \begin{array}{r}       3 \\       11 \\       8 \\       7 \\       5 \\       \hline       6.8 \\       7.0 \\       \end{array} $                                     |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                         | nalysis:<br>variance:<br>Sensitivity<br>88%<br>94%<br>100%<br>100%<br>95.2%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity                                                                                                                                                                                                         | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ 83\%\\ 59\%\\ 67\%\\ 71.\%\\ 71.\%\\ 77.\%\\ 71.4\%\\ 71.0\%\\ 9.2\%\\ \hline \\ {\rm Without\ sen}\\ {\rm Gm\ fuzzy,\ 3}\\ 70\%\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Num seiz           17           17           17           17           17           17           17           17           17           17           17           17           18           19           sor 2           clusters           Num seiz                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15<br>16<br>17<br>17<br>16.2<br>16.0<br>0.8                                                                                                                                      | 3<br>11<br>8<br>7<br>5<br>6.8<br>7.0<br>3.0<br>Found non seiz                                                                                                                 |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                         | nalysis:<br>variance:<br>Sensitivity<br>88%<br>94%<br>100%<br>100%<br>100%<br>95.2%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%                                                                                                                                                                                               | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ {\rm 83\%}\\ {\rm 59\%}\\ {\rm 67\%}\\ {\rm 71\%}\\ {\rm 77.\%}\\ {\rm 77.\%}\\ {\rm 77.4\%}\\ {\rm 71.4\%}\\ {\rm 71.0\%}\\ {\rm 9.2\%}\\ \hline \\ {\rm Without\ sen}\\ {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ {\rm 58\%}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Num seiz           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           Sor 2           clusters           Num seiz           17                                                                                                                                                                                                                                                                                                                                    | 15<br>16<br>17<br>17<br>16.2<br>16.0<br>0.8<br>Found seiz<br>14                                                                                                                  | 3<br>11<br>8<br>7<br>5<br>6.8<br>7.0<br>3.0<br>Found non seiz<br>10                                                                                                           |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                         | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>94%<br>94%<br>94%<br>100%<br>95.2%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%                                                                                                                                                                                       | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ {\rm 83\%}\\ {\rm 59\%}\\ {\rm 67\%}\\ {\rm 71\%}\\ {\rm 71.4\%}\\ {\rm 71.4\%}\\ {\rm 71.0\%}\\ {\rm 9.2\%}\\ \hline \\ {\rm Without\ sen}\\ {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ {\rm 58\%}\\ {\rm 64\%}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Num seiz           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17                                                                                                                                                                                                                                                                                                                                                                                          | 15<br>16<br>17<br>17<br>16.2<br>16.0<br>0.8<br>Found seiz<br>14<br>14                                                                                                            | 3<br>11<br>8<br>7<br>5<br>6.8<br>7.0<br>3.0<br>Found non seiz<br>10<br>8                                                                                                      |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                         | nalysis:<br>variance:<br>Sensitivity<br>88%<br>94%<br>100%<br>100%<br>100%<br>95.2%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>88%                                                                                                                                                                            | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ 83\%\\ 59\%\\ 67\%\\ 71\%\\ 71.\%\\ 71.4\%\\ 71.0\%\\ 9.2\%\\ \hline \\ {\rm Without\ sen}\\ {\rm Gm\ fuzzy,\ 3}\\ 70\%\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ 58\%\\ 64\%\\ 58\%\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Num seiz           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17                                                                                                                                                                                                                                                                                                                                      | 15<br>16<br>16<br>17<br>17<br>16.2<br>16.0<br>0.8<br>Found seiz<br>14<br>15                                                                                                      | 3<br>11<br>8<br>7<br>5<br>6.8<br>7.0<br>3.0<br>Found non seiz<br>10<br>8<br>11<br>7<br>7                                                                                      |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                         | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>94%<br>100%<br>100%<br>100%<br>95.2%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>88%                                                                                                                                                                       | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ {\rm 83\%}\\ {\rm 59\%}\\ {\rm 67\%}\\ {\rm 71\%}\\ {\rm 71.\%}\\ {\rm 71.6\%}\\ {\rm 71.4\%}\\ {\rm 71.0\%}\\ {\rm 9.2\%}\\ \hline \\ \hline \\ {\rm Without\ sen}\\ {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ {\rm 58\%}\\ {\rm 64\%}\\ {\rm 58\%}\\ {\rm 68\%}\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Num seiz           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17                                                                                                                                                                                                                                                                                                                                      | 15<br>16<br>16<br>17<br>17<br>16.2<br>16.0<br>0.8<br>Found seiz<br>14<br>14<br>14<br>15<br>15                                                                                    | 3<br>11<br>8<br>7<br>5<br>6.8<br>7.0<br>3.0<br>Found non seiz<br>10<br>8<br>11<br>7                                                                                           |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                           | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94.0%<br>5.0%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>88%<br>88%                                                                                                                                             | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ {\rm 83\%}\\ {\rm 59\%}\\ {\rm 67\%}\\ {\rm 71\%}\\ {\rm 71.6\%}\\ {\rm 71.4\%}\\ {\rm 71.0\%}\\ {\rm 9.2\%}\\ \hline \\ \\ {\rm Without\ sen}\\ {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ {\rm 58\%}\\ {\rm 64\%}\\ {\rm 68\%}\\ {\rm 68\%}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | clusters<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>sor 2<br>clusters<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 15\\ 16\\ 16\\ 17\\ 17\\ 16.2\\ 16.0\\ 0.8\\ \hline \\ \hline \\ 14\\ 14\\ 15\\ 15\\ 15\\ 15\\ \end{array}$                                                    | 3<br>11<br>8<br>7<br>5<br>6.8<br>7.0<br>3.0<br>Found non seiz<br>10<br>8<br>11<br>7<br>7                                                                                      |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                           | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>94%<br>94%<br>100%<br>100%<br>95.2%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>88%<br>88%<br>88%<br>88%                                                                                                                                                   | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ 70\%\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ 83\%\\ 59\%\\ 67\%\\ 71\%\\ 71\%\\ 71.6\%\\ 9.2\%\\ \hline \\ {\rm Without\ sen}\\ {\rm Gm\ fuzzy,\ 3}\\ 70\%\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ 58\%\\ 64\%\\ 68\%\\ 68\%\\ 68\%\\ 63.2\%\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | clusters<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>sor 2<br>clusters<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15<br>16<br>16<br>17<br>17<br>16.2<br>16.0<br>0.8<br>Found seiz<br>14<br>15<br>15<br>15<br>14.6                                                                                  | 3<br>11<br>8<br>7<br>5<br>6.8<br>7.0<br>3.0<br>Found non seiz<br>10<br>8<br>11<br>7<br>7<br>8.6                                                                               |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                           | nalysis:<br>variance:<br>Sensitivity<br>88%<br>94%<br>100%<br>100%<br>95.2%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>82%<br>82%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%                                                                                                                                               | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ 83\%\\ 59\%\\ 67\%\\ 71.\%\\ 71.\%\\ 77.\%\\ 71.4\%\\ 71.0\%\\ 9.2\%\\ \hline \\ {\rm Without\ sen}\\ {\rm Gm\ fuzzy,\ 3}\\ 70\%\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ 58\%\\ 64\%\\ 68\%\\ 68\%\\ 68\%\\ 68\%\\ 66.2\%\\ 64.0\%\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Num seiz           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 15\\ 16\\ 16\\ 17\\ 17\\ 16.2\\ 16.0\\ 0.8\\ \hline \\ \hline \\ 14\\ 14\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15.0\\ \hline \end{array}$                       | 3<br>11<br>8<br>7<br>5<br>6.8<br>7.0<br>3.0<br>Found non seiz<br>10<br>8<br>11<br>7<br>7<br>8.6<br>8.0                                                                        |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                           | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>94%<br>94%<br>100%<br>100%<br>95.2%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>variance:<br>:<br>used:<br>nalysis:<br>variance:<br>:                                                                     | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ {\rm 83\%}\\ {\rm 59\%}\\ {\rm 67\%}\\ {\rm 71\%}\\ {\rm 71\%}\\ {\rm 71.6\%}\\ {\rm 71.6\%}\\ {\rm 9.2\%}\\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Num seiz           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17 | $\begin{array}{c} 15\\ 16\\ 16\\ 17\\ 17\\ 16.2\\ 16.0\\ 0.8\\ \end{array}$ Found seiz $\begin{array}{c} 14\\ 14\\ 15\\ 15\\ 15\\ 14.6\\ 15.0\\ 0.5\\ \end{array}$               | 3<br>11<br>8<br>7<br>5<br>6.8<br>7.0<br>3.0<br>Found non seiz<br>10<br>8<br>11<br>7<br>7<br>8.6<br>8.0<br>1.8                                                                 |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                             | nalysis:<br>variance:<br>Sensitivity<br>88%<br>94%<br>100%<br>100%<br>100%<br>95.2%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>82%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%                                                                                                                           | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ 83\%\\ 59\%\\ 67\%\\ 71\%\\ 71.6\%\\ 71.6\%\\ 71.6\%\\ 9.2\%\\ \hline \end{array}$<br>Without sen Gm fuzzy, 3 70% KNN, k=3 3 Selectivity 58% 68% 68% 68% 68% 68% 68% 68% 68% 68% 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Num seiz           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17 | 15<br>16<br>16<br>17<br>17<br>16.2<br>16.0<br>0.8<br>Found seiz<br>14<br>15<br>15<br>15<br>15<br>14.6<br>15.0<br>0.5<br>Found seiz                                               | 3<br>11<br>8<br>7<br>5<br>6.8<br>7.0<br>3.0<br>Found non seiz<br>10<br>8<br>11<br>7<br>7<br>8.6<br>8.0<br>1.8<br>Found non seiz                                               |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                             | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>95.2%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%                                                                                                    | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ {\rm 83\%}\\ {\rm 59\%}\\ {\rm 67\%}\\ {\rm 71\%}\\ {\rm 71.6\%}\\ {\rm 71.4\%}\\ {\rm 71.0\%}\\ {\rm 9.2\%}\\ \hline \\ \\ \hline \\ {\rm Without\ sen}\\ {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ {\rm 58\%}\\ {\rm 68\%}\\ {\rm $                                                                    | Num seiz           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17 | 15<br>16<br>16<br>17<br>17<br>16.2<br>16.0<br>0.8<br>Found seiz<br>14<br>14<br>15<br>15<br>15<br>14.6<br>15.0<br>0.5<br>Found seiz<br>13                                         | 3<br>11<br>8<br>7<br>5<br>6.8<br>7.0<br>3.0<br>Found non seiz<br>10<br>8<br>11<br>7<br>7<br>8.6<br>8.0<br>1.8<br>Found non seiz<br>14                                         |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                             | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>94%<br>94%<br>100%<br>100%<br>95.2%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>88%<br>88%<br>88%<br>88.0%<br>3.3%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>76%<br>88%                                                                     | $\begin{array}{c} {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ {\rm 83\%}\\ {\rm 59\%}\\ {\rm 67\%}\\ {\rm 71\%}\\ {\rm 71.\%}\\ {\rm 71.6\%}\\ {\rm 77.\%}\\ {\rm 71.4\%}\\ {\rm 71.0\%}\\ {\rm 9.2\%}\\ \hline \\ {\rm Without\ sen}\\ {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ {\rm 58\%}\\ {\rm 68\%}\\ {\rm 8\%}\\ {\rm 8\%}\\$ | Num seiz           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17                                                                                                                                                             | 15<br>16<br>16<br>17<br>17<br>16.2<br>16.0<br>0.8<br>Found seiz<br>14<br>15<br>15<br>14.6<br>15.0<br>0.5<br>Found seiz<br>13<br>15                                               | 3<br>11<br>8<br>7<br>5<br>6.8<br>7.0<br>3.0<br>Found non seiz<br>10<br>8<br>11<br>7<br>7<br>8.6<br>8.0<br>1.8<br>Found non seiz<br>14<br>16                                   |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                             | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>94%<br>100%<br>100%<br>100%<br>95.2%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>88%<br>88%<br>88%<br>88%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>76%<br>88%                        | $\begin{array}{r} {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ 83\%\\ 59\%\\ 67\%\\ 71\%\\ 71.6\%\\ 71.4\%\\ 71.0\%\\ 9.2\%\\ \hline \\ {\rm Without\ sen}\\ {\rm Gm\ fuzzy,\ 3}\\ 70\%\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ 58\%\\ 64\%\\ 68\%\\ 68\%\\ 68\%\\ 68\%\\ 68\%\\ 68\%\\ 68\%\\ 68$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | clusters<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>sor 2<br>clusters<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>sor 2<br>clusters<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15<br>16<br>16<br>17<br>17<br>16.2<br>16.0<br>0.8<br>Found seiz<br>14<br>15<br>15<br>14.6<br>15.0<br>0.5<br>Found seiz<br>13<br>15<br>15                                         | 3<br>11<br>8<br>7<br>5<br>6.8<br>7.0<br>3.0<br>7<br>0<br>8<br>10<br>8<br>11<br>7<br>7<br>7<br>8.6<br>8.0<br>1.8<br>Found non seiz<br>14<br>16<br>13                           |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                             | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94                                                                                                                                                                                                                                      | $\begin{array}{r} {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ {\rm 83\%}\\ {\rm 59\%}\\ {\rm 67\%}\\ {\rm 71\%}\\ {\rm 71.6\%}\\ {\rm 71.4\%}\\ {\rm 71.0\%}\\ {\rm 9.2\%}\\ \hline \\ {\rm Without\ sen}\\ {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ {\rm 58\%}\\ {\rm 64\%}\\ {\rm 68\%}\\ $                                                                         | clusters<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15<br>16<br>16<br>17<br>17<br>16.2<br>16.0<br>0.8<br>Found seiz<br>14<br>14<br>14<br>15<br>15<br>15<br>14.6<br>15.0<br>0.5<br>Found seiz<br>13<br>15<br>16                       | 3<br>11<br>8<br>7<br>5<br>6.8<br>7.0<br>3.0<br>Found non seiz<br>10<br>8<br>11<br>7<br>7<br>8.6<br>8.0<br>1.8<br>Found non seiz<br>14<br>16<br>13<br>15                       |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                          | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>94%<br>94%<br>100%<br>95.2%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>82%<br>88%<br>88%<br>88%<br>88.0%<br>3.3%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>variance:<br>:<br>Sensitivity<br>76%<br>88%<br>88%<br>88%<br>88%<br>88%<br>94%<br>94%  | $\begin{array}{r} {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ {\rm 83\%}\\ {\rm 59\%}\\ {\rm 67\%}\\ {\rm 71\%}\\ {\rm 71.6\%}\\ {\rm 71.6\%}\\ {\rm 9.2\%}\\ \hline \\ \\ \hline \\ {\rm Without\ sen}\\ {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ {\rm 58\%}\\ {\rm 68\%}\\ {\rm 68$                                                                    | clusters           Num seiz           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17                     | 15<br>16<br>16<br>17<br>17<br>16.2<br>16.0<br>0.8<br>Found seiz<br>14<br>15<br>15<br>14.6<br>15.0<br>0.5<br>Found seiz<br>13<br>15<br>15<br>16<br>16                             | 3<br>11<br>8<br>7<br>5<br>6.8<br>7.0<br>3.0<br>Found non seiz<br>10<br>8<br>11<br>7<br>7<br>8.6<br>8.0<br>1.8<br>Found non seiz<br>14<br>16<br>13<br>15<br>11                 |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>94%<br>100%<br>100%<br>100%<br>95.2%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>76%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>8 | $\begin{array}{r} {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ {\rm 83\%}\\ {\rm 59\%}\\ {\rm 57\%}\\ {\rm 77\%}\\ {\rm 77\%}\\ {\rm 77\%}\\ {\rm 71.4\%}\\ {\rm 71.0\%}\\ {\rm 9.2\%}\\ \hline \\ {\rm Without\ sen}\\ {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ {\rm 58\%}\\ {\rm 68\%}\\ {\rm 68\%}\\ {\rm 68.2\%}\\ {\rm 68.2\%}\\ {\rm 68.2\%}\\ {\rm 68.\%}\\ {\rm 68.2\%}\\ {\rm 68.\%}\\ {\rm 68.2\%}\\ {\rm 68.2\%}\\ {\rm 68.\%}\\ {\rm 68.2\%}\\ {\rm 68.\%}\\ {\rm 68.2\%}\\ {\rm 68.2\%}\\ {\rm 68.2\%}\\ {\rm 68.\%}\\ {\rm 68.2\%}\\ {\rm 68.\%}\\ {\rm 68.2\%}\\ {\rm 68.\%}\\ {\rm 68.2\%}\\ {\rm 68.\%}\\ {\rm 68.\%}\\ {\rm 68.2\%}\\ {\rm 68.\%}\\ $                                                                                                                                                             | clusters           Num seiz           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17                     | 15<br>16<br>16<br>17<br>17<br>16.2<br>16.0<br>0.8<br>Found seiz<br>14<br>15<br>15<br>14.6<br>15.0<br>0.5<br>Found seiz<br>13<br>15<br>15<br>15<br>16<br>16<br>16<br>15.0         | 3<br>11<br>8<br>7<br>5<br>6.8<br>7.0<br>3.0<br>Found non seiz<br>10<br>8<br>11<br>7<br>7<br>8.6<br>8.0<br>1.8<br>Found non seiz<br>14<br>16<br>13<br>15<br>11<br>13.8         |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                          | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>94%<br>94%<br>94%<br>94%<br>95.2%<br>94.0%<br>5.0%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88.0%<br>3.3%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>76%<br>88%<br>88%<br>94%<br>94%<br>88.0%                               | $\begin{array}{r} {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ {\rm 83\%}\\ {\rm 59\%}\\ {\rm 67\%}\\ {\rm 71\%}\\ {\rm 71.4\%}\\ {\rm 71.4\%}\\ {\rm 71.0\%}\\ {\rm 9.2\%}\\ \hline \\ {\rm Without\ sen}\\ {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ {\rm 58\%}\\ {\rm 64\%}\\ {\rm 68\%}\\ {\rm 64.0\%}\\ {\rm 50\%}\\ {\rm 50\%}\\ {\rm 52.2\%}\\ {\rm 52.0\%}\\ {\rm 52.0\%}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | clusters           Num seiz           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17                     | 15<br>16<br>16<br>17<br>17<br>16.2<br>16.0<br>0.8<br>Found seiz<br>14<br>14<br>15<br>15<br>15<br>14.6<br>15.0<br>0.5<br>Found seiz<br>13<br>15<br>15<br>16<br>16<br>15.0<br>15.0 | 3<br>11<br>8<br>7<br>5<br>6.8<br>7.0<br>3.0<br>Found non seiz<br>10<br>8<br>11<br>7<br>7<br>8.6<br>8.0<br>1.8<br>Found non seiz<br>14<br>16<br>13<br>15<br>11<br>13.8<br>14.0 |
| Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                          | nalysis:<br>variance:<br>:<br>Sensitivity<br>88%<br>94%<br>100%<br>100%<br>100%<br>95.2%<br>94.0%<br>5.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88.0%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>76%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>8 | $\begin{array}{r} {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ {\rm 83\%}\\ {\rm 59\%}\\ {\rm 57\%}\\ {\rm 77\%}\\ {\rm 77\%}\\ {\rm 77\%}\\ {\rm 71.4\%}\\ {\rm 71.0\%}\\ {\rm 9.2\%}\\ \hline \\ {\rm Without\ sen}\\ {\rm Gm\ fuzzy,\ 3}\\ {\rm 70\%}\\ {\rm KNN,\ k=3}\\ {\rm Selectivity}\\ {\rm 58\%}\\ {\rm 68\%}\\ {\rm 68\%}\\ {\rm 68.2\%}\\ {\rm 68.2\%}\\ {\rm 68.2\%}\\ {\rm 68.\%}\\ {\rm 68.2\%}\\ {\rm 68.\%}\\ {\rm 68.2\%}\\ {\rm 68.2\%}\\ {\rm 68.\%}\\ {\rm 68.2\%}\\ {\rm 68.\%}\\ {\rm 68.2\%}\\ {\rm 68.2\%}\\ {\rm 68.2\%}\\ {\rm 68.\%}\\ {\rm 68.2\%}\\ {\rm 68.\%}\\ {\rm 68.2\%}\\ {\rm 68.\%}\\ {\rm 68.2\%}\\ {\rm 68.\%}\\ {\rm 68.\%}\\ {\rm 68.2\%}\\ {\rm 68.\%}\\ $                                                                                                                                                             | clusters           Num seiz           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17           17                     | 15<br>16<br>16<br>17<br>17<br>16.2<br>16.0<br>0.8<br>Found seiz<br>14<br>15<br>15<br>14.6<br>15.0<br>0.5<br>Found seiz<br>13<br>15<br>15<br>15<br>16<br>16<br>16<br>15.0         | 3<br>11<br>8<br>7<br>5<br>6.8<br>7.0<br>3.0<br>Found non seiz<br>10<br>8<br>11<br>7<br>8.6<br>8.0<br>1.8<br>Found non seiz<br>14<br>16<br>13<br>15<br>11<br>13.8              |

|                                                                                                                                                                                                                             | used:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Without sen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cluster a<br>PLS-DA                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gm fuzzy, 3<br>70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | clusters                                                                                                                                                                                            |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                         |
| Classifier:                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | KNN, k = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                         |
|                                                                                                                                                                                                                             | Sensitivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Num seiz                                                                                                                                                                                            | Found seiz                                                                                                                                                                                                                                                                   | Found non sei                                                                                                                                                                                           |
|                                                                                                                                                                                                                             | 88%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                                                                                                                                                                                                  | 15                                                                                                                                                                                                                                                                           | 18                                                                                                                                                                                                      |
|                                                                                                                                                                                                                             | 88%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                                                                                                                                                                                                  | 15                                                                                                                                                                                                                                                                           | 15                                                                                                                                                                                                      |
|                                                                                                                                                                                                                             | 88%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 56%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                                                                                                                                                                                                  | 15                                                                                                                                                                                                                                                                           | 12                                                                                                                                                                                                      |
|                                                                                                                                                                                                                             | 94%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 53%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                                                                                                                                                                                                  | 16                                                                                                                                                                                                                                                                           | 14                                                                                                                                                                                                      |
|                                                                                                                                                                                                                             | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                                                                                                                                                                                                  | 17                                                                                                                                                                                                                                                                           | 16                                                                                                                                                                                                      |
| Mean                                                                                                                                                                                                                        | 91.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 51.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17                                                                                                                                                                                                  | 15.6                                                                                                                                                                                                                                                                         | 15.0                                                                                                                                                                                                    |
| Median                                                                                                                                                                                                                      | 88.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 52.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17                                                                                                                                                                                                  | 15.0                                                                                                                                                                                                                                                                         | 15.0                                                                                                                                                                                                    |
| STD                                                                                                                                                                                                                         | 5.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                   | 0.9                                                                                                                                                                                                                                                                          | 2.2                                                                                                                                                                                                     |
| <b>.</b>                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                         |
| Features<br>Cluster a                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Without sen<br>Gm fuzzy, 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                         |
| PLS-DA                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | clusters                                                                                                                                                                                            |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                         |
| Classifier:                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | KNN, k = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                         |
| Classifier                                                                                                                                                                                                                  | Sensitivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Num seiz                                                                                                                                                                                            | Found seiz                                                                                                                                                                                                                                                                   | Found non sei                                                                                                                                                                                           |
|                                                                                                                                                                                                                             | 82%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 38%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                                                                                                                                                                                                  | 14                                                                                                                                                                                                                                                                           | 23                                                                                                                                                                                                      |
|                                                                                                                                                                                                                             | 82%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                                                                                                                                                                                                  | 14                                                                                                                                                                                                                                                                           | 17                                                                                                                                                                                                      |
|                                                                                                                                                                                                                             | 88%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 37%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                                                                                                                                                                                                  | 14                                                                                                                                                                                                                                                                           | 26                                                                                                                                                                                                      |
|                                                                                                                                                                                                                             | 88%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                                                                                                                                                                                                  | 15                                                                                                                                                                                                                                                                           | 20                                                                                                                                                                                                      |
|                                                                                                                                                                                                                             | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                                                                                                                                                                                                  | 17                                                                                                                                                                                                                                                                           | 22                                                                                                                                                                                                      |
| Mean                                                                                                                                                                                                                        | 88.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17                                                                                                                                                                                                  | 15.0                                                                                                                                                                                                                                                                         | 22.2                                                                                                                                                                                                    |
| Median                                                                                                                                                                                                                      | 88.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17                                                                                                                                                                                                  | 15.0                                                                                                                                                                                                                                                                         | 23.0                                                                                                                                                                                                    |
| STD                                                                                                                                                                                                                         | 7.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                   | 1.2                                                                                                                                                                                                                                                                          | 3.3                                                                                                                                                                                                     |
|                                                                                                                                                                                                                             | 1.370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                   | 1.4                                                                                                                                                                                                                                                                          | 0.0                                                                                                                                                                                                     |
| Font                                                                                                                                                                                                                        | ucodu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | With                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | aon 1 1 9                                                                                                                                                                                           |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                         |
| Features<br>Cluster a                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Without sen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                         |
| PLS-DA                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gm fuzzy, 3<br>70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | clusters                                                                                                                                                                                            |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                         |
| Classifier:                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70% KNN, k = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                         |
| Classifier                                                                                                                                                                                                                  | Sensitivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Num seiz                                                                                                                                                                                            | Found seiz                                                                                                                                                                                                                                                                   | Found non sei                                                                                                                                                                                           |
|                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                         |
|                                                                                                                                                                                                                             | 82%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40%<br>47%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17<br>17                                                                                                                                                                                            | 14<br>15                                                                                                                                                                                                                                                                     | 21<br>17                                                                                                                                                                                                |
|                                                                                                                                                                                                                             | 88%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                         |
|                                                                                                                                                                                                                             | 94%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                                                                                                                                                                                                  | 16                                                                                                                                                                                                                                                                           | 19                                                                                                                                                                                                      |
|                                                                                                                                                                                                                             | 94%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                                                                                                                                                                                                  | 16                                                                                                                                                                                                                                                                           | 19                                                                                                                                                                                                      |
|                                                                                                                                                                                                                             | 94%<br>90.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 53%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                                                                                                                                                                                                  | 16                                                                                                                                                                                                                                                                           | 14                                                                                                                                                                                                      |
|                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 46.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17                                                                                                                                                                                                  | 15.4                                                                                                                                                                                                                                                                         | 18.0                                                                                                                                                                                                    |
|                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18                                                                                                                                                                                                  | 10.0                                                                                                                                                                                                                                                                         | 10.0                                                                                                                                                                                                    |
| Median                                                                                                                                                                                                                      | 94.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 46.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17                                                                                                                                                                                                  | 16.0                                                                                                                                                                                                                                                                         | 19.0                                                                                                                                                                                                    |
| Median<br>STD<br>Features<br>Cluster a                                                                                                                                                                                      | 94.0%<br>5.4%<br>used:<br>nalysis:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 46.0%<br>4.6%<br>Using featur<br>Gm fuzzy, 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>e differential                                                                                                                                                                                 | 0.9                                                                                                                                                                                                                                                                          | 19.0<br>2.6                                                                                                                                                                                             |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                                            | 94.0%<br>5.4%<br>used:<br>nalysis:<br>variance:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 46.0%<br>4.6%<br>Using featur<br>Gm fuzzy, 3<br>70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0<br>e differential                                                                                                                                                                                 | 0.9                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                         |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                                            | 94.0%<br>5.4%<br>used:<br>nalysis:<br>variance:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 46.0%<br>4.6%<br>Using featur<br>Gm fuzzy, 3<br>70%<br>KNN, k = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0<br>e differentials<br>clusters                                                                                                                                                                    | 0.9<br>s                                                                                                                                                                                                                                                                     | 2.6                                                                                                                                                                                                     |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                                            | 94.0%<br>5.4%<br>used:<br>nalysis:<br>variance:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 46.0%<br>4.6%<br>Using featur<br>Gm fuzzy, 3<br>70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0<br>e differential                                                                                                                                                                                 | 0.9                                                                                                                                                                                                                                                                          | 2.6                                                                                                                                                                                                     |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                                            | 94.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>Sensitivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 46.0%<br>4.6%<br>Using featur<br>Gm fuzzy, 3<br>70%<br>KNN, k = 3<br>Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>e differentials<br>clusters<br>Num seiz                                                                                                                                                        | 0.9<br>s<br>Found seiz                                                                                                                                                                                                                                                       | 2.6<br>Found non sei                                                                                                                                                                                    |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                                            | 94.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>:<br>Sensitivity<br>82%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 46.0%<br>4.6%<br>Using featur<br>Gm fuzzy, 3<br>70%<br>KNN, k = 3<br>Selectivity<br>56%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>e differentials<br>clusters<br>Num seiz<br>17                                                                                                                                                  | 0.9<br>s<br>Found seiz<br>14                                                                                                                                                                                                                                                 | 2.6<br>Found non sei<br>11                                                                                                                                                                              |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                                            | 94.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>88%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 46.0%<br>4.6%<br>Using featur<br>Gm fuzzy, 3<br>70%<br>KNN, k = 3<br>Selectivity<br>56%<br>58%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>e differentials<br>clusters<br>Num seiz<br>17<br>17                                                                                                                                            | 0.9<br>s<br>Found seiz<br>14<br>15                                                                                                                                                                                                                                           | 2.6<br>Found non sei                                                                                                                                                                                    |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                                                                                                                                                            | 94.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>88%<br>88%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46.0%<br>4.6%<br>Using featur<br>Gm fuzzy, 3<br>70%<br>KNN, k = 3<br>Selectivity<br>56%<br>58%<br>58%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>e differentials<br>clusters<br>Num seiz<br>17<br>17<br>17                                                                                                                                      | 0.9<br>s<br>Found seiz<br>14<br>15<br>15                                                                                                                                                                                                                                     | 2.6<br>Found non sei<br>11<br>11<br>11                                                                                                                                                                  |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                                                                                                              | 94.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>94%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 46.0\% \\ 4.6\% \\ \hline \\ Using featur \\ Gm fuzzy, 3 \\ 70\% \\ KNN, k = 3 \\ Selectivity \\ 56\% \\ 58\% \\ 58\% \\ 68\% \\ 62\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>e differentials<br>clusters<br>Num seiz<br>17<br>17<br>17<br>17<br>17                                                                                                                          | 0.9<br>s<br>Found seiz<br>14<br>15<br>15<br>15<br>16                                                                                                                                                                                                                         | 2.6<br>Found non sei<br>11<br>11<br>11<br>7<br>10                                                                                                                                                       |
| Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median                                                                                                                                    | 94.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>88%<br>88%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46.0%<br>4.6%<br>Using featur<br>Gm fuzzy, 3<br>70%<br>KNN, k = 3<br>Selectivity<br>56%<br>58%<br>68%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>e differentials<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17                                                                                                                                | 0.9<br>s<br>Found seiz<br>14<br>15<br>15<br>15                                                                                                                                                                                                                               | 2.6<br>Found non sei<br>11<br>11<br>7                                                                                                                                                                   |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median                                                                                                                                            | 94.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{r} 46.0\% \\ \hline 4.6\% \\ \hline \\ \text{Using featur} \\ \text{Gm fuzzy, 3} \\ 70\% \\ \text{KNN, k = 3} \\ \hline \\ \text{Selectivity} \\ \hline 56\% \\ 58\% \\ 68\% \\ 62\% \\ 62\% \\ 60.4\% \\ \hline \\ 58.0\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0<br>e differentials<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                                                                    | 0.9<br>s<br>Found seiz<br>14<br>15<br>15<br>15<br>15<br>15<br>16<br>15.0<br>15.0                                                                                                                                                                                             | 2.6<br>Found non sei<br>11<br>11<br>11<br>7<br>10<br>10.0<br>11.0                                                                                                                                       |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median                                                                                                                                            | 94.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{r} 46.0\% \\ 4.6\% \\ \hline \\ \text{Using featur} \\ \text{Gm fuzzy, 3} \\ 70\% \\ \text{KNN, k = 3} \\ \hline \\ \text{Selectivity} \\ \hline \\ 56\% \\ 58\% \\ 58\% \\ 68\% \\ 68\% \\ 62\% \\ \hline \\ 60.4\% \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0<br>e differential:<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                                                              | 0.9<br>s<br>Found seiz<br>14<br>15<br>15<br>15<br>16<br>15.0                                                                                                                                                                                                                 | 2.6<br>Found non sei<br>11<br>11<br>11<br>10<br>10.0                                                                                                                                                    |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD                                                                                                                                     | 94.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>94%<br>88.0%<br>88.0%<br>4.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 46.0\% \\ 4.6\% \\ \hline \\ \text{Using featur} \\ \text{Gm fuzzy, 3} \\ 70\% \\ \text{KNN, k = 3} \\ \text{Selectivity} \\ 56\% \\ 58\% \\ 58\% \\ 68\% \\ 62\% \\ 60.4\% \\ \hline \\ 58.0\% \\ 4.8\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>e differential:<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                                                                                              | 0.9<br>s<br>Found seiz<br>14<br>15<br>15<br>15<br>15<br>15<br>16<br>15.0<br>15.0                                                                                                                                                                                             | 2.6<br>Found non sei<br>11<br>11<br>11<br>7<br>10<br>10.0<br>11.0                                                                                                                                       |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features                                                                                                                         | 94.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 46.0\% \\ \hline 4.6\% \\ \hline Using featur \\ Gm fuzzy, 3 \\ 70\% \\ KNN, k = 3 \\ \hline 58\% \\ 58\% \\ 68\% \\ 68\% \\ 62\% \\ 60.4\% \\ \hline 58.0\% \\ \hline 4.8\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>e differential:<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0                                                                                                         | 0.9<br>s<br>Found seiz<br>14<br>15<br>15<br>15<br>15<br>15<br>16<br>15.0<br>15.0                                                                                                                                                                                             | 2.6<br>Found non sei<br>11<br>11<br>11<br>7<br>10<br>10.0<br>11.0                                                                                                                                       |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a                                                                                                            | 94.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>94%<br>94%<br>94.0%<br>88.0%<br>4.2%<br>used:<br>nalysis:<br>used:<br>nalysis:<br>88.0%<br>4.2%<br>88.0%<br>4.2%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>88.0%<br>8 | $\begin{array}{c} 46.0\% \\ 4.6\% \\ \hline \\ \text{Using featur} \\ \text{Gm fuzzy, 3} \\ 70\% \\ \text{KNN, k = 3} \\ \text{Selectivity} \\ 56\% \\ 58\% \\ 58\% \\ 68\% \\ 62\% \\ 60.4\% \\ \hline \\ 58.0\% \\ 4.8\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>e differential:<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0                                                                                                         | 0.9<br>s<br>Found seiz<br>14<br>15<br>15<br>15<br>15<br>15<br>16<br>15.0<br>15.0                                                                                                                                                                                             | 2.6<br>Found non sei<br>11<br>11<br>11<br>7<br>10<br>10.0<br>11.0                                                                                                                                       |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>Cluster a                                                                                                       | 94.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>94%<br>88.0%<br>88.0%<br>4.2%<br>used:<br>nalysis:<br>variance:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 46.0%<br>4.6%<br>Using featur<br>Gm fuzzy, 3<br>70%<br>KNN, k = 3<br>Selectivity<br>56%<br>58%<br>58%<br>62%<br>62%<br>60.4%<br>58.0%<br>4.8%<br>Optimal set<br>No clusterin<br>100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>e differential:<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0                                                                                                         | 0.9<br>s<br>Found seiz<br>14<br>15<br>15<br>15<br>16<br>15.0<br>15.0<br>0.7                                                                                                                                                                                                  | 2.6<br>Found non sei<br>11<br>11<br>11<br>7<br>10<br>10.0<br>11.0                                                                                                                                       |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>Cluster a                                                                                                       | 94.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>94%<br>88.0%<br>88.0%<br>4.2%<br>used:<br>nalysis:<br>variance:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 46.0%<br>4.6%<br>Using featur<br>Gm fuzzy, 3<br>70%<br>KNN, k = 3<br>Selectivity<br>56%<br>58%<br>58%<br>62%<br>62%<br>60.4%<br>58.0%<br>4.8%<br>Optimal set<br>No clusterin<br>100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>e differential<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>9                                                                                                                 | 0.9<br>s<br>Found seiz<br>14<br>15<br>15<br>15<br>16<br>15.0<br>15.0<br>0.7                                                                                                                                                                                                  | 2.6<br>Found non sei<br>11<br>11<br>11<br>7<br>10<br>10.0<br>11.0<br>1.7                                                                                                                                |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>Cluster a                                                                                                       | 94.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 46.0%<br>4.6%<br>Using featur<br>Gm fuzzy, 3<br>70%<br>KNN, k = 3<br>Selectivity<br>56%<br>68%<br>62%<br>60.4%<br>58.0%<br>4.8%<br>Optimal set<br>No clusterin,<br>100%<br>Old method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>e differential<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>9<br>Prior prob.                                                                                                  | 0.9<br>s<br>Found seiz<br>14<br>15<br>15<br>15<br>16<br>15.0<br>15.0<br>0.7<br>weight [1 1]                                                                                                                                                                                  | 2.6<br>Found non sei<br>11<br>11<br>11<br>7<br>10<br>10.0<br>11.0<br>1.7                                                                                                                                |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>Cluster a                                                                                                       | 94.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94%<br>94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 46.0%<br>4.6%<br>Using featur<br>Gm fuzzy, 3<br>70%<br>KNN, k = 3<br>Selectivity<br>56%<br>58%<br>68%<br>62%<br>62%<br>62%<br>62%<br>60.4%<br>58.0%<br>4.8%<br>Optimal set<br>No clusterin<br>100%<br>Old method,<br>Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>e differential:<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>g<br>Prior prob.<br>Num seiz                                                                         | 0.9<br>s<br>Found seiz<br>14<br>15<br>15<br>15<br>15<br>16<br>15.0<br>15.0<br>0.7<br>weight [1 1]<br>Found seiz                                                                                                                                                              | 2.6<br>Found non sei<br>11<br>11<br>11<br>7<br>10<br>10.0<br>11.0<br>1.7<br>Found non sei                                                                                                               |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>Cluster a                                                                                                       | 94.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>94%<br>94%<br>88.0%<br>4.2%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>71%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 46.0%<br>4.6%<br>Using featur<br>Gm fuzzy, 3<br>70%<br>KNN, k = 3<br>Selectivity<br>56%<br>58%<br>68%<br>62%<br>60.4%<br>62%<br>60.4%<br>58.0%<br>4.8%<br>Optimal set<br>No clusterin,<br>100%<br>Old method,<br>Selectivity<br>11%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0<br>e differential:<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>g<br>Prior prob.<br>Num seiz<br>17                                                                               | 0.9<br>s<br>Found seiz<br>14<br>15<br>15<br>15<br>16<br>15.0<br>0.7<br>weight [1 1]<br>Found seiz<br>12                                                                                                                                                                      | 2.6<br>Found non sei<br>11<br>11<br>11<br>7<br>10<br>10.0<br>11.0<br>1.7<br>Found non sei<br>95                                                                                                         |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>Cluster a                                                                                                       | 94.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 46.0\% \\ \hline 4.6\% \\ \hline 4.6\% \\ \hline \\ \text{Using featur} \\ \text{Gm fuzzy, 3} \\ 70\% \\ \text{KNN, k = 3} \\ \hline \\ \text{Selectivity} \\ \hline \\ 56\% \\ \hline \\ 58\% \\ \hline \\ 58\% \\ \hline \\ 68\% \\ \hline \\ 62\% \\ \hline \\ 60.4\% \\ \hline \\ 62\% \\ \hline \\ 60.4\% \\ \hline \\ 58.0\% \\ \hline \\ 4.8\% \\ \hline \\ \hline \\ \hline \\ \text{Optimal set} \\ \text{No clusterin} \\ 100\% \\ \hline \\ \text{Old method} \\ \hline \\ \text{Selectivity} \\ 11\% \\ \hline \\ 12\% \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>e differential<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>g<br>Prior prob.<br>Num seiz<br>17                                                                                | 0.9<br>s<br>Found seiz<br>14<br>15<br>15<br>15<br>16<br>15.0<br>15.0<br>0.7<br>weight [1 1]<br>Found seiz<br>12<br>13                                                                                                                                                        | 2.6<br>Found non sei<br>11<br>11<br>11<br>7<br>10<br>10.0<br>11.0<br>1.7<br>Found non sei<br>95<br>99                                                                                                   |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean                                                                                                                                                      | 94.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 46.0%<br>4.6%<br>Using featur<br>Gm fuzzy, 3<br>70%<br>KNN, k = 3<br>Selectivity<br>56%<br>58%<br>68%<br>62%<br>62%<br>60.4%<br>58.0%<br>4.8%<br>Optimal set<br>No clusterin,<br>100%<br>Old method.<br>Selectivity<br>11%<br>12%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0<br>e differential:<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>g<br>Prior prob.<br>Num seiz<br>17<br>17<br>17                                                 | 0.9<br>s<br>Found seiz<br>14<br>15<br>15<br>15<br>16<br>15.0<br>0.7<br>weight [1 1]<br>Found seiz<br>12<br>13<br>13                                                                                                                                                          | 2.6<br>Found non sei<br>11<br>11<br>11<br>7<br>10<br>10.0<br>11.0<br>1.7<br>Found non sei<br>95<br>99<br>93                                                                                             |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                                            | 94.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88.0%<br>4.2%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>71%<br>76%<br>76%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 46.0\% \\ \hline 4.6\% \\ \hline 4.6\% \\ \hline \\ \text{Using featur} \\ \text{Gm fuzzy, 3} \\ 70\% \\ \text{KNN, k = 3} \\ \hline \\ \text{Selectivity} \\ \hline 56\% \\ 58\% \\ 68\% \\ 62\% \\ 68\% \\ 62\% \\ 68\% \\ 62\% \\ 68\% \\ 62\% \\ 68\% \\ 62\% \\ 68\% \\ 62\% \\ 60.4\% \\ 58.0\% \\ 4.8\% \\ \hline \\ 0 \text{ptimal set} \\ \text{No clusterin, 100\% \\ Old method, \\ \text{Selectivity} \\ 11\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>e differential:<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>9<br>Prior prob.<br>Num seiz<br>17<br>17<br>17<br>17                                                       | 0.9<br>s<br>Found seiz<br>14<br>15<br>15<br>16<br>15.0<br>15.0<br>0.7<br>weight [1 1]<br>Found seiz<br>12<br>13<br>13<br>13                                                                                                                                                  | 2.6<br>Found non sei<br>11<br>11<br>11<br>10<br>10.0<br>11.0<br>1.7<br>Found non sei<br>95<br>99<br>93<br>93                                                                                            |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                                    | 94.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 46.0\% \\ \hline 4.6\% \\ \hline \\ Using featur \\ Gm fuzzy, 3 \\ 70\% \\ KNN, k = 3 \\ \hline \\ Selectivity \\ \hline 56\% \\ 58\% \\ 58\% \\ 68\% \\ 62\% \\ \hline 60.4\% \\ \hline \\ 58.0\% \\ \hline \\ 4.8\% \\ \hline \\ \hline \\ Optimal set \\ No clusterin \\ 100\% \\ \hline \\ Old method, \\ \hline \\ Selectivity \\ 11\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 13\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>e differential<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>g<br>Prior prob.<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17                                                  | 0.9<br>s<br>Found seiz<br>14<br>15<br>15<br>16<br>15.0<br>15.0<br>0.7<br>Weight [1 1]<br>Found seiz<br>12<br>13<br>13<br>13<br>14                                                                                                                                            | 2.6<br>Found non sei<br>11<br>11<br>11<br>7<br>10<br>10.0<br>11.0<br>1.7<br>Found non sei<br>95<br>99<br>93<br>93<br>93<br>91                                                                           |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Median<br>STD<br>Features<br>Cluster a<br>Cluster a<br>Cluster a                                                                                          | 94.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{r} 46.0\% \\ 4.6\% \\ \hline \\ 4.6\% \\ \hline \\ \\ Using featur \\ Gm fuzzy, 3 \\ 70\% \\ KNN, k = 3 \\ \hline \\ 58\% \\ 58\% \\ 68\% \\ 68\% \\ 62\% \\ 60.4\% \\ \hline \\ 58.0\% \\ 4.8\% \\ \hline \\ 00t mal set \\ No clusterin \\ 100\% \\ Old method. \\ \hline \\ Selectivity \\ 11\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 10\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0<br>e differential:<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>g<br>Prior prob.<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17                               | 0.9<br>s<br>Found seiz<br>14<br>15<br>15<br>15<br>16<br>15.0<br>15.0<br>0.7<br>weight [1 1]<br>Found seiz<br>12<br>13<br>13<br>13<br>14<br>13.0                                                                                                                              | 2.6<br>Found non sei<br>11<br>11<br>11<br>7<br>10<br>10.0<br>11.0<br>1.7<br>Found non sei<br>95<br>99<br>93<br>93<br>91<br>94.2                                                                         |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier                                                                                    | 94.0%<br>5.4%<br>used:<br>nalysis:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{r} 46.0\% \\ 4.6\% \\ \hline \\ 4.6\% \\ \hline \\ \\ Using featur \\ Gm fuzzy, 3 \\ 70\% \\ KNN, k = 3 \\ \hline \\ Selectivity \\ 56\% \\ 68\% \\ 68\% \\ 68\% \\ 62\% \\ 60.4\% \\ \hline \\ 58\% \\ 62\% \\ 60.4\% \\ \hline \\ 58\% \\ 62\% \\ 60.4\% \\ \hline \\ 58\% \\ 62\% \\ 60.4\% \\ \hline \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 0.7\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>e differential:<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>g<br>Prior prob.<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17                               | 0.9<br>s<br>Found seiz<br>14<br>15<br>15<br>15<br>16<br>15.0<br>0.7<br>weight [1 1]<br>Found seiz<br>12<br>13<br>13<br>13<br>14<br>13.0<br>13.0                                                                                                                              | 2.6<br>Found non sei<br>11<br>11<br>11<br>10<br>10.0<br>11.0<br>1.7<br>Found non sei<br>95<br>99<br>93<br>93<br>93<br>91<br>94.2<br>93.0                                                                |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Mean<br>Median<br>STD<br>Features                      | 94.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 46.0\% \\ \hline 4.6\% \\ \hline 4.6\% \\ \hline \\ \text{Using featur} \\ \text{Gm fuzzy, 3} \\ 70\% \\ \text{KNN, k = 3} \\ \hline \\ \text{Selectivity} \\ \hline \\ 56\% \\ \hline \\ 58\% \\ 68\% \\ \hline \\ 62\% \\ \hline \\ 60.4\% \\ \hline \\ 58.0\% \\ \hline \\ 4.8\% \\ \hline \\ \hline \\ 00timal set \\ \hline \\ 10\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12.0\% \\ \hline \\ 0.7\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0<br>e differential:<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>g<br>Prior prob.<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17       | 0.9<br>s<br>Found seiz<br>14<br>15<br>15<br>15<br>16<br>15.0<br>0.7<br>weight [1 1]<br>Found seiz<br>12<br>13<br>13<br>13<br>14<br>13.0<br>13.0                                                                                                                              | 2.6<br>Found non sei<br>11<br>11<br>11<br>10<br>10.0<br>11.0<br>1.7<br>Found non sei<br>95<br>99<br>93<br>93<br>93<br>91<br>94.2<br>93.0                                                                |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Cluster a<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>STD                            | 94.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88.0%<br>4.2%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>71%<br>76%<br>76%<br>76%<br>82%<br>76.2%<br>76.0%<br>3.9%<br>used:<br>nalysis:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 46.0\% \\ \hline 4.6\% \\ \hline 4.6\% \\ \hline \\ \text{Using featur} \\ \text{Gm fuzzy, 3} \\ 70\% \\ \text{KNN, k = 3} \\ \hline \\ \text{Selectivity} \\ \hline 56\% \\ 58\% \\ 68\% \\ 62\% \\ \hline 60.4\% \\ \hline 58.0\% \\ \hline 4.8\% \\ \hline \\ \text{Optimal set} \\ \text{No clusterin} \\ 10\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12.0\% \\ \hline 0.7\% \\ \hline \\ \text{Optimal set} \\ \text{No clusterin, No clusterin} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0<br>e differential:<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>g<br>Prior prob.<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17       | 0.9<br>s<br>Found seiz<br>14<br>15<br>15<br>15<br>16<br>15.0<br>0.7<br>weight [1 1]<br>Found seiz<br>12<br>13<br>13<br>13<br>14<br>13.0<br>13.0                                                                                                                              | 2.6<br>Found non sei<br>11<br>11<br>1<br>10<br>10.0<br>11.0<br>1.7<br>Found non sei<br>95<br>99<br>93<br>93<br>93<br>91<br>94.2<br>93.0                                                                 |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                              | 94.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{r} 46.0\% \\ \hline 4.6\% \\ \hline 4.6\% \\ \hline \\ \text{Using featur} \\ \text{Gm fuzzy, 3} \\ 70\% \\ \text{KNN, k = 3} \\ \hline \\ \text{Selectivity} \\ \hline 56\% \\ \hline 58\% \\ \hline 58\% \\ \hline 62\% \\ \hline 60.4\% \\ \hline 60.4\% \\ \hline 68\% \\ \hline 62\% \\ \hline 60.4\% \\ \hline 68\% \\ \hline 62\% \\ \hline 60.4\% \\ \hline 60.4\% \\ \hline 12\% \\ \hline 0.7\% \\ \hline \\ \text{Optimal set} \\ \text{No clusterin} \\ 100\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0<br>e differential:<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>g<br>Prior prob.<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17 | 0.9<br>s<br>Found seiz<br>14<br>15<br>15<br>16<br>15.0<br>15.0<br>0.7<br>weight [1 1]<br>Found seiz<br>12<br>13<br>13<br>13<br>14<br>13.0<br>13.0<br>0.7                                                                                                                     | 2.6<br>Found non sei<br>11<br>11<br>11<br>7<br>10<br>10.0<br>11.0<br>1.7<br>Found non sei<br>95<br>99<br>93<br>93<br>93<br>93<br>91<br>94.2<br>93.0<br>3.0                                              |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Cluster a<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>STD                            | 94.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 46.0\% \\ \hline 4.6\% \\ \hline 4.6\% \\ \hline \\ \text{Using featur} \\ \text{Gm fuzzy, 3} \\ 70\% \\ \text{KNN, k = 3} \\ \hline \\ \text{Selectivity} \\ \hline 56\% \\ 58\% \\ 58\% \\ 62\% \\ \hline 60.4\% \\ \hline 58.0\% \\ \hline 4.8\% \\ \hline \\ \hline \\ \text{Optimal set} \\ \text{No clusterin,} \\ 100\% \\ \hline \\ \text{Old method,} \\ \hline \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 10\% \\ \hline \\ 0 \text{Otimal set} \\ \text{No clusterin,} \\ 100\% \\ \hline \\ \text{Old method,} \\ \hline \\ \text{Old method,} \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>e differential:<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>g<br>Prior prob.<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17 | 0.9<br>s<br>Found seiz<br>14<br>15<br>15<br>16<br>15.0<br>15.0<br>0.7<br>weight [1 1]<br>Found seiz<br>12<br>13<br>13<br>13<br>14<br>13.0<br>13.0<br>0.7<br>weight [1 10 <sup>20</sup>                                                                                       | 2.6<br>Found non sei<br>11<br>11<br>7<br>10<br>10.0<br>11.0<br>1.7<br>Found non sei<br>95<br>99<br>93<br>93<br>93<br>91<br>94.2<br>93.0<br>3.0<br>]                                                     |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                        | 94.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{r} 46.0\% \\ \hline 4.6\% \\ \hline \\ \text{Using featur} \\ \text{Gm fuzzy, 3} \\ 70\% \\ \text{KNN, k = 3} \\ \hline \\ \text{Selectivity} \\ \hline 56\% \\ 58\% \\ 58\% \\ 62\% \\ \hline 60.4\% \\ \hline \\ 62\% \\ \hline 60.4\% \\ \hline \\ 68\% \\ \hline 62\% \\ \hline 60.4\% \\ \hline \\ 58.0\% \\ \hline \\ 4.8\% \\ \hline \\ \hline \\ \text{Optimal set} \\ \text{No clusterin, 100\% } \\ \hline \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12.0\% \\ \hline \\ 0.7\% \\ \hline \\ \hline \\ \text{Optimal set} \\ \text{No clusterin, 100\% } \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0<br>e differential:<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>g<br>Prior prob.<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17 | 0.9<br>s<br>Found seiz<br>14<br>15<br>15<br>16<br>15.0<br>15.0<br>0.7<br>weight [1 1]<br>Found seiz<br>12<br>13<br>13<br>13<br>14<br>13.0<br>13.0<br>0.7                                                                                                                     | 2.6<br>Found non sei<br>11<br>11<br>7<br>10<br>10.0<br>11.0<br>1.7<br>Found non sei<br>95<br>99<br>93<br>93<br>93<br>91<br>94.2<br>93.0<br>3.0<br>]                                                     |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                              | 94.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{r} 46.0\% \\ 4.6\% \\ \hline \\ 4.6\% \\ \hline \\ \\ Using featur \\ Gm fuzzy, 3 \\ 70\% \\ KNN, k = 3 \\ \hline \\ Selectivity \\ 56\% \\ 68\% \\ 68\% \\ 68\% \\ 68\% \\ 62\% \\ 60.4\% \\ \hline \\ 58.0\% \\ 4.8\% \\ \hline \\ \hline \\ 0 timal set \\ No clusterin, 100\% \\ \hline \\ 0 ld method, \\ Selectivity \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 13\% \\ 12.0\% \\ 12.0\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% $ | 0<br>e differential:<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>g<br>Prior prob.<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17 | 0.9<br>s<br>Found seiz<br>14<br>15<br>15<br>16<br>15.0<br>15.0<br>0.7<br>weight [1 1]<br>Found seiz<br>12<br>13<br>13<br>13<br>14<br>13.0<br>13.0<br>0.7<br>weight [1 10 <sup>20</sup>                                                                                       | 2.6<br>Found non sei<br>11<br>11<br>7<br>10<br>10.0<br>11.0<br>1.7<br>Found non sei<br>95<br>99<br>93<br>93<br>93<br>91<br>94.2<br>93.0<br>3.0<br>]                                                     |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                                              | 94.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 46.0%<br>4.6%<br>Using featur<br>Gm fuzzy, 3<br>70%<br>KNN, k = 3<br>Selectivity<br>56%<br>58%<br>68%<br>62%<br>60.4%<br>58.0%<br>4.8%<br>0ld method,<br>Selectivity<br>11%<br>12%<br>12%<br>12%<br>12%<br>12%<br>12%<br>12%<br>0.7%<br>0.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>e differential:<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>g<br>Prior prob.<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17 | 0.9<br>s<br>Found seiz<br>14<br>15<br>15<br>15<br>16<br>15.0<br>0.7<br>weight [1 1]<br>Found seiz<br>12<br>13<br>13<br>13<br>14<br>13.0<br>13.0<br>0.7<br>weight [1 10 <sup>20</sup><br>Found seiz                                                                           | 2.6<br>Found non sei<br>11<br>11<br>7<br>10<br>10.0<br>11.0<br>1.7<br>Found non sei<br>95<br>99<br>93<br>93<br>93<br>93<br>91<br>94.2<br>93.0<br>3.0<br>Found non sei                                   |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                        | 94.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{r} 46.0\% \\ 4.6\% \\ \hline \\ 4.6\% \\ \hline \\ \\ Using featur \\ Gm fuzzy, 3 \\ 70\% \\ KNN, k = 3 \\ \hline \\ Selectivity \\ 56\% \\ 68\% \\ 68\% \\ 68\% \\ 68\% \\ 62\% \\ 60.4\% \\ \hline \\ 58.0\% \\ 4.8\% \\ \hline \\ \hline \\ 0 timal set \\ No clusterin, 100\% \\ \hline \\ 0 ld method, \\ Selectivity \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 13\% \\ 12.0\% \\ 12.0\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% $ | 0<br>e differential:<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>9<br>Prior prob.<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17       | $\begin{array}{c} 0.9 \\ \hline & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$                                                                                                                                                                                                | 2.6<br>Found non sei<br>11<br>11<br>17<br>10<br>10.0<br>11.0<br>1.7<br>Found non sei<br>95<br>99<br>93<br>93<br>91<br>94.2<br>93.0<br>3.0<br>Found non sei<br>25                                        |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                        | 94.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{r} 46.0\% \\ 4.6\% \\ \hline \\ 4.6\% \\ \hline \\ \\ Using featur \\ Gm fuzzy, 3 \\ 70\% \\ KNN, k = 3 \\ \hline \\ Selectivity \\ \hline \\ 58\% \\ 68\% \\ 68\% \\ 62\% \\ 60.4\% \\ \hline \\ 58\% \\ 62\% \\ 60.4\% \\ \hline \\ 58\% \\ 62\% \\ 60.4\% \\ \hline \\ 58\% \\ 62\% \\ 60.4\% \\ \hline \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 38\% \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>e differential:<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>g<br>Prior prob.<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17 | 0.9<br>s<br>Found seiz<br>14<br>15<br>15<br>16<br>15.0<br>15.0<br>0.7<br>weight [1 1]<br>Found seiz<br>12<br>13<br>13<br>13<br>14<br>13.0<br>13.0<br>0.7<br>weight [1 10 <sup>20</sup><br>Found seiz<br>14<br>14                                                             | 2.6<br>Found non sei<br>11<br>11<br>7<br>10<br>10.0<br>11.0<br>1.7<br>Found non sei<br>95<br>99<br>93<br>91<br>94.2<br>93.0<br>3.0<br>Found non sei<br>25<br>23<br>24                                   |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                        | 94.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%<br>88%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{r} 46.0\% \\ 4.6\% \\ \hline \\ 4.6\% \\ \hline \\ \\ Using featur \\ Gm fuzzy, 3 \\ 70\% \\ KNN, k = 3 \\ \hline \\ \\ 58\% \\ 58\% \\ 68\% \\ 68\% \\ 68\% \\ 62\% \\ 60.4\% \\ \hline \\ 58.0\% \\ 4.8\% \\ \hline \\ \hline \\ 00timal set \\ No clusterin, 100\% \\ Old method, \\ \hline \\ Selectivity \\ 11\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 38\% \\ 38\% \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0<br>e differential:<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>g<br>Prior prob.<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17 | 0.9<br>s<br>Found seiz<br>14<br>15<br>15<br>16<br>15.0<br>15.0<br>0.7<br>weight [1 1]<br>Found seiz<br>12<br>13<br>13<br>14<br>13.0<br>0.7<br>weight [1 10 <sup>20</sup><br>Found seiz<br>14<br>14<br>14                                                                     | 2.6<br>Found non sei<br>11<br>11<br>7<br>10<br>10.0<br>11.0<br>1.7<br>Found non sei<br>95<br>99<br>93<br>93<br>93<br>93<br>93<br>93<br>91<br>94.2<br>93.0<br>3.0<br>Found non sei<br>25<br>23<br>23     |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA                        | 94.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>88.0%<br>4.2%<br>4.2%<br>Used:<br>nalysis:<br>variance:<br>Sensitivity<br>76%<br>76%<br>76%<br>76%<br>76%<br>76%<br>76%<br>76%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{r} 46.0\% \\ 4.6\% \\ \hline \\ 4.6\% \\ \hline \\ \\ Using featur \\ Gm fuzzy, 3 \\ 70\% \\ KNN, k = 3 \\ \hline \\ Selectivity \\ 56\% \\ 68\% \\ 68\% \\ 68\% \\ 62\% \\ 60.4\% \\ \hline \\ 58\% \\ 68\% \\ 62\% \\ 60.4\% \\ \hline \\ 58\% \\ 62\% \\ 60.4\% \\ \hline \\ 58\% \\ 62\% \\ 60.4\% \\ \hline \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 38\% \\ 38\% \\ 38\% \\ 38\% \\ 38\% \\ 38\% \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>e differential:<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>9<br>Prior prob.<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17       | $\begin{array}{c} 0.9 \\ \hline 0.9 \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$                                                                                                                                                                                  | 2.6<br>Found non sei<br>11<br>11<br>7<br>10<br>10.0<br>11.0<br>1.7<br>Found non sei<br>95<br>99<br>93<br>91<br>94.2<br>93.0<br>3.0<br>Found non sei<br>25<br>23<br>24                                   |
| Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Classifier<br>Mean<br>Median<br>STD<br>Features<br>Cluster a<br>PLS-DA<br>Cluster a<br>PLS-DA | 94.0%<br>5.4%<br>used:<br>nalysis:<br>variance:<br>Sensitivity<br>82%<br>88%<br>88%<br>88%<br>88%<br>88.0%<br>4.2%<br>4.2%<br>4.2%<br>4.2%<br>10%<br>76%<br>76%<br>76%<br>76%<br>76%<br>76%<br>76%<br>76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{r} 46.0\% \\ 4.6\% \\ \hline \\ 4.6\% \\ \hline \\ \\ Using featur \\ Gm fuzzy, 3 \\ 70\% \\ KNN, k = 3 \\ \hline \\ Selectivity \\ \hline \\ 58\% \\ 58\% \\ 62\% \\ 68\% \\ 62\% \\ 60.4\% \\ \hline \\ 58\% \\ 62\% \\ 60.4\% \\ \hline \\ 58\% \\ 62\% \\ 60.4\% \\ \hline \\ 58\% \\ 62\% \\ 60.4\% \\ \hline \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 12\% \\ 38\% \\ 38\% \\ 38\% \\ 38\% \\ 38\% \\ 38\% \\ 38\% \\ 39\% \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0<br>e differential:<br>clusters<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>0<br>g<br>Prior prob.<br>Num seiz<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17 | 0.9<br>s<br>Found seiz<br>14<br>15<br>15<br>16<br>15.0<br>15.0<br>0.7<br>weight [1 1]<br>Found seiz<br>12<br>13<br>13<br>13<br>14<br>13.0<br>13.0<br>0.7<br>weight [1 10 <sup>20</sup><br>Found seiz<br>14<br>14<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15 | 2.6<br>Found non sei<br>11<br>11<br>1<br>1<br>7<br>10<br>10.0<br>11.0<br>1.7<br>Found non sei<br>95<br>99<br>93<br>93<br>93<br>91<br>94.2<br>93.0<br>3.0<br>Found non sei<br>25<br>23<br>24<br>23<br>24 |

# Appendix B

## Optimal sets for old method

This chapter provide the results from the old method (see sec. 1.3) evaluated using the old evaluation method used in [3].

This evaluation were a little different from the evaluation performed in this thesis. The differences in evaluation methods depends partly on the fact that the older method did not make direct use of time evolutionary behaviors and therefore the data was not as scarce since each time instance inside a seizure was seen as an independent observation.

First of all, the evaluation utilized re-substitution instead of cross-validation as was used in this thesis (see sec. 3.5). The use of re-substitution introduced an optimistic bias in the results which was believed to be so small that it did not matter. According to the results from this thesis, however, it seems like the bias had a large impact on the results (compare table B.1 with the tables from the old method in sec. 5.2).

Secondly the measures of the results were a little bit different. Sensitivity was defined equally as in this thesis but instead of selectivity a measure called "false alarm" was used. "false alarm" was a measure of the average number of false alarm per day that occurred during the classification of the data.

In the thesis, a study of the features that was most important for good classifications were performed. The results of this study on the four patients that have been used in this thesis can be seen below. These results have yielded the feature sets which are used in evaluation of the old method in chapter 5.

## B.1 Patient 7

| No | Sensitivity | False alarm | Feature $\#$ | Feature name                               |
|----|-------------|-------------|--------------|--------------------------------------------|
| 1  | 0.75        | 1.08        | 24           | Frequency band 3.75 - 5.25 Hz, Sensor 1    |
| 2  | 0.75        | 1.08        | 3            | DC, Z axis, Sensor 1                       |
| 3  | 0.75        | 0.54        | 1            | DC, X axis, Sensor 1                       |
| 4  | 0.75        | 0.54        | 5            | DC, Y axis, Sensor 2                       |
| 5  | 0.83        | 0.54        | 40           | Linear correlation, Sensors 1 & 2          |
| 6  | 0.83        | 1.08        | 4            | DC, X axis, Sensor 2                       |
| 7  | 0.83        | 2.16        | 44           | Linear correlation, Sensors 2 & 3          |
| 8  | 0.92        | 7.55        | 26           | Frequency band 8.25 - 13.25 Hz, Sensor 1   |
| 9  | 0.83        | 5.93        | 25           | Frequency band 5.25 - 8.25 Hz, Sensor 1    |
| 10 | 0.92        | 7.01        | 39           | Frequency band 13.25 - 25 Hz, Sensor 3     |
| 11 | 0.92        | 8.09        | 8            | DC, Y axis, Sensor 3                       |
| 12 | 0.92        | 8.63        | 7            | DC, X axis, Sensor 3                       |
| 13 | 0.92        | 8.09        | 6            | DC, Z axis, Sensor 2                       |
| 14 | 0.92        | 9.17        | 9            | DC, Z axis, Sensor 3                       |
| 15 | 0.92        | 9.70        | 37           | Frequency band 5.25 - 8.25 Hz, Sensor 3    |
| 16 | 0.92        | 9.70        | 46           | Linear correlation, Sensor 1 with itself   |
| 17 | 0.92        | 11.32       | 48           | Linear correlation, Sensor 2 with itself   |
| 18 | 0.92        | 12.40       | 49           | Circular correlation, Sensor 2 with itself |
| 19 | 0.92        | 13.48       | 27           | Frequency band 13.25 - 25 Hz, Sensor 1     |
| 20 | 0.92        | 14.56       | 38           | Frequency band 8.25 - 13.25 Hz, Sensor 3   |
| 21 | 0.92        | 15.10       | 36           | Frequency band 3.75 - 5.25 Hz, Sensor 3    |
| 22 | 0.92        | 16.17       | 50           | Linear correlation, Sensor 3 with itself   |
| 23 | 0.92        | 16.71       | 15           | VM, Sensor 3                               |
| 24 | 0.92        | 18.87       | 20           | Periodicity, Sensor 2                      |
| 25 | 0.92        | 22.11       | 41           | Circular correlation, Sensors 1 & 2        |
| 26 | 0.92        | 26.42       | 35           | Frequency band 2.25 - 3.75 Hz, Sensor 3    |
| 27 | 0.92        | 22.64       | 2            | DC, Y axis, Sensor 1                       |
| 28 | 0.92        | 22.11       | 34           | Frequency band 0.75 - 2.25 Hz, Sensor 3    |
| 29 | 0.92        | 24.26       | 18           | MAMD, Sensor 3                             |
| 30 | 0.92        | 25.34       | 45           | Circular correlation, Sensors 2 & 3        |

### B.2 Patient 14

| No | Sensitivity | False alarm | Feature $\#$ | Feature name                               |
|----|-------------|-------------|--------------|--------------------------------------------|
| 1  | 0.23        | 50.85       | 11           | SMA, Sensor 2                              |
| 2  | 0.32        | 14.37       | 2            | DC, Y axis, Sensor 1                       |
| 3  | 0.64        | 20.82       | 45           | Circular correlation, Sensors 2 & 3        |
| 4  | 0.64        | 14.37       | 9            | DC, Z axis, Sensor 3                       |
| 5  | 0.82        | 16.79       | 6            | DC, Z axis, Sensor 2                       |
| 6  | 0.82        | 14.85       | 19           | Periodicity, Sensor 1                      |
| 7  | 0.77        | 12.27       | 7            | DC, X axis, Sensor 3                       |
| 8  | 0.86        | 14.20       | 15           | VM, Sensor 3                               |
| 9  | 0.86        | 13.40       | 44           | Linear correlation, Sensors 2 & 3          |
| 10 | 0.86        | 15.66       | 14           | VM, Sensor 2                               |
| 11 | 0.86        | 15.01       | 23           | Frequency band 2.25 - 3.75 Hz, Sensor 1    |
| 12 | 0.86        | 14.85       | 18           | MAMD, Sensor 3                             |
| 13 | 0.86        | 16.79       | 42           | Linear correlation, Sensors 1 & 3          |
| 14 | 0.86        | 18.24       | 21           | Periodicity, Sensor 3                      |
| 15 | 0.91        | 21.31       | 1            | DC, X axis, Sensor 1                       |
| 16 | 0.91        | 36.32       | 8            | DC, Y axis, Sensor 3                       |
| 17 | 0.91        | 36.80       | 34           | Frequency band 0.75 - 2.25 Hz, Sensor 3    |
| 18 | 0.95        | 57.47       | 5            | DC, Y axis, Sensor 2                       |
| 19 | 1.00        | 73.12       | 47           | Circular correlation, Sensor 1 with itself |
| 20 | 1.00        | 78.93       | 20           | Periodicity, Sensor 2                      |
| 21 | 0.91        | 68.44       | 4            | DC, X axis, Sensor 2                       |
| 22 | 0.95        | 79.26       | 35           | Frequency band 2.25 - 3.75 Hz, Sensor 3    |
| 23 | 0.95        | 84.75       | 28           | Frequency band 0.75 - 2.25 Hz, Sensor 2    |
| 24 | 1.00        | 134.30      | 43           | Circular correlation, Sensors 1 & 3        |
| 25 | 0.95        | 134.62      | 51           | Circular correlation, Sensor 3 with itself |
| 26 | 1.00        | 144.63      | 10           | SMA, Sensor 1                              |
| 27 | 0.95        | 112.35      | 50           | Linear correlation, Sensor 3 with itself   |
| 28 | 0.95        | 141.08      | 29           | Frequency band 2.25 - 3.75 Hz, Sensor 2    |
| 29 | 1.00        | 207.91      | 41           | Circular correlation, Sensors 1 & 2        |
| 30 | 1.00        | 179.34      | 46           | Linear correlation, Sensor 1 with itself   |

## B.3 Patient F1

| No | Sensitivity | False alarm | Feature $\#$ | Feature name                               |
|----|-------------|-------------|--------------|--------------------------------------------|
| 1  | 0.61        | 7.21        | 29           | Frequency band 2.25 - 3.75 Hz, Sensor 2    |
| 2  | 0.71        | 9.61        | 47           | Circular correlation, Sensor 1 with itself |
| 3  | 0.71        | 8.65        | 46           | Linear correlation, Sensor 1 with itself   |
| 4  | 0.71        | 7.21        | 5            | DC, Y axis, Sensor 2                       |
| 5  | 0.68        | 6.73        | 3            | DC, Z axis, Sensor 1                       |
| 6  | 0.71        | 5.77        | 8            | DC, Y axis, Sensor 3                       |
| 7  | 0.71        | 5.29        | 20           | Periodicity, Sensor 2                      |
| 8  | 0.71        | 5.29        | 40           | Linear correlation, Sensors 1 & 2          |
| 9  | 0.71        | 6.25        | 6            | DC, Z axis, Sensor 2                       |
| 10 | 0.71        | 6.25        | 48           | Linear correlation, Sensor 2 with itself   |
| 11 | 0.71        | 7.21        | 49           | Circular correlation, Sensor 2 with itself |
| 12 | 0.79        | 10.09       | 43           | Circular correlation, Sensors 1 & 3        |
| 13 | 0.79        | 13.46       | 50           | Linear correlation, Sensor 3 with itself   |
| 14 | 0.79        | 13.46       | 45           | Circular correlation, Sensors 2 & 3        |
| 15 | 0.86        | 14.90       | 9            | DC, Z axis, Sensor 3                       |
| 16 | 0.82        | 13.94       | 42           | Linear correlation, Sensors 1 & 3          |
| 17 | 0.82        | 13.46       | 41           | Circular correlation, Sensors 1 & 2        |
| 18 | 0.96        | 49.99       | 13           | VM, Sensor 1                               |
| 19 | 0.96        | 53.84       | 7            | DC, X axis, Sensor 3                       |
| 20 | 0.93        | 62.49       | 23           | Frequency band 2.25 - 3.75 Hz, Sensor 1    |
| 21 | 1.00        | 64.89       | 27           | Frequency band 13.25 - 25 Hz, Sensor 1     |
| 22 | 1.00        | 68.74       | 51           | Circular correlation, Sensor 3 with itself |
| 23 | 1.00        | 71.14       | 21           | Periodicity, Sensor 3                      |
| 24 | 1.00        | 71.62       | 16           | MAMD, Sensor 1                             |
| 25 | 1.00        | 70.18       | 44           | Linear correlation, Sensors 2 & 3          |
| 26 | 0.96        | 49.99       | 35           | Frequency band 2.25 - 3.75 Hz, Sensor 3    |
| 27 | 1.00        | 71.62       | 37           | Frequency band 5.25 - 8.25 Hz, Sensor 3    |
| 28 | 1.00        | 121.61      | 26           | Frequency band 8.25 - 13.25 Hz, Sensor 1   |
| 29 | 1.00        | 89.89       | 33           | Frequency band 13.25 - 25 Hz, Sensor 2     |
| 30 | 1.00        | 173.05      | 22           | Frequency band 0.75 - 2.25 Hz, Sensor 1    |

### B.4 Patient F2

| No | Sensitivity | False alarm | Feature $\#$ | Feature name                               |
|----|-------------|-------------|--------------|--------------------------------------------|
| 1  | 0.06        | 4.14        | 19           | Periodicity, Sensor 1                      |
| 2  | 0.29        | 26.89       | 36           | Frequency band 3.75 - 5.25 Hz, Sensor 3    |
| 3  | 0.35        | 17.24       | 30           | Frequency band 3.75 - 5.25 Hz, Sensor 2    |
| 4  | 0.59        | 35.86       | 45           | Circular correlation, Sensors 2 & 3        |
| 5  | 0.53        | 35.86       | 37           | Frequency band 5.25 - 8.25 Hz, Sensor 3    |
| 6  | 0.53        | 36.55       | 14           | VM, Sensor 2                               |
| 7  | 0.65        | 51.03       | 40           | Linear correlation, Sensors 1 & 2          |
| 8  | 0.59        | 59.99       | 35           | Frequency band 2.25 - 3.75 Hz, Sensor 3    |
| 9  | 0.59        | 35.86       | 38           | Frequency band 8.25 - 13.25 Hz, Sensor 3   |
| 10 | 0.65        | 32.41       | 5            | DC, Y axis, Sensor 2                       |
| 11 | 0.65        | 43.44       | 46           | Linear correlation, Sensor 1 with itself   |
| 12 | 0.88        | 100.68      | 7            | DC, X axis, Sensor 3                       |
| 13 | 0.88        | 124.12      | 49           | Circular correlation, Sensor 2 with itself |
| 14 | 0.94        | 103.43      | 29           | Frequency band 2.25 - 3.75 Hz, Sensor 2    |
| 15 | 1.00        | 114.47      | 47           | Circular correlation, Sensor 1 with itself |
| 16 | 1.00        | 131.71      | 4            | DC, X axis, Sensor 2                       |
| 17 | 1.00        | 188.94      | 43           | Circular correlation, Sensors 1 & 3        |
| 18 | 1.00        | 168.25      | 22           | Frequency band 0.75 - 2.25 Hz, Sensor 1    |
| 19 | 1.00        | 195.15      | 42           | Linear correlation, Sensors 1 & 3          |
| 20 | 1.00        | 259.96      | 50           | Linear correlation, Sensor 3 with itself   |
| 21 | 1.00        | 278.58      | 16           | MAMD, Sensor 1                             |
| 22 | 1.00        | 326.16      | 41           | Circular correlation, Sensors 1 & 2        |
| 23 | 0.88        | 99.99       | 39           | Frequency band 13.25 - 25 Hz, Sensor 3     |
| 24 | 1.00        | 450.28      | 1            | DC, X axis, Sensor 1                       |
| 25 | 1.00        | 448.22      | 13           | VM, Sensor 1                               |
| 26 | 1.00        | 438.56      | 20           | Periodicity, Sensor 2                      |
| 27 | 1.00        | 325.47      | 24           | Frequency band 3.75 - 5.25 Hz, Sensor 1    |
| 28 | 1.00        | 479.93      | 48           | Linear correlation, Sensor 2 with itself   |
| 29 | 1.00        | 411.67      | 44           | Linear correlation, Sensors 2 & 3          |
| 30 | 1.00        | 509.59      | 51           | Circular correlation, Sensor 3 with itself |