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Abstract  
 

n the light of the energy crisis of the 1970s, the old aerospace paradigm of flying higher and 

faster shifted towards the development of more energy efficient air transport solutions. 

Today, the aeronautical research and development community is more prone to search for 

innovative solutions, in particular since the improvement rate of change is decelerating 

somewhat in terms of energy efficiency, which still is far from any physical limits of aero 

engine and aircraft design. The Advisory Council for Aeronautics Research in Europe has 

defined a vision for the year of 2020 for aeronautical research in Europe which states a 50% 

reduction in CO2, 80% reduction in NOx and a 50% reduction in noise. 

 

Within this thesis work, methods for conceptual design of aero engines and aircraft 

performance have been developed and applied to evaluate some innovative aero engine 

concepts that have the potential to fulfil or even surpass society’s expectations on the 

aerospace industry in the future. In particular, the impact of a varying engine size and weight 

on the aircraft performance has been modelled in order to quantify the fuel consumption of 

different aero engine concepts. Furthermore, methods for designing and analyzing propeller 

performance have been developed. The methods have been incorporated into a 

multidisciplinary optimization environment which gives the benefit of interdisciplinary 

quantification of design changes and the impact of those on energy efficiency. 

 

The potential of the variable cycle engine for medium range jets were studied and the results 

showed a quite large reduction in fuel consumption compared to the conventional turbofan 

engine. Furthermore, the inter-turbine reheated aero engine concept was evaluated and the 

results indicated a large NOx reduction potential at almost the same energy efficiency as the 

conventional engine. The idea of applying catalytic combustion in aero engines was also 

studied showing potential of significant reductions of NOx. Finally, an innovative propeller 

design based on Prandtl’s work in the 1920s is suggested and discussed. 

 

This work has contributed with new methods for conceptual aero engine design that are in use 

within the industry and academia. The results from the studies concerning innovative aero 

engine concepts show that major improvements in terms of energy efficiency and emissions 

still are possible for the aerospace industry to achieve. 

 

Keywords: aero engine, energy efficiency, turbofan, propeller, inter-turbine reheat, emissions, 

NOx, variable cycle, MDO 
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Foreword 
Ever since the first successful powered flight by the Wright brothers in 1903, there has been a 

tremendous development in the field of aeronautical research. The Wright brother’s 

achievement was quite astonishing at the time, and still is. Their first flight over the sand 

dunes of Kill Devil Hill in North Carolina, U.S., was reported to last for 12 seconds covering 

a ground distance of some 37 meters giving a an approximate ground speed of 11 km/h.  

Today, long distance aircraft such as the Boeing 777 or the Airbus 380 cruise at almost 900 

km/h covering ground distances of almost half of earth’s circumference in less than 20 hours 

which is also quite an achievement, in our time. 

  

The old aerospace paradigm of flying higher and faster pushed the development during the 

major part of the twentieth century with the prime era of the NASA space flight program, the 

supersonic transport (SST), the Concorde and indeed all the military aircraft developed during 

this period. During the early 1970s, in the shadow of, and the light of, the energy crisis, the 

aerospace industry experienced a slight change in this mind set and the quest for more energy 

efficient air transport solutions was raised. One important consequence of this was the broad 

search for innovative aircraft and engine designs that was initiated by the energy crisis. This 

was probably the first time in history that a government called for innovative energy efficient 

solutions in order to meet the demands from the society concerning greener air transports. 

 

Today, the aeronautical research and development community is more prone to search for 

innovative solutions, in particular since the improvement rate of change is decelerating 

somewhat in terms of energy efficiency, which still is far from any physical limits of aero 

engine and aircraft design. At the same time the society intensively calls for greener air 

transport, especially as a consequence of the climate reports produced by the 

Intergovernmental Panel on Climate Change (IPCC) and the impact of aviation on the global 

atmosphere. Despite this, the aero engine and aircraft development continues at a rather 

descent pace, and the modern turbofan aero engine is quite an impressive piece of art. 

However, one can be sure that the best aero engine designs are not yet known and are waiting 

to be developed... 

 

My hope is that if anyone who eventually would read this thesis would be inspired, and find at 

least one new question to be answered as a consequence. If so would be the case, then my 

mission would be completed. 

 

Richard Avellán 

Göteborg, August 2011 
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1 Innovation and Technology 
Over the past there has been tremendous development of science and technology in the world. 

Except for the traditional explanatory variables regarding long-term growth, e.g. demographic 

evolution, arable land, presence of fossil fuels and raw material science, technology and 

innovation are of crucial importance for long-term growth. 

 

The argument that the prosperity of the western world’s society relies heavily on successful 

science, technology development and innovation can hardly be questioned. Some researchers 

even claim that science, technology and innovation are the only comparative advantages 

Europe can bring to bear in order to secure its share of the world’s future growth (Berg, 

2010).  
 

The innovation process can briefly be described as the process of transforming inventions into 

advantageous outcomes for the society. An indicator, although not complete, of a country’s 

innovation capacity is the number of patents granted in relation to its gross domestic product. 

Figure 1 shows the top 20 countries in terms of international patents granted (WIPO, 2010) 

and their corresponding GDP (IMF, 2011). It is worth noting that most of the countries 

appearing on the WIPO top 30 list are also in the GDP top 30 list. With some exceptions, the 

invention market share of each country follows the gross domestic product share. Worth 

noting is the fact that Japan and South Korea have relatively high numbers of patents granted 

compared to their GDP.  

 

 
 

Figure 1 Number of patents granted in relation to total WIPO 30 patents and GDP in relation to total 

GDP 30. 
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Whether an invention will successfully be transformed into an innovation is not explicitly 

determined by the patent itself. Other aspects, not easily quantifiable and not of technical 

nature, also play parts in the process. There are many cases of successful, and not so 

successful, technologies introduced in the past that could be studied in order to create better 

understanding for the future, and so is done in many fields. 

 

A man who is usually credited for establishing the research field of technology history and the 

coupling of technology, culture and society is Melvin Kranzberg (1917-1995) co-founder of 

the Society for the History of Technology (Hansen, 2003) and professor in history of 

technology at Georgia Tech and editor of the journal of Technology and Culture (Gelder, 

1995, Garfield, 1992). One of Kranzberg’s arguments was that technology development could 

not be understood without understanding how it was linked to the society. He is also known 

for the six laws of technology (Kranzberg, 1986) that are briefly introduced in this text and 

suitable for the introduction of this work. 

 

Kranzberg’s first law of technology states, ―Technology is neither good nor bad; nor is it 

neutral‖, which implies that the application of new technology is always associated with 

trade-offs. A large-scale example of such a trade-off is the introduction of DDT to eliminate 

disease-carrying pests and, thus, to raise the agricultural productivity. In India in the 1950s 

and 1960s the use of DDT cut malaria from 100 million cases per year to only 15,000. This 

was a tremendous technological achievement, but later it was discovered that DDT threatened 

the ecological system by entering the food chain of birds, fish and eventually of man. In the 

west, DDT was banned and replaced by more expensive alternatives, but in India its use was 

continued since it was considered to be a net good (Lawton, 2009). This directly relates to the 

fourth law of Kranzberg; ―Although technology might be a prime element in many public 

issues, nontechnical factors take precedence in technology-policy decisions‖. This means that 

no matter how good or revolutionary the new technology might be the success of its 

introduction or acceptance depends on a number of things, many of them of nontechnical 

nature.  

 

The second law of Kranzberg, probably the most relevant for the purpose of this thesis is 

stated as; ―invention is the mother of necessity‖, the most successful inventions creates a 

market and a way forward. In essence, a human brain, an engineering department or research 

society will respond to the demands placed upon it. 

 

In general and according to the author’s opinion, the scientific and engineering community 

should strive to generate a large number of ideas, and eventually the ultimate solution will 

become clear. For instance, Thomas Edison, the inventor of the light bulb, worked with idea 

quotas; one small invention every 10 days and one major invention every six months. This is 

well in line with Kranzberg’s third law ―Technology comes in packages, big and small‖.  

 

Before attempts are made to create the way forward it is useful and of great interest to realize 

where we came from and where we are heading. For this reason a brief history of aviation 

innovations is presented with a special emphasis on how breakthrough technologies and 

innovation have emerged in the past. History may also serve as a source of inspiration while 

pursuing future solutions for providing energy efficient aero engines. This approach is 

supported by the fifth and sixth laws of Kranzberg, ―All history is relevant, but the history of 

technology is the most relevant‖ and ―Technology is a very human activity - and so is the 

history of technology‖. 
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1.1 Historical Notes on Aviation Innovations   

1.1.1 The first powered heavier-than-air flight in history 
The first flight using a heavier-than-air machine took place at the sand dunes of Kill Devil 

Hills, 6 kilometres south of Kitty Hawk, North Carolina, on December 17, 1903. The 

brothers, Orville and Wilbur Wright, certainly made a historical breakthrough when they 

started from level ground and flew their powered biplane Wright Flyer I approximately 3 

meters above the ground, lasting 12 seconds covering a distance of approximately 37 meters 

(Anderson, 2000) (Hansen, 2003). A highly recommended excerpt from the diary of Orville 

Wright is attached in the appendix of this thesis and describes this remarkable event as told by 

the brothers themselves.  

 

  

The Wright brothers submitted 

their patent application in 1903 

and 1906 they finally received 

the patent on their airplane they 

tested in North Carolina. The 

brothers started a legal suit 

against Glenn Curtiss who built 

an airplane with many of 

Wright’s innovations included. 

The case was never settled to 

Wright’s satisfaction. 

Figure 2. From the left: The first heavier-than-air flight in history on December 17, 1903 and the 

Wright Brother’s patent on their Flying Machine. Source: NASA. 

 

The Wright brothers did not have any formal education; they had a more practical engineering 

background as they operated a bicycle repair shop and factory in Dayton, Ohio. The brothers 

early developed a genuine interest for aviation. They spent a lot of time and effort in 

experimenting with kites and gliders. One of the great obstacles they had to overcome in order 

to perform the first powered flight was related to the power plant. They had problems in 

finding an engine with a good enough power to weight ratio since most engines at that time 

were extremely heavy. Eventually the brothers designed and built their own piston engine 

during the winter of 1903. The engine developed approximately 12 hp at a weight of 90 kg. 

Another obstacle, perhaps even more difficult to overcome, was to find an efficient propeller 

that they could use for their airplane. The brothers had to develop their own propeller design 

methodology due to the lack of progress within the research field. One of the brother’s great 

contributions to the field of aviation research was the development of propeller blade design 

by theory coupled to verifying experiments. The propeller for the Wright Flyer I developed an 

efficiency of 66% compared to the propeller designed by Samuel Langley which had an 

efficiency of 52% (Garber, 2011). The Wright brothers continued their propeller development 

and developed a more efficient design; ―the bent-end‖ propeller that was used between 1905 

and 1915. The ―bent-end‖ propeller from 1911 was reproduced and tested by the Wright 

Experience research team in 1999 showing a peak efficiency of 81.5% (Kochersberger et al., 

2000) which is remarkable considering that ―modern‖ wooden propellers reach an efficiency 

in the range of 84 to 85%. 

 

With a lacking theoretical background and also very little theoretical work done on air 

propellers, the brothers decided to build their own wind tunnel in order to develop and test a 

propeller based on experiments.  
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Curiosity, ambitions and persistence, a systematic way of working and a dedicated interest has 

in the history of aviation innovation shown to be at least as important to finding a way 

forward as formal education. A particular example of is discussed below, when Dr A. A. 

Griffith rules out the inventions of Frank Whittle as impractical.  

1.1.2 The inventor of the modern airplane 

Even though the Wright brothers are very much remembered as the originators of modern 

aviation, they did not actually invent the airplane. Credits for being the inventor of the 

airplane is usually given to Sir George Cayley. In 1799 he described the design of an airplane, 

as we know it today, using a fixed wing design for generating lift, a separate mechanism for 

propulsion (he envisioned paddles) and a vertical tail for stability. The next 50 years, after the 

work of Sir George Cayley, although intense activity pursued in attempts to conquer the air, 

little progress made within aeronautical research until the late 19
th

 century when Otto 

Lilienthal, also known as the glider man, published a book entitled Der Vogelflug als 

Grundlage der Fliegekunst which is one of the early classics in aeronautical engineering 

(Anderson, 2000). Lilienthal carefully analyzed the flight of birds and also applied it to the 

design of mechanical flight. This book contained one of the most extensive aerodynamic data 

sets available at this point in time. Lilienthal made more than 2000 successful flights before 

he eventually suffered a fatal accident during one of his gliding experiments. On his 

gravestone in the Lichterfelde cemetery the epitaph ―Opfer müssen gebracht werden‖ 

(―sacrifices must be made”) is carved. The Wright brothers very much relied on the early 

work of Lilienthal in the beginning of their own experiments.  

1.1.3 The National Advisory Committee for Aeronautics is born 
Despite the historical flight of the Wright Brothers in 1903, the United States fell behind in 

aeronautical research and the nation felt that it needed a centre for aeronautical research in 

order to catch up with Europe technologically, and NACA was born on March 3 1915. The 

first meeting was arranged in the office of the secretary of war on April 23, 1915. The 

seriousness of this matter and the importance of catching up with Europe can be symbolized 

by the leading personalities from both academia and the military that were attending the 

meeting shown in Figure 3.  
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Figure 3. The first NACA meeting in history on April 23, 1915. 

Source: NASA. 

 

Seated from left to right: Dr. 

William Durand, Stanford 

University, California. Dr. S.W. 

Stratton, Director, Bureau of 

Standards. Brig. Gen. George P. 

Scriven, Chief Signal Officer, War 

Dept. Dr. C.F. Marvin, Chief, 

United States Weather Bureau Dr. 

Michael I Pupin, Columbia 

University, New York. Standing: 

Holden C. Richardson, Naval 

Instructor. Dr. John F. Hayford, 

Northwestern University, Illinois. 

Capt. Mark L. Bristol, Director of 

Naval Aeronautics. Lt. Col. Samuel 

Reber, Signal Corps. Charge, 

Aviation Section Also present at the 

First Meeting: Dr. Joseph S. Ames, 

Johns Hopkins University, 

Baltimore, MD. Hon. B. R. Newton, 

Asst. Secretary of Treasury. 

After the United States entered the First World War in 1917 things started to happen; in the 

third annual NACA meeting it was decided that a research facility was to be built on the 

Signal Corps Experimental Station, Langley Field, Hampton, Virginia. This was the starting 

point for establishing a number of research centres and research facilities in the USA. On the 

4 October, 1957, the world was stunned when Russia launched the Sputnik I satellite and 

closely after this, on 29 of July 1958 the National Aeronautics and Space Administration 

(NASA) was born and the race for space started.   

 

Most of the research carried out at the NACA and NASA facilities is publicly available, 

which has been, and still is, of great value for the aeronautical society. This openness should 

be brought forwards as another ingredient for successful aviation innovation.  

 

1.1.4 The Jet Engine 
In 1903 the Norwegian Aegidius Elling (1861-1949) demonstrated a gas turbine that 

developed positive net power (Andersson and Karling, 2003). The concept was patented in 

1884. The first patent related to jet-propulsion is from 1908 by the French inventor René 

Lorin, in which he suggests using a piston engine with several nozzles to translate the kinetic 

energy in the jet to propulsion power. In 1913, Lorin also patented a quite detailed design of a 

jet engine based on ram compression in supersonic flight (Mattingly, 2006, Prisell, 2003). The 

first patent that can be related to the modern design of the turbojet engine is from 1921 by the 

French inventor Guillaume. In this patent Guillaume describes an axial flow machine (both 

axial compressor and axial turbine). In the light of Guillaume’s work it is questionable 

whether a majority of the turbojet related approved after 1921 provide sufficient novelty to be 

acceptable in its full claims.  

 

However, in practice the jet engine era did not really take off until the true jet engine pioneers 

entered the scene in the 1930s, i.e. Dr Hans von Ohain (1911-1998), Sir Frank Whittle (1907-

1996) and Secondo Campini (1904-1980). 
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Dr Hans von Ohain defended his thesis at the University of Göttingen in 1935, the same year 

he applied for his jet engine patent, which also was approved the same year. The patent 

described a jet engine using a radial compressor and a radial turbine. After demonstrating the 

very first prototype HeS1 (Heinkel Strahltriebwerk) rated at 1,1 kN at 10000 rpm, von Ohain 

was employed by Heinkel where he became the manager of the jet engine department. At this 

time the development of the test aircraft He178 started, and this also meant that the first 

prototype engine, HeS1, had to be rescaled in order to meet the performance requirements of 

the aircraft (approximately 5 kN). The very first jet engine propelled flight was conducted in 

August 27, 1939. The engine was the HeS3B (Heinkel Strahltriebwerk), the aircraft was a test 

aircraft, He178, and the test pilot was Erich Warsitz. The first flight lasted for some minutes 

and proceeded well.  

 

At the same time in England Sir Frank Whittle was working with his idea of the jet engine. 

His father had his own machining tool shop where Whittle worked after school hours which 

gave him useful practical skills for his future career. After a couple of unsuccessful 

applications for the Royal Air Force (RAF) pilot training, Whittle was accepted in 1923 and 

graduated from the RAF at Cranwell in 1928 with the senior thesis ―Future Developments in 

Aircraft Design‖, in which he described his idea concerning jet propulsion. Whittle went on 

and patented his jet engine idea in 1930. After some time a meeting was arranged with the 

British Aeronautical Ministry where he presented his idea, the ministry however had a 

scientific advisor, Dr. A. A. Griffith, who more or less levelled Whittle’s idea to the ground. 

Whittle received a response from the ministry; in a letter they wrote that jet engines were very 

unpractical devices; they were far too heavy. Furthermore, high cycle temperatures and the 

lack of heat resistant materials were some of the unsolved problems they claimed. The time 

was not mature for his invention, so Whittle let his idea rest for a while, until two former 

colleagues contacted Whittle and explained their interest for his jet engine idea.  

 

Great Britain now lost the chance to take the lead in the jet engine development due to the 

incorrect assessment provided by A. A. Griffith. This shows the great importance that people 

in leading positions, must have the technical competence to correctly assess innovations in 

order to promote the development of breakthrough concepts. 
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2 Scope, Purpose and Objective of the thesis 
The purpose of this thesis is to contribute in creating new ways forward for the aerospace 

industry to answer the society’s need for greener air transport. In accordance with the ACARE 

2020 research goals (Argüelles et al., 2001), the work attempts to find out and evaluate new, 

as well as old, ideas in reaching those stringent research goals. As an input to the thesis work, 

some pre-studies of innovative aero engine technologies were conducted in 2005 at Volvo 

Aero and Chalmers University of Technology, pointing out certain important engine 

technologies that should be considered (Lundbladh and Grönstedt, 2005). The objective of 

this thesis was also to develop a number of methods and models necessary for assessing aero 

engine technologies that could contribute to radical improvements in CO2 and NOx emissions.  

The status of the research group’s
1
 capability to model and assess future aero engines at the 

time for the start of this work in the winter 2005 was confined to the following; 

 Steady- and transient performance modeling and assessment of gas turbines and aero 

engines without the detailed connections to the aircraft application 

 Engine weight and dimensions modeling 

 Component design and analysis using computational fluid dynamics (CFD) and 

computational aero acoustics (CAA). 

The system modeling capability is continuously evolving as a result of many on-going 

projects, master thesis project and industrial cooperation. It should be pointed out that this 

includes the underlying parameter assumptions as well, such as engine component 

efficiencies, turbine entry temperatures, metal temperatures to mention a few. 

The focus of this work has been to develop the methods necessary to perform full MDO 

assessments of future aero engines with a particular focus on the coupling of the engines and 

the aircraft. Additionally, these methods where to be applied to produce and assess new 

research questions that would have the potential to take the aerospace industry closer to and 

beyond the ACARE 2020 vision. 

The work performed has been limited to the conceptual design of aero engine design, meaning 

thermodynamic cycle optimizations including aircraft performance, engine weight and engine 

dimensions. This has allowed evaluating a number of solutions for minimizing emissions of 

CO2, NOx and to some extent noise. 

  

                                                
1
 Aero-acoustics & Turbomachinery at Chalmers University of Technology, Division of Fluid Dynamics, 

Department of Applied Mechanics. 
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3 Literature Review 

3.1 Research and Development Goals for the Aerospace Industry 
Looking back at the introduction of the jet engine into the commercial market in the 1950s, 

one can conclude that the market accepted the new technology quite well despite the quite 

high fuel consumption. The reason for this is certainly related to the tremendous increase in 

flight speed offered by jet driven aircraft and the resulting decrease in travel times. Currently 

the internal R&D at the large engine manufacturers pushed the jet engine technology into the 

market which at the same time also was pulled by the need for shorter travel times. After a 

while, this revolutionary jet engine technology became established in the market and a new 

pull originated from the airline operators; the need for jet engines that generated lower 

operating costs. Eventually, this market pull forced the OEMs to develop more fuel efficient 

jet engines along an evolutionary technology path, which has led the aerospace industry to 

provide the market with the highly efficient turbofan engines of today.   

 

Why put so much effort into the introduction of revolutionary technologies that will give step 

changes in aero engine efficiency? Is the pace of development provided by the evolutionary 

path of technology development not sufficient?  A part of the answer lies in the intensified 

climate debate occurring over the last decade, another part of answer lies in profitability. The 

technology pull from the society has been vastly intensified in recent years after the IPCC 

reports (IPCC, 1990, IPCC, 1995, IPCC, 2001, IPCC, 2007) on the climate change and more 

specifically the impact of aviation on the global atmosphere (J.E.Penner et al., 1999). These 

reports states that significant reductions in greenhouse gas emissions are technically possible 

and can be economically feasible. This can be achieved by applying an extensive array of 

technologies and policy measures that accelerate technology development. An response to 

these reports came from European aerospace industry in the year of 2000 (Argüelles et al., 

2001) setting the framework for how aerospace industry in Europe should strive to respond to 

society’s needs. The research goals are targeting a reduction in CO2 emissions by 50%, NOx 

by 80% and noise by 50% at the year of 2020 as compared by modern technology in service 

in the year of 2000. These R&D goals are further evolved and projected into the year of 2050 

(Darecki et al., 2011) and are quantified as a 65% reduction in CO2, 90% reduction in NOx 

and a 65% reduction in noise compared to the same baseline as the 2020 aerospace R&D 

vision.  

 

3.2 European Aero Engine Research Programs  
One could observe the intensified European aerospace R&D during the first decade of the 21

th
 

century by the introduction of large aero engine R&D projects such as the EEFAE ANTLE 

and CLEAN projects (Wells et al., 2001) within the fifth EU framework program and within 

the sixth framework program VITAL (Korsia and Spiegeleer, 2006) and the NEWAC (Wilfert 

et al., 2007) projects. Within the on-going seventh EU framework program the projects 

DREAM (EU, 2011b) and Clean Sky (EU, 2011a) are studying advanced aero engine 

technologies such as the contra-rotating and the geared open rotor engines. The DREAM 

consortium includes key European engine manufacturers, research institutes and SMEs. The 

DREAM project aims at developing technologies that will go beyond the ACARE goals in 

SFC, up to TRL level of 4 to 5.  Then, these technologies will be candidates to be transferred 

into the Clean Sky project to finally reach TRL 6. Within Clean Sky, the relevant technologies 

needed to reach, and go beyond the environmental targets set by ACARE will finally be 

demonstrated on flying tests beds. 
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3.3 U.S. Aero Engine Research Programs 
Like many countries in the western world, the U.S. is dependent on foreign energy suppliers. 

This relationship became evident during the OPEC oil embargo in the winter of 1973 and 

1974. As a consequence of this, and on a direct request from the U.S. congress in 1975, 

NASA initiated the aircraft energy efficiency (ACEE) research program (Aiken and Petersen, 

1982) with the aim of reducing fuel consumption of commercial subsonic air transport 

(DeGeorge, 1988). Except for aircraft related fields of research, three different engine 

programs were initiated, these were the engine component improvement program, ECI, the 

energy efficient engine, E
3
, program (Ciepluch et al., 1987) and the advanced turboprop 

program, ATP (Whitlow and Sievers, 1984). 

3.3.1 Engine Component Improvement Project (1976 – 1982) 

According to the project statement of the ECI program, from December 1976, the main 

objectives were to (Bowles, 2010); 

 

(1) “Develop performance improvement and retention concepts which will be 

incorporated into new production of the existing engines by the 1980-1982 time period 

and which would have a fuel savings goal of 5 percent over the life of these engines, 

and 

(2) To provide technology which can be used to minimize the performance degradation of 

current and future engines.” 

 

At the time being, in the mid and late 1970s, there were four major engines powering all 

commercial jet-driven aviation in the U.S.; GE CF6, P&W JT8D, JT9D and JT3D. The 

project came to focus on developing fuel-saving techniques for three of these four engines, 

since the JT3D was considered aged at the time. It is said that during the project, there were 

some problems in the relationship between GE and P&W mainly because of the fact that 

P&W had dominated the market for commercial aero engines since the end of world war II 

but in the late 1970s P&W started to lose market shares to GE (CF6 vs. JT9D). The project 

simply supported technology improvements to two competitors that had to collaborate. 

 

Technologically the project was divided into two different, but interrelated subprojects, the 

performance improvement- and engine diagnostics programs. The performance improvement 

program came down, after a final review by NASA, to 16 technology improvement concepts 

that were to be further developed. Examples of the most important technology areas of these 

concepts were active clearance control in the turbines, aerodynamics of compressors and 

turbines, thermal barrier coatings in the turbines (McAulay, 1980). 

 

The ECI program is considered one of the most successful programs within the ACEE 

program since it achieved the fuel savings of 5% claimed in the project statement, in a very 

short time frame, and the technology improvements were brought into service rapidly. 

 

3.3.2 Energy Efficient Engine Program (197X-198X) 
The E

3
 project goals took into account fuel savings, economic and environmental 

improvements, and were defined as (Ciepluch et al., 1987); 

 

 Reduce SFC by 12% 

 Reduce SFC performance deterioration by 50% 

 Reduce direct operating costs by 5% 
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 Meet FAA noise regulations 

 Meet EPA proposed emissions standards 

 

These goals were defined using the turbofans in service for widebody aircraft in the late 1970s 

as baseline, i.e. GE CF6 and P&W JT9D. The project also included Boeing, Douglas and 

Lockheed as well as the airlines Pan American and Eastern airlines in order to discuss engine 

design options and to receive operational expertise. The overall project goal was to have a 

new turbofan engine ready for commercial use in the late 1980s or early 1990s. Both GE and 

P&W were given the mission to design and build a new turbofan engine, the E
3
 engine, but 

not designed for commercial-ready-to-use, but for proof-of-concept testing, a technology 

demonstrator. 

 

GE completed the program successfully in 1983 and they reported a 13% reduction in SFC 

compared to the CF6 engine. GE incorporated several technologies developed within the E
3
 

ACEE program in the GE90 engine which was the first engine to use fan composite blades 

allowing for a 800 lb weight reduction, produced 60% less emissions of nitrogen oxide and 

was quieter. 

 

P&W also had success with the E
3
 program but not until 2007 when the geared turbofan 

engine was presented for the Mitsubishi regional jet, with much of the results from the P&W 

participation within the ACEE programs incorporated. 

 

3.3.3 Advanced Turboprop Project (19XX-19XX) 
While starting as a small-scale propeller project in a collaboration between NASA Lewis and 

Hamilton Standard, the last large propeller manufacturer in the U.S., the project continued as 

a huge research project involving both NASA, the engine manufacturers P&W, GE and 

Allison as well as the aircraft manufacturers Boeing, Lockheed and McDonnell-Douglas. At 

some time the project involved all four NASA research centers; Lewis, Langley, Dryden and 

Ames, 40 industrial contracts and 15 university grants. 

 

Technically, after initial studies by Boeing, Lockheed and McDonnell-Douglas, four ares of 

concern was pointed out; propeller efficiency at cruise, internal and external noise levels, 

aircraft installation aerodynamics and maintenance costs. The project had four technical 

stages; conceptual development from 1976 to 1978, enabling technology from 1978 to 1980, 

large scale integration from 1981 to 1987 and flight research during 1987.   

 

During the project two different concepts were studied in detail, the single-rotating propeller 

and the counter-rotating propeller. NASA worked on the single-rotating turboprop together 

with P&W, Allison and Hamilton Standard, while GE worked on their own with the counter-

rotating turboprop, or Unducted Fan (UDF) as they called it. The single-rotating puller 

configuration involved a relatively complex gearbox and in contrast to this design GE 

developed a gearless pusher design. The UDF was flight tested on a B727 in 1986 and the 

single-rotating turboprop was tested on a Gulfstream II in 1987.  

 

The project showed by studies, scale model tests and flight tests that turboprop engines with 

propellers utilizing thin, swept, highly loaded blades could contribute to a +20% reduction in 

fuel consumption compared to equally advanced turbofan engines. The reason for the 

technology to enter service is claimed to be the fact that the fuel price came down to normal 

levels at the end of the 1980s. 
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In particular the ATP program investigated the potential benefits of utilizing propeller 

technologies for high speed transport in terms of the LAP project (DeGeorge, 1988) and the 

Unducted Fan (UDF) project (GE, 1987b, GE, 1987c, GE, 1987a). At the end of the 1980s, 

after successful flight demonstrations of the LAP and the UDF engines, the interest to 

introduce new innovative engines on the market declined as the fuel prices came down to 

historically normal levels. 

 

3.3.4 Ultra-Efficient Engine Technology (2000-2005) 

Starting in 2000, the project focused on technology development in six technology areas; low 

emissions combustion, highly loaded turbomachinery, high temperature materials 

and structures, intelligent propulsion controls, propulsion-airframe integration, and integrated 

component technology demonstrations at TRL 3 to 5. The program objectives of the UEET 

project was to (Shaw, 2000); 

 

(1) Demonstrate propulsion technologies that enable fuel burn reductions of up to 15%, 

and 

(2) Combustor technologies (configuration and materials) that enable LTO NOx 

reductions of 70% relative ICAO 1996 standards. 

The project ended in 2005, claimed to have met the project objectives at TRL 4. 

3.3.5 NASA N+3 NRA (2007- 
N+3 NRA is the short version for ―Advanced Concept Studies for Subsonic and Supersonic 

Commercial Transports Entering Service in the 2030-2035 period‖. The overall project 

objectives are to; 

 

(1) Development of prediction and analysis tools for reduced uncertainty in design 

process. 

(2) Development of concepts/technologies for enabling dramatic improvements in noise, 

emissions and performance characteristics of subsonic/transonic aircraft. 

 

The specific technology goals are presented in Table 1. Technology goals for the NASA 

Subsonic Fixed Wing Aircraft..  

 

Corners of the trade 

space 

N+1 (EIS 2015)
2
, 

Conventional 

Configurations, Relative 

1998 Single-Aisle Aircraft, 

i.e. B737/CFM56 

N+2 (IOC 2020)
2
, 

Unconventional 

Configurations, Relative 

1997 Twin-Aisle Aircraft, 

i.e. B777/GE90 

N+3 (EIS 2030-2035)
2
, 

Advanced Aircraft 

Concepts, Relative 2005 

Technology Baseline 

Noise 
-32 dB  

(cum. below stage 4) 

-42 dB  

(cum. below stage 4) 

-71 dB  

(cum. below stage 4) 

LTO NOx Emissions 

(below CAEP 6) 
-60% -75% better than -75% 

Performance  

Aircraft Fuel Burn 
-33%

3
 -40%

3
 better than -70%

3
 

Performance  

Field Length 
-33% -50% 

exploit metro-plex
4
 

concepts 

Table 1. Technology goals for the NASA Subsonic Fixed Wing Aircraft. 

                                                
2
 TRL range: 4-6 

3
 Additional 10% improvement be may added due to operational capability improvements 

4
 Concepts that enable the optimal use of runways at multiple airports within the metropolitan areas  
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Phase 1 of the project (2008-2010) included 6 teams studying advanced concepts realizing the 

N+3 aircraft. The team leaders were Northrop Grumman, Boeing (two projects), 

Massachusetts Institute of Technology, Lockheed Martin and GE Aviation (NASA, 2008a) . 

 

Some interesting results and concepts have been developed and reported in open literature. 

The team led by MIT and also including Aerodyne Research, Aurora Flight Sciences, and 

Pratt & Whitney presented a radical aircraft concept called the ―double bubble‖ which is 

predicted to meet the N+3 technology goals (Greitzer et al., 2010). This concept is one of the 

concepts that has been chosen to be further evaluated in Phase II of the project (Croft, 2011). 

In short the concept utilizes all composite materials for the airframe structure, Natural 

Laminar Flow, BPR 20 engines, boundary-layer ingestion, a maximum allowed turbine metal 

temperature of 1500 K, advanced LDI combustor technology to mention a few.      

 

Except for the MIT concept, three other teams have been granted further studies in phase II. 

Boeing will continue to work on its truss-braced wing and hybrid electric powered subsonic 

ultra green research design (SUGAR) (Bradley et al., 2010). In addition to studying light 

weight materials and engine concepts, Boeing will design and test wind tunnel- and computer 

models of the airplane.  

 

Cessna Aircraft will continue to develop and test a new protective skin for the airframe that 

would help protect the aircraft from lightning electromagnetic interference, extreme 

temperatures and object impacts (D’Angelo et al., 2010). 

 

Northrop Grumman will continue developing wing leading edge high-lift devices (Bruner et 

al., 2010). 

 

3.3.6 Military Research Relevant for Commercial Applications 
Of great interest for the commercial aircraft industry are the IHPTET (1988-2005) and 

VAATE (1999- ) research programs. The IPHTET (Integrated High Performance Turbine 

Engine Technology (IHPTET) program was a joint effort of DoD, NASA and the industry to 

provide revolutionary performance and operational improvements for current and future 

military engines. The broad research objective was to double the propulsion capacity of 

turbomachinery at the year of 2000 without compromising the safety, reliability or 

maintainability of the current propulsion systems (AIAA, 1991). At the end of the project it 

was demonstrated a 70% increase in thrust-to-weight, +60ºF combustor inlet temperature 

capacity, a 32% production cost reduction and a 31% maintenance cost reduction at TRL 6 

(EICKMANN et al., 2006). Some of the reasons for IHPTET to be considered successful is 

said to be because of it addresses defense critical technologies, its dual use, its well defined 

goals, objectives and milestones and its integration of a variety of disciplines. Some of the 

advanced technologies that are in use or close to enter service is the super-cruise capability of 

the F-22 and the vertical lift capability of the STOVL-version of F-35. 

 

The VAATE (Versatile Affordable Advanced Turbine Engines) project started in 1999 and is 

planned to end in 2017 (AIAA, 2006). The overall project objectives of VAATE are defined 

as; 

 

 200% increase in engine thrust-to-weight ratio (a key jet engine design parameter) 

 25% reduction in engine fuel consumption (and thus fuel cost) 

 60% reduction in engine development, procurement, and life cycle maintenance cost 
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Like IHPTET, this project is also a joint effort between DoD, NASA and Industry and three 

main areas of interest will be studied during the project; versatile core, intelligent engine and 

durability. 

3.3.7 Miscellaneous work 

Between 2003 and 2006 a collaboration project between the U.S. and Europe took place, in 

particular the Cambridge University in the U.K. and Massachusetts Institute of Technology in 

the U.S. led a project called the Silent Aircraft Initiative which also included several partners 

from academia and the industry (Dowling and Hynes, 2006, SAI, 2006). The silent aircraft 

initiative aimed for an aircraft optimized for minimum noise in the 2030 timeframe. A 

conceptual design, SAX-40, has been presented that is predicted to generate noise levels 25 

dB lower than current aircraft. 

3.4 Recent Engine Technology Advancements 
The aero engine technologies that will have a potentially important impact on the aerospace 

society’s ability to achieve or even go beyond the ACARE targets are numerous. The most 

important scientific contributions relating to a number of key technologies relevant to this 

thesis are summarized in this chapter. The important areas of improvement are divided into 

high bypass ratio engines (or increasing propulsive efficiency), novel cycles, evolutionary 

improvements, miscellaneous improvements and combustor technologies for ultra-low 

emissions.   

 

3.4.1 On-going and Recent Work on High Bypass-ratio Engines 
Within the Clean Sky project the research and development of the open rotor engines has had 

its revival. Counter-rotating open-rotor demonstration engines are being developed at the 

moment with the aim of conducting flight test manifesting the technology at TRL 6 in the 

year of 2015. The overall objective is to show a -20% fuel burn benefit compared to modern 

engines in service at the year of 2000 (ACARE goal).   

 

The GTF cycle has been studied and presented in several publications  (Riegler and 

Bichlmaier, Kurzke, 2009) and although it is clear that the introduction of the fan gearbox 

system will decouple the low-pressure components allowing for more independent fan and 

LPT design optimizations, it is not easily quantified to what extent, if any, the GTF will be 

more fuel efficient than its equally advanced conventional turbofan counterpart.   

 

The GTF engine for the regional jet market is getting closer to entry into service as the Pratt 

& Whitney developed PW1524G has entered the flight testing phase (Pratt&Whitney, 2011). 

It is claimed that the fuel burn benefit will be 16% compared to today’s engines in service.  

The CFM consortium, i.e. GE and Snecma, will develop a high-BPR engine called Leap-X 

(CFM, 2011) without a mechanical fan gearbox but using comparable technology. CFM 

discusses 16% benefit in fuel consumption over today’s engines in service as well. 

 

3.4.2 Recent Studies of Novel Cycles 

Intercooled engines with- and without recuperators has been discussed since the early days of 

jet propulsion. A quite recent study by Lundbladh and Sjunnesson compares intercooled and 

recuperated engines with conventional technology (Lundbladh and Sjunnesson, 2003). The 

study shows that recuperation alone will not give any benefits in terms of fuel burn or 

operating costs, while the intercooled engine could give a 6% benefit over the conventional 
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cycle in terms of fuel burn. It was also concluded that the intercooled-recuperated (IRA) 

engine could provide fuel efficiency reductions, however in terms of direct operating costs the 

cycle did not provide any clear benefits. Also worth noting is that the study assumed a fixed 

LPT. 

 

A quite comprehensive study of the IRA engine was presented by MTU in 2004 (Boggia and 

Rüd, 2004) which included cycle optimizations and preliminary design studies of the various 

sub-systems such as the heat-exchanger and the recuperator. The final cycle was an OPR 30 

three-shaft geared turbofan with a variable LPT. The study showed an 18.7% reduction in 

SFC compared to a conventional BPR 5 turbofan engine of 1995 standard, and a 60% NOx 

margin to the ICAO-96 standard. Furthermore, the complexity of the cycle, possible life and 

reliability issues are commented. In the study by Kyprianidis and Grönstedt (Kyprianidis et 

al., 2011) potential benefits of the same order are reported.  

 

For a wider discussion of heat-exchanger technologies an extensive study performed by 

McDonald analyzes the application and potential benefits of recuperation in aero engines in 

general (McDonald et al., 2008a, McDonald et al., 2008b, McDonald et al., 2008c).  

 

Reheated aero engines, as is the case with a majority of many current suggestions on radical 

changes to the turbofan engine, has been studied in the past. However, recent studies 

concerning inter-turbine reheat, especially for commercial subsonic transport applications, 

have  received very little attention. In 1976, NASA presented a contractor report that 

concentrated on investigating unconventional aircraft engines for ultra low energy 

consumption (Gray, 1976). In this report inter-turbine reheat applied to a two-spool turbofan 

was investigated among several other technologies. Except for the conclusion of a higher 

power output for the reheated turbofan the author states that ―adding reheat to the Brayton 

cycle increases the average temperature during heat addition but increases the average 

temperature of heat rejection even more…‖. The increased requirement for turbine cooling air 

resulted in an SFC penalty of some 8% compared to their conventional engine cycle (two-

spool turbofan). They did not proceed with any more detailed studies of the reheated engine 

as it was determined that even a 100% engine weight saving could not offset the large SFC 

penalty in terms of the fuel savings potential. In this work it is argued, that the two spool ITB 

configuration studied within the work by Gray does not allow the introduction of the ITB 

sufficiently early in the expansion in order to achieve a high efficiency cycle. 

 

In 2001, Liu and Sirignano presented a detailed performance study of inter-turbine reheated 

turbojets and turbofans (Liu and Sirgnano, 2001). They investigated both discrete inter-

turbine engines (one and two inter-stage burners) and continuous inter-turbine engines (CTB). 

Their studies involved analytical design equations using constant gas properties and the 

analysis did not include the effect of engine weight and nacelle drag and their relation to the 

complete mission optimization. Furthermore, the modeling of the LP-turbine cooling which, 

as indicated in the NASA study by Gray, could be a potential show stopper is missing in their 

study. However, as the authors state, they were presenting a proof-of-concept of the ITB and 

CTB engine configurations. They showed, among other things, the existence of a maximum 

thermal efficiency as a function of power split between HP- and LP turbines. They also 

showed that ITB and CTB engines benefit more from higher bypass-ratios than their 

conventional counterparts. Furthermore, they demonstrate that at the very low turbine inlet 

temperatures where the conventional engines fail to work properly the inter-turbine reheated 

engines worked very well. For the turbofan engine configuration under study it was shown 

that for the entire subsonic flight range the one-stage ITB turbofan had up to 50% higher 
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specific thrust, incurring an SFC penalty in the range of 10-15% depending on the cycle 

definition. 

3.4.3 Combustion Technologies for Ultra-Low Emissions  

Between 1972 and 1976, the Experimental Clean Combustor Program (ECCP) (Roberts et al., 

1977, Gleason and Bahr, 1979), the first major NASA led effort to develop low-emission 

combustor technology was executed. The project included the major engine manufacturers 

P&W and GE. The program primary objectives were to; 

 

(1) The generation of combustor system technology required to develop advanced 

commercial aircraft engines with lower exhaust pollutant emissions than those of 

current technology engines, and 

(2) The demonstration of the pollutant emission reductions and acceptable performance 

in a full-scale engine in 1976. 

 

More specifically, the technical goals for P&W were to develop technology that would 

provide a 54% reduction of NOx emissions, a 59% reduction in CO and a 83% reduction in 

UHC emissions compared to the exiting baseline JT9D-7 combustor.  

 

For GE, the technical goals were defined as; a reduction of NOx emissions by 61%, a 

reduction of CO emissions by 71% and a reduction of UHC emissions by 90% compared to 

their baseline CF6-50C. 

 

P&W developed the Vorbix (two-stage vortex burning and mixing) combustor that were 

reported very successful in terms of pollutant emissions reductions, NOx emissions were 

reported 10% below the project goal, CO emissions were 26% below the project goal and 

UHC was reported 75% below the project goal. Compared to the baseline, JT9D-7 combustor, 

the NOx emissions were reduced by 58%, CO emissions were reduced by 69% and UHC were 

reduced by 96%. Furthermore, there was a smoke number objective that was not fulfilled 

(Roberts et al., 1977).  

 

GE developed the double-annular combustor (DAC) that did not quite meet the stringent 

project emission goals, especially for emissions of NOx. It is proposed in the final report that 

the NOx emissions target could be met by applying a revised NOx standard allowing higher 

NOx levels for engines with pressure ratios above 25. The P&W baseline JT9D-7 had a 

pressure ratio around 23 while the CF6-50C had a pressure ratio of about 30. 

 

 

 

  



Richard Avellán, On the Design of Energy Efficient Aero Engines

 

16 

 

4 The Energy Efficiency of Aviation 
The whole idea of transportation is to bring items or people, i.e. payload, to its destination. It 

is desirable to do this in an optimal way. The term optimal should in this context be 

understood as the best possible means of transport in terms of cost, time, comfort, safety, 

environmental impact or a combination thereof. In a simplified manner, the optimum could be 

defined with only one of those measures, e.g. the lowest cost, or the quickest way of moving 

people or items between two locations. In practice, the preferred transport solution is more 

complicated than that, it constitutes a well balanced solution that to some extent offers all of 

these properties. 

 

In recent years the focus has shifted from the old aerospace design paradigm ―higher and 

faster‖ to greener airplane designs, i.e. the focus has shifted more or less from travel time to 

environmental impact. The environmental impact can be quantified in terms of CO2, NOx and 

noise emissions generated by the aircraft and engine(s). For instance in the year of 2000, the 

Advisory Council of Aeronautics research in Europe (ACARE) defined a vision for the 

European aerospace industry to work towards a 50 % CO2 reduction, a 80 % NOx reduction, 

and a 50 % noise reduction to be achieved by the year 2020 (Argüelles et al., 2001).  

 

To be able to assess any improvements in aviation efficiency one must be clear of the 

meaning of efficiency related to airplanes. As mentioned above, the very purpose of air 

transport, or any means of transport, is to deliver people and/or payload from one destination 

to another. The aircraft produces useful output in terms of moving a given mass (payload) a 

certain distance. The energy required to produce that output is taken from the chemically 

stored energy in the aircraft fuel, translated into mechanical work and ultimately thrust, by the 

use of a suitable heat engine. One realizes that a direct measure of the air transport output can 

be described as the air transport output produced per unit fuel energy consumed according to 

equation (1), 

 

                              
                      

         
  (1) 

The reciprocal of equation (1) is called energy intensity, EI as defined by Lee (Lee et al., 

2001), and is exemplified in Figure 4 for a number of modern, and historical aircraft 

(Bridgeman, 1948, Bridgeman, 1953, Jackson, 2005, Boeing, 2011). Note that the payload 

term in equation (1) can consist of cargo, luggage, passengers or combinations thereof. For 

passenger transports however, the transport output is frequently given as revenue passenger 

kilometers, RPK (number of passengers multiplied by block distance), or available seat 

kilometers, ASK (number of seats multiplied by block distance). Furthermore the relation 

between RPK and ASK is called the load factor and is a measure of the utilization of the 

aircraft capacity. Noticeable in Figure 4 is the fact that the most efficient piston driven 

aircraft, here illustrated by the Lockheed L-1049 Super Constellation show approximately the 

same energy intensity, close to 1 MJ/ASK, as the modern jet aircraft investigated here. Is it 

then true that the technology development achieved nothing in terms of energy efficiency 

during 75 years of technology development? 
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Figure 4. Historical energy efficiency trend for commercial transport aircraft. 

The air transport output measure as described by equation (1) is indicative but not complete if 

one also takes the value of people’s time into account. The numerator of equation (1) is in 

some contexts misleadingly described as transport productivity (Martinez-Val et al., 2005), 

but according to the author’s opinion productivity should also involve a measure of time and 

reveal how fast as well as efficient a certain transport process is completed. It is suggested 

that an adequate measure of air transport productivity therefore is, 

                                                        (2) 

with units of tonne-kilometers/hour or passenger-kilometers/hours. Consequently equation (1) 

is now re-written as, 

                                     
           

         
 (3) 

This equation also reveals some of the progress made in the last 75 years, and is illustrated in 

Figure 5. 
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Figure 5. Historical productivity trend for commercial transport aircraft. 

If one instead of the absolute fuel consumed in the denominator of equation (3) considers the 

rate at which the chemical energy in the fuel is converted into heat, i.e.            and 

rewrites this expression with use of the definition of SFC so that            =       

    a useful expression for air transport energy efficiency valid for unaccelerated, steady 

level-flight can be obtained according to, 

                         
                   

         
 (4) 

This expression summarizes the different factors affecting overall air transport efficiency for 

any aircraft. It reveals that to maximize efficiency we want to maximize aerodynamic 

efficiency, L/D, of the aircraft, the amount of payload that can be contained and the speed by 

which the flight takes place. At the same time it is highly desirable to minimize the engine 

SFC and the overall weight of the aircraft and engines. These factors are interrelated in a 

complex way and the overall design goal must be to find the most well-balanced design 

solution that maximizes air transport efficiency. A further break-down of air transport 

efficiency and how to improve it is undertaken in the following sections. 

4.1 Specific Fuel Consumption  
Specific fuel consumption is defined as fuel flow divided by net thrust according to, 

 

     
      

  
 (5) 

 

The definition of SFC is commonly used and constitutes a simple way of comparing different 

aero engines in various thrust classes. The SFC variable expresses how much fuel that is 

required per unit of net thrust delivered by the engine. The SFC measure is directly related to 

overall engine efficiency and the relation is easily established from the definition of overall 

engine efficiency. Consider, as above, the net energy input to the aircraft, i.e. fuel energy, or 
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more specifically the rate of which fuel energy is converted to heat. The output from the aero 

engine is the propulsive power delivered. The overall engine efficiency is then,  

 

   
          

          
 (6) 

 

and combined with equation (5) one gets,  

 

   
       

       
 (7) 

 

The SFC is thus directly related to overall engine efficiency which raises the need for 

establishing the foundations of the energy conversion process, i.e. the process from chemical 

energy contained in the fuel all the way to the thrust delivered to the aircraft. 

 

For air-breathing engines, the fuel is oxidized to release heat with the help of air flowing 

through the engine, in particular the oxygen contained in the air. In the case of an ideal 

combustor the combustion process is said to be complete, meaning that the heat released in 

the combustor directly relates the heating value of the fuel. In reality, the combustion will 

incorporate losses due to various reasons, so that the efficiency of the energy conversion 

(accurate enough for combustion temperatures below approximately 1650 K) can be 

expressed as,  

 

      
    

          
 (8) 

 

Note that it is general practice for aero engines to use the lower heating value, LHV, in 

contrast to the higher heating value, HHV, since the difference, ΔHvap,H2O,is the heat of 

vaporization for the water content and will not be recovered as long as the engine process 

does not incorporate a condenser. Therefore, if different fuel types are to be compared it will 

make most sense to subtract the heat of vaporization for water. 

 

The thermal efficiency is defined as the ratio of the kinetic energy increase of the air going 

through the engine, to the thermal energy released by burning the fuel according to,  

 

    
       

         
  

            
 (9) 

 

Finally, the efficiency at which the kinetic energy of the gases leaving the engine is converted 

to propulsive power is expressed by the ratio of propulsive power and kinetic energy. 

Assuming that the flow is fully expanded to a single velocity,      , we get:  

 

   
                       
 
   

     
         

  
 (10) 

 

which can be re-written as,  
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(11) 

 

Equation (11) is the well-known Froude equation for propulsive efficiency. This expression it 

is very important for the foundations of designing energy efficient aero engines because it 

shows the importance of achieving low exhaust velocities. This is because the residual 

exhaust velocity, jet velocity in excess of flight speed, is a direct measure of propulsive 

inefficiencies. The theoretical limit of propulsive efficiency is achieved when the jet velocity 

approaches the flight velocity. Unfortunately, the net thrust approaches zero as the jet velocity 

approaches the flight velocity since                    , and the engine size approaches 

infinity due to the same reason. 

 

Since modern jet engines for civil air transport utilizes two jet streams, it is logical to 

introduce the transmission efficiency, ηtr, which is a measure of the efficiency of the energy 

transfer from the core exit to the kinetic energy in the exhaust streams. The thermal efficiency 

is now divided into transfer efficiency and core efficiency according to, 

 
              (12) 

 

The transfer efficiency is equal to, 

 
                            (13) 

 

This efficiency reflects all the losses incorporated when the energy is transferred from the 

core exit to the nozzle exit plane; low pressure turbine losses, fan losses, duct losses, losses in 

the nozzles and if present mechanical gear box losses. 

 

Furthermore, the core efficiency is defined as, 

 

      
             
       

 (14) 

 

where hcore,exit is the energy available at the core exit, i.e. the point during the expansion when 

all power requirements for core stream compression are fulfilled. A detailed explanation of 

the definition of core exit in a turbofan see for instance Kurzke (Kurzke, 2007). 

 

The overall efficiency can now be expressed as, 

 
                (15) 

 

and finally, the SFC as, 

 

    
       

                
 (16) 

 

Equation (16) relates the relevant efficiencies incorporated in conceptual and preliminary 

design to the specific fuel consumption.  
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Figure 6 shows the jet engine development quantified in terms of SFC as a function the entry 

into service year, starting at the introduction of the jet engines during the 1950s continuing 

with the first turbofans during the 1960s and 1970s followed by the current state of the art 

high bypass ratio turbofan technology (Gunston, 2005, NASA, 2008b). The impact of 

technology revolutions are observed as step change improvements. Estimating the 

development trends for the current high bypass ratio engine technology leads to the 

conclusion that a new technology breakthrough is necessary to reach the ACARE 2020 aero 

engine vision.   
 

 

Figure 6. Trends of jet engine technology development quantified in terms of uninstalled cruise SFC 

as a function of year of certification. 
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5 Aircraft Performance 
The whole problem is confined within these limits: to make a surface support a given weight  

by the application of power to the resistance of air. 

Sir George Cayley (1809) 

An aircraft in translational motion can be described according to, 

                  
  

  
 (17) 

                  
  

 
 (18) 

 

Consider the case of unaccelerated level-flight. Level-flight means that the aircraft is moving 

parallel to the horizon and therefore θ = 0. Furthermore, unaccelerated means that the right 

hand sides of equation (17) and (18) are equal to zero. Also for most cases, the angle αT is 

small enough to allow approximating cosαT ≈ 1 and sinαT ≈ 0. Now, equations (17) and (18) 

becomes, 

    (19) 

    (20) 

Equations (19) and (20) are the equations for unaccelerated level-flight and will be referred to 

at several instances of this text. In words, the drag is balanced by the engine thrust, and the 

weight of the aircraft is balanced by the lift.  Elementary, but very important. 
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6 Simple Methods for Modeling Aero Engines and Quantifying 

Trends in Technology Development 

6.1 Propulsive Efficiency 
The limiting theoretical performance for the propulsor technology can be derived from simple 

momentum theory. Consider a stream tube of air according to Figure 7. The stagnation 

pressure remains constant and equal to the far upstream conditions, denoted as ∞, all the way 

up to the propeller disc location denoted as 1. It then changes discontinuously at the propeller 

disc, from station 1 to 2, as work is imparted to the stream by the propeller, and then remains 

constant again far downstream of the propeller disc. At some distance downstream of the 

propeller disc, the static pressure has returned to ambient pressure but the final wake velocity, 

Ve, is higher than the free stream velocity.  This residual exhaust velocity creates the thrust 

and it is also directly related to a reduction in propulsive efficiency. 

 

 
Figure 7. Schematic view of the actuator disc model of propeller performance. 

 
 

 

 
  

 

Furthermore, the actuator disc propeller model assumes an infinite number of blades and the 

flow is assumed to be irrotational and incompressible. Based on these assumptions it is 

possible to compute the ideal propeller efficiency. 

 

The thrust developed by the propeller is the pressure loading of the propeller disc over the 

disc area A, i.e. 

 
           (21) 
 

Ve

V∞

disc

Vp
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Furthermore, the thrust developed can be determined by computing the momentum change 

over the control surface according to, 

 
                        (22) 

 

Applying Bernoulli’s equation up- and downstream of the propeller disc gives, 

 

      
 

 
   

    
   (23) 

      
 

 
   

    
   (24) 

 

The pressure difference is then, 

 

      
 

 
   

    
   (25) 

 

From above, equation (25) (22) and (21) yields, 

 

   
     

 
 (26) 

 

The jet power added to the flow by the propeller is, 

 

     
  

 
   

    
       (27) 

 

The ideal power available to the aircraft is also called the propulsive power, P = TV∞, so the 

efficiency at which the propulsive power is created is computed according to, 

 

   
 

    
   

     
    

 
   
   

 
  
  

 
   

     
 

 

  
  
  

 
(28) 

 

which is the Froude efficiency derived earlier in equation (11) and is a direct measure of the 

kinetic energy losses (induced velocity) associated with thrust production as described above.  

 

For a fan pressure ratio approaching 1.0 the induced velocity is approaching zero and the ideal 

efficiency is close to 100%. The ideal propulsion efficiency should be considered a theoretical 

upper limit for different engine technologies. In real cases, the flow is viscous, compressible, 

rotational and the propeller or fan will be designed with a finite number of blades. The real 

flow effects will lower the efficiency through a multitude of loss mechanisms. However, for 

comparison of different engine technologies the ideal efficiency indicates what is possible to 

gain when lowering the fan pressure ratio, and as a direct consequence thereof increasing the 

fan diameter.  

  

As can be seen in Figure 8, today’s jet engines, i.e. turbofans, are designed for a cruise Mach 

number of 0.78-0.85 depending on the particular airplane under study. Typical fan pressure 

ratios are in the range of 1.5 to 1.75. The corresponding ideal propulsion efficiency is some 

82% for these engines. Furthermore, the geared turbofans under development are expected to 

be designed for fan pressure ratios in the range of 1.3 – 1.45 (Riegler and Bichlmaier) giving 

some 5% higher propulsive efficiency than current turbofans in service. 
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The open rotor engines however, will probably have fan pressure ratios close to 1.05 – 1.10 

which gives an ideal propulsion efficiency of 97% obtained at a somewhat lower cruise Mach 

number of 0.75. Since the airplane fuelburn is directly related to SFC, which is directly 

related to efficiency, this can be translated to fuelburn savings in the range of 20% stemming 

from the higher propulsive efficiency as a consequence of the chosen fan configuration. 

 

Figure 8. Ideal propulsion efficiency at infinite BPR as a function of fan pressure ratio and Mach number at 

a flight altitude of 35000 ft. Also shown in the figure is the actuator disc diameter needed to produce 30000 

lbf of static thrust at ISA conditions. Note that this diagram is valid for the actuator disc model described in 

this section.  
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6.2 Thermal Efficiency 
Consider the TS-diagram in Figure 9. The ideal Brayton cycle is represented by the 

thermodynamic states a-b-c-d-a. Isentropic compression takes place between a and b, 

followed by isobaric heat addition between b and c, isentropic expansion between states c and 

d. The cycle is then closed by isobaric heat rejection to the surroundings between d and a. 

 

 
Figure 9. Ideal Brayton cycle. 

 

The thermal efficiency of the Brayton cycle is the ratio of the net work produced by the cycle 

and the heat added to the cycle according to, 

 

            
    

   
 
                   

         
   

     
     

   
    
   

 (29) 

 

In the limiting case of an overall pressure ratio chosen such that Tb approaches Tc, the thermal 

efficiency will approach the Carnot efficiency of a heat engine operating between the hot 

temperature Tc, and the cold temperature Ta, 

 

             
  
  

 (30) 

 

and the net work of the cycle will approach zero. At the ―other end‖ of the cycle, when the 

pressure ratio approaches one, the net work will once again approach zero and so will the 

efficiency. This indicates that for obtaining maximum work from a Brayton cycle, the 

pressure ratio must be carefully chosen. In terms of efficiency, the pressure ratio should be as 

high as possible approaching the pressure ratio needed to establish a compressor exhaust 

temperature close to Tc Even from this simple reasoning it can be concluded that an optimized 

Brayton cycle requires well balanced cycle design parameters in order to achieve high specific 

work and efficiency at the same time. This is further clarified in Figure 10, where three 

different Brayton cycles are illustrated together with the resulting trend in efficiency and 

specific work. 

 

Also shown in Figure 10 is the important result that real Brayton cycles with component losses 

also have an optimum pressure ratio with respect to efficiency. 
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Figure 10. Specific work and thermal efficiency of the Ideal and real Brayton cycle as a function of 

overall pressure ratio. 

6.3 Emissions of Nitrogen Oxide 
Ideal combustion of a hydrocarbon fuel using air as the oxidizer results in carbon dioxide and 

water in the exhaust. In real aero engine combustion chambers however, there are a number of 

additional emissions formed during the combustion process. Even though the nitrogen is 

normally considered inert, small amounts of oxides of nitrogen are formed at the high 

temperatures in the primary combustion zone. The formation of nitrogen oxides, i.e. NO and 

NO2, is due to several complex mechanisms, but the fundamental requirement is that excess 

oxygen is available and that nitrogen molecules start to dissociate and oxidize. High 

temperatures and excess oxygen is the foundation for the most important mechanism, thermal 

NOx, formation as described by for instance Zeldovich (Lefebvre, 1999), 

 
      

(31) 
          

          

          

 

Oxides of nitrogen are also formed by the nitrous oxide mechanism
14 

and are initiated by the 

formation of nitrous oxide, 
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         (32) 

 

The nitrous oxide is then oxidized to NO by the reaction, 

 
            (33) 

 

and also by the reactions; 

 
            (34) 

              (35) 

 

Another source of NOx formation is the oxidation of nitrogen in the fuel. Light hydrocarbon 

fuel fractions can contain small amounts of nitrogen (< 0.06 per cent by weight), and heavier 

fuel fractions can contain up to 1.8 per cent by weight. In addition to thermal NOx, prompt 

NOx may be formed. The process of formation is not entirely understood (Sjöblom), but it is 

observed that under certain conditions, NOx is formed early in the flame region. Nicol et al 

(Nicol, 1992) suggests the initiating reaction, 

 
            (36) 

 

Under lean-premixed conditions, the HCN oxidizes to NO mainly by a sequence of reactions 

involving HCN → CN → NCO → NO, and the nitrogen atom oxidizes to NO mainly by the 

second Zeldovich reaction given above. Furthermore, Nicol et al, showed that for equivalence 

ratios of 0.8 burning methane fuel in a lean-premixed combustor, the thermal NOx 

contribution was about 60 percent of the total. 

 

In Figure 11, the normalized NO and NO2 content by mass is shown to peak at equivalence 

ratios close to 0.8 which corresponds to oxygen excess levels in the range of 4-5 % by mass. 

The results are computed using chemical equilibrium models (Gordon and Mcbride, 1994, 

McBride and Gordon, 1996) and represents an infinite residence time.  In a practical 

application, the influence of the chemical kinetics has lead to a class of combustor designs 

that cool the primary zone as quickly as possible. However, from the diagram in Figure 11 it is 

interesting to note that in the region of maximum combustion temperatures, at the slightly fuel 

rich side of the stoichiometric conditions, the NOx levels decrease substantially due to very 

low levels of excess oxygen. 
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Figure 11. Normalized emissions of nitrogen oxide by mass for a combustion air temperature of 800 

K and a Jet-A temperature of 288.15 K as a function of equivalence ratio. 

 

In order to capture the effect of the engine design parameters on NOx a semi-analytical 

expression as given by Lefebvre (Rizk and Mongia, 1993) may be used, 

 

      
 

  
            

               (37) 

 

where P3 is the compressor discharge pressure [kPa], F is the fraction of air to the primary 

zone, τ is the residence time [ms] and Tst is the stoichiometric flame temperature [K]. 

 

6.4 Aerodynamic Efficiency  
As part of this thesis, conceptual methods have been developed to find the impact of flight 

Mach number, altitude as well as the aircraft wing design parameters on overall aircraft 

performance of modern and next generation aircraft. Special attention has been devoted to 

modeling the compressibility drag, due to its strong impact on the optimum cruise Mach 

number for jet driven transport aircraft. 

 

The lift-to-drag ratio, L/D or in non-dimensional terms CL/CD, is an efficiency measure that 

reveals how efficiently the lift force needed to balance the aircraft weight, W, is generated 

Therefore it is also referred to as an aerodynamic efficiency. For a given aircraft weight in 

steady level flight the lift surface must create lift so that L ≈ W, and the non-dimensional drag 

can be computed according to, 

 
               (38) 

 

where     is the lift independent drag coefficient,     the induced drag coefficient and     is 

the compressibility drag coefficient. This is easily converted back to dimensional terms as 

        , and in the same manner lift is computed according to         . For 

equation (38) to be applied it is necessary to understand the different terms incorporated in the 

equation.   
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6.4.1 Lift-independent Drag 
The lift independent drag is assumed to be independent of the creation of lift. It consists of 

friction- and pressure separation drag. The friction drag is computed from the friction 

coefficient of a flat plate, cf, and the wet surface, Sw, and is then corrected for the real-shape 

using a form factor so that, 

 

              
(39) 

 

where    is the form factor.  

 

The art of determining the aircraft lift-independent drag is thus reduced to computing the wet 

surface of the different airplane components exposed to the air flow and determining the 

proper form factors for those components. If the aircraft technology under study is not subject 

to any laminar flow technology implementation this term has a weak dependence on 

aerodynamic technology maturity. 

6.4.2 Lift-Induced Drag 
Lift-induced drag stems from the vortices resulting from the spanwise flow reaching the tips 

of the finite wing. 

 

A more intuitive but also approximate explanation to the creation of induced drag is given by 

simple momentum theory but does not explain why the end vortices are formed. Consider a 

streamtube of air with the free stream velocity    and diameter equal to the wing span b. 

From the continuity equation the mass flow of the stream tube can be expressed as, 

 

           
  

 
  (40) 

 

To create lift there must be a deflection of the stream tube by a small angle ε opposite to the 

direction of lift, so that a downward component of the free stream velocity is created 

according to, 

 
             (41) 

 

So that lift can be written as, 

 

         
 
  

 
   (42) 

 

The total force acting on the wing is a sum of the lift force normal to the incoming flow, and a 

induced drag component, Di, acting in the direction of the flow. Under the assumption of 

small angles, i.e. ε close to zero, the induced drag component can be explained as the 

difference of the free stream velocity and its horizontal component,     according to, 

 

                
 

Which by Taylor expansion can be rewritten as, 

            
  

 
     

  

 
 (43) 
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Applying equation (41) with (43) gives, 

 

    
  

 
 

 
(44) 

Thus, the induced drag can be written as, 

 

   
    

 
 
  

 
      

   

 
 (45) 

 

Applying equation (42) into (45) results in, 

 

    
  
    

   
  

    
  

  
 

   
 (46) 

 

in which AR is the aspect ratio of the wing defined as b
2
/S and is a measure of the slenderness 

of the wing, i.e. a high aspect ratio indicates a long narrow wing whilst a low aspect ratio 

indicates a short stubby wing.  

 

The preceding derivation of lift induced drag using simple momentum theory turns out to be 

correct for the ideal case representing an elliptical wing with constant downwash velocity 

across the span b. For real wings, the Oswald span efficiency, e, is invoked into equation (46) 

which will be less than one for the real planar wing case, revealing how much the wing 

deviates from ideal. A simple expression for lift induced drag will therefore be, 

 

     
  
 

    
 (47) 

6.4.3 Compressibility Drag 

Compressibility drag is important to include early on in the conceptual design process since 

the cruise Mach number chosen for long range cruise will define the energy efficiency design 

point (EDP) for the engines as well as the aircraft. Consider the accelerating flow over the 

upper surface of an aircraft wing. At some free stream Mach number the flow will accelerate 

over the wing to an extent that it eventually reaches the sonic velocity at some point in the 

flow field. This flight Mach number is defined as the critical Mach number, Mcr. Any further 

increase in flight Mach number will create local supersonic flow velocities with a terminating 

normal shock wave and rapid drag rise as a consequence. In contrast to the exact and physical 

definition of the flight critical Mach number, the drag-divergent Mach number, MDD, is not as 

easily defined, some examples are given here, 

 

1. The Boeing definition states; MDD is the free stream Mach number for which the drag 

due to compressibility first reaches 20 counts above the incompressible level, 

 i.e. ΔCD = 0.0020 

2. The Douglas definition states; MDD is the free-stream Mach number for which the 

slope of the drag rise first reaches the value 0.10, i.e.  

 
   

  
      (48) 
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A third, and more practical definition is based on Boeings  [cost index explained] definition of 

LRC; 

 

3. The LRC cruise speed is the speed above the maximum range speed that results in a 

1% decrease in fuel mileage. 

 

Due to the high cruise speeds utilized by jet driven transport aircraft, transonic airfoil- and 

wing theory must be applied. The basic equation used here was defined by Korn in the 1970s 

and provides a simple means of estimating airfoil performance, 

 

    
  

  
 
 

 
   (49) 

  

where κ is a technology factor representing the airfoil design technology level, for example κ 

= 0.95 represents NASA supercritical airfoils, and κ = 0.87 conventional airfoil technology 

such as the NACA 6-series airfoils (Mason, 1990). From the important work on wing planar 

forms by Jones and others during the second world war, we know that the compressibility 

effect is dependent on the Mach number normal to the leading edge of the wing, so that 

equation (49) can be re-written for swept-wings according to, 

 

    
 

    
 

   

     
 

  

       
 (50) 

 
By assuming an empirically derived shape of the drag rise, for instance; 

 

              
  (51) 

 

In combination with the Douglas criteria for drag-divergence, 

 
   

  
          

  (52) 

 

and according to the definition above M equals MDD when this condition is fulfilled. Solving 

for Mcr yields, 

 

         
   

  
 
   

 (53) 

 

For Mach numbers above the critical value, the drag rise can now be modeled as, 

 

              
  (54) 

 

A method for conceptual studies of the effects of wing sweep, thickness and airfoil 

technology with respect to compressibility drag rise is now available. Of course, if 

airfoil/wing data is available to the user a more accurate semi-empirical expression can be 

developed, however for the purpose of predicting LRC for existing aircraft the algorithm 

defined by equation (49) through (54) seem to be sufficiently accurate. As an example, Mason 

et al used a value for κ of 0.89 when analyzing the compressibility drag characteristics of a 

B747-200, and a value of 0.955 when analyzing the newer B777 aircraft. 
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In Figure 12 some results for the medium range generic (MRG) aircraft are shown in order to 

illustrate the results of conceptual methods for computing aircraft drag. The baseline aircraft 

is in this example assumed to have an average maximum thickness-to-chord ratio of 10.5%, 

shown by the solid lines in the figure. The results for a two percent thicker wing, i.e. 12.5%, 

are also shown in the figure. Note that the compressibility drag rise dependence on lift. The 

lines connecting the drag curves, M(L/D)max and LRC, illustrates the points of minimum fuel 

consumption and the typical long range cruise points. 

 

 
Figure 12. MRG compressibility drag as a function of Mach number for lift coefficients between 0.2 

and 0.7. 
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6.5 Aircraft Weight 
Models for estimating aircraft and engine weight can be divided into three main groups; 

statistical, quasi-analytical, and analytical weight estimation methods. The proper method to 

use for a particular design study depends on which phase in the design process the weight 

estimation is to occur, and what data that is available for verification and validation. As an 

example, consider a design study for a new aircraft. Early in the conceptual design process, 

when the need exists to get a first order estimation and a proper scaling of the airplane weight, 

one might consider statistical expressions. 

 

At the highest system level, aircraft gross weight is broken down into overall empty weight, 

Woe, the weight of the payload, Wpay, and fuel weight, Wfuel, so that the gross weight or take-

off weight is written as, 

 
                    (55) 

 

Continuing the weight breakdown according to equation (55), the overall empty weight 

consists of the airplane structure and all the items necessary for operating it. The structure 

weight, which consists of the wing, fuselage, tail, surface controls, nacelle group and the 

landing gear according to, 

 
                                    (56) 

6.5.1 Validation of Aircraft Weight Methods 
For the validation of the weight prediction methods, the data given by Torenbeek has been 

used (Torenbeek, 1982). The semi-analytical expressions show good agreement with the data 

presented by Torenbeek, however the airplane types are quite old so that additional 

calibrations should be performed. The airplane modeled for the purposes of this method 

verification was a medium range generic aircraft, MRG, i.e. a narrow body airliner in the size 

of the widely used Boeing 737-800 airplane.  The results for the structure sub-groups are 

shown in Figure 13 through Figure 18. The MRG airplane total take-off weight was calculated 

to be 79395 kg, which is within 1% (0.5%) of the manufacturer’s data reported (Boeing, 

2011). Although this particular point was close to the manufacturer’s data, this high accuracy 

is not to be expected for all predictions. The calibration data used here is taken from rather old 

aircraft and should be re-calibrated on modern designs if such data is available. 
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Figure 13. Comparison of the predicted MRG wing weight to existing 2-, 3- and 4-engined jet 

aircraft. 
 

 
Figure 14. Comparison of the predicted MRG fuselage weight to existing 2-, 3- and 4-engined jet 

aircraft. 
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Figure 15. Comparison of the predicted MRG tail group weight to existing 2-, 3- and 4-engined jet 

aircraft. 

 
 

Figure 16. Comparison of the predicted MRG landing weight to existing 2-, 3- and 4-engined jet 

aircraft. 
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Figure 17. Comparison of the predicted MRG surface controls weight to existing 2-, 3- and 4-engined 

jet aircraft. 

 
 

Figure 18. Comparison of the predicted MRG nacelle weight to existing 2-, 3- and 4-engined jet 

aircraft. 
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FLOPS code developed Northrop Grumman [Referens till NASA N+3] 

 

Weight Item FLOPS GISMO Relative diff. 

Wing group [kg] 8795.6 8455.0 -3.9% 

Tail group [kg] 1313.1 1617.5 23.2% 

Fuselage group [kg] 8225.9 6792.6 -17.4% 

Landing gear [kg] 3340.3 3093.0 -7.4% 

Surface controls [kg] N/A 1758.9 N/A 

Nacelle group [kg] 1795.3 1657.0 -7.7% 

Structural weight [kg] 23470.2 23374.0 -0.4% 

Propulsion group [kg] 6014.2 5986.9 -0.5% 

Systems & Equip. [kg] 10927.0 10939.9 0.12% 

OEW [kg] 41667.0 42868.5 2.9% 

Fuel [kg] 20827.6 20488.3 -1.6% 

Payload [kg] 16726.2 16038.0 -4.1% 

TOGW [kg] 79220.7 79394.8 0.22% 
Table 2. Validation of GISMO weight for a B737-800 aircraft. Comparison with the Northrop 

Grumman FLOPS code. 

It is noted that that both methods produce results that are within 0.5% from the MTOW 

reported by Boeing for the aircraft type studied here. 

 

6.6 Performance - Component Maps 
For the purposes of this thesis, no new methods regarding performance analysis, off-design 

behavior, has been necessary to develop. However, due to its importance for aero engine 

performance the existing methodology that has been used is presented briefly herein.  

 

The group’s performance methods, in particular the methods for generating component maps, 

are based on the work by Robbins and Dugan (Robbins and James F. Dugan, 1965). They 

presented a method for obtaining the performance map of a new multistage compressor based 

on empirical data from previous compressor designs. A brief explanation follows. 

 

The line connecting all the points of maximum efficiency, for each speed, is called the 

backbone, bb, of the compressor map, or simply the compressor backbone. Any value along 

this line is called a backbone value.  Furthermore, the point of maximum polytropic efficiency 

for the backbone line and therefore the entire compressor map, is called the reference point, 

rp, and is not necessarily the design point. 

The method consists of three major steps that are; calculation of the compressor backbone, 

calculation of the stall-limit, or surge line, and finally calculation of the off-backbone 

behavior along the constant speed lines. 

 

 Calculation of the compressor backbone and surge line: 
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Given the pressure ratio at the reference point, πrp, and the rotational speed, n, the 

backbone mass flow,     , isentropic efficiency, ηbb, and pressure ratio πbb for the 

compressor backbone are acquired. The tables f1, f2, f3 and f4 represent data derived 

from a number of historical compressor designs and are given as: 

 
   

   
  

 
        (57) 

 
    
    

  
 
        (58) 

 
 
  

 
  

  
 
        (59) 

 
      

   
  

 
         (60) 

 

            where  
 

   
 . 

 

 Constant speed characteristics (off-backbone behavior): 

Once the compressor backbone is determined, the variation of pressure ratio, mass 

flow and efficiency along constant speed lines can be determined as a function the 

flow parameter, ϕ, which is scaled with the backbone value, ϕbb, to obtain the relative 

flow parameter ϕrel, according to: 

  
       

         
  

 
  

   
  (61) 

 
 

 
  

  
 
  

   
  (62) 

 

where  
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  and   

  

  
 

 

An interesting empirical observation of the method described here, is that values from the 

entire compressor map tend to collapse into a single curve according to equation (61) and (62) 

respectively and in such way represents the off-design behavior of the compressor. And 

together with the tables containing the backbone data, the entire compressor map of the new 

compressor design is determined. This method was implemented by Grönstedt (Grönstedt, 

2000) and during that process some shortcoming of the method were observed. The original 

correlation only contained compressor data up to 110% of the reference rotational speed. The 

method used to determine off-backbone behavior agreed poorly with empirical data. Also 

noted was that the original compressor data were based on compressor designs from the 

period 1950-1965. Furthermore compressor choking effects were not included in the original 

model. McKenzie (McKenzie, 1997) also noted that the strategy of using a compressor 

backbone line for prediction of compressor performance probably is a useful strategy but that 

the original data did not represent new designs successfully. So the original method was 

modified with internal Volvo Aero compressor data to get better agreement with modern 

designs.  
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7 Means of Improving Overall Engine Efficiency 

7.1 Aero engine technology trends 
 

Forecasting methodologies is an entire field of research itself and commonly applied by 

economists, business marketing divisions and demographic researchers, to mention a few. 

These methodologies also have a very useful application for any kind technology 

development is sometimes necessary apply in order to predict future state-of-the-art 

technology and market outlooks. In particular, the forecasting technique quantifies the rate at 

which technology improvement has to occur at in order to reach future research and 

technology goals. 

 

Consider the task of forecasting, i.e. estimating the performance, y, of a particular technology 

over time, t. Assume that the change, hopefully an improvement, in performance is dependent 

and proportional to the present time so that, 

 
  

  
    (63) 

  

where k is a constant. Equation (63) has the well known solution y(t)=Ce
kt
 , that would imply 

exponential performance improvement of the technology over time which is not a very 

realistic assumption. In real world cases most technologies evolve and improve at some rate 

until physical limits approaches, the market is becoming saturated or perhaps the costs 

associated with any further improvements are just too high to motivate further development. 

The technology improvement eventually declines, showing asymptotic behavior approaching 

the upper limit of the particular technology’s performance. Based on this reasoning, equation 

(63) can be written as, 

 
  

  
         (64) 

  

In which the asymptote L is introduced. The performance of the technology over time is now 

assumed to be proportional to the current performance level, y, and the remaining gap to the 

asymptote, L-y. Equation (64) can be shown to have a solution according to, 

 

     
 

       
 (65) 

 

where a is a constant of integration. This equation is usually referred to as the logistics 

equation, or Pearl-Verhulst equation after its founders, and is widely used by for instance 

demographers, biologists (Kingsland, 1982), economists and also for business forecasting in 

general. For the purpose of estimating technology trends within this section, this equation is 

applied. 

 

7.2 Component efficiencies 
 

The progress of more energy efficient aero engines relies much on the component efficiency 

development. The evolvement of 3D flow computational capability within the industry has 

contributed to efficiency improvements in the last decades, will yet continue to contribute to 
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the future improvement. Presented in figures 18 throughFigure 23 are polytropic efficiency 

trends based on data from (Grieb, 2004) and  (Grönstedt, 2011).  

 

The component efficiency trends shown here are estimated by assuming restricted technology 

growth according to Pearl amongst others. Equation (65) described in section 7.1  is assumed 

to be applicable. The coefficients a and b are given by regression analysis using the efficiency 

data together with an assumed asymptotic component efficiency of 95% for compressors and 

97% for uncooled turbine efficiency. It can be argued to be conservative but is based on the 

author’s opinion and a recent study on turbomachinery efficiency limits (Hall, 2010). 

 

 

 
Figure 19. Data and trend of Fan polytropic efficiency. 
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Figure 20. Data and trend of IPC polytropic efficiency. 

 

 
Figure 21. Data and trend of HPC polytropic efficiency. 
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Figure 22. Data and trend of HPT polytropic efficiency. 

 

 
Figure 23. Data and trend of LPT polytropic efficiency. 
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7.3 Propulsor Technology  
One key to increased aero engine efficiency is to increase the propulsive efficiency, as 

explained earlier in section 6.1. One way of increasing the propulsive efficiency of turbofans 

is to lower the fan jet velocity which is given by the fan pressure ratio, and the use of a lower 

fan pressure ratios require larger fans for a given thrust requirement.  

 

Ignoring any possible maximum fan size diameter constraints imposed by the aircraft 

installation, the increased fan diameter leads to designs utilizing lower rotational speeds in 

order to lower the fan blade tip speed to avoid high levels of compressibility losses and noise. 

To match the larger and slower fans, in terms of torque, the LPT must be designed with 

increasing number of stages and airfoils, and most likely an increase of the diameter with 

increasing cost and weight as a possible consequence. On the other hand, if a fan gear box is 

introduced to de-couple the fan from the low-pressure spool, then the design speed of the fan, 

LPT and LPC could be carefully chosen without the trade-off in fan and LPT performance 

described here. The resulting engine configuration is called a geared-turbofan engine (GTF) 

and was first introduced in a large scale in the early 1970s by Garrett AiResearch when they 

developed the two-spool TFE731 geared turbofan for the business jet segment (Steele and 

Roberts, 1972). The engine is still manufactured today by Honeywell Aerospace with over 

11000 units built (Honeywell, 2011).  

 

Modern variants of the GTF engine intended for the next generation medium-range jets are 

getting closer to entry into service as the Pratt & Whitney PW1000G engines are developed 

and flight tested at the moment (Pratt&Whitney, 2011). In terms of performance, it is not 

explicitly clear whether the GTF would outperform its conventional counter-part assuming 

equally advanced technologies, e.g. the new Leap-X by CFM International (CFM, 2011). One 

common assumption is that the high-speed LPT of the GTF will possibly achieve higher 

efficiency due to the aerodynamically lightly loaded stages which can be understood by 

looking at historical Smith charts of turbine efficiency versus flow and aerodynamic stage 

loading parameters  (Smith, 1965). However the combination of increased blade speed, stage 

pressure ratios in excess of 2.2 and Mach numbers possibly exceeding 1.2 (Malzacher et al., 

2006), could on the other hand cancel this potential benefit, so yet there are other trade-offs 

introduced for the LPT design; for instance the trade between the high flow Mach number and 

the aerodynamic stage loading and also the mechanical loading versus the blade speed. In 

terms of mechanical loading, an important constraint is the AN
2
 loading parameter (A is the 

annulus area and N is the rotational speed) which is an indicator of the blade root stress. For 

slow conventional LPTs of direct driven turbofans, the mechanical loading of the blade roots 

has not been a limiting factor as for the highly stressed HPTs. Recent results from design and 

testing of a LPT for GTF application indicate an increase in AN
2 

by more than a factor of two 

(Malzacher et al., 2006) compared to conventional designs.  

 

The next geared turbofan is expected to have design fan-pressure ratios between 1.3 and 1.45 

and bypass-ratios in the range of 10 to 12 (Riegler and Bichlmaier)
5
. Even if these designs 

could be configured without a fan gearbox, at least for the pressure ratios close to 1.4, further 

improvements of the propulsive efficiency by going to ultra-high bypass-ratios in excess of 13 

will most likely incorporate fan gearboxes and also the introduction of at least one variability 

of the fan, e.g. a variable fan nozzle and/or variable pitch fan blades. The reason for this is the 

fan off-design performance at lower fan-pressure ratios. At top-of-climb and cruise 

                                                
5
 The article by Riegler and Bichlmaier, accessed in 2011, can be downloaded from the MTU website; 

www.mtu.de. 
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conditions, the fan nozzle is choked. At take-off however, the nozzle will unchoke causing a 

reduction in corrected fan-flow and the fan operating point will move towards the surge line. 

This behavior will be more pronounced with decreasing fan pressure ratios calling for a fan 

variable nozzle in order to increase the fan flow during take-off. 

7.4 Engine Core Technology  
From fundamental thermodynamics it is known that one route for improving the thermal 

efficiency of the engine, is the use of higher overall engine pressure ratios and turbine inlet 

temperatures. Another way of achieving this is by achieving higher component efficiencies. 

Modern large aero engines have pressure ratios over 40 and turbine inlet temperatures 

exceeding 1800 K at take-off conditions. Trends of these thermodynamic design parameters 

are shown in Figure 24 and Figure 25 (Benzakein, 2010). 

 

 
Figure 24. OPR as a function of engine 

certification year. 

 
Figure 25. Turbine inlet temperature as a function 

of certification year. 

 

The increase in turbine inlet temperature will increase the core specific power and result in 

smaller cores and thereby increasing the engine bypass ratio. On the other hand, the increase 

in turbine inlet temperature (TIT) will further increase the demand for turbine cooling for a 

given turbine material technology. Also worth noting is that the temperature of cooling air 

from the compressor discharge will also increase due to the higher OPRs. Turbine materials 

and cooling technology are therefore of crucial importance for the core engine technology 

development. Interesting to note is the fact that within NEWAC the highly innovative concept 

of applying cooled cooling air for the HPT was investigated. This concept would have the 

potential of allowing higher OPRs and TITs in future designs. Added to the turbine cooling 

requirement is the certification regulation for NOx that are becoming more stringent and also 

impose constraints for the OPR and TIT design parameters.  

 

Also studied within the NEWAC project are different technologies for controlling the core 

flow, in order to further increase the compressor stability, stall margin and efficiency 

(NEWAC, 2008). 
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7.5 Cycle Modifications 
When the evolutionary way of improving aero engine energy efficiency rate of improvement  

run into practical, or physical boundaries suppressing any further development at decent pace, 

e.g. in terms of component efficiency improvement, there exist possibilities for applying 

modifications to the conventional engine cycle in order to further increase the aero engine 

efficiency.  

 

From fundamental thermodynamics it is known that the net work output from a gas turbine is 

the difference of the work generated by the turbine(s) and the work consumed by the 

compressor(s). Furthermore it is known that the work is proportional to the specific volume of 

the media being compressed or expanded, which means that the required compression work 

will decrease if cooling is applied in the compression process and the expansion work will 

increase if the media is reheated during the expansion process. These cycle modifications are 

called intercooling and inter-turbine reheat respectively. 

 

A third possible modification is recuperation, i.e. using a heat-exchanger to heat the 

compressor discharge air by the exhaust waste heat. This cycle modification can also be 

combined with intercooling and reheat. 

 

The intercooling concept has the potential to further increase the OPR of the engine and to 

reduce the NOx emission levels by decreasing the compressor discharge temperature. Within 

the NEWAC project the intercooling concept has been studied alone and together with a 

recuperator (the IRA concept, ) (Boggia and Rüd, 2004). The potential benefits of the latter 

are restricted to lower OPRs due to the fact that the heat exchange is driven by the difference 

in the turbine exit temperature and the compressor discharge temperature. 

 

 

Figure 26. The IRA concept. Source: NEWAC. 
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7.6 Alternative cycles 
Alternative cycles in this context refer to thermodynamic cycles different from the Brayton 

(Joule) cycle in terms of the thermodynamic process. The temperature-entropy diagram in 

Figure 27 shows the Brayton cycle, enclosed by the thermodynamic states a-b-c-d-a, and the 

Humphrey cycle described by the states a-b-c’-d’-a. The Brayton cycle undergoes isentropic 

compression between states a and b followed by isobaric heat addition between states b and c  

, isentropic expansion between c and d and finally isobaric heat-rejection to the surroundings 

between state d and a. The Humphrey cycle is essentially the same thermodynamic process 

except for one very important difference, the heat addition between states b and c’ is 

isochoric, i.e. constant volume combustion, and this yields a quite large theoretical 

thermodynamic efficiency increase compared to the Brayton cycle. This is the reason for 

studying constant-volume combustion for continuous cycles.  

 

The pulse-detonation engine (PDE) cycle has even greater theoretical potential for achieving 

higher thermal efficiency. It relies on an unsteady combustion, with repeatedly generated 

supersonic detonation waves inside a combustor generating high pressures and temperatures 

allowing for high theoretical thermal efficiencies. Although the unsteady nature of the of the 

PDE cycle it is possible derive close-form solutions for the PDE performance and to compare 

the ideal efficiency of the cycle to the steady Brayton and Humphrey cycles (Heiser and Pratt, 

2002). An indicative example is given in Figure 27. 

 

  

Figure 27. Schematic TS-diagrams and ideal thermal efficiency for the ideal Brayton, Humphrey and 

PDE cycles. 

The possible application of pulse-detonation combustion into aerospace propulsion has been, 

and is studied widely. For the commercial aero engine industry, the idea of replacing the 

constant-pressure combustion by a pulse-detonation combustion device in a turbofan is 

studied at the moment, see for instance the NEWAC-project (NEWAC). To fully take 

advantage of the potential performance benefit of the PDE concept some intense research and 

innovative solutions must be produced. One of the practical problem is the expansion process 

in the intermittent cycle that will cause design issues regarding the turbines. It is claimed that 

practical turbine engines utilizing pulse-detonation combustion have the potential to reduce 

SFC by 5 to 10% over existing technology (Kaemming et al., 2006). 
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8 Means of Lowering NOx Emissions 
Shown in Figure 28 is NOx certification data of existing engines (CAA, 2011) and ICAO NOx 

regulatory levels for engine certification (ICAO, 1993). At present time, the CAEP/6 level is 

valid for any new engine entering production until the January 1, 2014 when the more 

stringent CAEP/8 regulatory levels will be effective. Also shown are the ACARE 2020 and 

2050 NOx goals assumed to be defined as an 80 and 90% reduction of the CAEP/2 levels 

respectively. Despite the higher pressure ratios of modern engines, the NOx emissions are 

being still being reduced as a consequence of refined combustor designs. However, it is 

reasonable to assume that for the industry to meet the ACARE 2020 and 2050 NOx goals, 

innovative combustor designs must be introduced. Intense aero engine combustion research is 

undertaken in Europe. As an example it can be mentioned that within the European research 

project NEWAC the research goals for the combustor designs were defined as a 60 to 70% 

reduction relative the ICAO CAEP/2 regulation which is close to the ACARE 2020 goal. 

Some results for the lean combustion technologies studied within NEWAC project are 

presented in Figure 28 (Rolt and Kyprianidis, 2010). 

 
 

Figure 28. Emissions of NOx per rated thrust as a function of overall pressure ratio for ICAO certified 

engines and results from lean combustion research projects as presented by NASA and NEWAC. 

 

The absolute level of emissions of nitrogen oxides is basically dependent on two variables; 

the overall efficiency of the engine, SFC, and the NOx emission index. Expressed in terms of 

an equation it can be described as; 

 

                          (66) 

 

Which states that for a given thrust, the NOx level is a function of the SFC and the combustor 

NOx index which in turn is dependent on compressor discharge temperature and pressure, 

equivalence ratio, quality of the mixing process, residence time etc. The relation described by 
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equation (66) shows a typical aero engine design trade-off; the quest for lower SFC indicates 

engine designs utilizing higher pressures and temperatures which imply higher values of NOx. 

  

 
Figure 29. Conceptual illustration of different combustion concepts for achieving low NOx emissions. 

The ordinate shows normalized temperature and NOx. The equivalence ratio, ϕ, of the abscissa refers 

to local values for the combustor primary zone. 

Conventional combustors operate close to stoichiometric conditions in the primary zone at 

temperatures well above the temperature at which thermal NOx start to form, see Figure 29. 

Downstream the primary zone, the remaining combustor air is mixed with the combustion 

gases to reduce the temperature down to the turbine inlet temperature requirement.  

 

Common for lean burn concepts, is that the combustion peak temperature is reduced by 

stabilizing the combustion at lower equivalence ratios, i.e. using excess air in the primary 

zone and therefore lowering the NOx emissions. Some of the different concepts are briefly 

described here. 

 

The Rich-burn, Quick-quench, Lean-burn (RQL) concept is designed for preventing 

stoichiometric conditions by a three-stage process. First, the flame is stabilized by a fuel-rich 

primary zone with the remainder of the combustion air rapidly mixed in the quench zone. In 

the lean-burn zone the burning is completed at relatively low temperatures and NOx emissions 

as a consequence. One key to success for this concept is a properly designed quenching zone 

avoiding stoichiometric conditions and subsequently high NOx emissions by mixing faster 

than the reactions complete. 

 

The Lean-, Pre-mixed-, Pre-vaporized (LPP) concept relies on properly defined inlet 

conditions at the combustor entrance achieved by eliminating droplets by pre-vaporizing the 

fuel and mixing the fuel and air to a uniform lean mixture before entering the combustor. 

Combustion then occurs at lean conditions, possible close to the lean extinction limit and 

subject to auto-ignition and flashback. In an attempt to overcome these deficiencies the lean 

direct injection (LDI) has been proposed in which, and in contrast to the LPP concept, all of 
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the fuel is injected at the combustor entrance where it is simultaneously mixed, vaporized and 

burned, minimizing the problems with auto-ignition and flashback.  

 

Of the concepts mentioned so far, the LPP concept show potential for the lowest NOx 

emission levels (Tacina, 1990), but NASA and other research institutions, have focused their 

combustion research on the LDI concept (Lee et al., 2007) possibly due to the fact it is more 

viable in the near future and suitable for high OPR engines. 

 

All of the concepts described so far refer to homogeneous lean combustion concepts. 

Homogeneous in this case refers to the use of a gaseous state within the system; i.e. the 

reaction of a gaseous fuel with a gaseous oxidizer. The different homogeneous lean 

combustion concepts are in practice different ways of mixing the fuel with the air prior to the 

combustion zone. There is also another category of lean combustion concepts called 

heterogeneous lean combustion concepts which also involves a solid state in the reaction 

process. Ideally, this solid state is a material that lowers the activation energy significantly 

without participating in the reaction itself, and therefore providing stable combustion at very 

low equivalence ratios and resulting in ultra-low NOx emissions. One of these possible 

concepts, catalytic combustion, is one of the most promising known concepts for achieving 

low NOx emissions. Catalytic combustion for aero engines has been studied by NASA within 

the clean catalytic combustor program (C
3
) (Ekstedt et al., 1983). Combustor designs 

incorporating catalytic reactors were designed, built and tested at TRL 4 – 5 showing very 

low emissions of NOx and excellent combustor performance. However, the concept suffers 

from similar problems as the LPP concept regarding the fuel/air preparation inlet system and 

in addition to this, the steady-state temperature capability of the catalytic reactor materials is a 

field that need improvement before it would be possible for this concept to be applied in aero 

engines. 
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9 Practical Considerations and Limits of Aero Engine Design 

9.1 Design point(s) 

9.1.1 Thermal Design Point (TDP) 

The thermal design point is the most demanding part of the flight mission in terms of engine 

temperatures. This point is usually assumed to be the hot-day, take-off point. 

9.1.2 Aero Design Point (ADP) 
The aero design point is usually taken to be the top-of-climb point. This point is the point of 

the highest corrected mass flow, and typically sets the gas path dimensions. 

9.1.3 Energy Design Point 
A point during the flight mission where the average cruise flight takes place. During the 

cruise flight it is of great importance to minimize fuel burn, i.e. energy efficiency, since most 

of the flight is taking place here. This is especially important for long distance aircraft. 

9.2 Constraints 

9.2.1 HPC Exit Temperature 
Lower SFC requires higher overall pressure ratios and turbine temperatures. Current aero 

engines in service utilize overall pressure ratios in the range of 30 – 40 at ISA, SLS. Already 

at these pressure ratios, the compressor exit temperature reaches 850 K which is close to the 

upper limit for materials that are widely used in compressors. Going to even higher pressure 

ratios will require high-temperature materials for the last compressor stages and this will of 

course have a negative impact on weight and cost of the engine. 

9.2.2 Turbine Cooling 
As for the HPC exit temperature constraint, the need for lower SFC implies higher turbine 

temperatures and this will increase the demand for advanced turbine cooling. The cooling 

technology level can be expressed in terms of cooling effectiveness, ε, according to, 

 

   
         

          
 

 

For a given bulk gas temperature the reduction in metal temperatures achieved by cooling can 

be further increased by either increasing the efficiency of the cooling process itself, or 

increasing the cooling mass flow. As an alternative the maximum allowable metal 

temperature may be increased by developing new materials with improved high temperature 

properties. Since the introduction of the jet engine, the turbine materials have become very 

advanced super-alloys designed for operating metal temperatures above 1200 K. 

9.2.3 Low-Cycle Fatigue 

The number of cycles to failure due to low-cycle fatigue (LCF) can be quantified by using the 

empirically derived universal slopes method, which is a modified version of the Coffin-

Manson & Basquin equations (Manson, 1965). 

 

                               
    
 

  
        

     
     (67) 

 

where Nf is the number of cycles to failure, σult is the ultimate tensile strength, E is Young’s 

modulus, εf is ductility and  ε is the strain range. 
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9.2.4 High-Cycle Fatigue 
For estimating high cycle fatigue (HCF) for aero engine conceptual design it is appropriate to 

use S-N diagrams, also called Wöhler diagrams, for the particular material under study. The 

S-N curve is derived from material tests where the specimen has been subject to a cyclic 

stress S and the number of cycles until failure of the specimen is determined. For some 

materials, e.g. steel, the S-N curve eventually flattens out so that no matter how many stress 

cycles that are applied the specimen will not fail. The material is said to have a certain stress 

endurance limit, and the designer could possibly eliminate the HCF-problem by not allowing 

the stresses exceed this limit. While some materials have this endurance limit, other materials 

do not, e.g. aluminum. For these cases the designer must take into account the number cycles 

to failure at a certain cyclic stress level. 

 

 
Figure 30. Conceptual sketch of the S-N diagram. 

 

 

9.2.5 Creep 

Creep can somewhat simplified be described as the progressive deformation of a material that 

occurs under mechanical stress at high temperatures. Creep is assumed to become a potential 

problem when operating temperatures exceed 50% of the material melting point (Naeem, 

2009). There are several methods available for estimating creep and one of the most cited is 

the one by Larson and Miller (Larson and Miller, 1952). According to this method, the time to 

creep rupture, tf, of a material at a given stress level will vary with the temperature in such a 

way that the Larson-Miller parameter, PLM, remains constant, i.e., 

 

       
          

    
 (68) 

 

In which C is a material constant. 
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10 Discussion & Concluding Remarks 
Since the Wright brothers first powered flight in 1903, the old aerospace paradigm of flying 

higher and faster has pushed the development during the major part of the twentieth century 

with the prime era of the NASA space flight program, the Boeing 2707 supersonic transport, 

the Concorde and indeed all the military all the military aircraft during this period. During the 

early 1970s, in the shadow of, and in the light of, the energy crisis, the aerospace industry 

experienced a slight change in this mind set and the quest for more energy efficient air 

transport solutions was raised. One important consequence of this was the broad search for 

innovative aircraft and engine designs that was initiated by the U.S. Congress in response to 

the energy crisis congress. This was probably the first time in history that a government called 

for innovative energy efficient solutions in order to meet the demands from the society 

concerning greener air transports. 

 

Today, the aeronautical research and development community is more prone than ever to 

search for innovative solutions, in particular since the improvement rate of change is 

decelerating somewhat in terms of energy efficiency, which still is far from any physical 

limits of aero engine and aircraft design. At the same time the society intensively calls for 

greener air transport, most likely as a consequence of the climate reports produced by the 

Intergovernmental Panel on Climate Change (IPCC) and the impact of aviation on the global 

atmosphere. 

 

The work presented in this thesis was performed in two parts; development of new methods 

necessary for performing multidisciplinary optimization of the aircraft and engines and 

application of those methods to produce and assess innovative engine concepts that could 

have the potential to bring the aerospace industry closer to, and eventually beyond the 

ACARE 2020 vision.  In particular, the methods developed within the scope of this thesis 

focused on modelling the impact on aircraft performance, and in particular mission fuel 

consumption, of varying engine size and weight during optimizations.  These methods have 

been incorporated into a computer program called GISMO. A great benefit with 

multidisciplinary tools is the interdisciplinary quantification of component design changes 

and the impact of those on the overall goal function, in contrast to intradisciplinary 

quantification of design changes. Also developed within the scope of this thesis were a 

method for designing and analyzing propeller performance, in particular the performance of 

counter-rotating propellers. 

 

The studies has been limited to the conceptual design of aero engines, meaning 

thermodynamic cycle optimizations including aircraft performance, engine weight and engine 

dimensions. This has allowed evaluating a number of solutions for minimizing emissions of 

CO2 and NOx. 

Initial studies attempted to quantify the difference in optimizing a new aero engine design 

using the detailed connection between the engine(s) and aircraft compared to a multipoint 

optimization using the engine performance tool disconnected from the aircraft model. The 

study showed the importance of optimizing the engines coupled to the aircraft.  

 

For a given aircraft and engine, a simple, but powerful method of minimizing the direct 

operating cost for an airline is to carefully choose the flight speed depending on the current 

fuel prices. By applying the methods developed in this thesis work, studies were carried out in 

order to quantify the impact of fuel price variations for airlines, and the potential fuel savings 

that could be obtained by carefully selecting the flight speed in order to compensate for those 
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variations. Another study that resulted from the methods developed quantified the potential 

savings in aero engine maintenance cost, i.e. component design life, by trading climb thrust 

and time to first cruise altitude. More specifically by applying derated thrust during the climb 

phase of the flight missions the results indicate a 7% engine life increase for a 0.7% increase 

in climb fuel, or 0.1% increase in total flight mission fuel consumption. It is pointed out that 

the results should be on the conservative side due to the fact that the effects of lowered blade 

metal temperature on oxidation and hot corrosion of the blade surface layers are not taken into 

account. 

 

Concepts for increasing energy efficiency and potentially reducing NOx were studied within 

this thesis. From the variable cycle engine study it was concluded that by varying the flow by 

means of variable geometry during the flight mission, a 5% reduction in fuel consumption 

could be obtained when comparing to the conventional turbofan on a typical medium range 

aircraft. It is also noted that the trend of aero engine design is ever increasing BPR which 

mean smaller cores, which in turn mean higher core pressures and temperatures at off-design. 

It is then questionable whether this relatively complex cycle will be needed in the future? 

 

The inter-turbine reheat concept was also assessed. It is widely appreciated that the inter-

turbine reheated cycle will increase the specific power, or thrust, by a substantial amount 

compared to the conventional cycle and also that the efficiency will be lower unless any form 

of waste heat recovery system is applied. However, in this study it was shown that there exist 

inter-turbine reheated cycles that for a given maximum turbine temperature will be more 

efficient that the conventional cycle and that this will likely occur at a higher overall pressure 

ratio than that of the conventional cycle. It is also suggested that the point of maximum 

efficiency is located quite early in the expansion process. Mission optimizations of the 

reheated engine and the conventional engine resulted in potential NOx emissions reduction in 

the range 21 to 35%. 

 

Regarding energy efficiency, the results show that the reheated engines will have small 

improvements, close to 1%, compared to the conventional re-optimized turbofan engine for 

combustor exit temperatures up to 1800 K. Further increase in temperature will be more 

beneficial for the conventional engine, as a result of the increased cooling requirement of the 

intermediate-pressure turbine for the reheated engine. 

 

In terms of NOx reductions, a variable cycle design that incorporates a catalytic combustor 

was studied and also patented during this thesis work. In the patent and the related paper, an 

idea is presented of how catalytic combustors could be introduced by the application of a 

variable cycle engine design that would use the catalytic reactor only for the colder cruise 

phase of the flight mission. The results indicated major NOx reductions as expected, in the 

order of 22 to 46%, but at the expense of a fuel burn increase. Although the engine cycle 

proposed here is rather complex requiring a number of bleed valves for switching between 

cruise and maximum thrust settings, it is still an interesting and possible way of implementing 

catalytical reactors in aero-engines for lowering NOx emissions substantially. The 

performance analysis of this particular engine cycle is not completed at this time, further 

analysis would be necessary to determine the particular benefit of this engine cycle.   

 

An idea of idea of how to design and build more efficient air propellers in particular counter-

rotating propeller is introduced. The idea has been filed as an international patent application.   
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The conventional propeller limits the flight speed of the aircraft, since the combination of 

flight speed and propeller rotational speed causes performance losses and noise due to shocks 

forming at the propeller tip. However, by introducing swept propeller blades with advanced 

airfoils the propeller can be operated at higher speeds with acceptable performance loss. 

 

This invention seeks to improve the propeller design even more, by introducing non-planar 

propeller blades, so called box-blades. Initial studies indicate that a box-blade could reduce 

the propeller blade induced drag by some 20 to 50% of the propeller and also the blade root 

bending moment by some 20 to 80% depending on the final configuration. The idea originally 

stems from Prandtl’s work from the 1920s (Prandtl, 1924) in which he showed that the wing 

system for minimum induced drag was a box-wing system, i.e. a box-like wing with equal lift 

and lift distribution over the two horizontal wings. 

 

This propeller design is interesting from several points-of-view; firstly it applies the Prandtl 

theory for a minimum induced drag system, secondly it is very interesting from a mechanical 

design perspective, since the configuration itself will be stronger than an equally loaded single 

blade and could therefore possibly allow thinner and/or forward-sweep of the propeller blades 

which in turn have the potential to further increase aerodynamic benefits of the propeller. This 

invention will be further evaluated by experiments. 

 

   

Figure 31. A conventional counter-rotating propeller to the left, forward-aft swept box-bladed design 

in the middle and a forward-swept box-bladed design to the right. 
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11 Technology Assessments Performed and new Ideas Produced  
 

The technologies assessed and the ideas produced within the scope of this thesis are presented 

in greater detail in the papers attached to this thesis. 
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11.1 Preliminary Design of Subsonic Transport Aircraft and Engines  
 

Paper I. This paper was presented at the 18
th

 ISABE meeting in Beijing, China in 2007. The 

paper was the first publication during the authors work. The overall purpose of the work was 

to present a new method, GISMO, for evaluating the coupling of the engine(s) and the aircraft 

in terms of weight and drag caused by varying engine size and technology. In particular, the 

research questions to be answered were defined as; 

 

1. What’s the meaning of the term optimum aircraft engine? 

2. What are the effects of leaving the aircraft out of the engine design process, if any?  

 

The first question might sound a bit vague, however the meaning of the question, and 

especially the answer, in this context was to illuminate the importance of being able to 

quantify the requirements, trade-offs and possibly conflicting goal functions concerning aero 

engine conceptual design. This was done to motivate the aero engine performance engineer’s 

need for basic knowledge about aircraft aerodynamics and weight modeling. So, what is the 

answer to this question? The answer is that the optimum aircraft engine is the engine that best 

fulfills or even surpasses the customer’s specification. The challenge is of course to be able to 

select the optimum engine. To be able to do this one must be able to quantify many trade-offs 

and couplings between the engine and aircraft. 

 

The second question is not easily answered. This particular study only gives an indicative 

measure of what the differences in optimum engine design might be when leaving the 

coupling of varying engine size and aircraft out of the equation. If you want to create the way 

forward and generate real value for the customer it might be of great value to understand the 

impact of design changes along the product development process, in particular when starting a 

new R&D program or when entering a new engine development program.  

 

Some concluding remarks concerning this particular publication would be that the study 

presents new methods for quantifying the aircraft and engine coupling, and an attempt to 

quantify the effect of leaving it out of the equation. An important result was the 

implementation of the modified Korn equation to properly model the transonic drag rise. It 

should also be pointed out that there are many constraints not imposed within this study, but 

those who are handled answers the research question asked. 
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11.2 Potential of Variable Cycle Engines for Subsonic Air Transport  
 

Paper II. This paper was presented at the 18
th

 ISABE meeting in Beijing, China in 2007. The 

purpose of the study and the research question to be answered was confined to; 

 

1. Quantifying the potential performance benefits of incorporating variable geometry in 

the conventional turbofan engine. 

 

The author’s contribution to this study was to provide the performance- and flight mission 

simulations for assessing the potential of the variable cycle turbofan engine. 

 

The potential for incorporating variable geometry in turbofan engines is quite substantial. A 

fundamental ―design problem‖ with aero engines is that they are throttled down to lower 

power settings when entering the cruise phase at altitude, and the pressures and temperatures 

are lowered resulting in a reduced thermal- and overall efficiency.  

 

Within this study a variable cycle engine is defined as one where a part power thrust can be 

achieved with significantly different mass flows and pressure ratios than for a constant 

geometry machine with the same cycle at max thrust. This would be achieved by varying the 

geometry at selected engine sections in particular the turbine and nozzle areas so that the fan – 

or the core flow is varied accordingly. 

 

The study gives an indication of the potential benefit of incorporating variable cycle engines 

for commercial subsonic transports. More design constraints need to be added to the process, 

e.g. weight, mechanical design and cost before attempts are made to start development of this 

type of engine.  

 

It is concluded that applying variable cycle engine, by varying the flow during the flight 

mission, could yield a 5% benefit in fuel consumption when compared to the conventional 

turbofan on a typical medium range aircraft. It should be noted that the analysis assumed that 

the variable component geometry would not reduce component efficiencies, moreover the 

trend of aero engine design is ever increasing BPR engines which mean smaller cores which 

in turn mean higher core pressures and temperatures at off-design. It is then questionable 

whether this relatively complex cycle will be needed in the future? 
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11.3 Minimizing Direct Operating Costs (DOC) for a small European 

Airline  
 

Paper III. This paper was presented at the 18
th

 ISABE meeting in Beijing, China in 2007. The 

purpose of the study was to explain the commonly used cost index parameter, CI, used by 

airlines to fly at maximum profitability by compensating for variations in fuel price by 

adjusting the aircraft speed according to the cost index. 

The author’s contribution to the study was the performance- and flight mission analyzes 

performed to quantify cost index variations of typical medium range aircraft compensating for 

fuel price variations. The results indicate a 3-4% reduction in fuel consumption by choosing a 

lower flight speed, i.e. minimum fuel speed, for a typical mission.  

The scientific value of the study is modest, however the engineering value should be greater, 

in particular for the end customer, i.e. the airlines.  
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11.4 An Assessment of a Turbofan Engine Using Catalytic Interturbine 

Combustion  
 

Paper IV & VIII. This paper was presented at ASME Turbo Expo 2009, Orlando, Florida, 

USA. The patent was filed on July 2, 2009. The purpose of the paper and patent was; 

 

1. To re-introduce the idea of using catalytic combustion in aero engines, in order to 

obtain ultra-low NOx emissions. 

2. Introduce an idea of how catalytic combustion could be implemented in turbofan 

engine despite the very high engine temperatures used in modern engines. 

 

In comparison to other well-known aero-engine combustor concepts for achieving ultra-low 

levels of NOx emissions, the catalytic combustion concept was proven already in the early 

1980s to have the potential to reduce NOx by some 70% relative the ICAO CAEP/2 regulation 

as described in section 8 in this thesis. Also concluded at that time was the problem with the 

long-term high-temperature stability of the catalytic reactor materials which made the concept 

not viable in a near future. 

In the patent and the related paper, an idea is presented of how catalytic combustors still could 

be introduced by the application of a variable cycle engine design that would use the catalytic 

reactor only for the colder cruise phase of the flight mission. 

The results indicated major NOx reductions as expected, but at the expense of a fuel burn 

increase. Although the engine cycle proposed here is rather complex requiring a number of 

bleed valves for switching between cruise and maximum thrust settings, it is still an 

interesting and possible way of implementing catalytical reactors in aero-engines for lowering 

NOx emissions substantially. The performance analysis of this particular engine cycle is not 

completed at this time, further analysis would be necessary to determine the particular benefit 

of this engine cycle.    
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11.5 Derated Climb Trajectories for Subsonic Transport Aircraft and their 

Impact on Aero Engine Maintenance Costs 
 

Paper V. This paper was presented at the 19
th

 ISABE meeting in Montreal, Canada in 2009. 

The purpose of this study was to quantify the effect of applying derated thrust setting during 

the climb phase of the flight mission. The particular research question to be answered was 

formulated as; 

 

1. What is the potential of applying derated thrust setting during the climb phase, in 

terms of aero engine life (maintenance costs), if any? 

 

The author’s contribution to this study was modeling of the wide-body aircraft used for this 

particular study, the performance and mission analysis and modeling of the low cycle fatigue 

and creep in the critical components of the engine. 

In general the hot section parts of an aero engine constitute the critical parts with respect to 

component design life, typically the combustor and the high-pressure turbine. The 

quantification of a particular aero engine component’s design life is a complex task involving 

modeling of both thermal and mechanical loads such as centrifugal forces, gas bending 

moments, cyclic loading, metal temperature, thermal gradients to mention a few. For the 

purpose of this particular trade-off study it is assumed that the HPT is the critical component 

with respect to engine life, i.e. total engine cycles as a function of LCF and creep, and that the 

life is limited by HPT blade metal temperature and the centrifugal forces at the blade root. 

By applying first-order empirical methods for quantifying LCF- and creep life together with 

publicly available tensile data for the CMSX-4 superalloy the study concluded a 7% engine 

life increase for a 0.7% increase in climb fuel, or 0.1% increase in total flight mission fuel 

consumption. It is pointed out that the results should be on the conservative side due to the 

fact that the effects of lowered blade metal temperature on oxidation and hot corrosion of the 

blade surface layers are not taken into account. 
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11.6 Aeroacoustics and Performance Modeling of a Counter-Rotating 

Propfan 
 

Paper VI. The paper was presented at ASME Turbo Expo 2010 in Glasgow, U.K. The purpose 

of the study was to develop a method for design and analysis of counter-rotating propellers 

with respect to performance and aero-acoustics. 

 

As the search for more fuel efficient aero engines is intensified the open rotor or propfan 

engine, once more seems to constitute a possible future solution. This was observed by the 

research group and a design and analysis methodology was initiated. The purpose of this work 

was to apply the group’s available methods and to develop new methods for designing and 

especially analyzing the performance and aero-acoustics of a counter-rotating propfan.  

 

The author’s contribution to this study was a methodology to design and analyze the 

performance of modern counter-rotating propellers intended for flight-speeds normally 

utilized by jet engines. This was done by applying the well-established methods by 

Theodorsen for determination of optimum ideal propeller designs that gives an optimum blade 

loading. The ideal results are then corrected for profile and compressibility losses at various 

operating points so that the propeller performance can be estimated.  

 

The methods developed by Theodorsen for prediction of optimum propeller designs (Crigler, 

1949, Theodorsen, 1948, Theodorsen, 1944a, Theodorsen, 1944b, Theodorsen, 1944c, 

Theodorsen, 1944d)  are rather old but still very useful in modern propeller design problems. 

 

In order to evaluate this proposed design and analysis method, data was collected from the 

publicly available literature from various tests of the GE36 counter-rotating propeller (UDF). 

The GE36 propeller was designed and analyzed for the cruise flight condition showing an 

agreement within 3% in terms of net thrust and 1.5% in propeller efficiency. 

 

The method should be usable in order to generate propeller performance maps of new 

propellers, i.e. power, thrust and efficiency for use in complete flight mission simulations. 

The method is not fully evaluated in corners of the performance envelope. 
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11.7 Potential Benefits of Using Inter-Turbine Reheat in Turbofan Engines 
 

Paper VII. The paper will be submitted to the Journal of Engineering for Gas Turbines and 

Power during fall 2011. 

The purpose of this paper was to study the potential of inter-turbine reheated turbofan engines 

in terms of energy efficiency.  

 

It is of common and basic understanding the use of a second combustor downstream the first 

in a Brayton cycle will increase the specific power, or thrust by a substantial amount. It is also 

a common appreciation that an engine utilizing inter-turbine reheat will have a lower 

efficiency, and consequently higher SFC, than its conventional counterpart unless any form of 

waste heat recovery system is applied. However, in this study it is shown that this is not 

necessarily the case, in fact there exist reheated cycles that for a given maximum turbine 

temperature will be more efficient that the conventional cycle under the same maximum 

temperature constraint. The reheat cycle optimum pressure ratio will likely be higher than the 

conventional optimum pressure ratio. Furthermore it is well known and shown that the 

maxium specific power, or thrust, occurs when the reheat combustor is introduced at the point 

during the expansion when the pressure ratio upstream and downstream the reheat position are 

equal. It is also suggested that the point of reheat for maximum efficiency occur quite early 

during the expansion. 

 

This hypothesis is applied to the turbofan case and mission optimizations of the reheated 

engine and the conventional engine are performed. 

 

The potential of reducing NOx emissions by the use of a secondary combustor is also 

discussed and quantified to some extent. First order effects on engine NOx emission levels due 

to combustion in oxygen depleted air in the secondary combustor are quantified. The results 

indicated NOx emissions reductions between 21 and 35% at the max rated thrust setting 

depending on the maximum design exit temperature that was allowed. 

 

In terms of energy efficiency, the results show that the reheated engines will have small 

improvements compared to the conventional re-optimized turbofan engine, but still an 

improvement. The improvement will decrease as the maximum design turbine temperature 

increases and is a result from the increased cooling requirement from the intermediate-

pressure turbine downstream the secondary combustor. 

 

The technology studied here is quite innovative and is assumed to be introduced on the market 

beyond the year of 2030 which is an important assumption to have in mind when reading this 

paper. The optimum engine designs reveals for instance overall pressure ratios in the range of 

80 to 100 which today would require cooling of the last compressor stages. Same thing for the 

secondary combustor liner that would have to be cooled using today’s metal liner materials. If 

compressed air for cooling of the secondary would be used, then the high-pressure turbine 

would have to be by-passed and the overall efficiency would decrease accordingly.  

 

This study does not assume any compressor air for cooling of the secondary combustor, 

instead it is assumed that the liner could be manufactured in ceramic materials or ceramic 

composite materials in line with current development and research in the field of combustor 

liner materials. The quest for ultra-low emissions technologies calls for combustor liner 

materials that can withstand high temperatures with little or no film-cooling. This has 
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triggered research in the field of advanced combustor liner materials, and in particular the 

ceramic materials are promising since they are resistant to oxidation, have good mechanical 

strength at temperatures well above unprotected metals. The silicon compounds are 

considered most promising with monolithic silicon and silicon carbide exhibiting high 

strength and stiffness up to 1680 and 1880 K respectively (Lefebvre, 1999). Furthermore,  

technology demonstrations by NASA and Solar Turbines of silicon carbide ceramic matrix 

composite liners has resulted in over 9000 hours at elevated temperatures of some 1500 K in 

laboratory aero engine cycle tests and also in gas turbine tests (NASA, 2011, Roode et al., 

2007). If still cooling will be required at the year of 2030 or beyond, there are creative ways 

of realizing this without bypassing the HPT with compressed air and loosing efficiency; see 

for instance the patent application regarding an innovative reheat combustor for a gas turbine 

by GE (Dinu, 2009).  
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11.8 Propeller Arrangement and Aircraft 
 

Paper IX. This patent application was filed on July 7, 2011. The purpose of this invention is to 

further develop an idea of how to design and build more efficient air propellers, in particular 

for the current research state-of-the-art counter rotating propellers. 

 

The conventional propeller limits the flight speed of the aircraft, since the combination of 

flight speed and propeller rotational speed causes performance losses and noise due to shocks 

forming at the propeller tip. However, by introducing swept propeller blades with advanced 

airfoils the propeller can be operated at higher speeds with acceptable performance loss. 

 

This invention seeks to improve the propeller design even more, by introducing non-planar 

propeller blades, so called box-blades. Initial studies indicate that a box-blade could reduce 

the propeller blade induced drag by some 20 to 50% of the propeller and also the blade root 

bending moment by some 20 to 80% depending on the final configuration. The idea originally 

stems from Prandtl’s work from the 1920s in which he showed that the wing system for 

minimum induced drag was a box-wing system, i.e. a box-like wing with equal lift and lift 

distribution over the two horizontal wings. 

 

This propeller design is interesting from several points-of-view; firstly it applies the Prandtl 

theory for a minimum induced drag system, secondly it is very interesting from a mechanical 

design perspective, since the configuration itself will be stronger than an equally loaded single 

blade and could therefore possibly allow thinner and/or forward-sweep of the propeller blades 

which in turn have the potential to further increase aerodynamic benefits of the propeller. 

 

This invention will be further evaluated by experiments. 
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Appendix A - Orville Wright, diary entry for 17 December 1903 
 

The diary entry by Orville Wright is quoted from the historical NASA publication ―The Wind 

and Beyond‖ (Hansen, 2003) and gives the reader the opportunity to experience one of the 

most important events in aviation history, as told by the Wright brothers themselves.     
 

Thursday, December 17, 1903 

 

When we got up a wind of between 20 and 25 miles was blowing from the north. We got the machine out early 

and put out the signal for the men at the station. Before we were quite ready, John T. Daniels, W. S. Dough, A. 

D. Etheridge,W. C. Brinkley of Manteo, and Johnny Moore of Nags Head arrived. After running the engine and 

propellors a few minutes to get them in working order, I got on the machine at 10:35 for the first trial. The wind, 

according to our anemometers at this time, was blowing a little over 20 miles (corrected) 27 miles according to 

the Government anemometer at Kitty Hawk. On slipping the rope the machine started off increasing in speed to 

probably 7 or 8 miles. The machine lifted from the track just as it was entering on the fourth rail. 

 

Mr. Daniels took a picture just as it left the tracks. I found the control of the front rudder quite difficult on 

account of its being balanced too near the center and thus had a tendency to turn itself when started so that the 

rudder was turned too far on one side and then too far on the other. As a result the machine would rise suddenly 

to about 10 ft. and then as suddenly, on turning the rudder, dart for the ground. A sudden dart when out about 

100 feet from the end of the tracks ended the flight. Time about 12 seconds (not known exactly as watch was not 

promptly stopped). The lever for throwing off the engine was broken, and the skid under the rudder cracked. 

After repairs, at 20 min. after 11 o’clock Will made the second trial. The course was about like mine, up and 

down but a little longer over the ground though about the same in time. Dist. not measured but about 175 ft. 

Wind speed not quite so strong. With the aid of the station men present, we picked the machine up and carried it 

back to the starting ways. At about 20 minutes till 12 o’clock I made the third trial. When out about the same 

distance as Will’s, I met with a strong gust from the left which raised the left wing and sidled the machine off to 

the right in a lively manner. I immediately turned the rudder to bring the machine down and then worked the end 

control. Much to our surprise, on reaching the ground the left wing struck first showing the lateral control of this 

machine much more effective than on any of our former ones. At the time of its sidling it had raised to a height of 

probably 12 to 14 feet. At just 12 o’clock Will started on the fourth and last trip. The machine started off with 

its ups and downs as it had before, but by the time he had gone three or four hundred feet he had it under much 

better control, and was traveling on a fairly even course. It proceeded in this manner till it reached a small 

hummock out about 800 feet from the starting ways, when it began its pitching again and suddenly darted into 

the ground. The front rudder frame was badly broken up, but the main frame suffered none at all. The distance 

over the ground was 852 feet in 59 seconds. The engine turns was 1071, but this included several seconds while 

on the starting ways and probably about a half second after landing. The jar of landing had set the watch on 

machine back so that we have no exact record for the 1071 turns. Will took a picture of my third flight just 

before the gust struck the machine. The machine left the ways successfully at every trial, and the tail was 

never caught by the truck as we had feared. 

 

After removing the front rudder, we carried the machine back to camp. We set the machine down a few feet west 

of the building, and while standing about discussing the last flight, a sudden gust of wind struck the machine and 

started to turn it over. All rushed to stop it. Will who was near the end ran to the front, but too late to do any 

good. Mr. Daniels and myself seized spars at the rear, but to no purpose. The machine gradually turned over on 

us. Mr. Daniels, having had no experience in handling a machine of this kind, hung on to it from the inside, and 

as a result was knocked down and turned over and over with it as it went. His escape was miraculous, as he was 

in with the engine and chains. The engine legs were all broken off, the chain guides badly bent, a number of 

uprights, and nearly all the rear ends of the ribs were broken. One spar only was broken. 

 

After dinner we went to Kitty Hawk to send off telegram to M. W. While there we called on Capt. and Mrs. 

Hobbs, Dr. Cogswell and the station men. 

 


