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A system of two coupled integro-differential equations is derived and solved for the non-linear

evolution of two waves excited by the resonant interaction with fast ions just above the linear

instability threshold. The effects of a resonant particle source and classical relaxation processes

represented by the Krook, diffusion, and dynamical friction collision operators are included in the

model, which exhibits different nonlinear evolution regimes, mainly depending on the type of

relaxation process that restores the unstable distribution function of fast ions. When the Krook

collisions or diffusion dominate, the wave amplitude evolution is characterized by modulation and

saturation. However, when the dynamical friction dominates, the wave amplitude is in the

explosive regime. In addition, it is found that the finite separation in the phase velocities of the two

modes weakens the interaction strength between the modes. VC 2011 American Institute of Physics.

[doi:10.1063/1.3601136]

I. INTRODUCTION

In fusion plasmas, high-energy ions arising from plasma

heating as well as being generated in fusion reactions have

thermodynamically non-equilibrium distributions and thus

may lead to the occurrence of wave micro-instabilities.1

These instabilities can in turn cause anomalous losses of fast

ions and may have direct impact on the operation scenarios

and ignition conditions.2 Furthermore, the excited waves

may also provide information about the burning plasma con-

ditions that cannot be accessed directly.3 In the framework

of the plasma theory, investigation of these instabilities is

connected with the identification of the stability thresholds

with respect to wave excitations by fast ions as well as with

the study of the non-linear dynamics of the wave-fast ion

systems above the stability thresholds. The theory describing

the nonlinear evolution of a single plasma mode driven reso-

nantly by fast ions just above the linear instability threshold

was developed in a number of papers,4–8 and was applied to

study the dynamical properties of both the toroidal Alfvén

eigenmodes and the fishbone instability excited by energetic

ions in tokamak plasmas.9–12 The basic assumption of this

Berk-Breizman model is that linear dissipation from back-

ground plasma cd and the energetic particle drive for instabil-

ity cL give a net growth rate c¼ cL� cd> 0 that satisfies the

conditions cL=cd� 1 and cL � cd � cL, i.e., it is assumed

that the mode excitation takes place just above the instability

threshold. It was shown that the mode dynamics is deter-

mined by an interplay between the wave electric field, that

tends to flatten the distribution function of the fast ions

F(t, x, t), and the relaxation processes modeled by collision

operator @F
@t

� �
coll

restoring the distribution function, which

are represented as

@F

@t

� �
coll

¼ ��Fþ a2 @F

@t
þ b3 @

2F

@t2
: (1)

It was also found that in the case, when the dominant relaxa-

tion processes are modeled via an “annihilation” (Krook)

and=or diffusion collisional operators (characterized by the

parameters � and b, respectively), the non-linear evolution of

the wave amplitude may exhibit four main regimes near mar-

ginal stability: a steady-state, periodic amplitude modulation,

and chaotic and explosive regimes, cf. Refs. 4 and 5. This is

in contrast to the case when dynamical friction (characterized

by the parameter a) is the dominant collision process, where

the explosive evolution of the wave amplitude was found to

be the only possible behavior, i.e., within the context of the

perturbation theory, the mode reaches arbitrarily large ampli-

tude in a finite time.8 The actual limit of applicability of this

explosive solution is when the bounce frequency xB of the

trapped particles approaches the growth rate in the absence of

dissipation, independent of the closeness to marginal stability.

One of the most important problems in the theory of fast

ion driven instabilities is the understanding of the wave satu-

ration mechanisms and its implications on the confinement

of the fast ions. The existing theory, Berk-Breizman theory,

describes the energetic particle excitation and nonlinear evo-

lution of single coherent waves so that bifurcations at single-

mode saturation as well as formation of long-lived coherent

nonlinear structures can be analyzed. However, in order to

investigate scenarios with marginal where the resonance

overlap between different modes can lead to a strong non-

linear regime, it is necessary to generalize the theory to a

multi-mode case. Previously, the interaction of two beating

electrostatic waves with plasma electrons was studied in
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Refs. 13 and 14, and the nonlinear saturation of two plasma

modes which are initially only marginally unstable was

investigated in Ref. 15, where the time-asymptotic saturation

amplitude and frequency shift of each unstable mode are

evaluated by the Bogoliubov method. In the present paper,

the Berk-Breizman theory is extended to the case of two

weakly linearly unstable modes, which are driven resonantly

by fast ions near the instability thresholds. We treat the prob-

lem as one-dimensional and assume that the two plasma

eigenmodes with wave numbers ki and frequencies xi,

i¼ 1,2, have phase velocities xi=ki being close to each other

and lying on the positive slope of the fast ion velocity distri-

bution function. The discussion is restricted to the isolated,

but close, resonances, for which the frequency separation is

much less than the corresponding bounce frequencies. Fol-

lowing the single mode theory, we apply a perturbation anal-

ysis which is based on the assumption of small deviations of

the particles from their unperturbed orbits. Formally, we

generate an expansion in the small parameter xB=c.

The structure of the paper is as follows: In Sec. II, we

outline derivation of the two coupled integro-differential

equations for two mode amplitudes driven resonantly by

interaction with fast ions just above the stability threshold. In

Sec. III, a numerical analysis of various nonlinear scenarios

described by the derived equation system is presented and

Sec. IV includes summary and conclusions.

II. BASIC EQUATIONS OF THE MODEL

To establish the proper form of the equations describing

nonlinear evolution of slowly varying wave amplitudes, we

begin with a brief outline of the basic equations and ideas

describing the resonant interaction of fast particles with an

electrostatic wave. For a longitudinal electromagnetic wave

field, the Maxwell equations yield

@E

@t
þ 1

e0

J ¼ 0; (2)

where E is the electric wave field and J is the total current

density. Since we have

J ¼ Jp þ Jf ; (3)

where Jp and Jf are the current densities due to the back-

ground plasma and fast ions, respectively, we expect the Lan-

dau damping due to the background plasma and the wave

growth due to fast ions, which are both much less than the

real part of the wave frequency. We assume also that the den-

sity of fast particles nf is much less than the density of back-

ground plasma np. Thus, the contribution of Jf to the real part

of the wave frequency can be neglected. Introducing the small

parameter �� 1 ðjcL � cd=cdj � Oð�ÞÞ, we can write

J ¼ Jp0 þ eðJp1 þ Jf Þ; (4)

where Jp0 determines the wave frequency, while Jp1 and Jf

determine >cd and cL, respectively. Let us now write the

wave field as a sum of two independent background plasma

eigenmodes with the frequencies x1, x2 and the wave num-

bers k1, k2, respectively,

Eðx; tÞ ¼ E1ðx; tÞ þ E2ðx; tÞ; (5)

where

E1ðx; tÞ ¼ Â1ðtÞeiðk1x�x1tÞ þ c:c:;

E2ðx; tÞ ¼ Â2ðtÞeiðk2x�x2tÞ þ c:c:
(6)

Here, we assume that

1

Âi

dÂi

dt

����
����� xi: (7)

Note that the slowly varying complex wave amplitudes Â1ðtÞ
and Â2ðtÞ can be expressed in terms of some slowly varying

real amplitudes Ê1ðtÞ and Ê2ðtÞ accompanied with appropri-

ate slowly varying phases ~aðtÞ and ~bðtÞ

Â1ðtÞ ¼
1

2
Ê1ðtÞei~aðtÞ; Â2ðtÞ ¼

1

2
Ê2ðtÞei ~bðtÞ: (8)

In accordance with Eqs. (5) and (6), we can write

Jðx; tÞ ¼ J1ðx; tÞ þ J2ðx; tÞ
¼ Ĵ1ðtÞeiðk1x�x1tÞ þ Ĵ2ðtÞeiðk2x�x2tÞ þ c:c:; (9)

where it is assumed that

1

Ĵi

dĴi

dt

����
����� xi; i ¼ 1; 2: (10)

On the basis of the Eq. (2), a separate equation for each

mode amplitude may be written as

�
@Âi

@t
� ixiÂi þ

1

e0

Ĵp0

i þ �ðĴ
p1

i þ Ĵf
i Þ

� �
¼ 0; i ¼ 1; 2:

(11)

To order Oð�0Þ, Eq. (11) gives

� ixiÂi þ
1

e0

Ĵp0

i ¼ 0; i ¼ 1; 2; (12)

which determines xi. To Oð�1Þ one obtains

@Âi

@t
þ 1

e0

ðĴp1

i þ Ĵf
i Þ ¼ 0; i ¼ 1; 2: (13)

Note that

Ĵf
i ¼ qi

ð1
�1

tf f
i dt; Ĵp

i ¼ �qe

ð1
�1

tf p
i dt; i ¼ 1; 2; (14)

where f f
i and f p

i are, respectively, the parts of the distribution

function of fast ions and distribution function of plasma elec-

trons which oscillate with frequency xi.

Using now the linearized Vlasov equation for electrons,

one easily gets that

Ĵp
i ¼ �qe

ð1
�1

tf p
i dt ¼ Ĵp0

i þ �Ĵ
p1

i ; i ¼ 1; 2; (15)

where
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Ĵp1

i ¼ cdÂi; i ¼ 1; 2 (16)

and

1

�0

Ĵp0

i ¼ i
x2

pe

xi
Âi; i ¼ 1; 2: (17)

Then it follows from Eqs. (17) and (12) that, in the cold

plasma limit, the wave frequencies are determined by

x2
i ¼ x2

pe ¼
npq2

e

me0

; i ¼ 1; 2: (18)

However, beyond the linear approximation, the wave fre-

quencies xi, i¼ 1, 2, may slightly differ from the electron

plasma frequency xpe.

Let us now focus our attention on Eq. (13) that can be

written in the form of evolution equations for the two mode

amplitudes

@Âi

@t
þ qe

e0

ð1
�1

tf f
i ðt; tÞdtþ cdÂi ¼ 0; i ¼ 1; 2; (19)

which are determined by the two distribution functions of

fast ions, f f
i , i¼ 1,2. In fact, the functions f f

i involve a non-

linear coupling of the modes. The physical reason of the non-

linear coupling is the resonant interaction between the fast

ions and the modes. Following the Berk and Breizman

approach,4–6 we represent the fast ion distribution function

F(t, x, t) as a series

Fðt; x; tÞ ¼ F0ðtÞ þ f0ðt; tÞ þ ½f1ðt; tÞeiw1 þ f2ðt; tÞeiw2

þ g1ðt; tÞe2iw1 þ g2ðt; tÞe2iw2 þ h�ðt; tÞeiðw1�w2Þ

þ hþðt; tÞeiðw1þw2Þ þ � � � þ c:c:�;
(20)

where wi¼ kix�xit; note also that we have abbreviated the

notation of f f
i to fi, i¼ 1,2. The kinetic equation for F(t, x, t)

has the form

@F

@t
þ t

@F

@x
þ qe

m
Eðt; xÞ @F

@t
¼ SðtÞ � �Fþ a2 @F

@t
þ b3 @

2F

@t2
;

(21)

and the equilibrium distribution function F0(t) is determined

by

SðtÞ ¼ �F0 � a2 @F0

@t
� b3 @

2F0

@t2
; (22)

where S(t) is a constant source of fast particles. In order to

solve Eq. (21), we apply a perturbative procedure by assum-

ing that F0 � f1, f2 � f0, g1, g2, h�, and hþ. Combining then

Eqs. (20) and (21) and separating with respect to different

harmonics, we obtain

@f0
@t
� b3 @

2f0

@t2
� a2 @f0

@t
þ �f0 ¼ �

qe

m
Â1

@f 	1
@t
þ Â2

@f 	2
@t
þ c:c:

� �
;

@f1
@t
þ iðk1t� x1Þf1 � b3 @

2f1
@t2
� a2 @f1

@t
þ �f1 ¼ �

qe

m
Â1

@F0

@t
þ @f0
@t

� �
þ Â2

@h�
@t

	 

;

@f2
@t
þ iðk2t� x2Þf2 � b3 @

2f2
@t2
� a2 @f2

@t
þ �f2 ¼ �

qe

m
Â2

@F0

@t
þ @f0
@t

� �
þ Â1

@h	�
@t

	 

;

@h�
@t
þ iðtDk � DxÞh� � b3 @

2h�
@t2
� a2 @h�

@t
þ �h� ¼ �

qe

m
Â1

@f 	2
@t
þ Â	2

@f1
@t

� �
:

(23)

It turns out that the terms g1, g2, hþ do not contribute to the final result; therefore, the equations for them have been omitted. Solving

Eqs. (23), we can calculate the integrals
Ð

tfiðt; tÞdt of Eq. (19), which, e.g., for i¼ 1 takes the following form:

@Â1

@t
¼ cÂ1�2cL

ðt=2

0

dg
ðt�2g

0

dv � g2 � ðqek1=mÞ2Â1ðt�gÞÂ1ðt�g�vÞÂ	1ðt�2g�vÞ �eia2
kgðgþvÞ

�	

þðqek2=mÞ2Â1ðt�gÞÂ2ðt�g�vÞÂ	2ðt�2g�vÞ �e�ix1g
�

Dk
k1
�Dx

x1

�
þia2

kgðgþvÞ
�

þðqek2=mÞ2Â2ðt�gÞÂ1ðt�g�vÞÂ	2ðt�2g�vÞ �e
�ix1ð2gþvÞ Dk

k1
�Dx

x1

� �
þia2

kgðgþvÞ
�g gþDk

k1

ðgþvÞ
� �


e��ð2gþvÞ�b3
kg

2 2
3
gþvð Þ;

(24)

where b3
k ¼ b3k2

1, a2
k ¼ a2k1, Dk¼ k1� k2, and Dx ¼

x1�x2. The equation for Â2 is obtained by exchanging indi-

ces according to 1! 2. In deriving Eq. (24), we have

assumed that the shifts Dk and Dx are small, i.e.,
Dk
ki

��� ���; Dx
xi

��� ���� 1, i¼ 1, 2. In addition, we have used the approx-

imations b3k2
1 � b3k2

2 and similarly a2k1 � a2k2, which

allows to take the same parameters b3
k and a2

k in both ampli-

tude equations. For numerical purposes, it is convenient to

make use of the dimensionless variables and normalized pa-

rameters according to t! ct, Âi ! ½ðqeki=mÞÂi=c2�ðcL=cÞ1=2
,

�! �=c, b3
k ! b3

k=c
3, and a2

k ! a2
k=c

2. Furthermore, in addi-

tion to the small parameters ui 
 Dk
ki

, ci 
 Dx
xi
ði ¼ 1; 2Þ, we
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introduce a large parameter R 
 x1

c � 1. Since only two of

the four parameters, ui and ci (i¼ 1, 2) are independent, one

may choose, e.g., u1 and c1, that characterize the small shift

between the two modes ( u1j jjc1j � 1). Note that the natural

dimensionless quantities appearing in the mode amplitude

equations are pi 
 xi

c
Dk
ki
� Dx

xi

� �
, i¼ 1, 2, which can be

expressed through u1, c1, and R.

The final form of the dimensionless equations for the

mode amplitudes is

@Â1

@t
¼ Â1 � 2

ðt=2

0

dg
ðt�2g

0

dv�

g2 � Â1ðt� gÞÂ1ðt� g� vÞÂ	1ðt� 2g� vÞ � eia2
kgðgþvÞ

�h

þ Â1ðt� gÞÂ2ðt� g� vÞÂ	2ðt� 2g� vÞ � e�ip1gþia2
kgðgþvÞ

�

þ Â2ðt� gÞÂ1ðt� g� vÞÂ	2ðt� 2g� vÞ � e�ip1ð2gþvÞþia2
kgðgþvÞ�gðgþ u1ðgþ vÞÞ�e��ð2gþvÞ�b3

kg
2 2

3
gþvð Þ:

(25)

and

@Â2

@t
¼ Â2 � 2

ðt=2

0

dg
ðt�2g

0

dv�

g2 � Â2ðt� gÞÂ2ðt� g� vÞÂ	2ðt� 2g� vÞ � eia2
kgðgþvÞ

�h

þÂ2ðt� gÞÂ1ðt� g� vÞÂ	1ðt� 2g� vÞ � e�ip2gþia2
kgðgþvÞ

�

þ Â1ðt� gÞÂ2ðt� g� vÞÂ	1ðt� 2g� vÞ � e�ip2ð2gþvÞþia2
kgðgþvÞ�gðgþ u2ðgþ vÞÞ�e��ð2gþvÞ�b3

kg
2 2

3
gþvð Þ:

(26)

The system of the two coupled equations (25) and (26)

describes evolution of the two complex amplitudes Â1 and

Â2 and, therefore, in fact it contains four coupled nonlinear

equations for two real amplitudes Ê1ðtÞ and Ê2ðtÞ and two

real phases ~aðtÞ and ~bðtÞ. These equations depend on two pa-

rameter groups: the collision parameters ð�; b3
k ; a

2
kÞ, and the

mode parameters (ui, ci, R).

Note that when ui¼ ci¼ 0 (i¼ 1, 2), the equation system

(25) and (26) reduces to the original single mode equation of

Ref. 8 only when the terms describing nonlinear coupling

between the two modes are assumed to vanish. This problem

needs an explanation. At first glance, it seems that adding the

two equations for the amplitudes Â1 and Â2 with ui¼ ci¼ 0,

i.e., without any shift in frequencies and wave numbers

between the modes, one should obtain one mode with well

determined frequency and wave number and, therefore, the

system should be described by a single mode equation for

the amplitude Â ¼ Â1 þ Â2. It follows from Eqs. (25) and

(26) that this is not the case, because these include only six

nonlinear terms, while the reduction to a single mode equa-

tion requires additional two mode coupling terms. To resolve

this puzzle, let us first consider the Berk and Breizman

model for a single mode, see, e.g., Ref. 4. In this model, fast

particles distribution function F is expanded into a Fourier

series around the equilibrium function F0. However, only the

terms f0 and f1 describing the slow time variation and the

oscillations with the electric field frequency x of the distri-

bution function, respectively, essentially contribute to the

final result. Note that in that model the frequency of the elec-

tric field is given stiffly and in fact it is the frequency of an

eigenmode of the background plasma. A small shift in the

mode frequency arises in this model only due to a slow vari-

ation of the electric field amplitude. The fast particles modify

the plasma mode amplitude rather than the plasma mode fre-

quency. It is also briefly mentioned in Ref. 4 that the compo-

nent f2 of the fast particle distribution function that oscillates

with frequency 2x does not contribute to the final model

equation and the consideration is limited to a system of equa-

tions for components f0 and f1 only. Actually, performing

calculations including f2, one obtains delta function in time,

which sets the contribution of this component outside the

integration domain. However, what is the physical reason

that only the two components f0 and f1 are sufficient for the

Berk and Breizman model? In our opinion, the components

f2, f3, and so on, introduce multiple harmonics of the basic

frequency x in the distribution function. These harmonics

should generate electric field modes with the corresponding

frequencies. However, the electric field is given stiffly with

the frequency x and since there are no other frequencies, the

contributions from f2, f3,…, have to be zero. Only the com-

ponents f0 and f1 are responsible for the modification of the

distribution function in the Berk and Breizman model. Note

also that even provided that some other harmonics of the

electric field could exist, they should be eigenmodes of the

background plasma laying on the positive slope of the bump

on tail. However, such assumption is not incorporated in the

framework of the model. An additional problem is due to the

fact that the derivation of the evolution equation for the

wave amplitude involves an application of delta functions.

On the other hand, the resonant region around the frequency

x is very narrow but, due to small nonlinear corrections, it is

not infinitesimally narrow like it is in the linear theory. In

062109-4 Zaleśny et al. Phys. Plasmas 18, 062109 (2011)



the case of nonlinear evolution of two modes, which is the

subject of the present paper, we have limitations that are sim-

ilar to the single mode case as discussed above. The two

modes are given stiffly and are assumed to be two different

eigenmodes of the background plasma. The important point

is that they are different eigenmodes. Thus, the mode fields

have to fulfill the orthogonality condition. We have con-

structed the fast particle distribution function according to

similar rules to those of the single mode case. Consequently,

because the two mode fields are given stiffly, the components

of the fast particle distribution function having multiple and

mixed frequencies are excluded. The only exception we have

made is for the h�. This is since the phase difference

w1�w2 is so small, that the exponent is almost constant, and

the contribution of h� to the mode evolution equation is sim-

ilar to the one of f0. Moreover, it explicitly grasps the fre-

quency and wave number shifts between the two modes. In

Sec. III, we numerically examine Eqs. (25) and (26) with

ui¼ ci¼ 0. However, the condition ui¼ ci¼ 0 does not mean

that the both modes can be treated as the same single mode.

We emphasize that the orthogonality condition for the mode

fields is supposed to be satisfied and an identification of the

two eigenmodes as the same mode would change the ortho-

gonality condition into a normalization condition. Roughly

speaking, it would change zero into unity, which cannot be

done in a continuous way, a limit which does not exist. Con-

sequently, the case with ui¼ ci¼ 0 should be understood in

the following way. Our analysis is based on the assumption

that we have two different but laying very close to each other

eigenmodes of the background plasma. Nevertheless, if the

difference between the two modes is very small, the very

small frequency and wave number shifts in the final equa-

tions (25) and (26) may be replaced by zeros, i.e., we put

ui¼ ci¼ 0. Thus, the modes are treated as very close but still

as different two eigenmodes. This explains the apparent dis-

crepancy between the equation for the sum of the two modes

and a single mode equation. We hope to give mathematically

more rigorous exposition of the problem in a future paper on

a multi-mode case.

III. NUMERICAL RESULTS

In order to examine the importance of the different colli-

sion models for the mode evolution, let us examine first the

case when ui, ci¼ 0, and thus pi¼ 0, i¼ 1, 2. In the absence

of drag, ak¼ 0, it is found that the Krook and the diffusion

models, described by the parameters � and bk, respectively,

generate similar behavior and the common effect sums up so

that qualitatively they do not produce new types of behavior

in comparison with the Krook model alone. Therefore, to

gain a qualitative view, it is enough to consider the depend-

ence of the evolution of the modes on �. For relatively large

values of �, a competition between the modes for survival is

observed, as shown in Fig. 1. As a result of this competition,

the growth rate of the disappearing mode is at first reduced

to zero and then becomes negative, while the surviving mode

reaches a zero growth rate and becomes saturated. Figure 2

is an illustration that the Krook and diffusion models pro-

duce qualitatively similar types of behavior. For decreasing

values of �, both modes can survive in an oscillating regime,

Fig. 3, or for still smaller values of � in a chaotic regime,

Fig. 4. Further decrease of � leads to the “blow-up” behavior,

Fig. 5, where the system breaks into oscillations with

decreasing periods and increasing amplitudes, which become

infinite in a finite time.

Let us now include the effect of drag model into consid-

eration. A nonzero value of ak gives an interesting result,

that has previously been discovered in the single mode case,8

namely that the solution always blows up regardless of value

of ak if the other collision parameters are vanishing, i.e., �,

bk¼ 0, see Fig. 6.

However, for relatively large values of � and moderate

values of ak, one may say that the effect of the Krook colli-

sion model dominates over the drag, because the mode com-

petition is observed again, where one of the modes

disappears and the other reaches saturation, Fig. 7. A some-

what larger value of ak changes the picture essentially, both

mode amplitudes tend to the same steady state value, see

Fig. 8. This common steady state turns out to be unstable for

greater values of ak, see Fig. 9 and it breaks into oscillations

with infinitely increasing amplitude at a finite time. The

blow-up occurs.

A similar qualitative picture is obtained if instead of �
one uses appropriate values of bk or bk and � in some proper

combination. Figure 10 with all the three collision parame-

ters being different from zero is equivalent to Fig. 9, where

only � and ak are involved.

To perform numerical calculations in the presence of the

mode shift, we arbitrary set the value of R¼ 1000 Then to

have the parameters p1 and p2 of the order of the collision

parameters �, ak, bk, we take p1, p2� 1. This implies that the

order of the shift parameters must be ui, ci� 0.001. However,

FIG. 1. �¼ 5, bk¼ 0, ak¼ 0, u1¼ 0, c1¼ 0.

FIG. 2. �¼ 0, bk¼ 3, ak¼ 0, u1¼ 0, c1¼ 0.
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because p1¼R � (u1� c1) one obtains in case when u1¼ c1

that pi¼ 0, i¼ 1, 2. Note also that in Eqs. (25) and (26), the pa-

rameters ui are not only included in pi but also appear at other

places. On the other hand, if the parameters pi are vanishing,

the small values of ui� 0.001 make their influence on the mode

evolution rather weak, compare Fig. 11 with Fig. 1.

We consider first the effect of the shift in the absence of

drag and for �¼ 5 as well as for various combination of �
and bk. To assure the nonzero value of u1� c1, we put

c1¼ 0, then p1 is simply R � u1. Comparing Figs. 8 and 12, it

can be seen that qualitatively the mode behavior for p1¼ 1 is

similar to that of drag with ak¼ 3.3. The conclusion that the

shift effects are similar to those of drag is only valid for suf-

ficiently small values of p1� 1. The coupling between the

modes becomes weaker for larger values of pi. The steady

state shown in Fig. 12 becomes unstable and periodic for a

slightly larger value of p1. A remarkable feature of the oscil-

lations is the synchronization of periods (in opposite phase)

of the mode amplitudes shown in Fig. 13. For p1� 10

(u1� 0.01), the synchronization vanishes and the oscillations

become chaotic. Another interesting case is shown in Fig. 14

for a relatively weak coupling between the modes. Each of

the modes influences rather weakly on the dynamics of the

other mode which gives rise to results in beating of the

amplitudes. For still larger values of p1, e.g., p1� 30

(u1� 0.03), the coupling between the modes becomes so

weak that the modes behave as practically independent,

Fig. 15. Such behavior can be explained if one notes that

p1 and p2 may be expressed as p1 ¼ k2

c t2 � t1ð Þ and

p2 ¼ k1

c t1 � t2ð Þ, where t1 and t2 are the phase velocities of

the modes. In the velocity space, each of the modes produces

a local plateau in the resonance region (in the vicinity of the

phase velocity) of the fast ion distribution function. The local

modification of the distribution function caused by one of

the modes affects the dynamics of the other mode. Neverthe-

less, if the difference of the phase velocities t1� t2 is too

large, the two local plateaus do not overlap and the modes

behave as independent from each other.

Let us now add the effect of drag into the case of a finite

shift between the modes. The combination of drag and Krook

(or diffusion) operators together with the mode shift gives a

new type of the mode amplitude behavior. Although, for

small parameter values ak¼ 1 and p1¼ 1 (u1¼ 0.001), the

mode competition can be observed, a small change of the

mode shift to p1¼ 1.3 (u1¼ 0.0013) reveals the existence of

two different steady states for each amplitude, Fig. 16. For

larger values of the shift parameters, the two steady states

become unstable and start to oscillate. Synchronization of

periods appears in a similar way to Fig. 13. For a sufficiently

large shift, e.g., p1¼ 30 (u1¼ 0.03), the modes become prac-

tically independent, which is illustrated in Fig. 15.

Another scenario takes place for larger values of the

drag parameter, e.g., for ak¼ 3 or larger. The previous analy-

sis of such cases with a vanishing mode shift has shown that

when the drag dominates over the Krook collisions, a blow-

up appears. In the presence of the mode shift, the situation

becomes modified in that way that the two steady states

appear very quickly, i.e., a picture similar to the one shown

in Fig. 16 is observed for a very small value of p1, e.g.,

p1¼ 0.1 (u1¼ 0.0001) for ak¼ 3. The distance between the

two steady states increases with increasing of the shift pa-

rameter. However, due to increasing values of the shift, the

two modes become more and more independent and for inde-

pendent modes, the blow-up occurs if the drag is a

FIG. 3. �¼ 4, bk¼ 0, ak¼ 0, u1¼ 0, c1¼ 0. FIG. 5. �¼ 2.3, bk¼ 0, ak¼ 0, u1¼ 0, c1¼ 0.

FIG. 4. �¼ 2.5, bk¼ 0, ak¼ 0, u1¼ 0, c1¼ 0. FIG. 6. �¼ 0, bk¼ 0, ak¼ 10, u1¼ 0, c1¼ 0.
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dominating collision process. In a matter of fact, in the

described case, the mode blow-up takes place far before the

modes really become independent. Figure 17 shows a case of

mode evolution, where the two different steady states

become unstable and then blow up.

IV. SUMMARY

In the present paper, we have outlined a basis of the non-

linear theory of two wave modes excited in a plasma by the

resonant interaction with fast ions. It is assumed that the mode

excitation takes place just above the linear instability thresh-

old, and the model includes the effects of a resonant fast ions

source and classical relaxation processes represented by the

Krook, diffusion, and dynamical friction collision operators.

A system of two coupled integro-differential equations for the

mode amplitudes has been derived and examined numerically.

The goal of our numerical analysis has been to give the reader

a basic insight into the behaviour of two plasma modes

coupled to each other through resonant interaction with fast

ions. In particular, we have shown how different collision

operators may lead to similar (compare, e.g., diffusion and

Krook operators, Figs. 1 and 2) or quite different (dynamic

friction, Fig. 6) behaviour of the mode amplitudes. However,

one should keep in mind that the final state of mode ampli-

tudes strongly depends on the initial parameters, and there are

critical parameter values at which there is a bifurcation from

one type of final state to another. This takes place in the evolu-

tion of a single mode as well as in the case of two modes.

Therefore, the effort made in the present paper has been only

to choose the cases presenting the most characteristic features

of two-mode evolution. This is the reason why the mode dy-

namics is illustrated by including mainly the Krook operator

with relatively large values of the Krook parameter instead of

a full combination of the Krook and diffusion operators, as

well by discussing the influence of dynamic friction and fre-

quency and wave number shifts between modes on the mode

evolution. We believe that in this way we grasp the most basic

features of the two-mode dynamics.

It is interesting to observe the strong interaction between

the two modes, which has been demonstrated in the first ten

figures, where we have assumed that the frequency and wave

number shifts between the modes vanish. In this limit, an im-

portant observation is that the two-mode evolution equations

(25) and (26) reduce to the original single mode equation of

Ref. 8 only when the terms describing nonlinear coupling

between the two modes are assumed to vanish. It seems that

adding the two equations for the amplitudes Â1 and Â2 with

ui¼ ci¼ 0, i.e., without any shift in frequencies and wave

numbers between the modes, one should obtain one mode

with well determined frequency and wave number, and

therefore, the system should be described by a single mode

equation for the amplitude Â ¼ Â1 þ Â2. It follows from

Eqs. (25) and (26) that this is not the case, because these

include only six nonlinear terms, while the reduction to a sin-

gle mode equation requires additional two mode coupling

terms. However, the condition ui¼ ci¼ 0 does not mean that

the both modes can be treated as the same single mode. We

emphasize that the orthogonality condition for the mode

fields is supposed to be satisfied and an identification of the

two eigenmodes as the same mode would change the ortho-

gonality condition into a normalization condition. Roughly

speaking, it would change zero into unity, which cannot be

done in a continuous way, a limit which does not exist. Con-

sequently, the case with ui¼ ci¼ 0 should be understood in

FIG. 7. �¼ 5, bk¼ 0, ak¼ 2.5, u1¼ 0, c1¼ 0.

FIG. 8. �¼ 5, bk¼ 0, ak¼ 3.3, u1¼ 0, c1¼ 0.

FIG. 9. �¼ 5, bk¼ 0, ak¼ 4.1, u1¼ 0, c1¼ 0.

FIG. 10. �¼ 4, bk¼ 2, ak¼ 3.4, u1¼ 0, c1¼ 0.
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the following way. Our analysis is based on the assumption

that we have two different but laying very close to each other

eigenmodes of the background plasma. Nevertheless, if the

difference between the two modes is very small, the very

small frequency and wave number shifts in the final equa-

tions (25) and (26) may be replaced by zeros, i.e., we put

ui¼ ci¼ 0. Thus, the modes are treated as very close but still

as different two eigenmodes.

A strong mode interaction may lead to competition

between the modes. This behaviour can be especially seen in

Figs. 1 and 2, where only one of the modes survives. Since

the Berk and Breizman mode evolution model8 is valid for

relatively weak field nonlinearities, the saturation level of

the mode amplitude is achieved due to collisions represented

by the Krook or diffusion collision operators (not by the drag

operator) and not due to phase mixing that appears for strong

field nonlinearity and is caused by bouncing of trapped par-

ticles in the plasma wave even in the absence of collisions.

Therefore, in the Berk and Breizman model extended to the

case of two modes, the mode competition and thus saturation

of one of the modes can be possible only for relatively large

values of the parameters � or bk. For smaller values of these

parameters, periodic amplitude modulations as well as cha-

otic and explosive regimes take place, as shown in Figs. 3–5.

Dynamical friction (drag) introduces a new feature into

the mode dynamics. Since its presence means that fast ions

are subject to the friction force in velocity space, there is a

continuous process of new ions with velocities slightly greater

than the phase velocity coming into the resonant region and of

ions with velocities smaller than the phase velocity leaving

the resonant region. As a result, the particle energy is con-

stantly transferred to the wave. If the “annihilation” collision

mechanisms like Krook or diffusion are too weak to counter-

act the drag, then it leads to an explosive evolution of the

wave amplitudes, as it is shown in Figs. 6, 9, 10, and 17.

An interesting feature of drag, when is not too weak

(because then the mode competition occurs) and at the same

time not too strong (because it causes the explosive ampli-

tude evolution), is that it also may lead to the same finite sat-

uration level of each mode amplitude, see Fig. 8 and also

compare Figs. 7, 9, and 10. However, adding the frequency

and wave number shifts between the modes splits the single

saturation into different finite steady states for each of the

modes, see Figs. 16 and 17.

Inclusion of the finite frequency and wave number shifts

weakens the interaction strength between the modes. For large

values of the parameters � and=or bk and zero or small values

of the drag parameter ak, as well as in the presence of an slight

frequency and wave number shifts between the modes, a peri-

odic exchange of energy between the two modes (“beating”)

is observed, see, e.g., Figs. 13 and 14. Such periodic exchange

of energy between modes is a typical behaviour of many phys-

ical systems with not too strong nonlinear mode coupling.

FIG. 11. �¼ 5, bk¼ 0, ak¼ 0, u1¼ 0.001, c1¼ 0.001.

FIG. 12. �¼ 5, bk¼ 0, ak¼ 0, u1¼ 0.001, c1¼ 0.

FIG. 13. �¼ 5, bk¼ 0, ak¼ 0, u1¼ 0.005, c1¼ 0.

FIG. 14. �¼ 5, bk¼ 0, ak¼ 0, u1¼ 0.017, c1¼ 0.001, (for clarity the two

amplitudes are shown in separate boxes).
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A large separation between phase velocities of the two

modes may weaken the interaction strength between them to

such an extent that they become almost independent, see

Fig. 15 and compare it with the evolution of a single mode

shown in, e.g., Ref. 4.

In summary, we conclude that depending on the type of

relaxation process, on the specific values of the appropriate

relaxation parameters, and on initial conditions, different

nonlinear regimes in the evolution of two mode amplitudes

can be observed, including steady-state, periodic amplitude

modulations, and chaotic and explosive regimes. Though

such regimes have also been observed in the case of single

mode evolution,8 the two-mode dynamics is richer due to

interplay between the modes as it has been described above.
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