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Abstract ─ Perfect Electric conductor (PEC) is 
often replacing conducting materials in 
electromagnetic (EM) computations. Similarly, it 
is possible to replace metamaterials by their ideal 
counterparts, at least during initial and conceptual 
studies. Such ideal surfaces are herein referred to 
as canonical surfaces. The use of canonical 
surfaces will strongly reduce computation time 
during initial analysis and proof of concept when 
searching for new metamaterial applications. 
Canonical surfaces were previously considered to 
include PEC, PMC (Perfect Magnetic Conductor), 
and PEC/PMC strip grids representing soft and 
hard surfaces, and they are herein extended to 
include canonical representation of the well known 
electromagnetic bandgap (EBG) surface. This new 
canonical surface is derived from the recently 
introduced DB boundary, and we refer to it as the 
PMC-amended DB boundary. The paper shows 
results that demonstrate that the PMC-amended 
DB boundary works in the same way as a 
practically realized EBG surface in the beginning 
of the bandgap where the evanescent behavior of 
the vanishing surfaces waves is the strongest. The 
original DB boundary is shown to be incomplete, 
creating an anomaly for normal incidence. The 
paper emphasizes the need for making user-
defined arbitrarily-shaped canonical surfaces 
available for use in general commercial 
electromagnetic codes.  
  

Index Terms ─ DB boundary, EBG surfaces, 
mushroom surface.  
 

I. INTRODUCTION 
The present paper will explain some 

simplified and ideal boundary conditions that can 
be referred to as canonical surfaces because they 
have a physically realizable counterpart. Such 
canonical surfaces are useful for the further 
development and unification of the metamaterials 
area. These ideal boundary conditions include 
perfect electric conductors (PEC), perfect 
magnetic conductors (PMC), ideal soft and hard 
surfaces [1] (represented by PEC/PMC strip grids 
[2]), and the newly introduced DB boundary [3]. 
Each of them has a physical realizable counterpart, 
provided in the latter case that the original DB 
boundary condition is amended. The present paper 
will show that the physical counterpart of the 
amended DB surface is the electromagnetic 
bandgap surface (EBG). The name DB boundary 
refers to the fact that the vertical components of 
both the D-field and the B-field at the boundary 
are defined to be zero. 

The anisotropic soft surface was introduced in 
analogy with acoustics to explain why certain 
surfaces stop waves from propagating along them. 
Later, it was shown that isotropic high impedance 
surfaces could stop surface waves as well [4]. The 
latter are now more correctly referred to as 
electromagnetic bandgap (EBG) surfaces, because 
most so-called high impedance surfaces only have 



high surface impedance for normal incidence, 
whereas the wave-stop characteristics are related 
to the non-existence of surface waves along the 
surface, and not to this high surface impedance. 
The hard surface was introduced as the 
complement to the original soft surface, allowing 
waves of any polarization to propagate freely 
along it. This was then used for removing 
blockage by cylindrical objects [5], nowadays 
referred to as cloaking [6].  

The guest editorial in [7] gave a joint 
comprehensive presentation of the EBG surfaces 
and the soft and hard surfaces by defining ideal 
canonical surfaces and their boundary conditions, 
but it also stated the lack of a simple boundary 
condition for the EBG surface. The present paper 
explains how the newly introduced DB boundary 
[3] can be amended to provide such a simple 
boundary condition and thereby can represent an 
ideal EBG surface, or in other words an ideal, 
isotropic and polarization-independent soft 
surface. The amendment is needed because the DB 
boundary condition is undefined for normal 
incidences, i.e., it is incomplete and needs to be 
amended. As a result, an anomaly appears in some 
field solutions. The present paper shows how the 
DB boundary condition can be amended to avoid 
such anomalies, providing the direction of wave 
propagation along the EBG surface is known. The 
amended DB surface is referred as a PMC-
amended DB surface. 

The computational and analytical 
simplifications offered by the canonical surfaces 
have already proven to be advantageous for 
numerical solutions [8] and generation of 
conceptually new microwave devices, such as the 
invisible hard struts in [5] representing the first 
metamaterial cloak, and the new gap waveguide 
described in [9]. The latter is a generalization of 
the single hard-wall parallel-plate waveguide [10], 
and represents a way to guide local waves (beams) 
in the gap between parallel metal plates. It 
originates from the miniaturized hard waveguide 
in [11]-[12], and the concept can also be used for 
packaging of microstrip circuits [13].  The gap 
waveguides make use of high impedance surface 
or EBG surface to suppress parallel plate modes, a 
physical phenomenon that is easily explained in 
terms of the ideal PMC or amended DB 
boundaries, respectively. 
 

II. CANONICAL SURFACES: PEC, PMC, 
PEC/PMC STRIP GRID, PMC-
AMENDED DB BOUNDARY 

Artificial surfaces like soft and hard surfaces, 
artificial magnetic conductors, high impedance 
surfaces, and electromagnetic bandgap surfaces 
can be used to control wave propagation: enhance 
it in desired directions, stop it in undesired 
directions, and improve polarization 
characteristics of both. These properties can be 
explained by reference to Table 1. This was first 
presented in [2], updated and improved in [6], and 
it is here extended by introducing the PMC-
amended DB boundary as a canonical surface 
having similar property as the EBG surface at the 
“best” frequency within the bandgap. The table 
contains also the related D´B´ boundary as 
explained below. The boundary conditions of the 
ideal canonical surfaces are also added to Table 1. 
Notice that we did not impose any frequency 
dependence of the boundary condition because we 
consider ideal surfaces. Actual realizations of the 
canonical surfaces will always have strong 
frequency dependences (except for the PEC).  
The explanations of the boundaries are: 

Perfect Electric Conductor (PEC): This 
surface is widely used in most EM modeling and 
computations as it describes metal conductors very 
well when analyzing guiding or radiating 
properties in the microwave region. The boundary 
conditions are well defined. 

Perfect Magnetic Conductor (PMC): The 
EM field theory is easily extended to allow PMC. 
This surface does not exist naturally, but it can be 
realized artificially within frequency bands and is 
then referred to as an artificial magnetic conductor 
(AMC). The ideal boundary condition is well 
defined and it appears often in practice at the 
beginning of the frequency band of operation of 
the AMC. 

PEC/PMC strip grid: This is the physical 
equivalent of an ideal soft/hard surface. The 
surface has locally infinite and unidirectional 
electric and magnetic conductivity, i.e. both the 
electric and magnetic currents can only flow in the 
strips direction. The PEC/PMC strips can follow 
any arbitrarily shaped path of planar or non planar 
form. For the transverse soft case (STOP surface) 
the PEC/PMC strip grids form electric/magnetic 
current fences that stop wave propagation, and for 



the longitudinal hard case (GO surface) they form 
electric/magnetic current lanes that enhance wave 
propagation. The ideal boundary conditions are 
well defined, and many realizations exist. The two 
most common realizations are corrugations and 
metal-strip-loaded grounded dielectric substrates. 
In the first case the ridges of the corrugations 
represent PEC strips, while the PMC strips are 
obtained by λ/4 transformers formed by the 
grooves. In the metal-strip-loaded case, the strips 
naturally represent PEC strips, and the PMC strips 
are obtained similarly as in the corrugated case by 
λ/4 transformers present between the ground plane 
and the dielectric surface. The ideal boundary 
conditions appear also for these realizations in the 
beginning of the frequency band where they work 
as soft or hard surfaces. 

DB boundary: The boundary condition states 
that both the vertical E and the vertical H field 
components are zero. (The original formulation is 
vertical D and the vertical B field components 
being zero, but we limit our practical 
interpretations to surfaces in vacuum or air.) 
Thereby, it stops waves at grazing angles for both 
horizontal and vertical polarizations for all angles 
of incidence. Therefore, it works similar to an 
EBG surface, or in other words like an isotropic 

soft surface. The boundary condition is well 
defined, except for the case of a plane wave under 
vertical (normal) incidence to the surface. For 
normal plane wave incidence the incoming fields 
have no vertical components, and therefore the 
boundary condition is automatically satisfied for 
any reflection coefficient. Thus, the reflection 
coefficients as well as the boundary conditions are 
undefined for normal incidence, or in other words 
the boundary condition is incomplete.  In most 
cases this will mean that the normally incident 
waves will pass through the boundary. The 
reflection coefficient of a realized EBG surface 
has always a phase that varies with elevation angle 
for TE case, in such a way that it appears like a 
PEC for grazing incidence and like a PMC for 
normal incidence. The anomaly of the reflection 
properties of the ideal DB boundary for normal 
incidence has therefore some relation to 
peculiarities of its practical counterpart. This 
anomaly causes some strange unphysical field 
solutions for some special cases and needs 
therefore to be corrected. This will be discussed in 
the next section.  

Table 1. Left: Characteristics of different types of canonical surfaces with respect to propagation of 
waves along the surface for different E-field polarizations. VER means vertical polarization (i.e. TM-
case), HOR means horizontal (i.e. TE-case). The background color and pattern symbolize the PEC 
(yellow), PMC (blue) and PEC/PMC strips (parallel yellow and blue strips). The different orientations 
of the colored strips for the soft and hard cases symbolize STOP (current fences) and GO (current 
lanes) characteristics for waves propagating from left to right (as shown by the arrows) in the paper 
plane. The colored background in the box of the DB boundary is a PMC-type EBG symbolized by the 
texture of Sievenpiper’s EBG mushroom surface. The D´B´ surface has no known realization. Right: 
Ideal boundary conditions of the canonical surfaces. The boundary conditions of the DB and D´B´ 
boundaries are in Lindell’s work described in terms of the D and B fields rather than E and H, but here 
we have chosen the more common E and H field boundary conditions that are equivalent to the original 
boundary conditions for our practical case considering the interface to an air-filled region. 

Ideal boundary condition 
(in xy-plane) 

0x yE E= = / 0zE z& ∂ ∂ =  

0x yH H = / 0zH z& ∂ =  = ∂

0yE 0yH & = =  

Ex = 0 & Hx = 0 / 0zE z∂ ∂ =  

0zE 0zH & = , amended by (1) =

/ 0zE z∂ = / 0zH z & ∂ =  (incomplete) ∂ ∂

D´B´ boundary: By analogy with the DB 
boundary, the D´B´ boundary is an isotropic hard 
surface defined by the boundary conditions seen in 

 



Table 1. However, in contrast to the DB boundary 
no realization of the D´B´ boundary is known so at 
present it is of little practical interest.  

 
The characteristics of the three different 

surfaces with respect to polarization of the grazing 
waves are also illustrated in Table 1. The PEC 
supports vertically polarized waves that can 
propagate with strong amplitude; it is a “GO” 
surface for vertical polarization. These 
propagating waves are not really surface waves in 
the mathematical sense, because they are 
represented by a branch point rather than a pole in 
the spectral domain.  Thus, they are for the ideal 
case surface waves at cut-off (linked to the 
corresponding space waves) rather than normal 
isolated surface waves trapped by the surface. 
However, when the surface has a thin dielectric 
coating, the wave along the surface becomes a TM 
surface wave (i.e. a pole). The PEC STOPs 
effectively horizontally polarized waves, because 
the horizontal field component is zero. The PMC 
behaves naturally in the opposite (dual) way; it is a 
GO surface easily passing waves along it for 
horizontal polarization and a “STOP” surface for 
vertical polarization (see table). The classical 
soft/hard surfaces can be represented physically by 
a PEC/PMC strip grid as explained above and 
illustrated in the table as well. This will STOP 
waves propagating with both horizontal and 
vertical polarizations when the strips are oriented 
transverse to the direction of propagation (soft 
case), and it will allow the waves to pass (i.e. GO) 
when they are oriented longitudinally in the same 
direction as the waves propagate (hard case). 

The soft/hard surfaces were originally realized 
by metal corrugations or metal strips loading a 
grounded substrate. The soft/hard characteristics 
appear when they are oriented 
transversely/longitudinally with respect to the 
direction of wave propagation. For the soft case, 
they form so-called electric and magnetic current 
fences that stop the waves, and for the hard case 
they form electric and magnetic current lanes that 
enhance wave propagation.  

 
 
III. AMENDING THE ORIGINAL DB 

BOUNDARY 
The realized 2-D periodic EBG surfaces 

behave normally like PMC within some frequency 

band (or bands) for wave incidence close to 
normal. However, for wave incidence close to 
grazing angle and within the lower part of the 
same frequency band, the EBG surfaces behave 
more like transverse PEC/PMC strip surface, i.e. 
like a soft surface stopping waves. The original 
anisotropic 1-D periodic soft surface has STOP 
characteristics over an infinite bandwidth for the 
TE case (i.e. horizontal polarization), provided the 
period is small enough. Still, the 2-D EBG 
surfaces are preferable in some applications (such 
as in the cut-off regions of gap waveguides) 
because they are isotropic, stopping waves from 
any direction. For grazing incidence the 2-D 
periodic EBG surfaces normally transform from 
STOP to PMC-type surface at the upper edge of 
the stop band. These rather complex 
characteristics of the 2-D EBG surfaces make 
them impossible to categorize completely in terms 
of PEC and PMC boundary conditions. However, 
as stated in the table the DB boundary 
characterizes them well. Still, practical EBG 
surfaces may also be used as PMC ground planes 
(for low profile electric current radiators), and this 
characteristic the DB boundary cannot capture. In 
fact, as already stated before, the DB boundary 
condition has no effect on normal incident waves, 
i.e. the solution is undefined which makes the 
boundary condition incomplete. Therefore, the 
original DB boundary condition needs to be 
completed, or amended.  

We propose here to amend the original DB 
boundary condition in the following way: 

 
Original DB boundary:   0,   0
Amended DB boundary:   0,   0

n n

n n l

E H
E H jH

= =

= + =
   (1) 

 
where En and Hn are normal components of the E- 
and H-fields at the boundary and Hl is the 
longitudinal component in the direction of wave 
propagation along the surface. Here we prefer to 
be more general and for that reason we have 
introduced a local surface normal n, which is 
referred to by the index z in Table 1. This means 
that the amendment only can be used if we know 
the direction of wave propagation along the 
surface. This is not always known, but luckily in 
most antenna problems the direction of wave 
propagation is well known.  



We will now study field solutions obtained 
analytically and numerically for two illustrative 
cases, plane wave scattering from an EBG 
cylinder, and radiation from a horizontal dipole 
over an EBG surface. The purpose is to visualize 
the anomaly appearing for the latter case, and to 
show that the proposed amendment gives results in 
agreement with numerical simulations which 
include all the details of the practically realized 
EBG structure. 
 

IV. SCATTERING FROM CYLINDER 
WITH EBG SURFACE 

In order to understand the characteristics of 
the DB boundary and confirm our assessments, we 
first compare its behavior with other canonical 
surfaces. The series solutions for the scattering 
from circular cylinders are considered in this 
section. The scattering from a DB circular cylinder 
due to the normal plane wave incidence is found to 
be exactly the same as the scattering from a 
circular cylinder of PEC/PMC strips directed 
longitudinally parallel to the cylinder axis 
[14][15]. Also, for plane wave under grazing 
incidence (along the cylinder axis) the scattering 
from a DB cylinder is exactly the same as for a 
cylinder with circumferentially directed PEC/PMC 
strips. However, these exact equalities are only 
true if the undefined boundary condition is 
neglected at the point along the cross section of 
the cylinder where the wave has normal incidence 
at the DB boundary itself. It is here argued that 
this point can be neglected because it represents an 
infinitesimally small part of the complete 
circumferential boundary. It should also be 
emphasized that the two series solutions of the 
PEC/PMC cylinders were obtained by TE/TM 
decomposition, and that they were verified against 
2-D method of moment solutions for TE and TM 
cases separately. The results are shown in Figure 
1. We see that the DB boundary behaves exactly 
as a soft surface for the two incidences. For 
normal incidence the longitudinal PEC/PMC strips 
define a soft surface, and for grazing incidence the 
circumferential strips do.  

 

 
(a) 

 
 

 
(b) 

 
(c) 

Fig. 1. Echo width of the circular cylinder 
with geometry shown in (a) for TE and TM cases, 
i.e. σφ  and σθ , respectively. The DB boundary 
condition is compared with (b) longitudinal 
PEC/PMC strips forming a circular cylinder due to 
normal plane wave incidence, and (c) 
circumferential PEC/PMC strips forming a 
circular cylinder due to grazing plane wave 



incidence. Curves not seen explicitly coincide 
identically with their counterpart. Note that the 
undefined DB boundary conditions for normal 
incidence were neglected in these results. 

 
In order to compare the DB boundary 

conditions to a realistic EBG surface we computed 
the scattering from a cylindrical mushroom surface 
by using CST Microwave Studio [16]. The 
dimensions of the mushroom structure are w = 
2.25mm, P = 2.4 mm, t = 1.6 mm, εr = 2.2 and the 
vias diameter is 0.36 mm. The frequency is 12 
GHz and the radius of the PEC cylinder is 20mm. 
The results are shown in Figs. 2b and c, and we 
see that there is quite good agreement between the 
CST results for the practical surface and the series 
solution for the DB surface, although the TE-case 
deviates with a constant factor of nearly 3 dB. 
Furthermore, we have calculated the equivalent 
blockage width for this DB surface case (Figs. 2d 
and 2e). The equivalent blockage width (Weq) is a 
complex-valued parameter (introduced in [5]) that 
represents the width of an ideal shadow which 
produces the same forward-scattered field as the 
cylinder that is being observed (in our case, a DB 
cylinder). Only the real part of Weq is considered 
here (Re(Weq)). The parameter similar to the 
equivalent blockage width is the scattering cross 
section per unit length (SCS). It is defined as a 
ratio of power density of all scattered spatial 
harmonics and the intensity of the incident 
Poynting vector. Both the Weq and SCS are the 
quantities that actually show how wide the 
cylinder appears for the electromagnetic waves. 
For lossless scatterers the SCS is equal to -
2·Re(Weq) according to the forward scattering 
theorem, being discussed also in [5]. This relation 
was verified by computation of both SCS and Weq 
to be satisfied also for cylinders described with 
DB boundary conditions, therefore there is no 
leakage of energy present. However, this non-
existing leakage problem is in the present case due 
to the fact that we did not account for the special 
normal incidence, thereby avoiding that the DB 
boundary conditions are not defined for normal 
incidence. 

 
(a) 

 
(b) 

 
(c) 



 
(d) 

 
(e) 

Fig. 2. (a) Geometry of EBG mushroom 
cylinder with dimensions given in the text, and 
results obtained for the ideal DB cylinder (with 
neglected normal incidence problem) compared to 
results for the mushroom cylinder obtained by 
CST Microwave Studio; (b) Echo width for TM 
polarization at 12 GHz, and (c) the same for TE 
polarization, (d) equivalent blockage width and 
SCS as a function of frequency calculated for ideal 
DB cylinder and (e) comparison of equivalent 
blockage width of ideal DB cylinder and EBG 
mushroom cylinder (TE and TM polarizations 
computed using CST Microwave Studio) 

 
V. RADIATION FROM DIPOLE OVER 

EBG GROUND PLANE 
In order to investigate properties of the DB 

boundary conditions further we consider radiation 
from a horizontal dipole over a planar EBG 
surface (see Fig. 3a). Using the plane-wave 
spectral-domain method in the same way as in 

[18]-[19], it is easy to determine the Green’s 
functions of the DB boundary, see the Appendix. 
The Gxx component of the dyadic Green’s function 
becomes 
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and equivalently for the other components. From 
this, the far-field radiation pattern of the horizontal 
dipole can be determined and is plotted in Fig. 3b. 

 
(a) 

 
(b) 

Fig. 3. Horizontal dipole over original DB 
boundary, (a) geometry, (b) far-field radiation 
pattern. 
 
The working frequency is 12 GHz, and the short 
dipole is located 0,5 mm above the DB boundary. 
It can be seen that the E-plane and the H-plane do 
not match at all for θ = 0° , which is wrong as E-
plane and H-planes coincide for θ = 0° . This is 
therefore an anomaly produced by the the DB 
boundary condition not being defined for θ = 0°. 
The explanation to the particular results still 
achieved is given below. In the E-plane (i.e. for ky 
= 0), the structure is equal to the x-directed dipole 
over the transverse (y-directed) PEC/PMC strips 



[18]. For the specific case  ky = 0, corresponding to 
θ = 0°, we obtain   
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The same Green’s functions are obtained in [18] 
where the Green’s functions of a dipole over the 
PEC/PMC strips surface are derived. However, in 
the H-plane (kx = 0) we have the x-directed source 
over the x-directed PEC/PMC strips, which is the 
same situation as the horizontal dipole over the 
PEC plane (since the x-component of H-field is 
zero, the H-field “does not see” the PMC strips). 
The corresponding Green’s function is simply 
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We readily see that these two values are not equal 
for θ = 0°, i.e. when kz = k, thus the anomalous 
behavior. 
 
A. The amended DB boundary 

The EM waves that are excited by the 
horizontal dipole can be represented as a sum of 
TM and TE plane waves. The problem with the TE 
waves is that they “feel” that the EBG surface acts 
as a PEC structure, which is not correct for angles 
close to normal incidence. We will now first use a 
more general the amended DB boundary condition 
than that in (1), i.e. 

 
,0=⋅+ ln HH α     (5) 

 
where  Hn  and  Hl denote the normal and the 
longitudinal component of the magnetic field, 
respectively,  and α is a coefficient (still to be 
determined). Since the direction of propagation can 
be determined from kx and ky spectral variables, the 
normal and longitudinal components of the 
magnetic field are simply 
 

y
y

x
x

lzn H
k

H
k

HHH
ββ

+== ,     (6) 

 

Only the TE polarized wave is of interest (reflection 
of TM waves is described with the boundary 
condition Ez = 0). Without loosing generality let us 
assume that the wave is propagating in the y-
direction, and that θ  is the angle of incidence (θ  is 
angle towards z-axis). Therefore, we can write 
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The TE wave can be described with (R is the 
reflection coefficient) 
 

zjkzjk
z

zz eReH −⋅+=   (8) 
 
and consequently at  z = 0 we can now write  Hz = 1 
+ R. The y-component of the H-field is equal to 
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and again at  z = 0 we obtain Hy = (kz/ky)(1 – R). 
The modified DB boundary condition is now equal: 
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Therefore, the reflection coefficient is equal: 
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Since we are considering reflection from a 

surface we expect |R| = 1. Therefore, the only way 
that |R| = 1 for all incidence angles is that α is 
purely imaginary number. We will simply define 
coefficient α  as j−=α . Note that the value of the 
reflection coefficient is now R = +1 for θ  = 0º 
(PMC for normal incidence) and R = -1 for θ  = 90º 
(PEC for grazing incidence, i.e. soft surface for 
grazing incidence). We have already in (1) referred 



to this special choice of j−=α as the PMC-
amended DB boundary condit

The far-field radiation pattern
ion. 

 of a horizontal 
dipole over a surface described with the corrected 
DB boundary conditions is given in Fig. 5. Like in 
the previous case, the working frequency is 12 
GHz, and the short dipole is located 0,5 mm above 
the DB boundary. It can be seen that there now is 
no problem with singularity at θ = 0°, i.e. the E-
plane and the H-plane now match each other at θ = 
0°. Furthermore, the radiation pattern reveals that 
the surface acts as a PMC for angles around normal 
incidence and that it stops propagating waves for 
angles close to grazing incidence. 

 
Fig. 5. Far-field radiation  a horizontal  pattern of
dipole over a surface described with PMC-amended 
DB boundary conditions. 

 

 
(b) 

 
(c) 

Fig. 6. Far-field radiation pattern of a horizontal 
dipole over the PMC-amended DB and EBG 
surfaces at 12 GHz; (a) geometry, (b) E-plane, (c) 
H-plane. 
 
Fig. 6 shows comparison of the radiation pattern 
of the short dipole over the EBG surface realized 
by the same mushroom structure as in the previous 
case in Section IV. The working frequency is 12 
GHz, i.e. the considered frequency is in the 
beginning of the stop band which is between 11 
and 15 GHz. It can be seen that there is a good 
agreement between the results for the mushroom 
structure (modeled with the CST Microwave 
Studio) and for the canonical EBG surface 
(modeled with the PMC-amended DB boundary 
condition) at the best frequency of 12 GHz in the 
beginning of the bandgap. The frequency 
dependences of the radiation patterns calculated 
with both, amended DB boundary conditions and 
CST, which clearly show that the matching is the 
best at 12GHz, are shown in Fig. 7. 

(a) 



 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 7. Frequency dependence of the far field 
radiation pattern for the case of a dipole over 
planar EBG surface; (a) E plane and (b) H-plane 
calculated with PMC-amended DB boundary 
conditions, and (c) E plane and (d) H plane 
calculated with CST Microwave Studio. 
 

VI. RADIATION FROM A DIPOLE 
OVER A CYLINDRICAL PERIODIC 

STRUCTURE 
We would also like to determine how the 

curvature of the surface influences both the 
original DB and the PMC-amended DB boundary 
conditions. In order to do that we have 
investigated the radiation of an axially oriented 
dipole over the cylindrical EBG surface. The 
problem is described in the classical cylindrical 
coordinate system: the dipole is z-directed and the 
surface is described with its radius (we have 
considered the structure with radius rDB = 21.6 
mm). The working frequency is 12 GHz and the 
dipole height over the DB boundary is 0,5 mm. 
The problem is analyzed using the spectral-domain 
approach, similarly to the planar case (the details 
can be found in [19]). The obtained radiation 
pattern is shown in Fig. 8. It can be seen that there 
is no problem with singularities for the direction 
normal to the structure (θ = 90° and φ = 0° for the 
considered structure), i.e. both E-plane and H-
plane patterns match in that direction. However, 
the radiation pattern is not the one we would 
expect from a dipole over an EBG surface. In 
more details, the PEC component of the DB 
boundary prevails over the PMC component, i.e. 



for the direction normal to the structure the 
structure acts more like a PEC. 

 
Fig. 8. Far-field radiation pattern of an axially-
directed dipole over the cylindrical original DB 
boundary. 
 
If we apply the PMC-amended DB boundary 
conditions (defined with the equation (1)), the 
situation is quite different. In order to compare the 
DB boundary with a realistic EBG surface we 
have used the same EBG structure like in the 
previous case; the working frequency is again 12 
GHz. In Fig. 9 we have compared the radiation 
patterns obtained with corrected DB boundary 
conditions and with the CST Microwave Studio. It 
can be seen that the agreement is very good, i.e. 
the PMC-amended DB boundary condition works 
very well in describing the main and desired 
characteristics of the EBG surface. Naturally this 
is only valid inside the frequency band where the 
considered structure has a bandgap property. This 
is clearly seen by viewing Fig. 10 which shows the 
frequency dependence of this structure, calculated 
using CST Microwave Studio. 

 
(a) 

 
(b) 

 
(c) 

Fig. 9. Far-field radiation pattern in the azimuth 
plane of a dipole over the cylindrical PMC-
amended DB, and EBG surfaces, at 12 GHz; (a) 
geometry, (b) axially-directed dipole, (c) 
circumferentially-directed dipole. 

 
(a) 

 



 
(b) 

Fig. 10. Frequency dependence of the far field 
radiation pattern for the case of a dipole over 
cylindrical mushroom EBG surface (calculated 
using CST Microwave Studio); (a) axial dipole 
case, (b) circumferential dipole case. 
 

VII. CONCLUSIONS 
The paper has summarized previously defined 
canonical surfaces for use in electromagnetic 
computations and conceptual studies. The PEC is 
well accepted and quite extensively used. Similar 
situation is also with the PMC, at least in 
theoretical work and as symmetry planes in EM 
computations. However, in most computational 
codes the PMC cannot be used for finite and 
arbitrary shapes and it can not be curved. The 
authors hope that this overview can stimulate 
software vendors and developers to include 
arbitrarily shaped PMCs in their codes. This is 
easily done and will add important capabilities. 
Similarly, it would be useful if arbitrarily shaped 
PEC/PMC strip grids with arbitrary strip 
orientations could be included for general usage. 
The PEC/PMC strip grids represent soft and hard 
surfaces and can open up for more fundamental 
studies and principally new hardware solutions. 
The PEC/PMC strip grid is also easy to implement 
as illustrated in [8].  
The newly introduced DB boundary has 
characteristics similar to an ideal EBG surface, i.e. 
an isotropic soft surface, but the present paper has 
highlighted some anomalies that need to be 
resolved by more research before they can be used 
in general codes. For a new canonical surface to be 
meaningful we must require that it is simple and 

general, and has interesting and useful 
characteristics. We have proposed a simple 
amendment in equation (1), referred to as the 
PMC-amended DB boundary, that seems to work, 
but it is limited in the sense that it requires 
knowledge of the propagation direction of the 
waves along the surface. This limitation is not 
severe when applied in analytical and semi-
analytical modeling like in the present paper. 
However, for use in general 3-D Moment Method, 
FDTD and FEM based field solvers a more 
general amendment is needed.  
There is also the previously introduced so-called 
D´B´ boundary, but this has no known practical 
counterpart and therefore there is no particular 
interest for this surface at the moment. The D’B’ 
boundary suffers from a similar anomaly as the 
DB boundary and also needs to be corrected. 
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APPENDIX 
 

The sketch of the structure is given in Fig. 3. 
The normal EM field component has a form: 
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The transverse components can be calculated as: 
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The DB boundary conditions at z = 0 

straightforwardly define two out of six unknowns: 
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The remaining four boundary conditions are:  

 



.at 

~~~
0~~
0~~
0~~

hz

JHH
HH
EE
EE

xyy

xx

yy

xx

=

−=−
=−
=−
=−

−+

−+

−+

−+

 (A4) 

From here it is easy to derive all EM field 
components using equations (A1) and (A2). For 
example, the Ex component is equal to 
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The four equations with four unknowns are 
“easily” analytically solved giving the following 
results: 
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