Positive and Negative Quality Effects in Distributed
Scrum Projects
An industrial case study

Master of Science Thesis in the Programme Software Engineering and
Technology

ERIK TEVELL
MATHIAS AHSBERG

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG

Goteborg, Sweden, June 2011

The Author grants to Chalmers University of Technology and University of Gothenburg the
non-exclusive right to publish the Work electronically and in a non-commercial purpose make
it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author has
signed a copyright agreement with a third party regarding the Work, the Author warrants
hereby that he/she has obtained any necessary permission from this third party to let Chalmers
University of Technology and University of Gothenburg store the Work electronically and
make it accessible on the Internet.

Positive and Negative quality effects in Distributed Scrum Projects
An industrial case study

ERIK TEVELL
MATHIAS AHSBERG

© ERIK TEVELL, June 2011.
© MATHIAS AHSBERG, June 2011.

Examiner: Associate Professor Helena Holmstrom Olsson

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering
SE-412 96 Goteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Goteborg, Sweden June 2011

Positive and Negative Quality Effects in Distributed Scrum Projects:
-An Industrial Case Study

Erik Tevell, Mathias Ahsberg
Chalmers University of Technology
Software Engineering and Technology
{tevelle, ahsberg } @student.chalmers.se

Abstract

As more and more software development projects uti-
lize agile methods in a distributed environment, new pro-
cess models have emerged. Distributed Scrum has increas-
ingly gained popularity and best-practices state that the In-
tegrated Scrums model in combination with eXtreme pro-
gramming practices should be applied to maximize the soft-
ware quality. However, it remains unclear if it is suitable
for all types of distributed projects.

Previous case studies within the field have focused on
how to implement Scrum in a distributed environment and
code velocity compared to other process models. However,
rather few studies have taken the quality effect as a view-
point.

This paper presents a combination of a literature study
and an industrial case study with the purpose of finding
aspects and practices that effects the software quality in a
distributed project where Scrum is utilized. This was done
through a root cause analysis with an Ishikawa diagram as
a tool, where the quality effects were mapped to different ac-
tivities. Aspects that have had positive or negative quality
effect in the project examined were analyzed and compared
with literature. In addition, challenging aspects in a dis-
tributed environment are discussed and recommendations
are presented.

Finally, this paper concludes that when there exist a
substantial amount of non-standardized legacy code, it is
preferred to utilize the Scrum of Scrums model due to the
decreased dependency between the Scrum-teams. This, to
fully benefit from the positive quality effects that Scrum pro-
vides.

1. Introduction

Scrum has for the past decade gained popularity as an
alternative to organize the development of software [28].

In combination with benefits of offshoring or outsourcing,
this has lead to distribution of otherwise co-located teams
[15]. Scrum is originally designed to reach hyperproduc-
tivity for teams not geographically spread and increase the
software quality. However, distributed projects have in-
creasingly implemented this process with various results
[29]. Distributed Scrum is a relatively new phenomenon
and previous studies have mainly focused on how to imple-
ment Scrum methods in a distributed environment. How-
ever, there exist rather few published studies that examine
the software quality effects of using Distributed Scrum.

This paper presents an industrial case study which an-
alyzes the software quality effects when introducing Dis-
tributed Scrum in a product organization. In addition,
the software quality attributes correctness and understand-
ability are especially considered. Moreover, best-practices
within the field state that the Integrated Scrums model com-
bined with eXtreme Programming (XP) practices can reach
the same productivity and software quality as co-located
teams [27].

The research questions for this paper are if the Inte-
grated Scrums model is applicable in a distributed project
with a legacy code constraint and how agile practices can
affect the software quality in a distributed environment.

The disposition of this study is structured as follows.
First, deeper knowledge within the distributed Scrum field,
agile practices, quality attributes, and related work are pre-
sented. Later the case study method is described followed
by a presentation of the main findings. Finally, the results
are analyzed and positive and negative quality effects when
introducing Distributed Scrum are presented.

2. Background

The following section first presents definitions of soft-
ware quality relevant for this paper followed by a back-
ground to distributed software development. In addition,
agile practices and their quality effects are described.

2.1. Quality

Defining quality is a rather complex task due to the
fact that there exist a wide range of explanations of the
term. The International Standards Organization (ISO) de-
fines quality in their ISO 9000 standard as “the totality of
characteristics of an entity that bear on its ability to sat-
isfy stated or implied needs“. Stated needs are referred to
as requirements set by the customer, whilst implied needs
are requirements identified by the contractor. Moreover, Ju-
ran [12] defines quality as those features that meet customer
needs and argues that quality is both oriented to income
and costs. Higher quality will require further investments
and has therefore an increased cost. However, high quality
also leads to less rework and lower customer dissatisfaction,
which will contribute to a lower cost.

Even though the definitions of quality stated above can
be applied within the software engineering field, more spe-
cific clarifications of software quality exist. Meyer [17] di-
vides quality into different attributes, e.g. correctness, re-
liability, usability etc, which together represent the over-
all quality of the software. In addition, Sommerville [25]
claims that software quality is a management process to
minimize defects and ensure that the software reaches the
required standards for the quality attributes.

When categorizing different software quality factors,
they are divided into two main groups; internal- and ex-
ternal quality [2, 9]. The internal quality focuses on the
code itself, e.g. portability or maintainability, and are de-
scribed from the developers‘ point of view. External quality
attributes on the other hand, focus on quality from the users*
point of view, e.g. correctness and reliability.

The correctness quality attribute is defined by McCall et
al. [16] as the “extent to which a program satisfies its speci-
fications and fulfills the users mission objectives“. Priestley
[22] argues that correctness shall be viewed both as the re-
lationship between the program and its specification and as
the relationship between the program and its users. The pro-
cess of checking that a software corresponds to its specifi-
cation is commonly known as verification, while validation
ensures that software artifacts meet the actual requirements
from the users [31].

Finally, McCall et al. [16] state that the understandabil-
ity attribute is defined by how well both the overall logic of
the software and the code itself are understandable. They
further argue that when using, maintaining or changing the
software good insight is required.

2.2. Outsourcing and Offshoring

Even though agile development processes are not de-
signed for distribution, they have been implemented in sev-
eral outsourced and offshored projects [27]. The defini-

tion states that instead of using own resources, outsourc-
ing means that an external company performs these tasks
or services. Offshoring on the other hand, means that re-
sources located in another country are used, but still belong
to the same organization. Furthermore, outsourcing and off-
shoring are often associated with India or China [15].

There are several reasons why companies choose to out-
source or offshore part of their development. However,
some motivations are more common. First, to reduce costs
through cheaper labour. The average hourly rate in devel-
oping countries, e.g. India or China, can be less than 10
percent of those in western countries and IT-projects can
have decreased their labour cost by 40 percent after three
years [15]. Second, to be able to capture talent not avail-
able locally and access specialized skills or facilities. Such
resources could be more costly locally and may only be
needed temporary or occasionally. Finally, the projects can
more easily increase the development speed and reduce the
time to market [26].

Close collaboration and instant communication are the
basic philosophies of agile software development methods.
However, these aspects might be impaired by introducing
offshoring or outsourcing in agile projects [27].

2.3. Distributed Scrum Models

Scrum is a software development process that also takes
project management into consideration. This, through both
managing and coordination of resources, and through short-
and long term planning [15]. Scrum is especially designed
to increase both speed of project progress and flexibility in
product development, whilst also improve the overall qual-
ity. In combination with other agile development practices,
the software quality could be improved even further [3].
Short iterations and direct communication are concepts that
Scrum empathizes. This will minimize the risk of deliv-
ering a product that does not meet changing requirements
introduced during development, hence improve the correct-
ness. Furthermore, these concepts will contribute to faster
reaction in a rapid changing environment [7]. In addition,
Scrum is designed to enhance energy, focus, clarity and
transparency to software development teams [30], which
makes it well suited for distributed projects.

The combination of outsourced or offshored develop-
ment and Scrum is often referred to as Distributed Scrum,
which can be implemented in three different ways [28].

Figure 1. Isolated Scrum-teams [30]

First, Isolated Scrums, where the teams are isolated from
each other geographically. Often the offshored teams are
neither cross-functional, as illustrated in Figure 1, nor uses
agile development processes. The requirements can for ex-
ample, be written in one isolated team, sent to another for
implementation, and tested by a third team. This has been
proven to cause significant communication problems be-
tween the sites [28].

N K SN

Figure 2. Scrum-teams integrated though a
Distributed Scrum of Scrums [30]

Second, Distributed Scrum of Scrums [30], where the
teams are distributed geographically, but unlike the Isolated
Scrums, they are synchronized through overhead Scrum of
Scrums meeting with all the ScrumMasters from the dif-
ferent teams of the project. The project’s tasks are di-
vided between the cross-functional but geographically iso-
lated teams, linked together and coordinated through the
Scrum of Scrums. This is the recommended practice by the
Scrum Alliance [28]. As Figure 2 shows, the teams are geo-
graphically isolated but integrated by the Scrum of Scrums
meeting, represented by the overlapping areas.

Figure 3. Totally integrated Scrum-teams [30]

Finally, Integrated Scrums [30], where all teams are both
geographically distributed and cross-functional, as visual-
ized in Figure 3. Each Scrum-team have members at mul-
tiple sites, i.e. each employee is both part of a distributed
team and a physical workplace. This can lead to increased
transparency and information distribution with performance
close or equal to co-located teams. The integrated Scrum
model is recommended to be implemented by experienced
Scrum-teams at multiple sites to function accordingly [30].

2.4. Scrum practices

Scrum also takes some project management aspects into
consideration, where three practices focus on planning, im-
plementation and follow-up. First, the daily Scrum or the
daily stand-up, were each Scrum-team starts their day with
a 15 minutes meeting containing project status update [27].
All members answer three questions; “What have you done

since yesterday? “, “What are you planning to do today?
“and “Do you have any problems that would prevent you
from accomplishing your goal? ““. This practice have shown
to increase the transparency and enhance the prioritizing of
work, which can lead to an increased understandability of
the software [8].

Second, in the beginning of each Sprint cycle the Sprint
planning meeting is held[27]. The team selects the tasks
that should be implemented during the next Sprint and com-
pletes the Sprint backlog with details. Moreover, the Sprint
planning meeting should not take longer than eight hours.
This practice enhances the overhead of the Sprint and in-
creases the correctness of the software [21].

Finally, at the end of each Sprint a four hours long Sprint
review meeting is conducted [27]. Here, the Scrum-team re-
views the work that was or was not completed and presents
a demonstration to the stakeholders of all the implemented
tasks. In addition, this practice adds continuous feedback
from the customers after each Sprint, which enables faster
adaptation to their current needs, i.e. enhancement of the
software‘s correctness [21].

2.5. XP-practices

There are several agile practices used in the combination
of Scrum and XP. In the following section the most common
ones [14] are briefly described together with their software
quality effects.

First, small releases is one of the most fundamental agile
practice where the development cycle is reduced as much as
possible [3]. At each release only the most valuable busi-
ness requirements are implemented. In addition, the release
should be a complete and working software where no in-
cluded features are only partly implemented. Furthermore,
since customers have an ability to make changes during the
development to match their current needs, it can be chal-
lenging to deliver a product that is correct. However, the
short cycles enable a possibility to respond to modifications
in the requirements, which leads to an enhanced correctness
of the product [18].

Second, the practice of customer involvement empha-
sizes that the customer should be part of the team and work
close to the developers. This, to gain both faster feedback
during the development and enable customers to continu-
ously perform acceptance tests [3]. Customer involvement
will lead to an improved correctness of the deliverables [18]
and speeds up the development with faster response to un-
clear features [3].

Third, the collective code owmnership practice, where
anyone who sees an opportunity to improve or add value
to any portion of the code, is required to do so at any time.
It is in everyone‘s best interest to continuously improve the
software, which leads to a collective responsibility and an

enhanced knowledge sharing. This, generating better inter-
nal software quality [3].

Forth, implementing the practice of coding standards
implicates both following defined coding rules and to use
standardized techniques. This improves both the under-
standability of the code within the project and enhances the
possibility to practice collective code ownership [3].

Fifth, the test-driven development practice roughly states
that developers first write the unit-test for a feature, then
only implement the code necessary to pass that test. This,
leading to both an improved simplicity of the code and an
enhanced testability of the software [3]. Several case studies
evince that the external software quality can be substantially
improved by implementation of this practice. Results have
shown that the number of defects reported by customers
have decreased by up to 90 percent [5, 19]. Furthermore,
Sfetsos et al. [24] conclude that a majority of the published
studies related to the subject have stated that the practice
will mainly improve the external quality.

Sixth, continuous integration, where small pieces of
code or features are frequently integrated and tested against
the existing software. This practice inverse the traditional
way of applying quality control after completing the devel-
opment, by continuously perform test activities [3]. More-
over, this will detect bugs at an early state by automatically
running the test-suit on a regular basis. Continuous integra-
tion will decrease time spent on bug-tracking and make it
possible to resolve critical issues before the software is re-
leased, which in turn will lead to an improved external qual-
ity [10]. However, the success of using continuous integra-
tion is heavily dependent on how thoroughly the software is
tested.

Finally, the practice of pair programming states that two
programmers share one computer and work together on one
task at a time, i.e. one person writes the code and focuses on
the implementation of the feature, whilst the other person
inspects the code and thinks more strategically and over-
head [3]. Moreover, studies have shown that this practice
can improve the internal code quality and decrease the num-
ber of reported bugs due to constant code review [4, 6].
In addition, pair programming can especially enhance the
quality, in comparison with solo programming, when solv-
ing challenging or complex tasks [1].

3. Related work

The following section presents empirical findings rele-
vant for this paper. However, rather few case studies have
combined Distributed Scrum with XP-practices and focused
on the quality effects. Therefore, the findings are further di-
vided into two separate subsections.

3.1. Distributed Scrum

There have been several case studies conducted within
the Distributed Scrum field, where prior studies mainly have
focused on how the distributed teams can reach a hyperpro-
ductive state [15, 20, 28]. The quality aspects in previous
studies are often relatively vague on which quality attribute
that is considered. Paasivaara et al. [20] have focused on
working software after each Sprint as a measurement of
software quality when they describe the perceived quality
improvements in Distributed Scrum projects.

Moreover, Sutherland et al. [26, 28, 29, 30] discuss soft-
ware quality where the focus lies within code-quality, errors
per lines of code or number of issues mapped to a specific
code-error. Their conclusion, concerning software quality,
describes the improvement by using Distributed Scrum con-
tra other development processes. In addition, their main
finding is the importance of well working Scrum meet-
ings. They advocate daily stand-up meetings for the dis-
tributed Scrum-team, during overlapping work hours, were
all members can participate. Furthermore, meetings at the
start of the day for the different sites are recommended.
Sutherland et al. also claim that this will lead to an in-
creased transparency within the project, balance and under-
standing of cultural differences, clearer communication, in-
creased team-feeling, and the ability to cope with changing
requirements. Tools that have been used to reach a sufficient
communication level within the teams are e-mail, IP tele-
phony, and video conferencing. To increase the communi-
cation even further and reduce the us vs. them-feeling, they
recommend to initially let the Scrum-teams be co-located
and have continuous visits between the sites throughout the
whole project.

In addition, Sutherland et al. [26, 28, 29, 30] emphasize
the importance of a well working test strategy. The stud-
ies show that best-practices in Distributed Scrum are to let
developers write unit tests using test-driven development.
A separate test team develops scripts for automated testing
and performs, in collaboration with the product owners, the
manual testing. Moreover, configuration management with
hourly automated builds from one central repository and ag-
gressive refactoring when needed, is recommend.

However, these case studies do not specify how the qual-
ity attributes have been measured or, in some cases, even
which attributes that have been considered.

3.2. Distributed XP

The Scrum Alliance states, as mentioned i section 2.3,
that best-practices within the field are the Scrum of Scrums
model [30]. However, recent studies claim that the In-
tegrated Scrums model combined with XP-practices will
reach productivity and software quality close or equal to

co-located Scrum projects [27]. In addition, some of the
practices need adaptation to work properly in distributed
projects [29].

Previous case studies within the field have identified
some common challenges when adopting XP-practices in
a distributed environment. Kircher et al. [13] state that
small releases, collective code ownership, coding standards
and test-driven development can be performed independent
of the fact that the teams are distributed or not. Further-
more, they argue that customer involvement, continuous
integration and pair programming need adaptation. Since
pair programming originally is designed to be used by co-
located developers, Kircher et al. suggests that remote pair
programming is practiced instead. This is done through
video conferencing and application sharing support in the
IDE. In addition, Sutherland et al. [28] point out that cul-
tural differences can introduce collaboration problems with
conflicting behaviours, processes, and technologies. More-
over, according to Kircher et al. [13] customers should be
integrated with the distributed teams through video link,
where the “on-site customers‘‘ becomes “virtual on-site cus-
tomers®. Nevertheless, Kussmaul et al. [15] state that since
requirements change rapidly in the Scrum process, system-
or domain knowledge on the different sites may vary, which
is further aggravated by the off-site customers. Finally,
continuous integration should be implemented as a central
repository accessible by all teams and team-members.

However, these case studies do not focus on the quality
aspects of distributing the XP-practices.

4. Methodology

The research presented in this paper is a combination of
a literature study and a single case study. Initially a litera-
ture review within the Distributed Scrum and quality field
were conducted. An industrial case study which mainly fo-
cused on positive and negative software quality effects were
then performed. This to later make a root cause analysis of
quality influencing aspects.

As a result of the literature review an Ishikawa dia-
gram was constructed based on the 6M model [11] gener-
ating six main categories; people (man-power), tools (ma-
chines), process (method), equipment (materials), environ-
ment (mother nature) and measurement. In addition, com-
mon challenges found in the literature were placed as pos-
sible causes under the different categories in the diagram,
shown in Figure 4.

The case study was conducted in a large-scale project
through a series of qualitative interviews and document in-
spections. The project is distributed between Sweden and
India and uses Scrum as software development method.
The combination of Scrum and offshore resources made the
project suitable for the needs of our master thesis, since the

introduction of both Scrum and the distributed environment
was made simultaneously. The company involved is a large
global business and technology company who focuses on
both in-house development and consulting, more detailed
description in section 4.1.

The data collected in this case study is mainly based
on semi-structured interviews, where the questions were
originated from the result of the literature study. Ten in-
terviews were conducted with people from separate parts
of the project, with various roles and at both sites. This,
to gain a broad perspective of the project and to be able
to triangulate differences and commonalities. The inter-
views were mostly carried out with face-to-face meetings,
but telephone- and Skype interviews were also performed.
Finally, all the interviews were recorded and transcribed.
This, to gain deeper knowledge, maximize the data col-
lected and to make the root cause analysis easier to per-
form. In addition to the interviews, documents for role-
descriptions, code checklists, guidelines and protocols from
retrospective meetings were also collected and inspected.
Furthermore, e-mail conversations have been used to com-
plement missing data and clarify uncertainties.

A data source triangulation [23] of the collected docu-
ments and interview results was performed to increase the
precision of the research. This, to find commonalities and
differences among the various sources. Moreover, the data
was analyzed and broken down into different categories
corresponding to the Ishikawa diagram from the literature
study. The found quality effects were further divided into
the root causes to narrow down influencing aspects, which
is presented in the result section.

Finally, the positive- and negative effects were analyzed
and compared against best-practices within the field. In ad-
dition, the Ishikawa diagram was revised with influencing
aspects found in the case study, generating a new diagram
where the effect of each aspect are presented.

4.1. Case description

The case study was conducted in a large-scale Swedish
project at Logica Sverige AB. The company is part of Log-
ica corporate group, which is a global organisation with
around 39,000 employees in 36 countries. The Swedish sec-
tion of the company operates mainly within the business-
and technology consulting segments in various industries.
In addition to this, they also provide several products that
are developed in-house.

The product developed in the project examined in this
case study is a market-driven enterprise resource planning
software. It was originally developed by Logica as a desk-
top application in the mid-1980s and since 2000 a web-
based version of the software have been offered to cus-
tomers. The customer base mainly consists of municipal-

Tools

Issue tracker

Knowledge sharing
Continuous integration

Team formation ——»

Test-tools 4\

Domain expert network

/
XP-practices ——»/

«— Distributed Scrum

Scrum-practices

/

/

\ﬁWorkload
/4 > Quality effects

Work placeA\
/

Pre-release quality ——»

Communication tools —»/

«—— Knowledge sharing tools

/

Post-release quality

Figure 4. Ishikawa diagram over quality affecting activities based on the literature study

ities and mid- to large-sized companies from a broad range
of market segments. The public sector accounts for approx-
imately 60 percent of the customer base, while the private
sector accounts for the remaining 40 percent.

The product is divided into several modules that enhance
the core functionality. However, all modules are deployed
and released as a single product, which then can be cus-
tomized by the customers to meet their specific needs. Fur-
thermore, new versions of the software are released in a six
month cycle, while minor fixes are released on a three week
basis.

Historically, an in-house developed programming lan-
guage have been used for the development of the product.
Since the shift towards a web-based platform standard tech-
niques have been utilized. However, a significant part of
the product is still dependent on non-standardized legacy
code, which complicates the maintenance. In addition, each
project includes both further development of the product
and maintenance of already released versions and extends
over a six month period, which corresponds to the product‘s
release cycle.

Prior 2002 different waterfall-methods and RUP have
been used with various result within the product develop-
ment. A decision to implement XP into a pilot project was
made in 2002, which was a result of previous search for a
suitable agile method for the product organization. Accord-
ing to management, the change of development process in
the pilot project lead to an improved software quality and
a better overview of the project‘s progress. In addition, de-
velopers perceived an enhanced problem solving capability
and an increased collaboration. Although the overall expe-
rience of the implementation of XP was good, some prac-

tices did not suit the team, e.g. pair programming was too
intense and some irritation amongst the developers arose.
Finally, management experienced XP more as a collection
of practices rather than a comprehensive developing process
model.

A strategic decision from the group executive board to
use offshore resources throughout the whole organization
in combination with the previous overall positive experi-
ences with agile developing methods, lead to a demand for
a suitable developing process. Distributed Scrum was intro-
duced as an option and initially implemented in a pilot par-
tial project in 2008/2009. An external firm with Scrum ex-
pertise was consulted to help with the implementation and
customization to fit the product development needs. Fur-
thermore, the process was rolled out incrementally through-
out the different teams.

There are approximately a total amount of 85 members
included in the project and a majority of them are seen
as fixed resources and included in forthcoming projects.
The project organization is divided into three major groups;
Group A, Group B, and The Automated Test-group, as clar-
ified in Figure 5. Group A and B are further divided into
smaller Scrum-teams with 10-12 employees each. Team
Al is an integrated Scrum-team with members in both Ban-
galore and Gothenburg, whilst Team A2 only is located at
one site, the Gothenburg office. In Group B there are three
Scrum-teams, Team B1 and B2, located in Sweden, and B3,
located in India. Moreover, B2 and B3 develops the same
functionality, i.e. share both Product- and Sprint backlog.
In addition to these teams, an isolated unit mainly con-
taining offshore resources exists with a responsibility for
automation of regression tests. Generally, the Distributed

Group A

Product Owner ‘ ‘Al. Scrum-team in both Bangalore and Gothenburg ‘

‘AZ. Scrum-team in Gothenburg ‘

Group B

Product Owner

‘Bl. Scrum-team in Gothenburg ‘

‘BZ. Scrum-team in Gothenburg‘ ‘ B3. Scrum-team in Bangalore ‘

Automated test group

Product Owner

C1. Automated test team in Bangalore ‘

Figure 5. Project organization

Scrum of Scrums model is utilized within the project. How-
ever, the Integrated Scrums model is additionally practiced
by team Al.

5. Result

This section presents the most significant results regard-
ing software quality from the interviews and inspection of
the project documents. The results are separated by the six
categories of the Ishikawa diagram from the literature study,
as described in section 4.

5.1. Process

Since the introduction of Distributed Scrum there have
been several effects on the software quality due to the
process change. First, management have perceived an
improved correctness of the software by enable cross-
functional teams in the product development, e.g. devel-
opers and customer support are working together.

Second, management have experienced an increased
awareness of both the project- and team progress amongst
all levels within the project, which could increase the under-
standability of the product. This, as a result of the iterative
work process that Distributed Scrum provides.

Finally, Scrum of Scrums meetings have been held in
each Sprint where both ScrumMasters and product owners
have participated. However, the ScrumMaster at the Ban-
galore site have not attended, which could affect the under-
standability among members at the Bangalore site. Even
though the purpose of these meetings are to transfer knowl-
edge between the teams, they are perceived by the partic-
ipants as non-productive and are now held more occasion-
ally.

5.1.1. Scrum practices

The practice of daily Scrum is emphasised within all teams
of the project. Support and management have experienced
that the teams‘ awareness of the product‘s current state have
increased, which in turn have improved the understandabil-
ity of the software. Furthermore, management have experi-
enced that the daily Scrum has contributed to an improved
issue management and that problems can be resolved when
they occur without specific control activities. Moreover, the
co-located Scrum-teams hold their meeting in the beginning
of the day. The distributed team on the other hand have two
meetings per day, where the Bangalore part of the team join
the co-located Scrum-team on site at the beginning of their
day. In addition they also participate in a daily Scrum with
their team through video conference when work hours over-
lap.

Sprint planning meeting is conducted by all teams within
the project at the start of each Scrum cycle. Management,
support personnel and developers have perceived that these
meetings add an iterative validation that the most impor-
tant features at the time are developed, i.e. the Sprint re-
flects customers current needs, which have lead to an im-
proved correctness. Historically, attempts to involve all
team-members from both sites through video conference
have been made. However, the outcome was not satisfying,
which according to management depended on difficulties
with containing focus during the whole meeting. Today,
team-members from the Bangalore site do not participate
during these meetings, instead they receive delegated work
from the Gothenburg site.

At the end of each Sprint the Sprint review meeting is
conducted by all teams of the project. According to man-
agement, this practice will increase the awareness of other
teams‘ work and the transparency of the project, which
could lead to an improved understandability. However, the
interest in other teams* accomplished work are relatively
low, which is indicated by a low participation in the partial
project demonstrations.

5.1.2. XP-practices

There are several XP-practices utilized in the project. The
following section presents both positive and negative qual-
ity effects concerning the different practices.

The agile practice of small releases, Sprints in Scrum,
is perceived by members at all levels in the project to have
increased the overall software quality the most, particularly
the correctness. The Sprints are three weeks long and have
lead to a series of quality effects. First, management have
seen a positive effect with better overview of the project
and an increased prediction of the outcome, where both
time- and resource management have been experienced as
improved. This have lead to a faster response to chang-

ing requirements, which in turn can improve the correct-
ness. Second, the iterative testing in the Sprints have re-
sulted in a shift from a massive test-period at the end of
each project, towards a validation- and verification phase
before the release. It has been experienced by all levels of
the product organization that the software is of higher qual-
ity when entering the final test period. Finally, according
to management the ambition to have executable code at the
end of each Sprint have clarified overall project goals, in-
creased the opportunity of producing automated tests and
enabled pilot customer involvement at an early state. How-
ever, members at all levels agree to the fact that the product
is not yet releasable after each Sprint.

According to management and support personnel, the
product development has shifted from a technology-driven
perspective towards a market-driven focus as a result of an
increased customer involvement. This have lead to an im-
proved correctness of the deliverables and velocity of the
development with faster response to unclear features. End-
users have been involved during the development of some
customer-specific features. This to both gain feedback on
existing functionality and to get suggestions for improve-
ments. In other cases, support personnel have acted as cus-
tomer representatives due to their domain knowledge. In ad-
dition, a reference group with stakeholders have been con-
sulted on a regular basis during the projects to further vali-
date the features of the software.

Collective code ownership is used throughout the whole
project. Management and developers have experienced an
impaired understandability of the product since the intro-
duction of Distributed Scrum. The majority of the devel-
opers, especially at the Bangalore site, do not have suffi-
cient knowledge of the system due to the extensive legacy
code base. This have prevented the practice to be used at
its full capacity. Moreover, some problems with the col-
lective code ownership at the site in Bangalore are expe-
rienced. Affrightment of failure or exposure is mentioned
as root causes to this problem. Even though this practice
is generally utilized, management argue that it is somewhat
dependent on the developers knowledge of the system and
domain. However, developers at the Swedish site have per-
ceived that this practice continuously have improved the
software and united the responsibility for the code quality.

The practice of coding standards is applied in the
project. It is experienced by both management and devel-
opers that the understandability have been improved since
the introduction of Distributed Scrum. The standardization
of techniques has increased the opportunity for the offshore
resources to learn and gain insight into the system. In ad-
dition, documents and checklists are used to ensure stan-
dardization of the code and Javadoc is additionally applied
for detailed description when needed. The product‘s depen-
dency on legacy code, mentioned in section 4.1, are seen as

a major issue by members at all levels within the project.
Mainly due to the use of a non-standard development lan-
guage, parts which are written in Swedish and the complex-
ity of the system. Attempts have been made to translate
parts of the code into English to enable involvement of de-
velopers at the site in Bangalore. However, this was too
resource-demanding and the outcome was not as satisfying
as expected.

The agile practice of fest-driven development is not
fully implemented in the project and no experienced qual-
ity effects have therefore been noticed. Management have
perceived that there exist disagreement within the project
whether or not this practice should be utilized. However,
some developers have used test-driven development sponta-
neously. Even though unit- and integration-tests are written,
there exist no stated test-strategy within the project. The
reason for this is according to management that Distributed
Scrum lacks an uniformed best-practice. It is also perceived
that better organization and structure of test methods are
needed. In addition, management would like to perform a
more risk-based test strategy with focus on testing the right
things, rather than strive for a high test-coverage.

Pair programming is not used in any of the Scrum-teams
within the project. However, there exists an interest of im-
plementing this practice among some of the developers,
who believe that continuous code-reviews would enhance
the internal software quality of the product.

5.2. People

The integration between support personnel and devel-
opment team has according to both management and sup-
port lead to an improved work-flow for their issue man-
agement and an enhanced knowledge distribution, which
could lead to an improved understandability. Support per-
sonnel are seen as domain experts within the project and
have the responsibility to perform acceptance test activi-
ties. Due to prior frictions between support- and developing
teams, mainly concerning prioritization issues, a decision
to integrate these departments has been made. However,
the teams in Bangalore lack on-site domain experts and are
therefore dependent on the Swedish teams. Management
at the Gothenburg site perceive that there is a risk of los-
ing valuable knowledge within the project due to a high de-
gree of staff turnover in the Indian labour market in general,
which in turn could lead to a impaired understandability. In
addition, they claim that the lack of domain- and system
knowledge at the Bangalore site have lead to an uneven dis-
tribution of work.

5.3. Environment

Since the introduction of Distributed Scrum, the shift in
working environment at the Swedish site has gone from iso-
lated rooms to an open plan office. Management have per-
ceived that this has increased the communication between
team-members and added transparency in the project, which
in turn could improve the understandability. Moreover, they
argue that this have lead to a faster problem solving and de-
cision making in the development, which could lead to an
increased correctness of the software due to a more rapid
response to customers‘ current needs.

The distributed environment has however introduced
some challenges. Management have experienced that there
exists a slowness in the communication between the sites,
which could affect the understandability negatively. Devel-
opers at the Gothenburg office have occasionally preferred
to resolve problems on their own without involvement of the
distributed team. Nevertheless, continuous visits between
the sites from team-members at all levels within the project
have according to management improved the distribution of
work.

Furthermore, the internal software quality have been im-
proved according to members at all levels of the project
since the introduction of Distributed Scrum. The workload
throughout the project has shifted from an escalation close
to the release towards a more balanced pace of work. This
as a result of the shorter iterations, which is perceived to
reduce the stressful work environment.

5.4. Measurement

The post-release quality of the product is measured in
several ways within the project. Management and support
have experienced that the time spent on non-chargeable sup-
port issues has decreased drastically since the introduction
of Distributed Scrum. This further confirms that the cor-
rectness of the software have been improved. However,
management cannot distinguish if the effect is originated
from other quality improvement decisions made during the
same time period. They believe that the combination of Dis-
tributed Scrum and the introduction of automated regression
tests have contributed the most to the product‘s improved
quality. Moreover, the issues reported to the support depart-
ment are used as an indicator for the product‘s quality. Both
the number of reported issues and the time spent by support
personnel on each issue are measured. In addition, manage-
ment have seen an increased development of new features
rather than spending time on maintenance, which is another
indicator of an improved correctness.

Moreover, surveys are performed regularly with the pur-
pose to get feedback from stakeholders, which according
to management enables proactive actions. This can in turn

improve the correctness of the software due to a closer cus-
tomer involvement. These surveys cover both aspects re-
lated to the product itself, e.g. user interface, product fea-
tures etc, and how the administrators experience the quality
of the product‘s supporting services. In addition, the out-
come of the surveys are used as input for the development.
However, no direct measurements of how the end-users ex-
perience the product are performed.

5.5. Tools

The agile practice of continuous integration is empha-
sized within the project. The immediate feedback that this
practice introduces have according to developers increased
the opportunity to resolve code related issues more rapidly.
This have in turn have lead to an improved external soft-
ware quality. Moreover, unit- and integration tests are run
upon code check-in and the product is built each night based
on the latest available code. In combination with the build
is the application more thoroughly tested and reports with
test-results are generated. When the tests fail, a notification
is sent by e-mail to the developer who caused the failure.
However, the automated regression tests are not included
in the nightly builds since they are schematically initialized
manually.

5.6. Equipment

The overall communication within product organization
have decreased since the introduction of the distributed
environment, according to members at all levels at the
Swedish site. This could in turn lead to an impaired under-
standability of the software among the members. To min-
imize this problem between the sites different tools have
been utilized. Although SMS and e-mail are used, the most
popular and effective way of communication is according to
members at all levels of the project through chat or video-
chat. For group meetings videoconferences have been the
preferred way. However, management have experienced
that the booking of videoconferencing rooms at both sites
simultaneously can be an issue and therefore video-chat is
sometimes used instead.

Furthermore, project documentation are mainly stored
and managed in an issue tracking software, which can be
accessed by all project members. Support personnel and de-
velopers have experienced an increased knowledge sharing
and an enhanced transparency due to the increased informa-
tion availability. This, could improve the understandabil-
ity of the product among the members even further. Addi-
tional project documentation which are not stored in the is-
sue tracking software are instead managed through a shared
folder structure.

\7 Continuous integration (+)

\

\:— Automated regression tests (+)\<\7

A | h |

Lack of on-site customer (-) \' Distributed project (-)

Small releases (+) Coding standards (+,-)

\ \\ //Daily Scrum (+)
/
/
XP-practices \‘ /
/
/ /—% Scrum practices
Customer involvment (+) \\

\

Collective code ownership (+,-)

+: Positive effect - : Negative effect

/

Cross-functional teams (+) V Open plan office (+)
= / » Quality effects

/

/4— Knowledge sharing tools (+) /

/

/47 Customer surveys (+)

Measurement

Figure 6. Ishikawa diagram over quality affecting activities based on the case study result

Aspect E|C|I1|U
Continuous integration +

Automated regression tests +

Lack of on-site customer -
Cross-functional teams + +
Distributed project -
Open plan office + +
Small releases + | + +
Coding standards +
Collective code ownership + | -
Customer involvement +

Daily Scrum +
Sprint planning meeting +
Knowledge-sharing tools +
Customer surveys +

Table 1. Influencing aspects on the overall
External quality, Correctness, overall Internal
quality and Understandability.

6. Analysis

The following section presents aspects that have had pos-
itive or negative effect on the quality of the product exam-
ined in this case study, summarized in Figure 6. In addi-
tion, challenging aspects that were not fully utilized in the
project are presented. Finally, recommendations for how to
implement Distributed Scrum in a project with a significant
legacy code constraint are stated.

6.1. Positive quality effects

As seen in Table 1, there are several aspects that have
had a positive impact on the software quality. First, the
overall external quality have been affected mainly by two
practices. Continuous integration through the immediate
feedback to developers, and small releases through the in-
troduction of the iterative work-process. The short cycles,
employed in these aspects, have enabled continuous test ac-
tivities throughout the whole development process. Com-
pared to a waterfall process model, this could eliminate the
dedicated test period or convert it towards a validation- and
verifications phase. Furthermore, both previous case studies
and the one examined in this paper show that these practices
can be applied in a distributed environment without special
adaptation.

Second, Table 1 also reveals that there are several aspects
that have positively affected the correctness attribute of the
software quality. Since requirements often change through-
out a project, literature and previous studies have recom-
mended a close collaboration with customers to minimize
the risk of delivering software that does not correspond to
current needs. The project examined in this case study per-
forms customer surveys to enhance the customer involve-
ment and take advantage of the support personnel ‘s frequent
contact with users. The cross-functional teams, where de-
velopers and support are united, have lead to a mutual un-
derstanding of users‘ needs among the project members. An
open plan office have further enhanced the collaboration be-
tween developers and support personnel by removing com-
munication obstacles. Even though the close customer col-
laboration is limited to the Gothenburg site, the result shows

that the correctness of the deliverables have been improved
since the introduction of Distributed Scrum. In addition,
Sprint planning meetings have enabled an iterative valida-
tion of the software and an ability to cope with changing re-
quirements, which have further contributed to an improved
correctness. Moreover, previous case studies recommend
that automated tests are developed to minimize resource al-
location, which can benefit the manual test-coverage. The
result from this case study verifies that utilization of auto-
mated regression tests have improved the external software
quality, and in particular the correctness attribute.

Third, the result shows that utilization of the collective
code ownership practice have improved the overall internal
software quality. Previous studies show that this will lead
to a united code responsibility, which in turn have a positive
effect on the code quality. Even though members at the
Bangalore site cannot contribute with code improvements in
all parts of the software, due to the legacy code constraint,
the overall experience within the project indicates that this
practice has had a positive internal quality effect.

Finally, the result further reveals that the use of cod-
ing standards have improved the understandability within
the project, which have enabled new members to enter the
project and gain insight of the product relatively fast. More-
over, Knowledge-sharing tools and daily Scrum meetings
are empathized within the project with the purpose to im-
prove the transparency between the sites. Previous studies
have shown that an enhanced transparency can lead to an in-
creased understandability, which is verified in the examined
case study.

6.2. Negative quality effects

The interviews and document inspections revealed sev-
eral negative software quality effects of introducing Dis-
tributed Scrum, as visualized in Table 1. XP-practices em-
phasize that a customer or customer representative shall be
on-site during the development to ensure the correctness
and speed up the development by fast response to unclear
features. However, the result shows that it has been difficult
to transfer the required system- and domain knowledge to
the Bangalore site, mostly due to the system‘s complexity
and legacy code dependency. This have made the teams in
Bangalore dependent on expertise from the Gothenburg of-
fice, which have resulted in an uneven distribution of work.
A slowness in communication between the sites have fur-
ther affected the knowledge-sharing negatively, which in
turn have impaired the possibility to increase the overall
domain- and system knowledge within the project.

The legacy code dependency has also affected the im-
plementation of the collective code ownership. The lack
of sufficient system-knowledge at the Bangalore site aggra-
vates these members to apply this practice, which have had

a negative effect on the understandability. In addition, cul-
tural differences can affect the utilization of this practice,
since not all developers have the courage to make changes
in the code. This can in turn also affect the correctness of the
software negatively due to less continuous improvements of
the code base.

6.3. Challenging aspects

Several recommended practices when using Distributed
Scrum have not been utilized at their full capacity within
the examined project. First, the result reveals that the prac-
tice of Scrum of Scrums meeting is not implemented fully
in the project and therefore no quality effects related to this
practice can be evaluated. This, since the ScrumMaster
at the Bangalore site is not involved and the participants
at the Swedish site have perceived these meetings as non-
productive. The purpose of this practice is to share knowl-
edge between teams to increase the overall understandabil-
ity. It is therefore recommended that when applying the
Distributed Scrum of Scrums model, this essential practice
should be fully implemented to maximize the positive qual-
ity effects.

Second, Sprint review meetings is a Scrum practice that
enables inter-team knowledge-sharing through demonstra-
tions, which could add further transparency between teams.
This practice is applied in the project examined in this case
study, but the result shows that the modest interest in other
teams‘ work have lead to low participation in theses meet-
ings. Hence, no quality effect have been experienced. Ac-
cording to previous studies Sprint review meetings could
lead to both an improved correctness and an enhanced un-
derstandability if applied correctly. It is therefore recom-
mended that this practice should be implemented in a dis-
tributed environment to increase the transparency, which
in turn could improve the software quality. However, the
meetings might need adaptation when overlapping working
hours are few or none.

Third, since fest-driven development is not used in the
project, no positive or negative quality effect related to this
practice have been perceived. Previous studies have shown
that test-driven development could lead to a simplified code,
an enhanced testability of the software and significant de-
crease in number of defects reported by customers. Fur-
thermore, it is shown that this practice is well suited for a
distributed environment and it is therefore recommended to
fully utilize test-driven development in a Distributed Scrum
project.

Finally, pair programming is designed to improve both
the internal and external software quality. This, through
constant code review and an enhanced problem solving
on complex tasks. Previous studies have shown that this
practice could be implemented in a distributed environment

with technical assistance. However, when there are few
or none overlapping work hours it is recommended that
pair programming is utilized only between co-located team-
members. In addition, the result from the case study reveals
that friction between team-members can arise when imple-
menting this practice. Based on this fact, it is also recom-
mended that pair programming could be applied more oc-
casionally where closer and more intense collaboration is
needed.

6.4. Recommendations

The research question, as stated in section 1, for this pa-
per is whether or not the Integrated Scrums model combined
with XP-practices is suitable in all types of projects and or-
ganizations. The project examined in this study utilizes a
form of Distributed Scrum of Scrums in combination with
several XP-practices. However, a change to the Integrated
Scrums model is not recommended due to the strong legacy
code dependency. Even though it could be argued that this
model enhances transparency, the result shows that main-
tenance of the legacy code base requires language-specific
knowledge and that translations are too resource demand-
ing. This prevent members to be involved in all parts of
the development, which could lead to an uneven distribu-
tion of work and in turn negatively affect the quality. To
cope with this constraint it is therefore recommended that
members at the offshore site are only involved in develop-
ment of new features and maintenance of already standard-
ized parts. Hence, the Distributed Scrum of Scrums model
are more suitable when there exist a significant legacy code
base that are dependent on localized knowledge. The teams
are less integrated when this model is used which allows
them to work more independently on divided tasks.

7. Validity

The external validity of this study is threaten by the fact
that the result is based on a single case study where one
product organization has been analyzed under its specific
conditions. Furthermore, the project examined in this study
have implemented Scrum and introduced a distributed envi-
ronment simultaneously, which have prevented us to distin-
guish between the two factors. However, the recommenda-
tions given in this study are based on best-practices within
the field that have been proven by a number of previous case
studies to be successful in a distributed environment. This
will minimize the threats to the external validity and sup-
port our findings to be applied in other projects with similar
conditions.

The threats to the internal validity of this paper have been
minimized due to the use of multiple data sources and trian-
gulation. Interviews with all levels at both sites have been

performed to ensure that the findings are well established
throughout the organization. Moreover, all interviews have
been recorded and transcribed to further strengthen the va-
lidity of the data collected. Finally, the accuracy of the re-
sult has been confirmed by employees within the project.

8. Conclusion

In this paper a combination of a literature study and
an industrial case study has been performed to enlighten
positive- and negative quality effects when introducing
Scrum in a distributed environment.

Best-practices within the field state that the Integrated
Scrums model in combination with XP-practices should be
utilized for highest software quality. The result from both
previous case studies and the one conducted in this paper
show that the majority of these agile practices can be uti-
lized in a distributed environment and indeed improve the
software quality.

The major findings in this case study reveal that the agile
practice of small releases have increased the overall external
quality, the correctness of the software and the understand-
ability of the code itself. Furthermore, by expanding the
cross-functional teams with support personnel have lead to
both an increased correctness and an improved understand-
ability of the software.

However, the result also reveals that some XP-practices
could have a modest effect or in some cases even impair
the software quality when applied in a distributed environ-
ment. A substantial amount of non-standardized legacy
code could increase the knowledge gap and prevent team-
members to fully utilize all practices. For example, the
practice of collective code ownership has not been fully uti-
lized at all sites in the examined project, which have af-
fected the understandability of the system negatively. In ad-
dition, the lack of an on-site customer or domain expertise
at all sites have impair the understandability of customers
needs.

In addition, a non-standardized legacy code constraint
could also lead to an uneven workload within a team when
an Integrated Scrums model is used. This, as a result
of members lacking system- or domain knowledge, which
could divide the maintenance of the software and develop-
ment of new features within the group.

Finally, this paper concludes that the Integrated Scrums
model is not suitable in a project with a significant non-
standardized legacy code constraint. Instead, the Dis-
tributed Scrum of Scrums model is to recommend, which
allows teams to work more independently.

9. Acknowledgments

The authors would like to thank the employees at Logica
who have participated in this research. A special acknowl-
edgement to Carl Thyberg who made this research possi-
ble, and Stefan Svensson for the approval of the thesis and
his valuable input. Finally a special thanks to our supervi-
sor, Associate professor Miroslaw Staron, for his advise and
support throughout the whole project.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

E. Arisholm, H. Gallis, T. Dyba, and D. I. Sjoberg. Evalu-
ating pair programming with respect to system complexity
and programmer expertise. I[EEE Transactions on Software
Engineering, 33:65-86, 2007.

M. Barbacci, M. H. Klein, T. A. Longstaff, and C. B. We-
instock. Quality attributes. Technical Report CMU/SEI-95-
TR-021, ESC-TR-95-021, December 1995.

K. Beck and C. Andres. Extreme Programming Explained:
Embrace Change (2nd Edition). Addison-Wesley Profes-
sional, 2004.

A. Begel and N. Nagappan. Pair programming: what’s in
it for me? In Proceedings of the Second ACM-IEEE inter-
national symposium on Empirical software engineering and
measurement, ESEM ’08, pages 120-128, New York, NY,
USA, 2008. ACM.

T. Bhat and N. Nagappan. Evaluating the efficacy of test-
driven development: industrial case studies. In Proceedings
of the 2006 ACM/IEEE international symposium on Empir-
ical software engineering, ISESE °06, pages 356-363, New
York, NY, USA, 2006. ACM.

G. Canfora, A. Cimitile, F. Garcia, M. Piattini, and C. A.
Visaggio. Evaluating performances of pair designing in in-
dustry. Journal of Systems and Software, 80(8):1317 — 1327,
2007.

H. F. Cervone. Understanding agile project management
methods using scrum. OCLC Systems & Services: Inter-
national digital library perspectives, 27:18-22, 2011.

M. Coram and S. Bohner. The impact of agile methods on
software project management. FEngineering of Computer-
Based Systems, IEEE International Conference on the,
0:363-370, 2005.

R. Fitzpatrick, P. Smith, and B. O’Shea. Software quality
challenges. IEE Seminar Digests, 2004(913):6-11, 2004.
M. Fowler and M. Foemmel. Continuous integra-
tion. Thoughtworks, [online], 2006. Available from:
http://www.martinfowler.com/articles/
continuousIntegration.html (May2011).

A. Gwiazda. Quality tools in a process of technical project
management. Journal of Achievements in Materials and
Manufacturing Engineering, 2006.

J. Juran and A. Godfrey. Juran’s Quality Handbook.
McGraw-Hill, 1999.

M. Kircher, P. Jain, A. Corsaro, and D. Levine. Distributed
extreme programming. In Second international conference
on eXtreme Programming and Agile Processes in Software
Engineering, pages 6671, 2001.

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

[29]

(30]

(31]

H. Kniberg. Scrum and xp from the trenches. Crisp, [on-
line], 2006. Available from: http://www.metaprog.
com/csm/ScrumAndXpFromTheTrenches.

pdf (May2011).

C. Kussmaul, R. Jack, and B. Sponsler. Outsourcing and
offshoring with agility: A case study. Extreme Programming
and Agile Methods - XP/Agile Universe 2004, 3134:147154,
2004.

J. A. McCall, P. K. Richards, and G. F. Walters. Factors in
software quality. volume i. concepts and definitions of soft-
ware quality. Technical report, Rome Air Development Cen-
ter, 1977.

B. Meyer. Object-Oriented Software Construction. Prentice
Hall PTR, 1997.

E. Mnkandla and B. Dwolatzky. Defining agile software
quality assurance. Software Engineering Advances, Interna-
tional Conference on, 0:36, 2006.

N. Nagappan, E. Maximilien, T. Bhat, and L. Williams. Re-
alizing quality improvement through test driven develop-
ment: results and experiences of four industrial teams. Em-
pirical Software Engineering, 13:289-302, 2008.

M. Paasivaara, S. Durasiewicz, and C. Lassenius. Using
scrum in a globally distributed project: A case study. Soft-
ware Process Improvement and Practice, 13:527-544, 2008.
M. Pikkarainen, J. Haikara, O. Salo, P. Abrahamsson, and
J. Still. The impact of agile practices on communication
in software development. Empirical Software Engineering,
13:303-337, 2008. 10.1007/s10664-008-9065-9.

M. Priestley. The logic of correctness in software engineer-
ing. 2008.

P. Runeson and M. Host. Guidelines for conducting
and reporting case study research in software engineer-
ing. Empirical Software Engineering, 14:131-164, 2009.
10.1007/s10664-008-9102-8.

P. Sfetsos and I. Stamelos. Empirical studies on quality in
agile practices: A systematic literature review. In Quality
of Information and Communications Technology (QUATIC),
2010 Seventh International Conference on the, pages 44 —
53,29 2010-oct. 2 2010.

I. Sommerville. Software Engineering. Addison-Wesley,
2004.

J. Sutherland, G. Schoonheim, N. Kumar, V. Pandey, and
S. Vishal. Fully distributed scrum. [EEE Computer Society,
27, 2009.

J. Sutherland and K. Schwaber. The scrum papers: Nut,
bolts, and origins of an agile framework. Scrum inc., 2010.
J. Sutherland, A. Viktorov, and J. Blount. Adaptive engineer-
ing of large software projects with distributed/outsourced
teams. In International Conference on Complex Systems,
2006.

J. Sutherland, A. Viktorov, and J. Blount. Distributed scrum:
Agile project management with outsourced development
teams. In Agile2006 International Conference, 2006.

J. Sutherland, A. Viktorov, J. Blount, and N. Puntikov. Dis-
tributed scrum: Agile project management with outsourced
development teams. Hawaii International Conference on
System Sciences, 0:274a, 2007.

D. Wallace and R. Fujii. Software verification and valida-
tion: an overview. Software, IEEE, 6(3):10 —17, may 1989.

