Simple calculation of ergodic capacity of lossless two-port antenna system using only S-parameters – Comparison with common Z-parameter approach

This document has been downloaded from Chalmers Publication Library (CPL). It is the author`s version of a work that was accepted for publication in:

2011 IEEE International Symposium on Antennas and Propagation, Spokane, USA, 3-8 July, 2011 (ISSN: 1522-3965)

Citation for the published paper:

http://dx.doi.org/10.1109/APS.2011.5996867

Downloaded from: http://publications.lib.chalmers.se/publication/143612

Notice: Changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published source. Please note that access to the published version might require a subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses, conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted. The CPL service is administrated and maintained by Chalmers Library.
Simple Calculation of Ergodic Capacity of Lossless Two-Port Antenna System Using Only S-Parameters – Comparison with Common Z-parameter Approach

Xiaoming Chen, Per-Simon Kildal
Department of Signals and Systems
Chalmers University of Technology
Gothenburg, Sweden
xiaoming.chen@chalmers.se

Jan Carlsson
Electronics department
SP Technical Research Institute of Sweden
Boras, Sweden

Abstract—In this paper, we show how to correctly include overall antenna effects in a numerically generated Rayleigh channel matrix when calculating ergodic MIMO capacity of lossless multi-port antenna system located in rich isotropic multipath. The overall antenna effects can be included correctly using either impedance parameters (Z-parameter method) or scattering parameters (S-parameter method). These two methods are compared and validated by measurements in anechoic and reverberation chambers. A narrowband handset antenna with negligible ohmic loss is used for the measurements. There are very good agreements between the capacities obtained using both methods from anechoic chamber measurement and that from direct channel measurement in reverberation chamber.

Keywords-MIMO capacity, reverberation chamber, anechoic chamber.

I. INTRODUCTION

Multi-port antenna systems have shown substantial increase in attainable data rate in multipath environments [1]-[3]. In early literature, antenna elements in multi-port antenna system were considered isotropic and lossless. The effect of correlated fading at antenna ports was studied in this way in [2] and [4], and it was shown that correlation reduced the ergodic MIMO capacity. The overall antenna effects were examined in [3] and [5]-[7] via impedance parameter of the multi-port antenna (Z-parameter method). The method requires a priori knowledge of open-circuit correlation of the multi-port antennas, which is difficult to measure in practice. There exist other ways of including overall antenna effects when evaluating capacity [8]-[10]. Despite of different forms, all the above mentioned methods can correctly take overall antenna effects into account. It is well known that the free space S-parameters of a two-port antenna can be used to determine the correlation and diversity gain [9], [10]. Herein, based on similar methodology as in Z-parameter meter, we propose to use the S-parameters and a numerically generated fading channel to determine also capacity.

Need to mention that both Z-parameter and S-parameter methods work only for lossless antennas. It has been shown that for lossy wideband antenna, the channel measurements in reverberation chamber and embedded far field functions and efficiencies measured in anechoic chamber render the same capacities over all frequencies [11]. In this paper, a narrowband handset antenna with negligible ohmic loss is used. We use S-parameter and Z-parameter methods to calculate MIMO capacity based on S-parameters measured in anechoic chamber. It has been shown that ergodic MIMO capacity can be measured readily in reverberation chamber [9], [10]. The S-parameter method is first validated with reverberation chamber measurement. Excellent agreement is observed. This is of particular interest because both reverberation chambers and anechoic chambers are being considered for standardization of so-called Over-The-Air (OTA) measurements for characterization of active MIMO stations. The S-parameter method then is compared with Z-parameter method, good agreement is again observed. It is shown that, compared with Z-parameter method, S-parameter method is easier to use for practical antenna.

II. MIMO CAPACITY

We assume the receiver has perfect channel state information (CSI), and that transmitted power is equally allocated among transmitting antenna elements. The maximum available capacity of the multi-port antenna system can then be expressed as [1]

\[
C_{N_t, N_r} = E \left\{ \log_2 \left| \det \left(I_{N_r} + \frac{\gamma}{N_t} \mathbf{H}_{N_r, N_t} \mathbf{H}_{N_r, N_t}^H \right) \right| \right\}
\]

(1)

where \(\gamma \) is signal-to-noise ratio (SNR), the superscript \(H \) is Hermitian operator, \(\mathbf{H}_{N_r, N_t} \) is the channel matrix, \(N_t \) and \(N_r \) are number of transmitting and receiving antennas respectively, and \(E \) is statistical expectation taken over samples of the channel matrix describing the fading. The subscripts in (1) will be dropped hereafter for conciseness. \(\mathbf{H} \) is normalized so that its Frobenius norm satisfies \(E[\| \mathbf{H} \|^2] = N_r N_t \).

In this paper, we focus on compact power-balanced two-port antennas in receive end of the MIMO systems. Therefore,
it is judicious to assume ideal transmitting antennas with unity efficiency and no correlation. Furthermore, since a lossless antenna is used, both S-parameter method and Z-parameter method can be used based on anechoic chamber measurement.

A. Z-Parameter Method

The overall antenna effects can be included using Z-parameter method [5]-[7] by assuming lossless multi-port antenna in single mode operation. The open circuit voltages on the receiving MIMO array are related to the voltages at the antenna in single mode operation. The open circuit voltages on parameter method [5]-[7] by assuming lossless multi-port antenna is used, both S-parameter method and Z-parameter method can be used based on anechoic chamber measurement.

MEASUREMENTS

Ergodic MIMO capacity for lossless antennas can be calculated using both methods mentioned above based on antenna S-parameter measurement in anechoic chamber.

The Bluetest HP reverberation chamber in use is shown in Fig. 1. It has a size of 1.75 m × 1.25 m × 1.8 m and is provided with two plate stirrers, and platform and polarization stirring [10]. In the measurements, the platform was moved to 20 positions spaced by 18°, and for each platform position each of the two plates move simultaneously to 10 positions, evenly distributed along the total distance they can move. At each stirrer position and for each of the three wall antennas, a full frequency sweep was performed by the vector network analyzer. A well stirred reverberation chamber emulates a rich isotropic multipath environment [10]. It has been shown that ergodic MIMO capacity can be determined easily from reverberation chamber measurement [9]. The measurements were performed as follows: First, the channel transfer function is measured using a reference antenna with known efficiency. The power transfer function averaged over all the stirring samples gives the reference level, \(P_{\text{ref}} \), with the reference antenna efficiency calibrated out. Thereafter, the antenna under test was measured, giving the channel matrix \(\mathbf{H}_{\text{meas}} \) as a function of frequency and stirrer positions. The reverberation chamber has three wall antennas, so we chose to evaluate a 2×3 MIMO system from the measured data. Of convenience, we introduce the following notation for the normalized measured channel matrix

\[
\mathbf{H}_{\text{meas}} = \mathbf{H}_{2×3} / \sqrt{P_{\text{ref}}}
\]
The MIMO capacity can then be computed from the measured channel matrices by using

\[C = E \{ \log_2 \det (I + \frac{\gamma}{N} H_{\text{meas}} H_{\text{meas}}^H) \} \]

(13)

Note that the reverberation chamber attenuation and the total radiation efficiency of the wall antennas are calibrated out by (12). Since the three wall antennas in the reverberation chamber are located far away from each other on three orthogonal walls, the correlations between them are negligible.

The narrowband portable two-port antenna (see Fig. 2) has negligible ohmic loss (working at 1.6 GHz) [18]. Therefore, we choose S-parameter method to calculate the MIMO capacity based on S-parameters measured in anechoic chamber. In order to see the effects of total embedded radiation efficiency and correlation on capacity, we plot in Fig. 3 the 2×3 MIMO capacity for the following four cases: assuming 100% efficiency and zero correlation; including the measured efficiency; and including both efficiency and correlation; and the MIMO capacity obtained from the measured channel matrix in the reverberation chamber using (13). We see that the total embedded radiation efficiency reduces the capacity, and that the correlation (with mutual coupling presented) reduces it further, and that the S-parameter method gives MIMO capacity in excellent agreement with the values from measurements in reverberation chamber.

Fig. 4 compares calculated capacities using Z-parameter and S-parameter methods. From Fig. 4, it can be seen that both methods give similar results. The little bias between them is probably due to the approximation of open-circuit correlation of (5) using Z-parameter method, which is true only for minimum scattering antennas [13]. Note that neither Z-parameter method nor S-parameter method is valid for general lossy multi-port antennas, while MIMO channels measured in reverberation are generally valid for any multi-port antenna [11].
minimum scattering antennas. Moreover, S-parameter is easier to use for practical antennas. Comparison between ergodic capacities based on anechoic and reverberation chamber measurements show excellent agreement. Reverberation chamber is much easier for MIMO capacity measurement in the sense that it does not involve any channel modeling, since MIMO channel matrix can be directly measured in reverberation chamber. While both S-parameter and Z-parameter methods are restricted to lossless antennas, channel-measurement based reverberation chamber measurement is valid for any multi-port antenna.

REFERENCES