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Abstract— In this paper, we consider model-based threat
assessment methods which rely on vehicle and driver mathe-
matical models and are based on reachability analysis tools and
set invariance theory. We focus on the parametric uncertainties
of the driver mathematical model and show how these can
be accounted for in the threat assessment. The novelty of the
proposed methods lies in the inclusion of the driver model
uncertainties in the threat assessment problem formulation and
in their validation through experimental data. We show how
different ways of accounting for the model uncertainties impact
the capabilities and the effectiveness of the proposed algorithms
in detecting hazardous driving situations.

I. INTRODUCTION

Autonomous and semi-autonomous driving technologies
are increasingly gaining an important role in driver assistance
systems. Since the introduction of the first electronic stability
control systems [16], there has been a clear trend of increased
authority of electronic systems autonomously controlling
the vehicle motion. While assistance/comfort systems take
the vehicle control only if requested by the driver, safety
systems might take control automatically if needed. Hence,
for an active safety system it is crucial to detect when it is
necessary to issue an assisting intervention. The problem of
determining whether a driver may need assistance, that is,
when to switch from a manual to an autonomous driving
mode, is in this paper referred to as threat assessment
problem.

In this paper we consider a threat assessment problem in a
lane guidance application. In such applications, the driver is
assisted in staying within the lane through warnings and/or
autonomous driving interventions. A review of various lane
guidance approaches can be found in [1]. Most of the lane
guidance systems in the literature keep the vehicle in the
center of the lane once they have been activated and might
be classified as assistance systems. In some contributions,
also the transition criteria are considered [8], [10], [2]. In
[8], the authors proposed that a steering intervention should
drive the vehicle to a safe position in the center of the lane
only if there is a risk that crossing the lane marking might
lead to a collision with a vehicle in the adjacent lane. This
is a restrictive approach, where many situations could be
excluded in order to eliminate misuse and nuisance. In [10],
the authors proposed that a lateral controller should be acti-
vated once a driver monitoring device has detected that the
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Göteborg Sweden, E-mail: mali21@volvocars.com

driver is drowsy. This is a viable option for situations where
the driver is drowsy, given that driver monitoring systems
are sufficiently reliable. Moreover, situations where a driver,
for instance, risks loosing the vehicle control because of
misevaluation of the vehicle capabilities are not considered.
In [2], a transition criterion based on the limitations of the
vehicle dynamics is suggested. While this reduces the risk
of unmotivated interventions, the transition to autonomous
mode might also be delayed too long since there might be
a significant difference between the driver’s limitations in
controlling the vehicle and the limitations set by the vehicle
dynamics.

In [11], we presented a model based method, specifically
evaluating the driver’s ability in safely performing a desired
maneuver. In particular, assigned a driving task, we proposed
a solution to the problem of evaluating whether a steering
maneuver exists that (i) is the output of a considered driver
model and (ii) accomplishes the task while maintaining
the vehicle state within a prescribed set where the driver
is deemed capable of preserving the vehicle stability. We
first introduce a set of constraints describing “safe” driving.
Moreover, we assume an estimate of the road geometry is
available over a future finite time horizon and exploit vehicle
and driver modeling in order to predict future constraints
violation, indicating the possibility of accident or loss of
vehicle control. However, estimates of the vehicle state and
the road geometry as well as vehicle and driver models are
always subject to uncertainties. In this paper, we show how
the threat assessment method in [11] can be extended to
take model parameter uncertainties into account. We validate
the proposed methods using experimental data in a roadway
departure application.

The paper is organized as follows. In Section II, we
provide basic definitions and results on reachability analysis
and set invariance theory. In Section III, we present the
vehicle and driver modeling used next in Section IV, where
the threat assessment algorithm is presented. In Section V,
we show how uncertainties can be included in the proposed
methods, while in Section VI, we show through validation
on experimental data how uncertainties influence the results
provided by the proposed threat assessment algorithms. Sec-
tion VII closes the paper with final remarks.

II. PRELIMINARIES

We introduce a few definitions and recall basic results on
set invariance theory and reachability analysis for constrained
discrete-time systems. In this section we consider nominal
systems only while modeling uncertainties are taken into



account in Section V. We will denote the set of all real
numbers and positive integers by R and N+, respectively.

Denote by fa the state update function of an autonomous
discrete-time system

x(t+ 1) = fa(x(t)), (1)

where x(t) denotes the state vector. System (1) is subject to
the constraints

x(t) ∈ X ⊆ Rn, (2)

where X is a polyhedron. For the autonomous system (1)-
(2), we define the set of states that evolve to S in one step,
as

Prefa(S) , {x ∈ X | fa(x) ∈ S}. (3)

A set O is said to be a positive invariant set for the
autonomous system (1) subject to the constraints in (2), if

x(0) ∈ O ⇒ x(t) ∈ O, ∀t ∈ N+.

The set O∞ is the maximal positive invariant set of the
autonomous system (1) subject to the constraints in (2), if
0 ∈ O∞, O∞ is a robust positive invariant set and O∞
contains all the robust positive invariant sets contained in X
that contain the origin.

III. MODELING

The threat assessment algorithm presented in Section IV
is based on a standard single-track linear vehicle and a driver
mathematical model, presented in [11] and reported here for
completeness. For a given vehicle longitudinal speed vx, the
vehicle model can be compactly written in the following
form,

ẋ(t) = Âx(t) + B̂u(t) + Êw(t), (4)

where x =
[
vy, ψ̇, eψ, ey

]T
and w = ψ̇d are the state

and the disturbance vectors and u = δ is the steering input
command. vy denotes the lateral velocity, ψ̇ is the turning
rate, where ψ denotes the vehicle orientation w.r.t. the fixed
global frame (X,Y ) in Figure 1. eψ and ey denote the
vehicle orientation and position errors, respectively, w.r.t. the
road centerline and ψd is the desired vehicle orientation, i.e.,
the slope of the tangent to the curve Γd in the point O.
For details on the modeling and simplifying assumptions the
reader is referred to [11].

A. Driver model

The literature on driver modeling is rich, see, e.g., [6]
for various approaches. In the proposed threat assessment
algorithm we use a low complexity driver model, inspired
by the work presented in [7], [5], [15], consisting of a
“pursuit” part, based on the preview of the desired path, and
a correcting part, keeping the vehicle in the center of the
lane.

The steering angle δ is computed as,

δ = Kyey +Kψe
lp
ψ ,

= Kyey +Kψeψ +Kψ∆ψd,
(5)

Fig. 1. Vehicle modeling notation.

where elpψ is an orientation error, with respect to the orien-
tation of the road at a distance tlpvx ahead of the vehicle,
as illustrated in Figure 1. Ky , Kψ , and tlp are parameters of
the driver model. The driver model parameters Ky , Kψ , and
tlp are in general both driver and situation dependant and
might be estimated online in a vehicle application.

B. Driver controlled vehicle model

We consider the autonomous system, obtained by combin-
ing the vehicle and driver models (4) and (5), respectively,
that can be compactly written as

ẋa(t) = Âaxa(t) + Êawa(t), (6)

where xa =
[
vy, ψ̇, eψ, ey

]T
and wa =

[
ψ̇d, ∆ψd

]T
are

the state and the disturbance vectors, respectively, and the
matrices Âa, Êa are defined as follows,

Âa =


a11 a12 b1Kψ b1Ky

a21 a22 b2Kψ b2Ky

0 1 0 0
1 0 vx 0

 ,

Êa =


0 b1Kψ

0 b2Kψ

−1 0
0 0

 ,
a11 =

−2(Cf + Cr)

mvx
, a12 =

−2(Cf lf − Crlr)

mvx
− vx,

a21 =
−2(Cf lf − Crlr)

Jzvx
, a22 =

−2(Cf l
2
f + Crl

2
r)

Jzvx
,

b1 =
2Cf
m

, b2 =
2Cf lf
Jz

,

(7)

where m and Jz denote the vehicle mass and yaw inertia,
respectively, lf and lr are the distances of the vehicle center
of gravity from the front and rear axles, respectively and Cf ,
Cr denote the front and rear cornering stiffness respectively.



C. System Constraints

Next we define a set of operating conditions, in the space
of the states and inputs of systems (4) and (6), corresponding
to stable driving within the lane boundaries.

Constraints on vehicle position are set by the limited lane
width. We denote by eyij , i ∈ {f, r}, j ∈ {l, r}, the
distances of the four vehicle corners from the lane centerline.
By assuming small orientation errors, eyij can be written as

eyfl
= ey +

c

2
+ aeψ, eyfr

= ey −
c

2
+ aeψ, (8a)

eyrl = ey +
c

2
− beψ, eyrr = ey −

c

2
− beψ, (8b)

where c is the vehicle width, a and b are the distances of the
center of gravity from the front and rear vehicle bumpers,
respectively.

Furthermore, in order to avoid possible vehicle instability
due to the effects of the tire nonlinearities the vehicle can be
forced to operate in the linear region of the state space by
limiting the tire slip angles αi, i ∈ {f, r}. In this region a
normal driver is deemed capable of controlling the vehicle
[11].

The constraints on the vehicle position and slip angles can
be written as

−eymax ≤ eyij ≤ eymax , (9a)
αimin ≤ αi ≤ αimax , i ∈ {f, r}, j ∈ {l, r}, (9b)

where eymax is the maximum distance of the vehicle corners
from the lane centerline. The constraints (9) can then be
compactly rewritten as

Haxa ≤ ha. (10)

IV. SET-BASED THREAT ASSESSMENT

We discretize the model (6) with a sampling time Ts,
to obtain the discrete time constrained autonomous system
subject to disturbances

xa(t+ 1) = Adaxa(t) + Edawa(t) (11a)
subj. to Haxa(t) ≤ ha, (11b)

where, for the sake of simple notation, we have denoted
the state, the disturbance and the time index with the same
symbols as in (6).

We introduce the following assumptions on the disturbance
signal wa,

Assumption 1: wa(t) ∈ W, ∀ t ≥ 0, where W ⊆ R2 is a
polyhedron.

Assumption 2: Every time instant t, the disturbance wa(t)
is known over a finite time horizon of N steps.
Assumption 2 implies that the road geometry is known over
a future time horizon. The sensing technologies used in,
e.g., [9], [12], [4] can be used for this purpose.

A. Main Algorithm

We denote by Xfeas the set of admissible states,

Xfeas = {xa ∈ R4 : Haxa ≤ ha}. (12)

Every time instant, we consider a terminal target set T ⊆
Xfeas. Further details about the choice of T are provided in
[11]. Denote by Wt = [wt, wt+1, . . . , wt+N−1], the sequence
of disturbance samples over the time horizon [t, t+N − 1]
and by Wt,i = [wt+i, . . . , wt+N−1] any sequence extracted
from Wt. We compute the sequence of states sets Xt (Wt) =
[Xt,Xt+1, . . . ,Xt+N−1] as:

Xt+i (Wt,i) = Xfeas
∩

Prefa(Xt+i+1, wt+i), (13a)

i = N − 1, . . . , 0,

Xt+N = T , (13b)

where fa denotes the right hand side of (11a). We call the
set Xt the safe set at time t.

We observe that the calculation of the sequence Xt (Wt) is
performed every time step, based on the updated disturbance
sequence Wt. Moreover, if at the current time t the state of
the system (11) belongs to the safe set Xt, the autonomous
system (11), i.e., the vehicle in closed loop with the driver,
is guaranteed to evolve to the set T in N steps, while
satisfying the constraints (11b). The algorithm is outlined in

Algorithm 1:
Input: Current state xa(t), target set T , sequence

of disturbances Wt, state update mapping fa =(
Ada, E

d
a

)
, the constraints matrices (Ha, ha)

Output: The safe set Xt at the current time t, safe
flag Safe

1 let Xt+N = T ,
2 for i = N − 1 to 0
3 let Xt+i+1 = {xa ∈ R4 : Hi+1xa ≤ hi+1},
4 Prefa(Xt+i+1, wt+i) =

{xa ∈ R4 : Hi+1A
d
axa ≤ hi+1 −Hi+1E

d
awt+i}

5 if Prefa(Xt+i+1, wt+i) = ∅ then Safe = 0,
EXIT

6 else Xt+i (Wt,i) =

{xa ∈ R4 :

[
Hi+1A

d
a

Ha

]
xa ≤

[
hi+1 −Hi+1E

d
awt+i

ha

]
}

end
7 if Xt+i (Wt,i) = ∅ then Safe = 0, EXIT, end
8 end
9 if xa(t) ∈ Xt then Safe = 1,

10 else Safe = 0, end
11 EXIT.

detail in Algorithm 1, where the inputs are: the current state
xa(t), the target set T , the sequence of disturbances Wt,
the state update mapping fa =

(
Ada, E

d
a

)
, the constraints

matrices (Ha, ha), and the outputs are: the safe set Xt at the



current time t and the flag Safe which takes the value 0 if
an intervention is needed and 1 otherwise.

V. MODELING UNCERTAINTY

Algorithm 1 does not account for any uncertainties in
the vehicle and driver model or measurements. Next, we
present alternative strategies accounting for model parameter
uncertainties. We assume that the parameters of the matrices
Ada, E

d
a in (11) are subject to polytopic uncertainty according

to the following,
Assumption 3: Ada ∈ A and Eda ∈ E where,

A = {Ada ∈ Rn×n| Ada =

NA∑
i=1

θiÃi,

NA∑
i=1

θi = 1, θi ≥ 0}

E = {Eda ∈ Rn×p| Eda =

NA∑
i=1

θiẼi,

NA∑
i=1

θi = 1, θi ≥ 0}.

Definition 1 (Parameter Underestimated Pre set):
Denote by,

PrePU
fa (S) ,

∩
Ad

a∈A, Ed
a∈E

Pre(Ad
a,E

d
a)
(S), (14)

the set of states for which the system (6) evolves to S in one
step ∀Ada ∈ A, Eda ∈ E .
The set PrePU

fa (S) is the largest set of states which can
be guaranteed to be enclosed by Pre(Ad

a,E
d
a)
(S) under As-

sumption 3. However, the computation of PrePU
fa (S) through

the relation (14) requires an infinite intersection of sets, we
therefore introduce the following

Proposition 1:

PrePU
fa (S) =

NA∩
i=1

Pre(Ãi,Ẽi)
(S). (15)

According to Proposition 1, only a finite intersection of
sets is required in order to calculate the set PrePU

fa (S). The
proof of Proposition 1 follows immediately from the proof
provided in [14] for hybrid systems.

Definition 2 (Parameter Overestimated Pre set): Denote
by,

PrePO
fa (S) ,

∪
Ad

a∈A, Ed
a∈E

Pre(Ad
a,E

d
a)
(S), (16)

the set of states that evolve to S in one step for some model
Ada ∈ A, Eda ∈ E .
The set PrePO

fa (S) is the smallest set of states which can be
guaranteed to enclose Pre(Ad

a,E
d
a)
(S) under Assumption 3.

Remark 1: We observe that the relation (16), is an infinite
union of polyhedral sets and that, in general, the union of
polyhedral sets can not be guaranteed to be a convex set [3].
The convex hull Conv

(
PrePO

fa (S)
)

is the smallest convex set
enclosing PrePO

fa (S).
We are interested in finding a polyhedral set, that can be
computed through a finite number of evaluations and, in addi-
tion, encloses PrePO

fa (S). In general, a relation corresponding
to Proposition 1 does not hold for (16). However, the set
Conv

(
PrePO

fa (S)
)

can be approximated by gridding A and
evaluating a finite union of polytopes.

A. Modified Algorithms

Denote by Xt,(Ad
a,E

d
a)

the safe set at time t obtained
through the recursion (13). Let

X PU
t =

∩
Ad

a∈A,Ed
a∈E

Xt,(Ad
a,E

d
a)
, (17)

and

X̃ PO
t = Conv(X PO

t ) = Conv(
∪

Ad
a∈A,Ed

a∈E

Xt,(Ad
a,E

d
a)
), (18)

denote the model parameter under- and overestimated safe
sets at time t, respectively. Replacing Xt in step 9 of
Algorithm 1 by the set X PU

t results in an algorithm which,
for the assumed vehicle and driver models, guarantees the
detection of a constraint violation occurring within the future
N -steps. As a consequence, this approach might lead to an
increased frequency of false risk detection. Replacing Xt
with X̃ PO

t instead, guarantees that, according to the assumed
vehicle and driver models, no false risk detections can occur
at the cost of decreased capability of detecting accident risk.

We will refer to the algorithm obtained by replacing Xt in
step 9 of Algorithm 1 by the set X PU

t , as Algorithm 2, and the
algorithm obtained by replacing Xt by X̃ PO

t , as Algorithm 3.
Remark 2: In order to ensure convexity (see Remark 1),

we have used X̃ PO
t instead of X PO

t in Algorithm 3. In general,
compared to X PO

t this is a further overestimation of the safe
set and might further decrease the capability of detecting
accident risk.

VI. RESULTS

In this section, we consider the driver model parameters
Ky and Kψ as uncertain and validate the results obtained
with the present approaches on experimental data. The pa-
rameters Ky, Kψ and tlp can be estimated online using a
recursive nonlinear least squares method [13]. At each time
step, an estimate of the mean and variance is updated as
new data becomes available. For the experimental validation
of the parameter estimation and threat assessment results
presented next, data has been collected on a test track
resembling a country road and post-processed offline.

Figure 2 depicts the ellipsoidal set, defined by the esti-
mated covariance matrix, where the uncertain parameters Ky

and Kψ lie. In Algorithm 1 we use the estimated mean of
the parameters Ky, Kψ and tlp, while in Algorithms 2-3,
we use the estimated mean of tlp and treat the parameters
Ky and Kψ as uncertain. In particular, every time step we
approximate the ellipsoidal set in Figure 2 as a polyhedral set
K. Figure 2, shows an example where only four vertices have
been used for the polyhedral approximation. A more accurate
approximation can of course be obtained by increasing the
number of vertices.

Let the pair Ãi, Ẽi be the matrices in (7), where the
values of Ky and Kψ are set by their corresponding values
at vertex i of K and with values of the rest of the parameters
according to Table I. In the following results, the set K is
computed with four vertices only hence the sets A, E , are
defined as convex combinations of the discretized matrices
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Fig. 2. Estimation of the driver model parameters Ky and Kψ . The ×
denotes the estimated mean, the ellipse denotes the variance, the dashed box
denotes a polyhedral approximation K of the variance and the ∗ denotes
the vertices of K.

TABLE I
VEHICLE PARAMETERS

m Jz lf lr a
1695 kg 2617 kgm2 1.14 m 1.50 m 1.83 m
Cf Cr b c

54 kNm/rad 45 kNm/rad 2.69 m 1.77 m

Ãd1, . . . , Ã
d
4, Ẽ

d
1 , . . . , Ẽ

d
4 , respectively. In addition, the fol-

lowing numerical values have been set,

αfmax = αrmax = −αfmin = −αrmin = 4◦,

eymax = 1.56m, N = 10, Ts = 50ms, T = Xfeas.

Algorithm 2 guarantees that interventions are issued if
a constraint violation is imminent for the estimated range
of possible values of the driver parameters and is thus the
safest approach. Algorithm 3 guarantees that no unnecessary
interventions are issued since it waits until none of the
driver models in the estimated range can avoid a constraint
violation. From a nuisance point of view, Algorithm 3 might
be preferable. Algorithm 1 can be considered as a trade-off
between the two.

In practice, decisions to intervene will be issued at dif-
ferent time instances by the three algorithms. Of course,
a difference in decisions between the algorithms does not
necessarily imply that any of the algorithms decision is
incorrect. In order to compare the algorithms we will how-
ever introduce a unified criteria for classifying interventions.
Denote by t∗ a time instant where x exits the set Xfeas and
let T ∗ = [t∗− (N + ϵ)Ts, t

∗− (N − ϵ)Ts] be a time interval
where a decision to intervene is expected. We consider
decisions to intervene that occur in a time interval T ∗ as
correct, decisions that occur prior to T ∗ early interventions
and decision that occur between T ∗ and t∗ late interventions.
Completely missed interventions are classified as late.

The performance of the three algorithms has been evalu-
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Fig. 3. Illustration of a situation where a vehicle is negotiating a curve.
The situation is particularly challenging since the vehicle is very close to
the road edge. The solid line originates at the current state and shows the
vehicle’s future trajectory over horizon of N -steps.

ated on approximately 20km of data and the results for ϵ = 2
are shown in Table II.

TABLE II
PERFORMANCE ON APPROXIMATELY 20KM DATA

Algorithm Early intervention Late intervention
1 17 6
2 32 4
3 4 6

We observe that Algorithm 2 tends to issue interven-
tions early. Sometimes interventions are issued even when
no constraint violation is imminent in order to guarantee
safety. To some extent also Algorithm 1 tends to issue
early interventions but the frequency is much lower than
for Algorithm 2. Algorithm 3 waits until a constraint vi-
olation is unavoidable for all of the considered values of
the driver model parameters. This reduces the number of
early interventions significantly. One might suspect that this
would lead to an increase in the number of late interventions
instead (see Remark 2), but the validation results do not show
any significant increase. In fact, through inspection of the
late interventions, we have observed that, in all cases, the
subsequent constraint violation consisted of a short drift out
of the lane of less than 10 cm. Such constraint violations,
are typically not very dangerous, but difficult to predict.

Figure 3 shows a situation that is particularly challenging.
The vehicle is driving very close to the road border and
might cross it very fast. The vehicle speed is however not
so high that the vehicle dynamics prohibit the possibility to
stay on the road. Figures 4-5 show the safe sets obtained
in the illustrated situation. In this situation XPU

t is a very
small set and does not enclose the measured state. Hence,
according to Algorithm 2, a driver exists, modeled by (5)
with parameters lying in the set K (See Figure 2), who



Fig. 4. Illustration of the obtained safe sets. The small white set denotes
XPU
t , the grey set denotes Xt, the black set denotes X̃PO

t and the striped
set denotes Conv(

∪
A∈A,E∈E Xfeas,(A,E)). The blue circle denotes the

measured state and the solid line originates at the current state and shows
the vehicle’s future trajectory over the horizon of N -steps. The sets are cuts
shown in the ey-eψ space evaluated at the measured values of vy , ψ̇.

Fig. 5. Illustration of the obtained safe sets. The color convention in
Figure 4 has been used. The sets are cuts shown in the vy-ψ̇ space evaluated
at the measured values of ey , eψ

cannot keep the vehicle on the road and as, a consequence, an
intervention is needed. The set Xt is larger than XPU

t and, in
fact, encloses the measured state. According to Algorithm 1,
the driver model (5) where the parameters are set by the
estimated mean, is capable of keeping the vehicle state
within Xfeas over the horizon of N -steps. This is in fact
confirmed by the solid line, originating at the current state
and showing the future trajectory of the vehicle over the
horizon. The set X̃PO

t is even larger and hence also encloses
the measured state. According to X̃PO

t , even though some of
the considered driver models will drive the vehicle outside
the lane at least one is capable of keeping the vehicle within
Xfeas. According to Algorithm 3, the situation should thus
be considered safe and no intervention should be issued.

VII. CONCLUSIONS AND FUTURE WORKS

We have presented model based threat assessment methods
for semi-autonomous vehicles and studied the impact of
model parameter uncertainties on the capability of detecting
hazardous driving situations. The obtained results demon-
strate that the proposed methods can effectively predict
lane crossing and vehicle instability over a future, finite
time horizon, thus allowing the activation of lower level
control interventions. Depending on how model parameter
uncertainties are treated the interventions will be activated
at different points in time, affecting the performance of
the algorithms. The preliminary results presented in this
manuscript indicate that, compared to the other algorithms,
Algorithm 3 reduces the number of early interventions sig-
nificantly while maintaining the ability to predict constraint
violations. Consequently, computationally efficient modifi-
cations of Algorithm 3 is currently the topic of ongoing
research efforts. In addition further investigations aiming at
analyzing the impact of measurement errors on the vehicle
state and disturbance signals originating from e.g. uncertainty
in the sensing of the road geometry will be conducted.
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