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Abstract

In many real-world optimization applications there are often a number of conflicting
objective functions that are all important to optimize. For example when producing
metal sheets there can be a desire to minimize energy consumption of the process, max-
imize process speed and maximize the strength of the product at the same time. The
purpose of multi-objective optimization is to give the decision maker an understand-
ing of how these functions are conflicting and the possibility to choose an appropriate
trade-off between them.

First, the basics of multi-objective optimization are described with concepts such as
Pareto frontier, ideal point and Pareto optimality.

A two step generic framework for interactive multiobjective optimization was devel-
oped. The first step includes the methods for an offline tool for obtaining the Pareto
set that can handle non-convex problems with up to four conflicting objectives. The
second step includes methods for an online tool which can be used to navigate contin-
uously, smoothly and in real-time on the obtained Pareto set.

The methods were implemented in a prototype tool to verify the claim of the theory.
The framework was applied to a set of small nonlinear and non-convex example prob-
lems, a pendulum-cart-problem with variable pendulum length and a large scale hot
rolling mill application with three objective functions and up to 100 000 variables. The
resulting tools performed well and the interactive online navigation works in real-time.

The influence of different parameters in the hot rolling mill model were investigated
and the combinatorial behavior was especially analyzed. The results confirms that the
objectives are conflicting and the presumed dependencies between different objectives
and/or parameters are as expected. When the combinatorial behavior of the model is
included in the optimization the obtained Pareto set is non-convex and holes emerges
in the Pareto frontier.
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1 Introduction

This is the report for the master thesis Interactive Multiobjective optimization– with
application to hot rolling mills performed at the company ABB Corporate Research in
Västerås.

1.1 Background

In many real-world optimization applications there are often a number of conflicting
objective functions that are all important to optimize. For example when producing
metal sheets there can be a desire to minimize energy consumption of the process,
maximize process speed and maximize the strength of the product at the same time.
The purpose of multi-objective optimization is to give an understanding of how these
functions are conflicting and to give the user the possibility to choose an appropriate
trade-off between them.

In hot rolling mills this problem occurs and there are a number of objective functions
that are of interest, e.g. energy consumption and production speed. Several settings
such as roll gaps, roll speeds and temperatures can be controlled to change the pro-
duction process and to find the appropriate settings to obtain an optimal process is
difficult. If singleobjective optimization (SOO) is used, which only considers one objec-
tive at a time, it is difficult for the decision maker to achieve a proper balance between
the different objectives and understand the solution space. One solution to this is to use
multiobjective optimization (MOO) where several objective functions are considered at
once (Marler and Arora, 2004).

The Roll.LABB project has developed a model detailed enough to simulate and control
a hot rolling mill. The Roll.LABB model is a large scale problem with 10 000 - 200 000
variables and where both the constraints and the objective functions can be nonlinear.
This makes the problem very computationally heavy and hence finding solutions to the
problem is time consuming and can not be done in real-time. It would be useful for
the decision maker to be able to change its desired balance of the objectives and at the
same time get a quick visual feedback of the suggested solution in an interactive way.

1.2 Purpose

This master thesis work is supposed to evaluate and implement a generic framework
for interactive MOO that should be applied to a hot rolling mill application. The
framework and knowledge gained can be used as a foundation for further development.

1.3 Project goals

To develop a framework for generic MOO problems and specifically apply it to the
Roll.LABB hot rolling mill model.

1.3.1 Sub goals

• Form several simple example problems that mimics important properties of the
Roll.LABB model.

• Implement a method that computes a discrete Pareto set for 3-4 objective func-
tions.
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• Design a method which the decision maker can use to navigate in the discrete
Pareto set smoothly (near continuous) and get a fast visual feedback.

• Create a framework consisting of the methods implemented in the Maple/IPOPT-
tool developed at ABB Corporate Research and a graphical user interface (GUI)
for visualization and user inputs.

• Evaluate the framework using a number of generic example problems.

• Evaluate the framework when applied to the Roll.LABB model.

1.3.2 Extended goals

Adapt the GUI specifically for the hot rolling mill application.

1.4 Exclusions

The hot rolling mill optimization model will be supplied by ABB Corporate Research
and is not supposed to be developed in this project.

More than four objective functions should not be considered at the same time.

1.5 Method

At first a comprehensive theoretical study of MOO was performed. This study was the
basis to choose and implement the appropriate methods used to create a generic frame-
work for interactive MOO. This included choosing method for obtaining the discrete
Pareto set, choosing an interpolation method and creating a GUI.

A small number of example problems were created to mimic different properties of
the Roll.LABB model and to evaluate the methods. This was done to understand the
optimization methods and test important features of the Roll.LABB model.

The framework was then applied to the example problems in order to thoroughly un-
derstand the functionality and performance of the implemented methods with respect
to important properties of the Roll.LABB model. Finally, the framework was applied
to the hot rolling application, an evaluation of its performance was done and the results
were analyzed.

The whole process was iterative, e.g. further literature studies had to be done.

2



2 Introduction to multiobjective optimization

Multiobjective optimization (MOO) is optimization where several objective functions
are considered simultaneously. The problem is to

minimize
x

f(x) = {f1(x), f2(x), . . . , fm(x)}
subject to x ∈ X

(1)

where f(x) is a vector of nonlinear objective functions and the feasible decision space
X might as well be described by nonlinear constraints.

Figure 1 shows the basic relations in the MOO problem. The function f(x) maps the
decision vector, x ∈ Rn, to the objective vector z = f(x) ∈ Rm. X is the feasible
decision space and is a subset of Rn. Z = f(X) is the feasible objective space and is a
subset of Rm.

The right plot in Figure 1 shows a simple example of the objective space, Z ⊂ R2,
which is marked with the dashed line. In general, the individual objective functions
(fi(x), i = 1, . . . ,m) are conflicting, e.g. decreasing f1(x) will increase f2(x). Consider
the objective point z marked with the black dot. If z2 = f2(x) is to be decreased then
at the same time z1 = f1(x) has to be increased to stay in the feasible objective space.
This means that the two objectives z1 and z2 are conflicting.

X

x1

x
2

x

z

Z

z1

z 2

f(x)

Figure 1: An example of the decision space (left plot) mapped to the objective space (right plot).

2.1 Pareto optimality

In general the objective functions are conflicting which means that there is no single
optimal solution. A common way to describe optimality in MOO is Pareto optimality.
The set of all Pareto optimal solutions are called the Pareto frontier.

Definition 1. A point x∗ ∈ X, is Pareto optimal if and only if there does not exist
another point, x ∈ X, such that f(x) ≤ f(x∗), and fi(x) < fi(x

∗) for at least one
function (Marler and Arora, 2004).
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This means that a point z = f(x) is Pareto optimal if there is no way to improve one
objective without deteriorating another. Figure 2 shows an example of the objective
space with the Pareto frontier marked with a thick black line.

Z

z 1

z
2

Figure 2: A simple example of a Pareto frontier which has Pareto optimal (thick solid line) and weakly
Pareto optimal (thin solid line) sections.

Definition 2. A point x∗ ∈ X, is weakly Pareto optimal if and only if there does not
exist another point, x ∈ X, such that f(x) ≤ f(x∗) (Marler and Arora, 2004).

This means that there is no point z = f(x) that improves all objectives at once. The
solid line in Figure 2 parallel to the z2-axis is a set of weakly Pareto optimal points.

It should be noted that every Pareto optimal point is also a weakly Pareto optimal
point.

2.1.1 Local Pareto optimality

In practice, it is usually not possible to calculate global (weak) Pareto optimal points,
as defined in Definition 1 and 2, but rather only local (weak) Pareto optimal points are
available (Miettinen, 1998).

Definition 3. A point x∗ ∈ X, is local Pareto optimal if it is Pareto optimal in a
neighborhood of x∗ (Messac et al., 2003).

Definition 4. A point x∗ ∈ X, is local weakly Pareto optimal if it is weakly Pareto
optimal in a neighborhood of x∗ (Messac et al., 2003).

Note that a global Pareto optimal solution is also a local Pareto optimal solution but
only in special cases this implication is reversible (Miettinen, 1998). Figure 3 shows a
part of the boundary of the feasible set. The curves AB and DE are global Pareto
optimal, the curve CD is local Pareto optimal and BC is neither global nor local
Pareto optimal. To understand how the curve CD can be local Pareto optimal, cut
the boundary such that the curve CE is the only thing left. The curve CE is now
Pareto optimal, but if the curve segment AC is included it is possible to improve both
z1 and z2, hence CD is local Pareto optimal.
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E
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C

B

A

Z

z1

z 2

Figure 3: A Pareto frontier with non- (line segment BC), global- (line segment AB and DE) and local-
(line segment CD) Pareto optimal sections. Note that the curve segments AB and DE also are local
Pareto optimal since all global Pareto optimal points also are local Pareto optimal.

2.1.2 Efficiency & dominance

A more general approach to describe optimality in MOO is the concept of efficiency.
The concept introduces a pointed convex cone called an ordering cone. This cone C is
used to partially order two points. A vector z2 ∈ Rm is said to dominate z1 ∈ Rm if
0 6= z1 ∈ z2 + C (Miettinen, 1998).

Figure 4 shows an illustration for R2 with the ordering cone C = R2
+ which is also

called the Pareto cone. Note that z2 is in the cone z1 − R2
+ which means that z1 is

dominated by z2. Also note that the Pareto set (fat solid line) dominates the entire
feasible region Z.

Definition 5. A point x∗ ∈ X, is C-efficient if there does not exist another point,
x ∈ X, such that 0 6= f(x∗) ∈ f(x) + C (Miettinen, 1998).

A point is efficient with respect to the ordering cone C if it is not dominated by any
other point.

Definition 6. A point x∗ ∈ X, is weakly C-efficient if there does not exist another
point, x ∈ X, such that 0 6= f(x∗) ∈ f(x) + interior(C) (Miettinen, 1998).

A point is weakly efficient with respect to the ordering cone C if a point dominating
it, is not in the interior of the cone.

If the ordering cone is equal to Rm+ the concept of efficiency is equivalent with Pareto
optimality.

Figure 4 shows three points in the feasible set Z. Note that z1 is not C-efficient since z2

dominates it. However, since z2 is on the boundary of the cone, z1 is weakly C-efficient
(weakly Pareto optimal). z2 and z3 are C-efficient (Pareto optimal) since there is no
other point dominating it.
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Z

z1

z 2

z1

z2

z3

z1 − R2
+

z3 − R2
+

z2 − R2
+

Figure 4: The efficiency of three points on the Pareto frontier is checked with the negative ordering
cone −R2

+. Both z2 and z3 are C-efficient while z1 is only weakly C-efficient. The gray areas are inside
the cone of respective point.

2.2 Convexity

In MOO the convexity of a problem is an important property that makes a big difference
in how the problem can be solved. One way of defining convexity was made by Miettinen
(1998).

Definition 7. A multi-objective optimization problem is convex if all objective functions
are convex and the feasible region is convex.

A MOO problem has both a design space and an objective space that can be either
convex or non-convex individually. It is important to note that a MOO problem with
a non-convex design space still can have a convex Pareto frontier (Deb, 2001).

2.3 Connectedness

The property of connectedness is important in MOO to show if it possible to continu-
ously move between all points in the Pareto optimal set.

Definition 8. A set is connected when it is not possible to partition it into two non-
empty subsets such that each subset has no common point with the set closure of the
other (Insall and Weisstein, 2011).

Figure 3 show a Pareto optimal set (the curve segments AB and DE) which is an
example of a disconnected set where two segments are separated with the curve segment
BD. Connectedness can only be guaranteed for a few special cases, e.g. convex MOO
problems (Warburton, 1983).
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2.4 Ideal and nadir point

If all objective functions would be optimized individually, i.e. without regarding the
other objective functions, the composition of these values represents the ideal objective
point, zI . Mathematically it is described as

minimize fi(x), i = 1, . . . ,m

subject to x ∈ X. (2)

This is a unique point that is the optimal solution of a MOO problem if it would be
feasible. However, since MOO problems in general have conflicting objective functions
the ideal point is almost never in the feasible objective space. Figure 5 shows an exam-
ple in R2. The individual minimas of the objective functions z1∗ and z2∗ construct the
ideal point zI . In this case the ideal point is not feasible since it is outside the feasible
space Z. The ideal point describes the lower bounds of the Pareto optimal set. An
extension to the ideal point is the utopian point, zU which is a strictly better solution
than the ideal point and is therefore never feasible.

The nadir point, zN , is instead the worst value of every objective function of the Pareto
optimal set. This obtains the upper bounds of the set. Note that it should not be con-
fused with the worst possible objective value of the complete objective space. An
illustration of the nadir point can be seen in Figure 5.

z1∗

z2∗zI

zN

Z

z1

z 2

Figure 5: The ideal point zI and nadir point zN are shown together with the individual minima z1∗

and z2∗. The dotted line can be seen as the boundaries of the Pareto optimal set and all possible
Pareto optimal solutions are inside the rectangle.

The boundaries of the Pareto optimal set are useful in several ways. In some optimiza-
tion methods, the ideal point is used as a reference point which the method should
optimize towards. In MOO problems with many objective functions it can be difficult
to visualize the Pareto set and knowledge about the best and worse solutions, i.e. the
range of solutions, is then important information for the decision maker.
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Even though finding the ideal point involves m SOO problems it can still be a prob-
lematic task to solve, for instance when one or several of the objective functions are
non-convex it is difficult to find the global minimum.

The search for the nadir point is even more problematic and in many cases only a bad
approximation can be obtained. In non-convex problems there are no good methods to
find the nadir point since it is a global optimization problem. Several approximating
methods do exist, e.g. using evolutionary algorithms or payoff tables. In general, these
methods are either computational heavy or give an approximation where the precision
of the estimation is unknown (Miettinen, 1998; Monz, 2006).

The method of using the payoff table is simply performed by making a table of the
objective vectors from the search for the ideal point, i.e. using the results from SOO.
The payoff table or payoff matrix is

Φ =

f
1∗
1 fm∗

1
... · · · ...
f1∗m fm∗

m

 (3)

zI =

min f1
...

min fm

 (4)

The maximal values of each row in the payoff table can then be used as an estimation
of the upper bounds of the Pareto set. This method is simple and fast since it uses
the results from the search for the ideal point but it is however only a simple estima-
tion where the actual nadir point can be much lower or higher than the estimation
(Miettinen, 1998).

2.5 Scaling

In most cases it is advantageous that all objective functions have the same magnitudes
to give them the same relative importance. There are several methods to scale the
objective vector. Miettinen (1998) suggested one where the boundaries of the Pareto
optimal set are used to normalize the objective functions as

f̄i(x) =
fi(x)− zIi
zNi − zIi

, i = 1, . . . ,m. (5)

2.6 Method classification

There is a large number of different methods available to solve MOO problems. These
methods all have different properties, e.g. how much that has to be known about the
problem in advance and how much effort the decision maker has to put in, in order
to control the solver. One important criteria when selecting method is how the solver
interacts with the decision maker. To be able to select which method that is suitable
for a certain case there are several classification schemes. Miettinen (1998) describes
one widely used classification where the methods have been divided into four classes
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dependent on which role the decision maker has. Depending on when the decision maker
specifies the optimization parameters and when the solution is chosen the method is
classified into one or several of these classes:

No-preference methods No parameters can be controlled by the decision maker and
the optimization returns only one optimal point.

A priori methods The decision maker sets the parameters before the optimization
is performed and the optimization returns one optimal point.

A posteriori methods A range of parameters are automatically set, this creates a
set of solutions. The decision maker then chooses one preferred solution from the
set.

Interactive methods The decision maker can make changes of parameters both be-
fore and after optimization, e.g. in an iterative process where the decision maker
change the parameters in each iteration and continue changing until a desired
solution is obtained.

These classes only describes in which way a method can be used by the decision maker.
This means that one method can be included in several classes. One example of this is
the weighted-sum method which scalarizes (1) to the SOO problem

minimize
x

w1f1(x) + w2f2(x) + . . .+ wmfm(x)

subject to x ∈ X
(6)

where wi ≥ 0, i = 1, . . . ,m and
∑m

i=1wi = 1. The weights describe how much every
objective functions should be taken into consideration when optimizing. For example
for a two dimensional problem where the weights are set to w1 = 0.5 and w2 = 0.5
then both objective functions are considered equally much.

If the decision maker sets the weights to specific values before optimizing and then
accepts the obtained solution it is considered an a priori method. This means that the
decision maker is only active before the actual optimization. If a range of weights are
instead specified automatically, i.e. the Pareto frontier is sampled, and the decision
maker chooses a preferred solution among the samples it is considered an a posteriori
method. The decision maker is only active after the actual optimization. The third
case is when the decision maker is active both before and after the optimization which
is considered as an interactive method. An example of this is when the decision maker
is not satisfied with the solution for a set of preset of weights and changes them to
make a new optimization and continues doing so until a preferred solution is found.
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3 Generic framework for interactive MOO

The aim of the generic interactive MOO framework is to aid the decision maker by
showing the available optimal solutions of MOO problems, i.e. visualizing the Pareto
frontier. There are several a posteriori methods available for sampling the Pareto fron-
tier which the decision maker can use to simply pick the preferred solution. However,
for large scale problems it might take several hours or even days to cover the complete
frontier with enough samples to cover the entire Pareto frontier. For problems with
more than three dimensions it can also be difficult to visualize the Pareto set. One
solution to this is to use interactive methods which the decision maker can use to nav-
igate on the Pareto frontier without solving the complete frontier. However, when the
size and complexity of the problem grows, the time needed to find even one feasible
solution might be minutes and it is even possible that the optimization routine fails to
find a solution. This makes the work for the decision tedious and slow.

The approach used in this thesis is to first do an offline sparse sampling of the Pareto
frontier and then do a linear combination of the resulting set of Pareto optimal points.
An online navigation step is then used by the decision maker to continously move
around on the approximated Pareto frontier in realtime. The basic assumption is that
the Pareto frontier is sampled ”dense enough“ for the linear approximation to be a
good estimation of the original MOO problem. This means that the approximation is
accurate enough to give the decision maker a better understanding of the problem, to
show how it behaves and to select a final solution. The selected solution is then verified
in the original MOO problem.

Figure 21 shows an overview of the framework and how different parts work together.
It is divided into three blocks:

1. Problem formulation The main MOO problem (1) is formulated in a MAPLE
/ IPOPT-tool and this formulation is used in the offline optimization process and
the verification in the online optimization process.

2. Offline sampling Creates a set of Pareto optimal points for the online naviga-
tion.

(a) Pre-processing of the problem Creates data used to sample the Pareto
frontier. There are three routines in this step.

• Estimation of ideal- & nadir point These points are used to nor-
malize the objective functions (f1(x), f2(x), . . . , fm(x)) between zero
and one.
• Reference point creation Used to get an even distribution of samples

over the Pareto frontier.
• Creation of initial values A starting guess of optimal values for the

optimization tool to use.

(b) Optimization The MOO problem is reduced to a number of SOO problems
with the direction method and these are solved to obtain the discrete Pareto
set.

(c) Post-processing of solutions The obtained set is filtered in order to guar-
antee that all points in the set are Pareto optimal solutions.
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3. Online navigation Navigation of the linear approximation of the Pareto set.
The interaction and optimization steps are iterated until the decision maker finds
a suitable solution.

• Interaction This step interacts with the decision maker who is able to select
desired values, range of both objective functions and decision variables. The
result is visualized to get a better understanding of the problem.

• Optimization This step has two routines. The linear approximation op-
timization is used for ordinary navigation on the Pareto frontier and the
verification routine is used to check if the linear approximation is feasible
and/or make it feasible. Both routines use the direction method.

Online

Optimization

Offline

Optimization

Post-processing

Pre-processing

Formulate 
MOO problem 

in MAPLE

Reference 
points 

creation

Estimation of 
ideal- & nadir 

point
Creating 

initial values

Obtaining the 
discrete 

Pareto set

Creation of 
configuration 

file
Pareto-filter

Linear 
approx-
imation

Verification of 
solution

Interaction - navigation

Visualization Selection

Convex 
decomposition

Change of 
boundaries in 

obj. space

Change of 
boundaries in 

decision space

Figure 6: Overview of the framework. The offline block is explained in Section 3.3 and the Online
block is explained in Section 3.4.

In the following sections the theoretical background of these parts will be described.
First, previous work in interactive MOO is described. In Section 3.2, the direction
method is explained, which is the foundation of both the offline and online blocks.
Block two and three will be described thoroughly in Section 3.3 and Section 3.4. Also
a short description of how these methods were implemented is made in Section 3.5.

3.1 Previous work

There are many methods to approximate a discrete set of the Pareto frontier. There
are only a few available methods which can produce an even distribution of points,
can generate all available Pareto points with an appropriate choice of variables and is
relatively easy to apply (Messac et al., 2003).

The normal boundary intersection (NBI) method is based on the direction method.
The method creates starting point inside the convex hull of the individual minimas
and solves one SOO optimization problem for each point. The NBI method can create
non-Pareto optimal solutions and potentially do not sample the entire Pareto frontier
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(Das and Dennis, 1998).

The normal constraint (NC) method is a development of the NBI method. It uses
the same idea to create reference points but solves the SOO problems with a method
which is more robust. The NC method has the same problems as the NBI method but
removes the Pareto optimal solutions with a Pareto filter (Messac et al., 2003). Messac
and Mattson (2004) extends the original NC method and describes how to create a set
of reference points which guarantees to cover the entire Pareto frontier.

The directed search domain (DSD) method is a development of the physical program-
ming method. It creates reference points in the same way as the NBI method but
changes the direction of the search to cover the entire Pareto frontier. The method
minimizes the sum of all objective values and use the reference points together with a
cone to restrict the possible solutions (Utyuzhnikov et al., 2009; Erfani and Utyuzh-
nikov, 2010).

Evolutionary algorithms are interesting, but they do not generate an even distribution
or guarantee to cover the entire Pareto frontier and is thereby not interesting for this
thesis (Utyuzhnikov et al., 2009).

The Pareto race- and the Quadratic Pareto race methods are two interactive naviga-
tion methods for MOO linear- and quadratic programming problems respectively. The
MOO problem is solved in real-time and the decision maker chooses how to move on
the Pareto frontier by changing the speed and direction of motion (Korhonen and Wal-
lenius, 1988; Korhonen and Yu, 1997).

The Pareto navigator method is a development of the Pareto race method and is an
extension to general nonlinear MOO problems. Instead of directly solving the optimiza-
tion problem, it navigates on a polyhedral approximation of a set of sampled points.
Even though the method is specified for nonlinear MOO problems, dealing with highly
non-convex problems is a subject of research (Eskelinen et al., 2010).

Monz (2006); Monz et al. (2008) describes the Pareto navigation method which is an
interactive navigation method where the decision maker navigates on an approximated
Pareto frontier by choosing the desired levels for one objective at the time. The method
includes a restriction-, selection- and discounting mechanism. The restriction mecha-
nism is used to set upper boundaries on the objectives. The selection mechanism is
the navigation tool which is based on a cone achievement scalarising function, e.g. the
direction method by Pascoletti and Serafini (1984). The discounting mechanism is ba-
sically a way to limit how rapidly the solution is allowed to change in each objective.
This method mainly deals with convex set but discuss non-convex sets in a conceptual
manner.

Hartikainen et al. (2011) introduces an approximation approach which can deal with
non-convex Pareto frontiers. The method use a pre-sampled set with no assumptions
other than it being Pareto optimal. Delaunay triangulation is then performed on the
sampled set. The set of polytopes created by the Delaunay triangulation is filtered
to make sure that non of the created polytopes dominates the other. This is done by
optimization and it is possible that O(mk) optimizations needs to be performed where
m is the number of polytopes and k is the dimension of the problem. The filtering

12



is computational heavy and more research is needed to implement the approximation
approach.

3.2 Direction method

The direction method is the basis in both the sampling of the Pareto frontier and the
online navigation, hence a brief description is necessary. It is a vector scalarization
method which reduces the MOO problem (1) into the SOO problem,

maximize
x,α,q

α

subject to x ∈ X (7)

f(x) = αd + zR − q

where α ∈ R, q ∈ Rm+ and d, zR ∈ Rm (Pascoletti and Serafini, 1984). The vec-
tors d, zR are called the direction vector and the reference point, respectively. The
method pushes the negative Pareto cone in the direction d from the starting point
zR until the set (z∗ − Rm+ ) ∩ Z = {z∗} where the optimal solution {x∗,q∗, α∗} gives
z∗ = f(x∗) = zR+α∗d−q∗ (Eichfelder, 2008). The vector q is called the slack variable
and if it is removed from (7) the method reduces down to a line search in Rm.

E

D

C

B

A

Z

z 1

z
2

z ∗

zR

d

Figure 7: A Pareto frontier with non- (line segment BC),
global- (line segment AB and DE) and local- (line seg-
ment CD) Pareto optimal sections.

By varying d and zR the entire
weakly Pareto optimal set can be ob-
tained (Klamroth and Tind, 2006;
Pascoletti and Serafini, 1984). If an
optimal solution is found when using
the direction method, it is at least a
weakly Pareto optimal solution, but
note that a Pareto optimal solution
is also a weak Pareto optimal solu-
tion as described in Section 2. This
is however not true when no slack is
used, since any feasible solution is on
the search line. Figure 7 shows an ex-
ample where the optimization would
yield the solution z∗ without slack
but the point B with slack. Any line
crossing only the curve segment BC
will yield non-Pareto optimal solutions if slack is not used.

The left plot in Figure 8 shows a situation with m = 2. z1 is not Pareto optimal since
the intersection between Z (the feasible set) and z1 − R2

+ is not equal to z1. At the
point z∗ the intersection (z∗ −R2

+)∩Z = z∗ which makes z∗ Pareto optimal since it is
unique (Pascoletti and Serafini, 1984).

The right plot in Figure 8 shows a feasible set which is disconnected. z∗ will be feasible
and Pareto optimal since it is unique and the intersection (z∗ −R2

+)∩Z is z∗ itself. If
the slack variable q is discarded the problem will be infeasible since there is no solution
on the line zR + αd.
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Figure 8: The direction method geometrically interpreted. The left plot shows the concept of the
intersection between the feasible set Z and the negative Pareto cone. The right plot shows how the
cone (slack) is used to find a solution which is not on the line.
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3.3 Obtaining the discrete Pareto set

As mentioned in Section 3 the method for obtaining the discrete Pareto set is divided
into three parts, pre-processing, sampling and post-processing.

The pre-processing stage creates a direction and a set of reference points that are later
used with the direction method to get an even coverage of the entire Pareto frontier.
Figure 9 shows an example in R2 with 11 reference points.
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zR10

zR9

zR8

zR7

zR6

zR5

zR4

zR3

zR2

zR1

d
Z

z̄2∗

z̄1∗

z1

z 2

Figure 9: An example of the normalized feasible set with the set of 11 reference points, the reference
hyperplane and the individual minima z1∗ and z2∗

The reference points created in the pre-processing stage is used together with the di-
rection method to sample the Pareto frontier. The original MOO problem is reduced
to a number of SOO problems which can be solved with existing optimization routines.

The post-processing stage rejects non-Pareto optimal solutions with a Pareto filter and
prepares it for the online navigation.

3.3.1 Reference point creation

To get a good approximation of the Pareto frontier it is important to have an even
distribution of sampled points. This means that since the direction method is used
to sample the Pareto frontier, the pattern of the created reference points is crucial in
order to evenly distribute the sampled points. Hence, a new method to distribute the
points is needed. To give all objectives the same relative importance, they are nor-
malized according to Section 2.5. This means that all points are inside the hyper-cube
0 ≤ fi(x) ≤ 1, i = 1, . . . ,m in the objective space Z.

In the same way as the NBI method uses the convex hull of the individual minima
to create reference points (Das and Dennis, 1998), the approach used in this thesis is
to create points on the hyperplane spanned by the m individual minima vectors. All
points on a hyperplane in Rm can be described as a sum of one point on the plane and
m− 1 linearly independent vectors which lies in the plane.

In order to be able to spread points evenly, an orthonormal basis is chosen such that
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m− 1 of the vectors in the basis coincide with the hyperplane. The left plot in Figure
10 shows an example in R2. The vector b2 coincide with the hyperplane (the dotted
line between [0, 1]T and [1, 0]T ) and the second basis b1 is chosen as the normal to
the hyperplane. All points on the line can be described as the sum of a point on the
line and the scalar multiple of b2, i.e. any point p on the line can be described as
p = p0 + αb2.
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Figure 10: Two examples of orthonormal basis for hyperplanes in two and three dimensions. The
right plot is shown in the normal direction to the plane. Note that the vector b1 in the right plot is
the normal to the plane and that b2 and b3 lies in the plane. The rectangle ABCD is a subset of the
hyperplane. The gray areas are not useful because their projection will not be inside the hyper-cube
which contains all Pareto optimal solutions.

For the m-dimensional case the choice of basis is straight forward, any point on the
hyperplane can be desribed as

p = p0 +
m∑
i=1

αibi = p0 +
[
b1 . . . bm

] α1
...
αm

 (8)

where p0 is a point on the plane and bi, i = 2, . . . ,m, are linearly independent vectors
lying in the plane and α1 = 0 since b1 is the normal to the hyperplane. Since the
hyperplane is spanned by bi, i = 2, . . . ,m and the basis should be orthonormal this
means that b1 must be normal to the plane (Lay, 2002).

To find the rest of the m − 1 orthogonal basis vectors the Gram-Schmidt process is
then applied:

b1 = n

b2 = v2

b3 = v3 −
v3 · b1

b1 · b1
b1 −

v3 · b2

b2 · b2
b2

... (9)

bm = vm −
vm · b1

b1 · b1
b1 −

vm · b2

b2 · b2
b2 − . . .−

vm · bm−1

bm−1 · bm−1
bm−1
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where v2, . . . ,vm are given by

v2 = f̄∗1 (x)− f̄∗2 (x)

v3 = f̄∗1 (x)− f̄∗3 (x)

... (10)
vm = f̄∗1 (x)− f̄∗m(x).

Each vector is then normalized to get the orthonormal basis and p0 is chosen as the
mean of the individual minima, i.e. m = 1

m

∑m
i=1 f̄

∗
i (x). The right plot in Figure 10

shows the basis vectors together with the convex hull of the individual minima. Note
that the basis vectors are scaled to better fit the plot.
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Figure 11: Left: The reference points created. Note that the distance between neighboring points
are equal for all points. Right: Shows the remaining reference points after the usefulness filtration.
Both plots are seen in the normal direction to the hyperplane spanned by the individual minima. The
gray areas are not useful because their projection will not be inside the hyper-cube which contains all
Pareto optimal solutions.

Before the reference points can be created the size of the reference point field must
be calculated to guarantee to cover the entire Pareto frontier. A number of optimiza-
tions are performed to obtain the boundaries of the hyper-cube when projected to the
hyperplane spanned by the basis b. These optimization problems are a reformulation
of the optimization problems described in Messac et al. (2003). The lower bounds,
αlj , j = 2, . . . ,m, on the weights in (8) are acquired by solving the problem

αlj = minimize
µ,p

αj , j = 2, . . . ,m

s.t. bi · (µ− p) = 0, i = 2, . . . ,m (11)

p = m +

m∑
k=2

αkbk

0 ≤ µ ≤ 1, αk ∈ R, k = 2, . . . ,m, p ∈ Rm

where m is the mean of the individual minimas, αk, k = 2, . . . ,m, are the weights in
(8), µ ∈ Rm is a point in the hypercube and p ∈ Rm is a point on the hyperplane.
Note that the first equality constraint demands that the projection of the point p into
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the Pareto hypercube should be orthogonal to the reference hyperplane. In the same
way the upper bound, αuj , j = 2, . . . ,m, of the weights can be found by performing
(11) as a maximization instead of a minimization. Figure 10 shows an example in three
dimensions where the rectangle ABCD is the result of the optimization.

A set of points is created by incrementing αj , j = 2, . . . ,m with a fixed length between
the lower and upper bound. The left plot in Figure 11 shows the hyperplane for a set
of reference points created in R3 shown in the normal direction. With an appropriate
choice of number of steps and steplength, an equidistant sampling is acquired which
can be seen in the both plots in Figure 11.

However, this method creates a number of points which lie outside the projection of the
hyper-cube onto the hyperplane. This means that they cannot yield Pareto optimal
solutions. The solution is to check the usefulness of every reference point. A reference
point is useful if its projection intersects the Pareto hypercube and this is checked by
solving

minimize
µ

1

s.t. bi(µ− p) = 0, i = 2, . . . ,m (12)
0 ≤ µ ≤ 1

where µ ∈ Rm is a point in the hypercube and p ∈ Rm is a point on the hyperplane.
This gives a well distributed set of starting points which can give Pareto optimal solu-
tions that are inside the hyper-cube with the direction of search perpendicular to the
reference point hyperplane. The right plot in Figure 11 shows an example where the
usefullness optimization has been performed on the reference points seen in the left plot.

3.3.2 Sequence of optimization

From a trade-off point of view the most interesting point of the Pareto set is the ideal
point and points close to it. It is therefore beneficial to start with a reference point
which is close to the projection of the ideal point on the reference points hyperplane
and gradually move away from it.

When the number of variables and the complexity of the problem grows the initial
starting guess is very important. One way to solve this is to use the solution from the
previous optimization as initial guess for the next optimization as suggested by Das
and Dennis (1998). With this in mind, it is important to use the reference points in
a certain order to reach a solution correct and in some cases faster than without an
initial guess.

The proposed solution used in this thesis is to use a span tree method. A start point
is chosen and its nearest neighbors are found. Then the nearest neighbors of these are
found, etc. This creates a number of branches which all spans from the original point.
The left plot in Figure 12 shows the pattern for a small number of reference points.
The point in the middle marked with a small circle is the point closest to the projection
of the ideal point onto the reference hyperplane and is used as the first point to optimize.

18



0

0.5

1

0

0.5

1

0

0.5

1

z1
z2

z 3

0

0.5

1

0

0.5

1

0

0.5

1

z1

n = 4

n = 3

n = 2

n = 1

z2

z 3

Figure 12: Left: Shows the connections created between the points in the set of reference points using
the spanning tree method. The point in the middle was used as the starting point of the tree. Right:
Shows the ordering sequence where level n has to be finished before level n+1. Note that the dashed
line is the normal projection of the hypercube onto the reference hyperplane.

Since the points nearest to the projection of the ideal point are of most interest, the
points are arranged in different levels. Each level is further away from the starting
point. All points in level n are completed before the points in level n + 1. The right
plot in Figure 12 shows which points that belong to each level. Note that the circles
only show which points that are included in each level and is not a part of the algorithm.

The span tree method is easy to implement, an arbitrary start point can be chosen and
it is possible to generalize it to n dimensions. The big drawback is that all solutions in
level n− 1 have to be stored in memory until all points in level n are completed. This
means that for large scale problems a large amount of memory might be needed.

3.3.3 Sampling the Pareto frontier

The set of reference points and direction created in the previous section is used to
sample the Pareto frontier. As mentioned in Section 3.2 the direction method solves
the problem

maximize
x,α,q

α

subject to x ∈ X (13)

f̄(x) = αd + zRi − q

where f̄(x) is the normalized objective vector according to Section 2.5, zRi is a reference
point in the set of reference points created in the previous section, d is the direction
and q is the slack vector.

Problem (13) is solved for i = 1, . . . , p, where p is the number of reference points in
the set created in the previous section. The direction d is chosen equal to the negative
normal of the reference hyperplane. To get equidistant sampling the slack vector is set
to the zero vector since a solution on the search line is wanted.

This method is straight forward, easy to implement and understand. However, since it
essentially is the NBI method it has one major drawback, it can produce non-Pareto
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optimal solutions (Marler and Arora, 2004). A solution to this problems will be be
presented in the following section. Note that these problems also exists in the NC
method (Messac et al., 2003).

3.3.4 Pareto filter

To deal with the fact that the NBI method might produce non-Pareto optimal solutions
a Pareto filter is used. Messac et al. (2003) introduced a Pareto filter to complement
the NC method. The filter is based on the definition of Pareto optimality and basically
checks each point against all others to see if it is dominated.

 

 
Sampled point
Pareto optimal

Figure 13: A two-dimensional Pareto set where the Pareto filter has been applied. Filtered points are
marked with circles and are Pareto optimal.

The output from the filter is a set of globally Pareto optimal points. Figure 13 shows
one example where the Pareto filter has been applied. Note that the original set consists
of non-Pareto-, local Pareto- and global Pareto optimal points.
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3.4 Interactive navigation in the Pareto set

The main objective of the interactive navigation part of the framework is to make it
possible for the decision maker to smoothly move around on the Pareto frontier and
search for a suitable solution. This is an iterative process where changes made by the
decision maker triggers an optimization that results in a new solution that the decision
maker can react on and possibly make new changes. This is an online step where the
interaction between the application and the decision maker is high. Compared to the
Pareto set generation it is however crucial that the iteration time is low so that the
decision maker smoothly can maneuver on the Pareto frontier. This is possible when
the optimization problem is small and preferably linear.

Several different interactive methods have been developed, e.g. Pareto Race by Kohro-
nen (Miettinen, 1998) and Pareto Navigation by Monz (2006) but they mostly consider
convex or even linear MOO problems. Methods used in the interactive part of this
thesis have been inspired much by the latter.

In this framework the idea is that the decision maker can select the value and change
the range of one or several objectives and/or decision variables. The solution is then
visualized together with the feasible areas which the decision maker can navigate to
from the current state. In this way the decision maker can investigate the Pareto frontier
by changing values back and forth. The decision maker can control three parameters:

• Set a preferred value of an objective or a decision variable.

• Change the upper or lower bounds of the objectives or the decision variables.

• Fix objectives or decision variables to their respective current value.

Even if there are only a few parameters for the decision maker to control, there are
several methods used internally. Next section will make an overall description of how
the complete navigation step works and then the theory of every internal function is
described thoroughly.

3.4.1 General idea of interactive navigation

The foundation of navigating on the Pareto frontier is to use a set of already approx-
imated Pareto optimal points and then do a linear approximation of these to simplify
the optimization problem and hence make it possible to optimize several times per
second.

At first all the original Pareto points are in a feasible set. If the boundaries of the
objectives or the decision variables are changed by the decision maker some of the
points in this set are inactivated and hence excluded from the feasible set. The decision
maker moves around on the Pareto frontier by selecting one or several preferred values
in the objective space and/or decision space. This can be done continuously by using
the linear combination of the set. However, this only works for convex Pareto sets
and to solve this for non-convex Pareto set the feasible set is decomposed into several
smaller convex sets. Whenever a desired level is changed by the decision maker all the
convex sets are optimized one by one using the direction method. The best solution is
then visualized to the decision maker.
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3.4.2 Feasible points

For every objective there is a lower and an upper boundary zli and zui , i = 1, . . . ,m
and similarly for every decision variable xlk and xuk , k = 1, . . . , n. These boundaries
can be changed by the decision maker during navigation. The points that are outside
any of the boundaries, are simply excluded from the set of feasible points Y and hence
the set is constructed as

Y = {(z ∈ Rm,x ∈ Rn) | z ∈ Zf ,x ∈ Xf} (14)

where

Zf = {z ∈ Rm | zli ≤ zi ≤ zui , i = 1, . . . ,m} (15)

and

Xf = {x ∈ Rn | xlk ≤ xk ≤ xuk , k = 1, . . . , n}. (16)

An example where the boundaries have been changed can be seen in Figure 14.
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Figure 14: An example of feasible and infeasible points with set upper and lower boundaries of
objective- z and decision space x. Feasible points are marked with a circle. Note that the points
have to be in both Zf and Xf to be feasible.

3.4.3 Linear approximation of Pareto set

One simple method to approximate a set of points is to use the convex combination.
This can be done in two levels with different accuracy of approximation as described
by Monz et al. (2008). The first level is to do a linear approximation in the decision
space and use the convex hull of the decision vectors x from the Pareto set and then
approximate the objective vector as f(x) ≈ f(x̃) where

x̃ =

p∑
i=1

γix
i, (17)

where γi are the coefficients,
∑p

i=1 γi = 1 and p is the number of decision vectors.
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The second level is to directly approximate in objective space and create the convex
hull of the discrete set of objective vectors yk from the Pareto set

f(x) ≈
p∑
i=1

γiy
i. (18)

It is important to note that the first level requires function evaluations where the
functions might be nonlinear. For a convex Pareto frontier the approximations will
always be above the true Pareto set and the second level of approximation will be
above the first level (Monz, 2006).

3.4.4 Fix an objective or decision variable to a preferred value

This step is the actual navigation where the method tries to find a solution on the Pareto
frontier that satisfies all objective- and decision variable-values that the decision maker
prefers. A method to accomplish this is described by Monz (2006). The direction
method described in Section 3.2 and (7) is used with the difference of fixing one or
several objectives and decision variables to some specified values τ and µ respectively.
The optimization problem then becomes

maximize
x,α,q

α

subject to zRi + αdi = fi(x) + qi, i ∈ {1, . . . ,m} \ Fz (19)
fj(x) = τj , j ∈ Fz
xl = µl, l ∈ Fx
qi ≥ 0, i ∈ {1, . . . ,m} \ Fz

where zR is the reference point and is set to the previous solution with zj = τj , j ∈ Fz,
q is an additional slack and d is the search direction. The parameters τj and µl are
the fixed values in the sets Fz and Fx which are fixed objectives and decision variables
respectively. Note that Fz or Fx can be empty.

The search direction d controls the ratio of improvement/deterioration between the
objectives except from fj(x), j ∈ Fz. In this framework all objectives should be im-
proved/deteriorated equally much so the direction is set to d = [−1, . . . ,−1]T .

An additional slack is added to always find a solution in case of no intersection with
the Pareto front is found. This may occur if for instance the desired value is close to
an edge or corner of the set.

An illustration of one search from the point zold with one fixed objective τ can be seen
in Figure 15. Note that as a result of setting the desired value, the objective space is
sliced by a hyperplane, and hence the optimization problem is reduced with one dimen-
sion. In this case it turns into an optimization in only one dimension. The solution
of the optimization problem is a weakly Pareto optimal point that fulfills the desired
fixed values.

To be able to solve this optimization for large scale MOO problems in realtime, the
set of points obtained from the offline part must be used. This is accomplished by
using the linear approximation of the Pareto set. The best solution would be to use the
first level of approximation, i.e. (17). However, for a large set of points the nonlinear
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Figure 15: One optimization in the objective space with a desired objective value τ . The dashed line
is the Pareto optimal set, zold is the previous solution and z∗ is the solution found. Note that zR is the
reference point used in the direction method obtained from zold and τ . In a two-dimensional problem
the optimization is in only one dimension and in this case only z2 is optimized since the z1 is fixed.

optimization problem would take too much time to solve and the software would not
run smoothly. Instead the second level of linear approximation of the Pareto set is
used. By using (18) the the optimization problem turns into a linear program which
can be solved fast. The problem can be rewritten as

maximize
x,α,q

α

subject to zRi + αdi =

p∑
k=1

γky
k
i + qi, i ∈ {1, . . . ,m} \ Fz (20)

p∑
k=1

γky
k
j = τj , j ∈ Fz

p∑
k=1

γkx
k
l = µl, l ∈ Fx

p∑
k=1

γk = 1

qi ≥ 0, i ∈ {1, . . . ,m} \ Fz, γk ≥ 0, k = 1, . . . , p

where γi are the linear approximation coefficients. The sets Fz and Fx are the fixed
objectives and decision variables respectively. Note that this is a linear optimization
problem.

3.4.5 Convex decomposition

To be able to continuosly navigate in a set of points, the convex combinations of the
points can be used. One idea, which is used by Monz (2006), is to make a linear ap-
proximation of the complete set of feasible points and then find an optimal solution
in this convex hull. This method however requires the set to be convex and cannot
handle disconnected sets or holes that can emerge if for example a point somewhere in
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the middle of the set is infeasible which can be seen in the left plot in Figure 16. The
convexity problem can be solved by decomposing the set of feasible points into a few
smaller convex sets and then optimize on every set one by one and in the end choose
the best solution from these. It is, however, difficult to decompose sets that are in more
than two dimensions. An example of a decomposition in convex sets can be seen in
the middle plot in Figure 16. The idea in this thesis is to use the extreme of the last
method and decompose all points into polytopes where one polytope is connected to
only m points where m is the number of dimensions of the MOO-problem which can
be seen in the right plot in Figure 16.
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Figure 16: Left: The convex hull (dotted line) of a Pareto frontier (solid line). Middle: A Pareto
frontier (solid line) decomposed into convex sets (dotted line). Right: A Pareto frontier (solid line)
decomposed into a set of polytopes (dotted lines). Note that there is no polytope covering the hole in
the frontier.

One polytope is called a d-simplex in the d-dimensional space. Note that for a d-
simplex the number of vertices is d+ 1. This means that in one dimension a simplex is
represented by a line, in two dimensions a triangle and in three dimensions a tetrahedron
(Grunbaum and Shephard, 1969). An illustration of 1-simplex to 3-simplex can be seen
in the left plot in Figure 17. Let v = {z ∈ Rm,x ∈ Rn} be one vertex in a simplex.
Then the set of vertices in one m-simplex can be described as:

t = {v1, . . . ,vm} (21)

where m is the dimension in the objective space. An illustration of the vertices for one
2-simplex can be seen in the right plot in Figure 17.

ti

v1 v2

v3

z1

z 2

Figure 17: Left: An example of a 1,2 and 3-simplex. Right: The notation of a 2-simplex.

It is important to note that the Pareto frontier is a hypersurface in the m-dimensional
space and therefore the decomposition should be represented in the m− 1 dimensional
space. For example, in a three dimensional problem the surface can be decomposed
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in the two dimensional space with 2-simplices, i.e. triangles with three vertices. To
accomplish this the Pareto frontier must be projected to some hyperplane with one
dimension less. In this framework the reference points used when obtaining the Pareto
set are already a suitable projection of the frontier and hence it can be used directly
for the decomposition. The left plot in Figure 18 shows an example of a decomposi-
tion of a set of points when looking in the normal direction of the reference point plane.

There are several methods to decompose a set of points to simplices but one method
that works for p dimensions is the p-Delaunay triangulation. This method creates
p-simplices such that no p-simplices intersects another and the minimum angle of all
p-simplicies are maximized. How this method works is out of the scope for this thesis
but see de Berg et al. (2000) for a description of how the decomposition is performed.
All decompositions in Figure 18 was performed with this method.

Figure 18: Three sets with decomposed convex sets on a two-dimensional hyperplane in three di-
mensions. Left: Shows a decomposition when all points in the set are feasible. Middel: Shows a
decomposition when a point in the middle is infeasible. Right: A filtered decomposition of the middle
plot. Note that the circles are feasible points in the set.

For a full set of feasible points, the Delaunay triangulation makes an appropriate de-
composition of the set, seen in the left plot in Figure 18. However, if some points
are not included, e.g. some points are infeasible, the Delanunay triangulation will still
cover the complete set with the difference that some simplices have become larger. An
example of this can be seen in the middle plot in Figure 18 where one point in the
middle is infeasible. To solve this the decomposed set is filtered by checking the size of
every simplex. There are several ways to filter the set but one method is to check the
length of the edges and exclude the simplices where one or several of the edges are too
long.

If the points are equidistant distributed, the general simplex have equidistant edges
which can be seen in the left plot in Figure 19. The height of the simplex where the
length of every edge is d is calculated as

h =

√
3

2
d (22)

by using Pythagoras theorem. If the decomposition made by Delaunay triangulation
becomes as in the right plot in Figure 19 the two larger simplices 2 and 3 should not
be included in the decomposition since they cover the point which is known to be
infeasible. However, the two simplices 1 and 4 can still be a good approximation of
the Pareto frontier and cover feasible areas and hence should be included. The longest
edge of simplex 1 and 4 is 2h of the general simplex, calculated by using Pythagoras
theorem. An appropriate way to filter the set of simplices is then to exclude simplices
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with edges longer than 2h. Note that it would be desirable to also have simplices
covering the upper en lower part of the ”hole” so that the hole is only a small hexagon.
This is, however, not possible when using Delaunay since they would intersect each
other.

d d

d

h

2dd d

d d

d d

2h
t1

t4t2

t3

Figure 19: Left: The height h of an equilateral triangle where the length of every edge is d. Right: A
decomposition of a set of points with one infeasible point in the middle. Simplex 2 and 3 should be
excluded since they covering an infeasible point while simplex 1 and 4 can still be a good approximation.
The longest edge of simplex 1 and 4 is 2h of the equilateral simplex in the left plot.

All filtered simplices created by the decomposition of the feasible points in Y are in
the set T = {t1, . . . , tk} where k is the number of simplices. An illustration of the set
T can be seen in the right plot in Figure 20.

3.4.6 Approximated solution

When the decision maker sets a desired level in the objective space or in decision space,
each filtered simplex ti ∈ T is optimized one by one using (20) with P ∈ vj and vj ∈ ti
is the set of points in simplex ti.

The simplex with the best solution, i.e. the largest objective value α, from optimizing
the set T is chosen as the best solution of the optimization at the desired levels. An
illustration of an optimization in a two dimensional problem with one objective set to τ
can be seen in the left plot in Figure 20. In this example z1∗ is attained by using slack
but has a smaller value than z2∗ and that z3∗ has no solution since the slack must be
positive. In this case simplex t2 has the best solution z2∗. Note that when a value in
objective space has been changed and a solution is found on the Pareto frontier there
is only one simplex that has no slack and is actually on the line of search. This is the
optimal solution.

When one or several values are fixed in objective space and/or in decision space some
simplices will probably be infeasible because they are simply not covering the desired
levels. An example of this can be seen in Figure 20 where z1 has been fixed to τ . In
this case it can be seen that t2 is the only simplex that can have a solution without
slack at τ . This shows that it is not necessary to optimize the simplices that do not
cover the desired levels since no solution will be found in these. The subset TA, called
the active set, is defined so that

min(zpi ) ≤ τi ≤ max(zpi ), i ∈ Fz, p ∈ vk
min(xpj ) ≤ µj ≤ max(xpj ), j ∈ Fx, p ∈ vk (23)
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where vk, k = 1, . . . ,m is the vertices of simplex tl ∈ T . The subset TA is all the
simplices which cover all the fixed levels in both decision space and objective space.
In the left plot in Figure 20 the dashed lines shows the boundaries of every simplex
and it can be seen that t2 is the only simplex with τ inside the boundaries and hence
it is the only simplex that needs to be optimized. An example of an active set in a
three-dimensional problem can be seen in Figure 20. As can be seen in the figure this
subset is smaller than the original set and in some cases heavily reduces the amount of
optimizations needed.
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Figure 20: Left: An example of the active set in a two dimensional problem with a desired level τ in z2.
The dashed lines shows the boundaries for every simplex. t2 is the only simplex which is covering τ .
An example of a three dimensional problem. The active set is seen as gray simplicies. The boundaries
are not plotted for clarity.

By using the convex combination coefficients γ∗ from the solution on the points in the
best simplex an approximated value in objective space and decision space is calculated
as

z =

p∑
k=1

γ∗ky
k (24)

where yk are the objective vectors that are included in the best simplex t∗ and p is the
number of vertices in the simplex. The same works for decision space as

x =

p∑
k=1

γ∗kx
k (25)

where xk are the decision vectors that are included in the best simplex t∗.

3.4.7 Find true Pareto optimal point

When the decision maker is satisfied with the solution or wants to check if the ap-
proximated solution is feasible it must be optimized in the original MOO problem.
The approximated objective vector is used as a reference point in (7) and the approxi-
mated decision vector is used as an initial guess to the optimizer. If the optimization
is successful the solution is presented to the decision maker.

28



3.4.8 Complement the obtained Pareto set

The idea of using an online step to navigate on an approximated Pareto frontier is to
make a sparse sampling of the frontier and then use the linear approximation of the
set. However, if the decision maker finds an area of the Pareto frontier which is of more
interest than others, it would be beneficial to improve the Pareto set in that area. This
can be done by specifying the area of interest and then iterating back to the offline step
and do a new Pareto set. The new points can then be added to the already existing
Pareto set and the decision maker can continue to navigate.

3.5 Implementation
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Figure 21: Overview of the framework. The offline block is explained in Section 3.3 and the Online
block is explained in Section 3.4.

The implementation is divided in three part as mentioned in Section 3. The first part
is the MAPLE/IPOPT-tool. All variables, constraints and objective functions of the
optimization problem are entered in a MAPLE input file as symbolic equations. In the
offline application it is possible to change settings of how the Pareto frontier should
be obtained and then plot the resulting Pareto set. The set is exported to the online
application which has a GUI that the decision maker can use to investigate the Pareto
set and select a preferred final solution.

3.5.1 Offline

When the MOO problem has been setup in the MAPLE-tool it is parsed into C++
code with an interface to the IPOPT-package. IPOPT is an interior point optimizer
for large scale nonlinear SOO problems. The interface between MAPLE and C++
was given by ABB Corporate Research and has only been changed to add features to
optimize several points in one run. The C++ code is then compiled into an executable
file that can be used to obtain the Pareto set.
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The offline application has mostly been developed in MATLAB. MATLAB is used to
call both the MAPLE-files and the executable files. Several MATLAB functions have
been implemented to create the reference points, set up all files necessary for the exe-
cutable file, filter the Pareto set, visualize the final Pareto set and export points to the
online application.

The decision maker can control several settings how the optimization should be per-
formed when obtaining the Pareto set such as the number of samples of the Pareto set
and what kind of initialization features should be used. It is also possible to control
what should be visualized and which variables in the decision space that are of interest
to export to the online application. For example there might be variables that are
internal in the original MOO problem. These are often not interesting to visualize
and/or control and can be omitted in the navigation. A description of the exported
variables can also be set such as a name and the physical unit of the variable.

Before the Pareto set can be obtained the ideal points must be found. In the application
it is possible to specify that a single objective should be optimized. The solutions are
then saved so that the problem can be scaled and the reference points can be created.
In the beginning of the procedure there are no previous solution at hand that can be
used as an intialguess. It is therefore possible for the decision maker to create an initial
guess by calculating appropriate values for some of the variables by using information
about the model. For example an initial guess of the trajectory of some movement can
be made which the decision maker expects to be close to the optimal trajectory.

The IPOPT-package has built-in functionality for initiating the solver to find a solution
faster if much information about the problem is already known. There are two methods
that have been implemented in the generic framework. The first is to use the built-in
warmstart initialization which means that the values of the primal and dual variables
from a previous optimization are used as a good initial guess for a new optimization.
The other is to set the initial barrier parameter so that the search space is narrowed
down from the beginning. As mentioned in Section 3.3.1 (Reference point creation)
and 3.3.2 (Sequence of optimization), the reference points are created in a sequence
so that there is high probability that the solutions are close to each other. In the
implementation all primal- and dual variables are saved so that they can be used as
initialization for the next point to solve. Note that even if the warmstart features are
disabled, the primal variables can be used as an initial guess to solve the next point.
There is also a “rerun” feature implemented in the framework that enables the possibility
to run the optimization for a point again if the solver fails to find a solution when the
warmstart features is enabled. In this case both warmstart features are automatically
disabled in the next optimization to enlarge the search space.

3.5.2 Online

A GUI for the online step of the generic framework has been created. This has been
implemented in C# with interaction to MATLAB and C++. The application imports
a configuration file and all solutions in both objective space and decision space from
the obtained Pareto set from the offline application. The configuration file is used to
describe the size of the problem and the set of variables and decision variables that are
of interest to control and/or visualize to the decision maker. It also includes the initial
bounds and descriptive names of the objectives and decision variables.
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In the application every objective and decision variable is represented by a range bar
with a marker for the upper and lower bounds of the objective or variable and a marker
for the current value. Figure 22 shows an example. All these markers can be changed
by the decision maker and for every change an optimization is triggered. At startup
the boundaries of the objectives are set to the ideal and nadir point in respective di-
mension. The boundaries of the decision variables are set to the same bounds as the
variables in the original MOO-problem. This makes all attained points from the offline
application feasible from the beginning.

Figure 22: A snapshot of the navigation application in use. The objectives are represented by rangebars
in the lower part of the window. A list of different sets of decision variables is shown the left. The
selected set of decision variables are shown as rangebars in the middle. To the right there is a plotting
area where solutions of objectives or decision variables can be visualized. Note the green and red fields
of the rangebars which shows the feasible and infeasible regions to move to from the current solution.

One important feature when setting the level of one or several of the objectives or
decision variables is to see the feasible regions of all the other objectives and decision
variables. Especially when the problem is larger than three dimensions since the frontier
cannot be visualized in an easy way. In the rangebars the feasible regions are visualized
with green fields and infeasible regions with red fields which can be seen in Figure 22.
This is done by using the set of simplices that are active, i.e. the set of simplices that
intersects the hyperplanes of fixed values. The convex combination of the intersection
is calculated for every simplex which are then used to create a set of ranges that are
plotted in the rangebar. These fields show existing holes and disconnected sets in the
Pareto frontier.

When the bounds of an objective or decision variable is changed some of the points in
the Pareto set might be infeasible. In this case a new convex decomposition must be
done since some polytopes will no longer be feasible. In Figure 18 it is possible to see
that the set of polytopes has been recalculated because one point turned infeasible. If
the set is not recalculated the hole will be larger. The convex decomposition is done in
MATLAB for simplicity.

On every change of either a value or a boundary an optimization is executed. This is
done with the linear solver CLP from Coin-OR which is written in C++. Every active
simplex at the current fixed level is optimized one by one. The best solution is returned
to the GUI and visualized on the rangebars. If no solution is found the rangebars are
set to the previous value.
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Figure 23: A plot of the visualization of the Pareto set in the online application. A desired level has
been set on z1 and both the upper and lower boundaries have been changed on z1.

To the right in the GUI there is a two dimensional plot window. In this plot it is
possible to show the values of decision variables at the current solution. The plot is
updated whenever a new solution is found.

For problems with two or three dimensions it is possible to visualize the Pareto set when
navigating in it. For simplicity the MATLAB plot function has been used instead of
creating a plot function inside C#. A plot when navigating on a Pareto set can be seen
in Figure 23. The lower and upper boundaries of z1 have been changed so that some
Pareto optimal points (black points) becomes infeasible (B) and the cyan colored area
(A) are the feasible simplices. The yellow plane (C) shows the current set level on z1
which intersects the Pareto set which can be seen as the thick black line. At this level
the active simplices are shown in green (D) and the solution found by the optimization
can be seen as a red point (E). When boundaries or desired levels have been changed
and a solution has been found, the plot is updated.
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4 Benchmarking problems

A set of smaller optimization problems with different properties have been used to test
the functionality of the implemented framework and analyze the performance. The
problems are mathematically simple and used in benchmarking of evolutionary MOO
methods. However, these problems also works with traditional optimization tools. The
shape of the Pareto front is known for these problems so the generation of the estimated
Pareto front from the implemented framework can be evaluated.

4.1 Test problems with known Pareto frontiers

In this section, three MOO problems are described and evaluated. The two first of
them have been created and analyzed by Yun et al. (2004) and Veldhuizen (1999)
which have illustrations of the true Pareto frontiers. Test problem 3 is a modification
of test problem 1 where an extra objective function has been added. In this case, the
shape of the true Pareto front is unknown. The properties of the models can be seen
in Table 1 and the mathematical description can be seen below:

Table 1: Properties of the test problems
Dimensions Variables Shape Other properties

Test problem 1 2 2 Non-convex Disconnected
Test problem 2 3 2 Convex
Test problem 3 3 2 Non-convex Disconnected

Test problem 1 (Yun et al. (2004)):

z1(x) = x1

z2(x) = 1 + x22 − x1 − 0.2sin(3πx1) (26)
0 ≤ x1 ≤ 1,−2 ≤ x2 ≤ 2

Test problem 2 (Veldhuizen (1999)):

z1(x) = x21 + (x2 − 1)2

z2(x) = x21 + (x2 + 1)2 + 1 (27)

z3(x) = (x1 − 1)2 + x22 + 2

− 2 ≤ x1, x2 ≤ 2

Test problem 3 (Modified from Test problem 1):

z1(x) = x1

z2(x) = 1 + x22 − x1 − 0.2sin(3πx1) (28)
z3(x) = − x2

0 ≤ x1 ≤ 1,−2 ≤ x2 ≤ 2

The three test problems were implemented in the framework and the Pareto frontiers
were sampled with 51, 420 and 420 points respectively. The estimated Pareto frontiers
of the problems can be seen in Figure 24.

In Figure 24(a) the estimated Pareto optimal set (black markers) can be seen together
with the boundary of the feasible set of the objective space. It can be seen that the
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Figure 24: Estimated Pareto frontiers of test problems
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estimated Pareto set is a good approximation of the Pareto frontier and that the com-
plete Pareto frontier is covered. Note that there are two disconnected sets since some
points are not Pareto optimal (marked with gray crosses). This is due to the fact that
between the two sets the first objective z1 can be improved without deteriorating the
second objective z2.

In Figure 24(b) the estimated Pareto optimal set for test problem 2 can be seen. The
method obtains the correct frontier and this test problem has been a great help while
developing the framework.

In Figure 24(c) - 24(d) the Pareto optimal set for test problem 3 can be seen. Since this
problem is an extension of test problem 1, the shape of the optimal set is not known.
However, some verification can be performed. In Figure 24(d) the lower boundary of
the frontier is equal to the boundary of the optimal set to test problem 1 seen in Figure
24(a) which is expected since test problem 3 is a extension of this problem.

4.2 A cart-pendulum problem

The well known optimal control problem of a cart-pendulum was analyzed. This prob-
lem has the benefits of being a real-world problem, well studied, nonlinear and scalable,
i.e. it is possible to discretize the problem more densely to get a optimization problem
with more optimization variables. The objective of the problem is to move the end-point
of a pendulum from point A to B in a two dimensional space with limited variables,
e.g. acceleration. Usually the only control signal for the cart-pendulum problem is to
control a motor on the cart so that the pendulum can move back and forth. However,
in this example the length of the pendulum can also be controlled. This modification
was made to increase the degrees of freedoms in the system. An illustration of the
setup can be seen in Figure 25.
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Figure 25: A plot of one solution of the cart-pendulum problem. The cart only runs sideways on the
rail at the top of the plot. The end of the pendulum, marked as a large black marker, is supposed to
move from point A to point B under certain conditions. The black lines can be seen as obstacles that
the pendulum can not intersect. The dashed line shows the trajectory of the pendulum.

In this kind of problems there are several objective functions that can be of interest to
optimize. However, in this thesis only three optimization objectives have been analyzed:

• f1: Minimize the time of one cycle, i.e the time of moving the endpoint of the
pendulum from point A to point B.
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• f2: Minimize the total energy used in one cycle.

• f3: Minimize the maximum instantaneous power used by the system in one cycle.

The mathematical formulation of the objective functions is

z1 = f1(x) = tf

z2 = f2(x) =
N∑
i=1

(|P ic |+ |P ip|) (29)

z3 = f3(x) = max(|P 1
c |+ |P 1

p |, . . . , |PNc |+ |PNp |)
x ∈ X.

Here, tf is the total time of one cycle and Pc and Pp are the instantaneous power at
every timestep when moving the cart and varying the length of the pendulum respec-
tively. N is the number of time steps and X is the set of all decision variables.

The model of the pendulum was supplied by ABB Corporate Research as an exam-
ple problem (Sjöberg et al., 2010). However, it should be noted that the model was
discretized using the first order backward difference discretization where one cycle is
divided into a set of timesteps. There are a set of variables for every timestep which
describes the state of the model, for example acceleration, speed and position of the
cart and the pendulum. The model used in this thesis had 43 optimization variables
in each timestep where two of them are control signals (acceleration of the cart and
length of the pendulum) and where some of the variables are internal to increase the
speed of the optimization. Since there is a set of variables in each timestep the size of
the MOO-problem can be scaled by varying the amount of timesteps for one cycle. In
this thesis the amount of timesteps was set to 200 after suggestions from ABB which
results in 8600 variables in the optimization problem.

4.2.1 Test case

The Pareto frontier of the cart-pendulum was sampled with 461 points by using the
generic framework. All boundaries of the variables were set to reasonable values and
were given by ABB Corporate Research. A three dimensional plot of the resulting
Pareto set can be seen in Figure 26 and the projection of the Pareto set on every co-
ordinate axis can be seen in Figure 27. The shape of the frontier can be described as
a box with rounded edges and in the 3D plot one is looking from the inside of the box
in the direction of one of the corners.

The black markers shows the Pareto optimal points that have been found with the
Pareto filter and the cyan colored area is the convex decomposition of these points.
There were 273 points that were Pareto optimal and the solver was not able to find a
solution at all for 9 points. The gray lines shows non Pareto optimal surfaces. Note
that some Pareto optimal points (black markers) are missing due to plotting issues. In
every corner of all the colored faces there should a black marker.

The red circles are the individual minimas that were obtained by using SOO. It can
be seen that two of them are close to each other which means that they are weakly
conflicting. This can especially be noticed in the right plot in Figure 27 where z2 and
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z3 are almost not conflicting at all. It is even so that when the time for one cycle is
at the maximum value, in this case 100 s, the two objectives can almost reach their
respective individual minimas at the same time (the point closest to origo).

In the left plot in Figure 27 the frontier is almost weakly Pareto optimal in the upper
left area. This means that the energy consumption can be decreased and almost not
deteriorate the time needed for one cycle. Actually, by increasing the total time with
about 0.6 percent the energy consumption can be reduced with up to 35 percent. Since
the energy consumption and the maximal instantaneous power are so closely connected,
the relation between z1 and z3 which can be seen in the middle plot is quite similar.
It is possible to reduce maximal instantaneous power with up to 58 percent and only
increase the total time with 1.4 percent. The trajectories of the pendulum for the
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Figure 26: The obtained Pareto set with Pareto optimal (shaded faces) and non Pareto optimal (gray
lines) areas. The individual minima of every objective can be seen as red circles. Note that the two
circles to the left (individual minima of z2 and z3) are close to each other.

20 30 40 50 60 70 80 90 100

300

350

400

450

500

550

600

650

700

750

800

z1

z 2

20 30 40 50 60 70 80 90 100

20

40

60

80

100

120

z1

z 3

300 400 500 600 700 800

20

40

60

80

100

120

z2

z 3

Figure 27: The projections of the obtained Pareto set on every coordinate axis. Left: The Pareto set
of z2 with respect to z1. Middle: The Pareto set of z3 with respect to z1. Right: The Pareto set of z3
with respect to z2. Note the sharp shape in the lower left when looking at z2 and z3, which indicates
that they are weakly conflicting.

obtained Pareto set can be seen in Figure 28. In the left plot all trajectories (gray lines)
that were obtained in the optimization (including non Pareto optimal trajectories) are
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shown together with the individual minimas for each objective. In the right plot the
Pareto filter was applied and shows only Pareto optimal trajectories. Note that almost
all Pareto optimal trajectories have similar trajectories as the individual minimas. It
should also be noted that the actual total time for one cycle is not illustrated in the
figure and hence the difference in time between the trajectories cannot be seen. For
example, when mimizing the time only (red line with cross markers), the total time for
one cycle is 15.23 s and when minimizing energy or maximal power (square markers
and point markers respectively) the time reaches the boundary of 100 s. This relation
can instead be seen on the Pareto frontier in Figure 26 and 27.

When minimizing the time, the trajectory for f1∗ is curvy. This is due to the fact
that the pendulum reaches a higher point faster by moving the cart back and forth
and swinging the pendulum. However, when minimizing only energy (green line with
square markers) or power (blue line with point markers) the trajectories are smoother
and the paths are shorter. As mentioned there are only two signals to control in this
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Figure 28: The trajectories (gray lines) of the pendulum for the obtained Pareto set. Left plot shows
the trajectory of all sampled points and the right plot shows only Pareto optimal trajectories. The
colored lines with markers shows the trajectory of the individual minima of respective objective.

system, the force of the motor to move the cart and the force to change the length of the
pendulum. In this thesis the control signals are directly connected to the acceleration
of the cart and to the acceleration of the length of the pendulum for simplification of
the model. Control signals of respective actuator for Pareto optimal solutions can be
seen in Figure 29. Note that the actuators in solution f1∗ are faster and more active
than the other two objectives. Most Pareto optimal solutions (gray lines) gives control
signals that are similar to f1∗. This can also be seen in the Pareto set in Figure 26
where most Pareto optimal points are in the area where the total time is low.

4.2.2 Benchmarking

Different settings of the warmstart feature in the offline application were compared in
the cart-pendulum problem. Four Pareto sets were solved with the settings:

• Set 1: Warmstart disabled and µ set to adaptive.

• Set 2: Warmstart enabled and µ set to adaptive.

• Set 3: Warmstart disabled and µ = 10−5.

• Set 4: Warmstart enabled and µ = 10−5.
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Figure 29: The control signal of the cart (upper plot) and the length of the pendulum (lower plot).
The shaded area is the feasible area of respective control signal where the dotted lines are the upper
and lower boundaries. The colored lines with markers shows the control signals for the individual
minima of respective objective.

In every set 200 points were solved and the same initialguess was used for the first
point in all sets. Both the time to find the solutions and the objective value of the
direction method α were measured during the test. Figure 30 shows the time to solve
all the points with the four different settings. It can be seen that using some kind of
initiating feature decreases the time to solve the points and that initiating µ to some
smaller value than default has most impact on the time to solve the Pareto set.
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Figure 30: The time for the offline application to solve 200 points with four different settings of the
warmstart feature. Left: The totalt time for the complete Pareto sets. Right: The accumulating time
for every point.

The objective value α for every setting was compared by using α for every point in set
1 as a reference values and then calculate the ratio between the reference values and
α in the other sets. Figure 31 shows the ratios of set 2-4 compared to set 1. A ratio
of 1 means that both optimizations reached the same value. In the middle plot it is
possible to see that when only µ is set the solver is able to find both better (about 11
percent) and worse (about 64 percent) objective values than in set 1.
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The Pareto set seen in Figure 26 and 27 both used warmstart and an initial barrier
parameter set to µ = 10−5.
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Figure 31: The ratio of α between set 1 and the other sets (2-4). A ratio of 1 means that both
optimizations reached the same value. Note that when only µ = 10−5 is used (set 1), the optimizer
sometimes reaches a value that is much worse than when no feature is used.

A test was made with different sampling size to find the relation between denser sam-
pling and average solution time per point. Three Pareto sets were obtained, one with
461 points, one with 979 points and one with 3088 points. Figure 32 shows the Pareto
sets obtained respectively. All three were obtained by using the warmstart feature.
The most important result to note is that the average time for solving one point for
each complete set was 2.14 s, 1.44 s and 1.23 s respectively. There are some differences
between the Pareto sets in the sense that different areas are Pareto optimal. However,
in all sets almost all points were solved except from some points to the lower left where
z3 is minimized (cannot be seen in the figure).
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Figure 32: Three Pareto sets obtained with 461 points (left), 979 points (middle) and 3088 points
(right). Note that to the upper left there are some differences between the sets.

4.2.3 Navigation

The obtained Pareto set with 461 sampled points (only 273 were Pareto optimal) was
tested in the online application. Every point consisted of three objective values and
8600 decision variable values which were imported into the online application. It was
possible to navigate on the frontier smoothly both in objective space and the decision
space. When navigating close to a hole in the Pareto set the solution either ”walked
around” the hole or jumped to the other side depending of the size of the hole. When
changing the boundaries of either objectives or decision variables the application had
some noticeable lag. It was possible to plot the control signals and the trajectory of
the pendulum in the plot window without feeling that the application was slower.
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4.2.4 Summary

The offline application was applied successfully on the cart-pendulum problem. A
Pareto set was obtained which shows that the energy consumption and the maximal
instantaneous power are only weakly conflicting which can be expected since lower
power also means lower energy consumption. It was also realized that the energy con-
sumption (and hence also power) can be heavily reduced by increasing the total time
of one cycle with a fraction of a second.

When warmstart features were used during optimization the Pareto set was solved
faster than when only using the previous solution as an initalguess. However, it can
be seen that in some cases the objective value only reached locally optimal solutions if
the warmstart features were used, especially when only the barrier parameter was set.
Since the next point to solve actually is some distance from the previous, the solver is
not started close to the solution and if the barrier is too small from the beginning the
solver can be lead into a locally optimal point. When warmstart is used, the solver is
initiated with more information so that it is easier to find better solutions even if they
also are locally optimal. It could also be seen that both warmstart and a set barrier
parameter could find better solutions than without any features used. This means that
it might be good to always use the warmstart features, but if the optimization time is
not an issue for the decision maker, it might be good to also optimize without warm-
start features.

In this specific MOO problem it can be seen that the time needed to solve a Pareto set
does not increase linearly with the amount of points. The average time for one point
was decreased when making a denser sampling of the Pareto frontier. One explanation
to this can be that a denser sampling means that the solutions are closer to each other
which improves the performance of the warmstart features.

The online application worked successfully on the cart-pendulum problem. It was
possible to reach all Pareto optimal solutions and the navigation was smooth. However,
when changing the boundaries the application was slower.
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5 The hot rolling mill optimization problem

A hot rolling mill is used to process steel to a desired shape and quality. The Roll.LABB
model developed by ABB Corporate Research describes a profile hot rolling mill in
steady state and provides many objectives related to production, quality and energy.
The modeling of the process is out of the scope for this thesis and the actual model is
supplied by ABB Corporate Research. The beginning of this section should give the
reader an overview and some insight on the complexity of the hot rolling mill model.
The purpose is to help understand and to interpret the MOO results. Three objectives
of particular interest in MOO are used in this thesis. These are:

• Minimization of power consumption.

• Maximization of production speed.

• Quality – minimization of grain size.

These objective functions are conflicting with each other and the MOO of the Roll.LABB
model is supposed to clarify these dependencies.

Pre-
processing

T0

Finish rolling Rollout table

Interpass zone

Deformation zone
/ stand

Figure 33: Principle sketch of the hot rolling mill process. Note that re-heating, descaling and rough
rolling are grouped as pre-processing. The sketch is not according to scale, e.g. the rollout table is
usually much longer than this sketch shows.

A hot rolling mill consists of a number of sub processes and one setup is

• Re-heating – the pre-cast metal is heated to a specified temperature.

• Descaling – The scale, which is an oxide layer formed in the re-heating stage, is
removed.

• Rough rolling – In this stage huge reduction of the material is made with less
concern for the finish.

• Finish rolling – A number of stands (pair of rolls) makes small reductions to
better control the quality and finish of the product.

• Rollout table – The metal is cooled by water on the rollout table.

Figure 33 show a principle sketch where re-heating, descaling and rough rolling are
grouped as pre-processing.

The process is modeled as interpass- and deformation zones, see Figure 33. The inter-
pass zones model the zones before and after the stands and describe the cooling of the
metal due to radiation, convection and active cooling from water cooling pipes. The
deformation zones model the actual deformation exerted by the rolls in the stand and
describe the change in material thickness, the change in width, the change in speed
and the temperature change due to friction, plastic deformation and contacts with the
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rolls. There are only a small number of free (control) variables in the optimization
model and the most important ones are roll gap, roll speed, temperature of material
when it enters the process T0 and the cooling in the interpass zones.

The temperature is assumed to be homogeneous with temperature T0 through the en-
tire material when entering the first interpass zone. The temperature is then described
as a temperature field which is discretized both in the longitudinal and lateral direction.
The mechanical properties are affected by the temperature of the bar, which affects the
rolling process and the temperature is connected to the rolling process and hence, the
problem is a coupled mechanical and thermodynamic problem. The temperature field
is the single largest source of optimization variables in the model. It is scalable and
the accuracy can be improved by denser sampling. However, this heavily increases the
number of optimization variables (Ekh, 2007).

The metal bar is driven by the friction between the rolls and the metal bar itself. The
mass flow through the process is constant and because of the height reduction in the
deformation zone the speed of the bar after the rolls is increased.

Start of Grain growth

DRX
SRX

ε > εc ?

t > t095?

t > t095?

Partial SRX

Complete SRX

Partial DRX

Complete DRX

yes

no

no
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no
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Figure 34: Left: Recrystallization phases and grain growth. Right: The combinatorial behavior of the
recrystallization.

The microstructure evolution, i.e how the microstructure changes during the com-
plete process, is a combination of recovery, recrystallization and grain growth. In
Roll.LABB recrystallization is of special interest and is the process which creates new
grains. These new grains grows on the expense of old deformed grains. Recrystal-
lization which happens during derformation is called dynamic recrystallization (DRX)
and recrystallization which happens after deformation is called static recrystallization
(SRX). Recrystallization reduces strength and soften the metal, but it also gives an
increased ductility (Pietrzyk et al., 1999). See left plot in Figure 34 for a schematic
overview of the microstructure evolution.

The recrystallization in the metal bar is dependent on temperature, strain, strain rate
and the current microstructure. The microstructure model is in some sense “combina-
torial”, e.g. the grain size growth is different depending on the strain and how long time
the metal bar is in a certain stage. The right plot in Figure 34 show the combinatorial
behavior of the process.

If the strain is less than a specific critical strain then the grain growth is governed
by SRX. Depending on the time the metal bar is in the interpass zone, partial or
complete SRX is achieved. In the same way the DRX is dependent on strain and
time. The details are outside the scope of this thesis and the interested reader will
find more information in Pietrzyk et al. (1999). This combinatorial behavior is present

43



at every stand in the hot rolling model. This means that there is a large number
of possible combinations, 4number of stands. Introduction of combinatorial parameters
creates problems in the optimization and to simplify the model, the switching behavior
in the model is softened. The switch (step function) is modeled as a function with a
variable shape-factor. A larger shape-factor means a harder switch. Figure 35 show
the switching behavior for different shape-factors.
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Figure 35: The switch behavior for different shape-factors.

5.1 Test case

The Roll.LABBmodel and an example of an operation condition with constants, bound-
aries and initial values were supplied by ABB Corporate Research. The values used in
the model are physically reasonable but are not connected to any real hot rolling mill.
The example operation condition was modified, the shape factor was set to 10 and
the boundaries of roll gap and roll speed were relaxed ±20 percent. Also, the initial
temperature was relaxed with ± 50 C◦ from a fixed value of 1050 ◦C and partial cooling
was turned on, in the interpass zones. The problem was sampled with 420 points using
the generic framework and Figure 36 show the result. This Pareto set will be used as
the basis Pareto frontier for comparison.
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Figure 36: The Pareto frontier for the example operation condition with relaxed bounds on the control
variables.

The black markers show the Pareto optimal points that have been found with the
Pareto filter and the shaded area is the convex decomposition of these points. The
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gray lines show non Pareto optimal surfaces. Note that some Pareto optimal points
(black markers) are missing due to plotting issues. In every corner of all the shaded
faces there should be a black marker.

The red circles are the individual minimas that were obtained by optimizing each ob-
jective individually (SOO).
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Figure 37: The values of the control variable gap plotted for all points on the Pareto frontier with
the mean- and extreme points marked. Note that the solutions are spread over the entire allowed gap
range (except for stand 14). This might indicate that this limits the solution.

As mentioned the primary free variables are roll gap, roll speed, temperature into the
first interpass and the amount of cooling in each interpass. Figure 37 - 39 show gap,
amount of cooling and roll speed respectively. The figures show the feasible area in
each stand (gray area with dotted border), the “trajectories” for each feasible point in
the Pareto frontier (gray lines) and four interesting points marked with colors. The
plots clearly show that there is a spread of solutions ranging over the entire feasible set
for each variable in all stands except for roll gap in stand 14. This indicates that the
variables themselves are restricting the optimization problem.

The blue line (cross marker) in Figure 37 - 39 shows the settings for the extreme case to
minimize power consumption. The temperature into the first interpass T0 is maximized
and the cooling is minimized in order to keep the temperature up. This means that it
is easier to reduce the height of the material in each stand. The reduction is kept to
a minimum and most of the reduction is done in the beginning of the mill where the
material is as hot as possible. At the last stand the gap is the maximum in the allowed
tolerance in order to keep the reduction to a minimum. Note that the roll speed is not
minimized even though it has a very strong connection to the power consumption. This
is a trade-off between power consumption due to roll speed and power consumption due
to increased torque needed when the material cools down.

The magenta line (square marker) in Figure 37 - 39 shows the settings for maximizing
production speed. The roll speed is maximized in each stand and the height out from
the deformation zone in the last stand, is at its lowest tolerance. The temperature at
the first interpass T0 is maximized and the cooling is minimized in order to minimize
power consumption needed to reduce the height of the material.

The black solid line (dot marker) in Figure 37 - 39 shows the control signals for mini-
mizing grain size. The temperature T0 is not minimized nor maximized but lower than
for the other extreme cases and the cooling is maximized since a low temperature is

45



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1000

2000

3000

4000

5000

6000

7000

8000

 

 

Stand

Mean
f1*

f2*

f3*

Figure 38: The values of the control signals for all cooling at each interpass. Note that this only
includes the free variables in each stand.
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Figure 39: The values of the control variable roll speed plotted for all points on the Pareto frontier
with the mean- and extreme points marked. Note that the solutions are spread over the entire roll
speed range. This might indicate that this limits the solution.

very favorable to decrease grain size. The reduction is maximized at the first stand
which stores enough energy in the material to initiate DRX. This gives a huge grain
size decrease in the interpass after the first stand.

The red line (circle marker) in Figure 37 - 39 shows the solution closest to the projection
of the ideal point onto the Pareto frontier, i.e. in the middle of the frontier. It is mainly
there to have as a reference.

5.2 Spread of solutions

Besides looking at the spread of the free variables of all solutions in the Pareto frontier,
the spread in a small set in objective space versus the spread of the corresponding
variables in decision space is one way of measuring how well-behaved or “nice” the
problem is. This measure can be an indication of how likely it is that a navigation
solution, which is a linear combination of a set of neighboring points, is feasible since it
is less likely that points that are close to each other in decision space will be separated
with an infeasible region.

The spread was measured by picking a point in the Pareto set (obtained from the basis
operation condition) and finding its 18 closest neighbors. The spread of solutions were
then checked for the four free variables initial temperature, roll gap, cooling and roll
speed. This was done for every point in the Pareto set and it could be seen that the
spread was low for the complete Pareto set. Three example sets are described below
and the chosen sets can be seen in Figure 40.
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Figure 40: Pareto frontier where all free variables are relaxed ±20 percent from the original model
and with shape factor = 10. Three points and their 18 closest neighbors have been chosen to see the
spread.

The first set of points are the points closest to the projection of the ideal point onto
the Pareto frontier and its 18 closest neighbors marked with A in Figure 40. Figure 41
shows the free variables for the mean point (red thick line) and the neighboring points
(dark gray). The point in the centre of this set is in a central position on the Pareto
frontier and is an equal trade-off between power consumption, production speed and
grain size. The neighboring solutions show equal spread in all free variables around the
solutions of the middle point. Since the solutions are central there are solutions which
favor each of the objectives, e.g. more cooling for smaller grain size.
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Figure 41: Free variables to the central set of points in Figure 40. The central point is plotted with
a red thick line and all neighboring points are plotted as dark gray. The spread is even around the
central point and the solutions do not favor any extreme cases. Note that all Pareto optimal solutions
are plotted in light gray.

The second set is the set of points in Figure 40 which is closest to f3∗ marked with B in
Figure 40. Figure 42 shows the free variables for this set. The spread of the solutions
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in decision space of the neighboring points (dark gray line) is evenly spread around the
central point (red thick line). These points have free variables which favors small grain
size, i.e. low speed and a lot of cooling.
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Figure 42: Free variables to the lower set of points in Figure 40. The central point is plotted with a red
thick line and all neighboring points are plotted as dark gray. Note that all Pareto optimal solutions
are plotted in light gray.

The last set of points in Figure 40 are the set closest to the ideal point of minimum
power marked with C. Figure 43 shows the free variables of these points. Since this set
is very close to an extreme value, i.e. the point of minimum power, the free variables
has a very low spread and obviously favors low power consumption, i.e. no cooling and
low speed.
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Figure 43: Free variables to the top right set of points in Figure 40. These points are close to the
point low power consumption which means that the solutions are closer together. The central point is
plotted with a red thick line and all neighboring points are plotted as dark gray. Note that all Pareto
optimal solutions are plotted in light gray.

5.3 Effects of boundary changes

Since the example operation conditions were relaxed, it is interesting to see the effect
that the relaxation has on the Pareto frontier. This was done by limiting one of the
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controlling variables and re-sampling both individual minimas and the Pareto frontier.
Figure 44 shows from the left, the basis Pareto frontier, the Pareto frontier for the
case where roll speed is limited and the Pareto frontier for the case where the initial
temperature T0 is fixed to 1050 ◦C. Figure 45 shows from the left, the case where the
gap is limited and the case where the cooling between the deformation zones is turned
off.
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Figure 44: The Pareto frontier for the example operation condition with relaxed bounds on the control
variables. Left: Basis operation condition. Middle: Pareto frontier with limited roll speed. Right:
Pareto frontier with limited initial temperature T0.

The contour of the Pareto frontiers projected on the z1–z2- , z1–z3- and z2–z3- planes
are plotted in Figure 46-47 in order to better visualize the difference between the
frontiers. The largest impact on the Pareto frontier is by cooling which can be seen in
the right plot in Figure 46. When the cooling is turned off (dotted line) the frontier
is much worse (higher grain size for the same power consumption). However, in the
left plot it can be seen that it does not change the relation between production speed
and power consumption. The minimum grain size grows from 6.72 in the basis model
to 22.91 without active cooling between the deformation zones. The right plot in
Figure 47 show an example where the amount of available cooling has been increased
an additional 50 percent. However, this did not make any visible changes on the Pareto
frontier. This indicates that some other variable is limiting the solution.
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Figure 45: The Pareto frontier for the example operation condition with relaxed bounds on the control
variables. Left: Limited roll gap. Right: Cooling turned off.

The roll speed is almost directly connected to the production speed (except for some
slip) and hence, limiting the roll speed limits the production speed.

Setting the initial temperature T0 to a fixed value does not impact the grain size
considerably. However, as seen in the left plot in Figure 46 the entire Pareto frontier

49



3 3.5 4 4.5 5 5.5 6
−10.5

−10

−9.5

−9

−8.5

−8

−7.5

−7

−6.5

z1 (Power consumption [MW])

z 2 (P
ro

du
ct

io
n 

sp
ee

d 
[m

/s
])

 

 
Original set
Gap
Conv. const.
T0
Roll speed

3 3.5 4 4.5 5 5.5 6
5

10

15

20

25

30

35

40

45

z1 (Power consumption [MW])

z 3 (G
ra

in
 s

iz
e 

[µ
m

])

 

 
Original set
Gap
Conv. const.
T0
Roll speed

Figure 46: The contours of the projection of the Pareto frontiers, with limitations on the control
variables, onto the z1-z2- and z1-z3-planes. Solid line: Limitation in roll gap. Dashed line: Setting T0

to a fixed value. Dotted line: Cooling turned off. Dot-dashed line: Limitation in roll speed.

is shifted to the right which means that more power is needed for the same production
speed. There is also a slight decrease in maximum production speed due to higher
power requirements.
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Figure 47: Left: The contours of the projection of the Pareto frontiers with limitations in the control
variables onto the z2-z3-planes. Solid line: limitation in roll gap. Dashed line: Setting T0 to a fixed
value. Dotted line: Cooling turned off. Dot-dashed line: Limitation in roll speed. Right: The contours
of the projection of the Pareto frontier for the basis operation condition (gray area) and the projection
of the Pareto frontier with a 50 percent increase in cooling capacity (solid line).

Limiting the roll gap gives very small changes. The minimum power consumption in-
creases, the grain size increases slightly and the lowest possible speed increases from
the basis operation condition.
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5.4 Effects of combinatorial behavior

The combinatorial behavior introduced in the microstructure model creates added dif-
ficulties when the shape factor is increased. The same operation condition was tested
for a range of values on the shape factor. Three of the Pareto frontiers and their pro-
jections can be seen in Figure 48 - 50. These cases are from the left, for shape factor
10, 50 and 400. Figure 35 show a plot of the relaxed step function for different shape
factors. The first holes in the Pareto frontier start to emerge already at shape factor
80 and continues to grow with increased shape factor. Already as low as with shape
factor 50 the unevenness of the Pareto frontier increases and continues to increase with
the shape factor. However, the unevenness are situated in the same areas and a trend
can be seen in the solutions with an increasing shape factor.
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Figure 48: From the left, the same problem with shape factor 10, 50 and 400 respectively. Note that
there are non-convex behavior already at shape factor 50. With shape factor 400 there has emerged
large holes due to infeasible- and non-Pareto optimal pints. The Pareto frontier has obvious non-convex
behavior and the set of Pareto optimal points has ben reduced.

The change of the Pareto optimal points which gives maximum production speed, min-
imum power or a trade-off between them are hardly not affected at all. For that reason
the projections of the Pareto frontier on the z1-z2-plane are left out.

Figure 49 show the projection of the Pareto frontiers shown in Figure 48 onto the z1-
z3-plane. Its lower boundary points are clearly affected by the increase in shape factor.
It is mainly the steepness of the curve through the lower boundary points which are
affected. The grain size is increased by 4.83 percent with the increase of shape factor
from 10 to 50 at 3.5 MW and by 6.6 percent with the increase from shape factor 10 to
400.

In the same way, Figure 50 show the projection of the Pareto frontiers shown in Figure
48 onto the z1-z2-plane. At the production speed 9.2 m/s the increase in grain size when
the shape factor is increased from 10 to 50 is 7.5 percent but with shape factor 400 the
increase is only 4.1 percent. The unevenness of the curve through the lower boundary
points starts with shape factor 50 and at shape factor 400 there are unevenness and a
hole in the curve through lower boundary points.

5.5 Effects of denser sampling of the Pareto frontier

The basis operation condition were sampled with 420, 1191 and 1641 points. The in-
crease of time for optimization per point can be seen in Table 2.
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Figure 49: These plots show grain size versus power consumption for the same case as in Figure 48.
The grain size increases with the shape factor and the boundary towards the axes exhibit unevenness.
Note that this means that with an increased shape factor, the power requirement increases.
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Figure 50: These plots show the grain size versus production speed for the same case as in Figure 48.
Even for a small increase in shape factor the increase of grain size at for the same speed is substantial.
Note that with shape factor 400 there is even a hole in the boundary towards the axes.

Table 2: The time for optimization per point with different sampling.

Number of points 420 1191 1641
Mean time per point 12.16 s 6.67 s 8.24 s
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5.6 Summary

The Roll.LABB model has evolved over years of work and ABB are well aware of its
properties. The solutions obtained when performing SOO only gives some information.
In this application large amount of power is used and even small percentages of power
savings means a lot of money. Since the Pareto frontier is implicitly defined by the
optimization problem, only an idea of the exact relation has been known. The benefits
of MOO in this application are clear, especially when using the navigation tool where
the decision maker can look at the control signals for the current solution. The offline
part of the framework was successfully applied to the Roll.LABB model. There is no
obvious best single optimal solution on the Pareto frontier since the three objectives are
strongly conflicting which means that it is up to the decision maker to choose his/her
preferred solution.

The four primary control variables have been investigated and the most important is
the cooling. It gives a decrease in the grain size without sacrificing production speed
or power. The upper boundary of the amount of cooling allowed is not a limiting factor.

The spread in solutions in objective space versus the spread in decision space is low
which indicate that the model behaves “nice” which means that an approximated solu-
tion is more likely to be close to a feasible solution.

Holes emerges in the Pareto frontier when the shape factor is increased. This might
be due to combinatorial behavior and/or it might as well be local solutions which are
easier for the solver to end up in, when the shape factor is ramped up.
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6 Discussion

This section discusses the methods used and the implementation of the generic frame-
work. Discussion about the pendulum- and hot rolling mill problems are considered in
Section 4.2.4 and Section 5.6.

6.1 Reference point creation

As mentioned in Section 3.3.2 on page 18, the pattern of the created reference points is
very important. This is because the method for sampling the Pareto frontier is based
on the direction method without slack. However, there is a possibility that the created
reference points do not sample the individual minima. This can be seen in Figure 11
on page 17, where all three individual minima are “missed”. This is not a problem in a
trade-off point of view since the extreme points are of less interest. However, in some
cases, e.g. to get a better understanding of the problem, it is interesting to be able to see
the individual minima. This is a minor drawback since the individual minima are found
during the pre-processing and the Pareto set can be complemented with these solutions.

Since the objectives are scaled according to Section 2.5 on page 8, the scale of the ob-
jectives are relative. If the original objective functions are badly scaled, i.e. the range
is much greater in one of the objective functions, the sampling will not be equidistant
in the unscaled case. In cases where the relative importance of the objective must be
kept, i.e. the absolute value of one objective value compared to another, the scaling can
be skipped and the reference points can be created in the unscaled problem. However,
working with the implemented generic framework has shown that scaling of the con-
straints are important. Since the objectives are incorporated in the direction method
constraints, scaling of the objective functions should be done too.

The use of the span tree method in the generic framework has both benefits and dis-
advantages. Large benefits have been seen by using a neighboring solution as an initial
value to the next optimization and this clearly motivates the use of a neighbor search
algorithm. However, it is possible that a “bad” local minima is found in one point and
then subsequent initial values are based on this solution. This might lead to areas on
the Pareto frontier with unwanted local solutions.

The reference point creation has been created as a part of the generic framework, hence
the method is quite specific to accommodate the needs of the navigation, i.e. simplex
creation. The equidistant sampling is useful to get a good approximation of the Pareto
frontier since it gives an even coverage and there is no clustering of solutions. This
also means that information gained from the sampling, e.g. infeasible solutions, can be
used in the creation of the Pareto frontier approximation in a smart way. This makes
it possible to exclude regions which do not contain solutions, i.e. holes.

6.2 Sampling

No time was spent on evaluating the nonlinear solver since the IPOPT/Maple-tool was
supplied by ABB. The IPOPT-solver is an interior point solver for nonlinear large scale
problems. The solutions found by IPOPT are not guaranteed to be globally optimal,
hence unwanted local solutions can be obtained. If “bad” local optimal solutions are
found only at individual points, this might result in making the point non Pareto op-
timal and a hole might emerge. Another possibility is that the solver finds “bad” local

54



optimal points over the entire Pareto frontier, which shifts the entire Pareto frontier.
In some cases where the aim is to improve on existing solutions local optimization is
“good enough”, but the decision maker should be aware of the risks. Cases of local
solutions have been seen in the work with IPOPT, especially in the pendulum problem
where many trajectories produce the same objective value.

The choice not to use slack with the direction method during sampling have both ben-
efits and disadvantages. The method used for creation of simplicies requires that no
slack is used since the samples are presumed to be equidistant sampled. The non-Pareto
optimal solutions obtained when no slack is used complements the Pareto optimal so-
lutions and helps the understanding of the boundary of the feasible set , i.e. helps the
understanding of the problem. However, without slack the possibility to find extreme
solutions, e.g. solutions close to holes, decreases.

Practical experience from the thesis shows that re-runs, i.e. the possibility to solve the
same point many times, is beneficial and gives better solution in some cases, especially
cases for the pendulum problem where there are many different local solutions. How the
re-runs should be combined with initial values and warm start has not been thoroughly
investigated.

6.3 Navigation

When using the convex decomposition method to navigate on the Pareto frontier sev-
eral optimizations must be performed. One for every simplex at the current preferred
levels. How much the amount of simplices that have to be optimized affects the time
for one iteration has not been measured. For a Pareto set with large amount of sampled
points there will also be many simplices to optimize over which might take too much
time to optimize to make the application feel real-time. The method implemented in
this thesis to optimize only the active set of simplices for a desired level is only one out
of several ideas. This method does however work for problems with any dimensions
and is simple to implement.

When selecting levels of decision variables and no objectives are fixed there can occur
jumps between different solutions. An alternative idea has been suggested by Winter-
feld (2010) which would be to minimize the deviation in objective space instead, i.e.
minimize‖fi(x) − zRi ‖, i ∈ {1, . . . ,m} \ Fz. This gives a smooth transition between
solutions when navigating in the decision space. This can, however, create an irregular
pattern of search in the objective space since there are in many cases several solutions
with the same deviation.

One problem that has been detected is that simplices that have vertices on both sides
of a boundary in either objective- or decision space become infeasible even if some areas
of the simplex might be feasible. This is due to the fact that infeasible points, even if
they are close to a boundary, cannot be connected to a simplex. One idea is to make
”softer” boundaries that also include points that are outside but close to a boundary as
feasible points. Another idea is to ”cut” a simplex in the intersection of the boundary
and the simplex and then ”create” temporary points in the intersection that can be
used in the convex decomposition.

In some cases when many points of the Pareto set are infeasible there might be regions
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where only one or two points are neighbors and that are feasible. In these cases for
MOO problems with three or more objective functions the convex decomposition does
not cover the entire set of sampled points. However, it should be possible to navigate
to these points. One idea is to continue decomposing the set into smaller simplices. For
example in a three dimensional MOO-problem, first decompose to simplices with three
vertices. The remaining feasible points would then be decomposed with 1- (lines) and
then 0-simplices (points) until all feasible points are in at least one simplex. It would
however not be possible to continuously navigate to the 0-simplices since there is no
area to approximate on.

One limitation of the methods used for convex decomposition in this thesis is that the
Pareto frontier must be sampled with certain methods. If some other method would
be used it might be difficult to make an appropriate projection of the Pareto frontier
and hence difficult to obtain the correct decomposition.

In the current implementation the convex decomposition is filtered so that no simplex
has an edge that is longer than 2h, see the left plot in Figure 18 on page 26. This is
only one way to approximate areas with holes without covering the infeasible points.
It has not been investigated how good this approximation is and no other method has
been tested. To cover more of the area around an infeasible point with simplices might
increase the risk that a selected solution close to the infeasible point is also infeasible.
If less area is covered, the decision maker might not be able to navigate to a solution
that is actually feasible. However, a selected solution that the decision maker might
see as the final final solution should always be verified with the original MOO problem.
This means that it might be better to cover as much as possible of a hole with simplices
and then realize that a selected solution close to a hole might be infeasible.

It might be a useful feature for the decision maker to be able to rank the different
objectives according to importance, e.g when one objective is more important than
others. In the current method, the direction used in the navigation step is −1 on all
objectives which means that all objectives are improved/deteriorated equally much.
An idea is to make it possible for the decision maker to change this direction in the
application and hence control which of the objectives that is more (or less) important.

The most important advantage with the online application is that it is possible to
move around on the Pareto frontier almost in real-time even for large scale problems.
In the current implementation it does not matter how many dimensions the decision
space has since it is only the set of points in objective space that are used in the op-
timization. This means that it is only the number of sampled points on the Pareto
frontier and the number of dimensions in objective space that effects the speed of the
navigation. However, when boundaries in either objective- or decision are changed all
points must be checked if they are feasible or infeasible and the convex decomposi-
tion must be recalculated. In the current implementation all Pareto points must be
checked in every decision variable and objective which makes the application lag for
large scale problems. By only checking the boundaries of the decision variable or ob-
jective that is currently being changed the application would probably run much faster.

The direction method works well for navigation in objective space as described by Monz
(2006), but navigation in decision space has not been investigated. In this thesis the
direction method has been used in both spaces and works well for the problems it was
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applied to. However, there might exist MOO problems where the spread of solutions
in decision space is larger and it is not known how the implemented application works
for these.

In the current implementation the verification feature has not been implemented. The
idea of sending the selected objective values as reference point and the solution as ini-
tial guess to the offline application should work but has not been tested.

Also the feature of complementing the obtained Pareto set with new points has not
been very much investigated. It is however known that with the current solution of de-
composing the Pareto points with simplices, some problems would occur if new Pareto
points were added. This is due to the fact that the decomposition requires the mesh
of reference points to be equidistant. Since the length of the edges of the simplices are
used to filter which simplices that are feasible, there would be problems with simplices
that are smaller than the original ones.

The method to decompose a set of Pareto points to small convex sets to be able to
navigate in non-convex sets with interactive optimization has not been seen before by
the authors. A comprehensive study on how to do the convex decomposition should be
performed.

6.4 Dimension

The methods developed in the generic framework should in theory work well in 4
dimensions. However, the extensive testing which has been performed on 2- and 3
dimension, has not been performed on the 4 dimension case since there has been trouble
to find problems to benchmark with.
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7 Conclusions

In this thesis the methods for a generic interactive multiobjective optimization frame-
work have been developed. The framework consists of two parts. One offline part to
sample the Pareto frontier and one online part to continuously navigate on the discrete
Pareto set in real-time.

The implementation of the methods for obtaining the Pareto set works well for 4 ob-
jectives in large scale problems.

The interpolation method developed to be able to navigate on the Pareto set is an
extension of the one described in Monz (2006); Monz et al. (2008) but is able to deal
with non-convex sets with holes. A method for decomposing the discrete Pareto set
was developed which makes it possible to describe non-convex sets with holes. This is
possible due to that our approach uses information from the sampling in the creation
of the Pareto frontier approximation in a smart way. This method makes it possible
to navigate and limit the problem in both objective- and decision space. The imple-
mentation of the navigation works very well even on large problems since the speed
of navigation only depends on the objective dimension and how densely sampled the
Pareto frontier is.

Overall the implementation of the generic framework works very well on all tested
problems and especially on the Roll.LABB model.

7.1 Future work

The method of convex decomposition should be investigated further. e.g. how the set
is decomposed, the speed of the optimization for extreme decomposition as used in this
thesis versus larger sets and the impact on the reference point creation.

Since the navigation requires equidistant sampling the effects of slack on the Pareto
frontier has not been fully investigated. However, if another method of convex de-
composition is used it might be possible to use slack and in that case a thorough
investigation of slack should be performed.
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