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Recognizing safety-critical events from naturalistic driving data
Master’s Thesis in the Master’s programme of Automotive Engineering
NIEVES PAÑEDA GONZÁLEZ
Department of Applied Mechanics
Division of Vehicle Safety
Chalmers University of Technology

ABSTRACT

New trends in research on traffic accidents involve conducting Naturalistic Driving 
Studies (NDS). NDS are based on large-scale data collection of driver, vehicle and 
environment information in real-traffic. NDS provide large data sets which have proven 
to be extremely valuable for the analysis of safety-critical events such as near crashes 
and incidents.

NDS data needs to be filtered to recognize safety-critical events. Filtering safety-critical 
events has been traditionally  achieved by using kinematics triggers (e.g. searching for 
deceleration below a certain threshold signifying harsh braking). The low sensitivity and 
specificity of this filtering procedure, however, requires manual annotation of video data 
to decide whether the events individuated by the triggers are actually safety-critical. 
Such reviewing procedure is based on subjective decisions, time-consuming, and often 
tedious for the analysts.

This project looked into improving this reviewing procedure using video data collected 
from 100 Volvo cars during one year in Gothenburg within a NDS called euroFOT. 
More than 400 videos from the triggered events have been reviewed, concluding that 
driver’s reaction may be the key  to discriminate safety-critical events. In fact, whether 
an event if safety-critical or not depends on the driver. Several statistical procedures 
have been then applied to automatically  recognize driver reaction from video data. In 
this project, we showed how combining automated video analysis with kinematics 
triggers increases sensitivity of near crash recognition from NDS data. These results 
open up to new ways to use video frames in NDS.

Key words: naturalistic driving, driver behavior, traffic safety, near crashes, safety-
critical events, driver’s reaction, euroFOT
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1 Introduction

This chapter presents the reader with an overview about Naturalistic Driving Studies 
(NDS) and their implementation together with Field Operational Tests (FOTs). In 
particular, the euroFOT project is introduced as a base of this project. This chapter also 
covers the limitations found in previous studies and formulates the research question 
and objectives for the present project.

1.1 Naturalistic Field Operational Tests: real-traffic data

Statistics said than more than 1.2 million people die on the roads in traffic accidents 
every  year (WHO, 2009). Technological advances allow the development of new 
systems in cars to mitigate road accidents by  automatically  detecting risk situations. To 
make it possible, it is essential to know which the real causes of accidents are. 

New trends in research on traffic accidents involve conducting Naturalistic Driving 
Studies. Naturalistic Driving Study (NDS) as concept refers to a “method of 
observation that captures driver behaviour in a way that does not interfere with the 
various influences that govern those behaviours” (Boyle et al., 2009). Statistics and 
crash investigations rarely provide information about behavioural issues before the 
incident. In simulations, test  subjects are well aware of the experimental conditions. 
Thus, NDS aim collecting data on driver behaviour in a natural setting. In this 
naturalistic observations drivers use, preferably, their own car equipped with cameras 
during their daily  driving. Experience in this field shows that drivers quickly forget the 
presence of cameras.

On the other hand, new technologies enable the collection of an extended amount of 
data, such as vehicle dynamics or the environment, in real traffic within large-scale 
testing programmes called Field Operational Tests (FOTs). FOTs are studies 
undertaken to evaluate the efficiency of intelligent in-vehicle systems as well as the 
impact on safety  and the driver acceptance, among others (ERTICO, 2009). The main 
purpose of these systems is to assist and inform drivers while driving. This concept 
applied to the field of safety embraces alerting the driver or automatically acting in the 
car in presence of what the system understands as a risky situation. 

To sum up, FOTs are a complementary step to the development of intelligent  in-vehicle 
systems. The procedure is mainly based on: 

-Instrumenting cars with loggers to collect information from the CAN bus (signals 
from accelerometers, gyroscopes, turn indicators, etc.), GPS and/or extra sensors.

-Driving such equipped cars to collect data.

-Performing analysis from collected data.

Although FOTs and NDS pursue different objectives, this view is changing. 
Combination of both, called Naturalistic Field Operational Test (N-FOT), allow the 
use of this unobtrusive observation of drivers to evaluate their relationship  with the car 
and the environment under crash-risk and the effectiveness of intelligent in-vehicle 
systems. 
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1.1.1 State of the art of N-FOTs: EuroFOT

During the last years, FOTs and N-FOTs have been conducted in the United States, Asia 
and, relatively  new, in Europe. Particularly, US has extensive experience in NDS with 
programs as 100-Car study, 250-Truck study, the Commercial Vehicle Operation study 
or the Strategic Highway Research Programme (SHRP2). 

The 100-Car Naturalistic Driving Study  (Dingus et. Al, 2006) was the first large-scale 
program where data from 100 drivers were collected during one year.  The main goal of 
this research project was the study of contributing and associative factors (such as driver 
behavior, kinematic characteristics and corrective actions) in critical situations. In the 
ongoing SHRP2 project (TRB, 2011), data from 3000 volunteer drivers in instrumented 
cars will be collected. Main goals are to redesign highways (congestion reduction, 
planning, environmental conditions) and to study human behavior for a safer highway.

Among the European experience in this field can be highlighted the contributions of 
SAFER, the Vehicle and Traffic Safety Centre at Chalmers University, in Sweden. 
Programs as SeMiFOT (Victor et. al., 2010) in collaboration with Michigan, carried out 
the development of a N-FOT methodology. Data were collected from 14 vehicles during 
six months, with the participation of 39 drivers that made 12.571 trips.The methodology 
is widely used in accident research and evaluation of safety and acceptance.

The ongoing second version SeMiFOT2 is using the data collected in the first version of 
the program. New statistical methods, such as extreme value theory, are being explored 
to identify and model outliers. This provides useful information for insurance 
companies, for instance, to establish a link between rare events and catastrophic 
consequences (García, 2004). In addition, the analyses of visual motion in drivers are 
one of the main lines of research.

Other ongoing European projects are TeleFOT, 2BeSafe NDS, INTERACTION, 
TSSFOT, simTD and euroFOT (ERTICO, 2010). Particularly, this research has accessed 
the data collected in euroFOT. Characteristics of this program are further explained 
below.

Co-founded by the European Commission, euroFOT began in May 2008 and will last 
until February 2012 supported by 28 partners (vehicle manufacturers, automotive 
suppliers, and research institutes among others). As stated in the previous section, 
intelligent in-vehicle systems are tested to explore potential ways to improve European 
road traffic.

 The tested applications in euroFOT may be classified as (ERTICO, 2010):

•Assisting the driver in forward/rear directional safety: 
- Adaptive cruise control
- Forward collision warning
- Speed Control System

• Assisting the driver to detect hazards at the sides of the car:
- Blind Spot Information System
- Lane departure warning / Lane Assist / Impairment Warning

• Advanced applications:
- Curve Speed Warning
- Fuel Efficiency Adviser
- Safe Human/Machine Interface
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These functions have been tested in a fleet of 1000 instrumented cars from nine 
different brands across France, Germany, Italy and Sweden. This has led one of the 
largest and most completed FOT’s databases in Europe for public research.

As can be seen in Figure 1.1. FOTs are operated on fleets managed by different OEMs 
around Europe.

Figure 1.1 Geographical coverage of euroFOT: OEMs and operation sites. (Mure 
S., 2010, EuroFOT [electronic print] Available at: <http://wiki.fot-net.eu/index.php?
title=File:Eurofot.jpg> [Accessed May 2011]).

Depending on the project and the OEM, various devices are part  of the test equipment to 
collect data.  These may be classified according to the source of the recorded signals:

-CAN bus.

-CAN bus and video cameras.

-CAN bus, video cameras and extra sensors (as eye tracker).

In addition to the test and evaluation of intelligent in-vehicle systems, some research 
focuses on naturalistic observation, hence the implementation of cameras in the cars. In 
any case, the resources for data collection and storage are common in both types of 
projects.  Another type of drivers’ data comes from interviews and questionnaires. 

Both the kinematics of the car from loggers and camera images have proved very  useful 
when studying the interaction between driver, vehicle and the environment during a 
crash risk situation. The knowledge on driver behaviour and dynamics of the car before 
an accident allow for hypothesising possible causes. This is a step towards the inclusion 
of new measures in accident prevention.
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1.1.2 Available data from VCC (euroFOT) 

In particular, this research has accessed the data collected from 100 Volvo Cars driving 

for a year in Gothenburg within euroFOT program. After a certain period of 
continuously data collection, information from loggers was downloaded and transferred 
to a network. Then, these signals have been post-processed and stored into MatLab 
variables. 

The available data are mostly signals from the CAN bus sampled at 10 Hz, GPS 
information, video images and signals from the eye tracker. These provide information 
on, for example, kinematic values (such as speed, lateral and longitudinal acceleration, 
brake pressure, yaw rate, steering wheel jerk, among others) or signals from intelligent 
in-vehicle systems and turn indicators.

A total of four cameras are installed in each of the instrumented cars. Two are located in 
the front and back of the cars to mainly reconstruct rear-end crashes and evaluate the 
traffic flow. One is located under the steering wheel, to record the pedals and the feet 
movements. Finally, another camera is located in the rear-mirror, focusing the driver. 
The eye tracking is also available.

1.2 Data reduction approach: triggering data

To understand the causes of road accidents and be able to further develop 
countermeasures is essential to analyze safety  critical situations. The identification of 
safety  critical situations among hours of normal driving is a limitation when loggers and 
cameras are continuously recording. Therefore, once data are collected, a filtering 
process is carried out before performing analysis (see in Figure 1.2). This process is 
commonly called triggering the data. The main goal of this data reduction approach is 
the discrimination between normal driving situations (negative situations) and the 
critical events (positive situations) while driving.

Figure 1.2 General steps before the evaluation of safety in FOTs.

A more precise definition of what those critical situations are, is given in the first large-
scale FOT conducted in US, the 100-Car study. The distinction is done as follows 
(Dingus et al., 2006):
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-Crash: situations in which there is physical contact between the subject vehicle 
and another vehicle, fixed object, pedestrian, cyclist or animal. 
-Near-Crash: situations requiring a rapid, severe, evasive maneuver to avoid a 
crash.
-Incident: situations requiring an evasive maneuver occurring at less magnitude 
than a near crash. 

These safety critical situations are grouped under the name Crash Relevant Events 
(CREs). Once they are located in the database, the next steps are to conduct a detailed 
description (of the driver behavior, the environment, traffic conditions, etc), draw 
conclusions and evaluate possible solutions.

Conventionally, CREs from naturalistic driving data have been isolated from the large 
database using kinematic triggers. These are pieces of code that run throughout the 
database and record situations with certain kinematic values. Most of these triggers are 
associated with common evasive maneuvers and acceleration peaks. For example, one 
of the most typical responses in drivers is to slam on the brakes to avoid a rear-end 
collision, which leads to peaks in longitudinal acceleration. Therefore, situations in 
which deceleration is below a certain threshold1 may  indicate that there is a CRE. In that 
case, the recorded situations have been true triggered and constitute a list of candidates 
to CRE.

However, as evidenced by  triggering with kinematic values, some CREs are missing  
(positives that haven’t been triggered, usually called false positives) and many normal 
driving situations are wrongly  triggered (false negatives). This is mainly due to some 
cutoff kinematic values related to evasive maneuvers may be identical to those obtained 
while normal driving because of the diversity of drivers and ways of driving. For 
instance, the same acceleration value may or may not be indicative of risk depending on 
the aggressiveness of the driver and his/her driving experience. Taking as reference 
signals such as braking, incidents in which the driver is distracted would be lost. Hence 
the importance of a precise definition of what is a CRE and the development of 
intelligent triggers.

Among all the possible types of CRE, crashes may be more likely to be detected. This is 
due to the involvement of contact is likely  to cause sudden changes in kinematic 
parameters. However, near-crashes and incidents are closer to normal actions while 
driving. Thus, trying to locate these situations, which are also relevant from a safety  and 
statistical point of view, creates a high rate of false negative events.

The low sensitivity and specificity  of triggering with kinematic values require the 
intervention of reviewers, who decide whether the situation is critical by watching the 
video segments from the candidates to CRE. Therefore, only the true triggered events 
that have been considered positive by the annotators pass into the analysis phase. Such 
reviewing procedure it’s mostly based on subjective decisions, time-consuming and 
often tedious for the annotators.
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1.3 What is safety-critical? Driver behaviour in NDS

The 100-Car study defines CRE as:

  “A subjective judgment of any circumstance that requires, but is not limited to, a crash 
avoidance response on the part of the subject-vehicle driver, any other vehicle, 
pedestrian, cyclist, or animal that is less severe than a rapid evasive maneuver (as 
defined in near-crash event), but greater in severity than a normal maneuver to avoid a 
crash(...)” (Klauer et al., 2006)

When annotators review the list of candidates to CRE from the triggering process, their 
subjective judgment it’s based primarily on their perception of how critical the situation 
seems. This concept is under the above definition, since annotators should evaluate 
whether the circumstance requires a crash avoidance response on the driver or other 
involved. 

Given the limitation of answer this question by just checking the kinematic values of the 
car or its proximity to other vehicles (objective judgment), each annotator mostly  bases 
his/her opinion on the own driving experience. This hypothesis casts a question: what I 
think it’s critical, is it also critical for you?. It may be that the fairest answer to this issue 
requires some empathy with the subject-vehicle driver. This changes the question into: 
Does the driver think that the situation is safety-critical?.

The answers to this question in previous studies were based, for instance, on the force 
with which the driver depresses the brake pedal2  or on changes in the speech under 
threatening conditions (Malta et al., 2009). This is also related with the fact that around 
the 60% of drivers brakes before a crash (Molinero et al., 2009). The main limitation 
arises in those critical situations closer to normal driving in kinematic terms, such as 
near-crashes and incidents. These provide a large source of information and a definite 
benefit in safety and statistical analysis concerning NDS (Guo et al., 2010). 

There are many literature about how driving is affected by  factors such as country, 
gender, age, or lifestyle among others (Evans, 2004). These factors imply a diversity  of 
driving modes, hence the importance of using the driver as part of the analysis. This 
conclusion was also pointed out in 100-Car study (Klauer et al., 2006).

The analysis of driver behaviour in NDS has been used, for instance, in the development 
of a model based on multi-modal signals (Takeda, 2010), or in the study of situations 
when drivers approach to intersections. In this case, it  has found a relationship between 
distance to other vehicles and the location of covering the brake pedal (Sato and 
Akamatsu, 2007). The movements of the head and eyes are also objects of study in the 
distractions at the wheel (Nagase et al. 2009). 

Regarding to the driver behaviour prior to a CRE, Molinero et al. (2009) define key 
events in situations with failure or not presence of manoeuvres. These include excessive 
speed and inappropriate reaction, which they  relate to driver panic. This concept is 
present in so-called oops reactions in SeMiFOT, used in the study of driver inattention 
associated with poor driving performance (Victor et. al, 2010). They also highlight the 
importance of optimizing the CRE triggers.
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The main limitations in the identification of CRE in a large data set are the variety of 
drivers and the wide range of situations. This procedure based on what the driver is 
expected to do, such as evasive maneuvers, leads to loss CRE and results in a high rate 
of negative situations. Although the perception of what is risky and what can be done 
depends on the person, there may be a common feeling when someone realizes that 
something is wrong. This feeling may materialize in a particular body language, before 
whatever evasive action, if any.

1.4 Purpose

Conventional triggering does not seem very efficient to find critical situations among 
hours of normal driving in a large database. Although kinematic filters can run 
automatically into the database, the high rate of false events requires the manual 
intervention of reviewers. Such reviewing procedure is mostly  based on the drivers’ 
reactions in images from cameras inside the cars. In addition, this procedure is time-
consuming and often tedious for analysts. Furthermore, comparison of results between 
different NDSs may also be inaccurate given that the validations are subjective 
decisions of reviewers opening for inter-subject and intra-subject reliability concerns.

A traditional triggering procedure applied to the initial euroFOT data set suggested the 
hypothesis that there is a relationship between driver motion and CRE. This idea came 
after watching more than 400 videos containing 40 positive situations3.

The main objective of this thesis is to test such hypothesis by creating an algorithm able 
to automatically identify CREs among the events triggered with kinematics values in 
euroFOT database. Such algorithm is based on the recognition of driver’s reaction from 
video images.

By defining a training sample from the initial triggered procedure, several methods were 
applied to recognise the driver’s reaction using images from cameras inside the car. 
Once possible algorithms had been defined and tested in the training sample, the next 
step was to evaluate them in a larger data set. Conclusions of these procedures and 
suggestions for future research are also addressed in the last chapters of this thesis.

The scope of this thesis has excluded the use of images other than 1) the driver’s body 
and 2) the search for kinematic values related to the driver’s reactions. Further, this 
thesis moves a first step toward the integration of video information for triggering CRE 
focusing on the driver reaction and not on the current possibilities of image-processing 
algorithms.

CHALMERS, Applied Mechanics, Master’s Thesis 2011:38                                                                      7
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2 Methods

The following chapter proposes the algorithms employed in this thesis to recognize
drivers’ reaction from cameras inside the cars. The different algorithms were tested on a 
training sample containing two normal driving situations and a CRE for eleven different 
drivers. The intermediate goal was to find a method that allowed for an automatic 
discrimination between true and false CRE.

training
sample

Figure 2.1 Methodology. 

The Figure 2.1 contains a schema of the followed methodology, whose steps are 
addressed in more detail throughout the following sections. To have an overall idea, 
these can be summarized as follows:

1 33 sequences, containing positives and negatives situations, were extracted from 
the euroFOT database to define a training sample.

2 Then, three methods were applied in the training sample to discriminate between 
positives and negatives: the t-test&vartest, the Optical Flow calculation and the STD 

of jerk. The last two were identified as potential algorithms and entered the next phase. 

3 STD of jerk required an intermediate step to convert its graphical information to 
numerical. Among several methods, the mean, harmonic mean and GLCM properties

were used as three different convertors that allow an automatic detection. 
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4  The three convertors of STD of jerk together with the Optical Flow criterion 
defined four potential algorithms based on driver’s reaction recognition in the 

identification of CREs.  

5  Finally, the four algorithms were first tested on the training sample and then on 
the validation data set. This was formed by 120 situations (101 negatives and 19 
positives) extracted from euroFOT database. The results from this phase are explained 
in the next chapter.

2.1 Driver’s reaction recognition. General assumptions

As suggested by the viewing of videos of candidates to CRE triggered in an initial 
euroFOT data set, the key to discriminate between normal driving situations and CRE 
may be the driver’s reaction. In fact, it’s the driver who decides whether the situation is 
critical (positive event) or not (negative event).

For instance, harsh braking is one of the most typical responses when drivers presence a 
critical situation. A high decelerations is used as trigger to detect such CREs. However, 
there are more aggressive driving styles, so the same deceleration level may be achieved 
in drivers that are totally aware of the situation. Due to the diversity  of drives and 
personalities, reviewers examine which is the driver attitude in the videos to guess 
whether the situation is critical for him/her. 

In euroFOT, these images are taken from cameras located in the rear-view mirror inside 
the cars. These are oriented toward the driver, making it possible to observe his/her 
torso4. In the sequences of CREs is observed a rigid body motion common to all drivers. 
This reaction is characterized by sudden movements, such as suddenly grab the steering 
wheel with both hands and tilt  the body forward. This theory also fits with the findings 
in a study of emotions and associated motions, which relates the surprise with an 
acceleration of the whole-body portions (Kobayashi, 2008). 

Prior to the beginning the search for possible methods, assumptions and requirements 
should be defined. Based on the findings of the initial triggering procedure, 
assumptions are:

1) Driver reaction is an indicator of CREs.

2) Motion in the driver’s body from euroFOT cameras can be used to detect 

driver reaction. Given the presence of kinematic changes while driving, driver 
reaction implies movement (it may not be just a change in face expression).

3) On the basis of the second assumption, individual movements may be not enough 
self-explanatory. Thus, a sequence of movements seems the best indicator of 
driver’s reactions.

The main requirement is that the greatest number of positive events should be detected 
with the least possible number of negative events. This means to increase the 

sensitivity of CRE recognition. The main challenge in this point is to identify  near 
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crashes and incidents, since they have kinematic values closer to normal driving 
situations. 

Other issues to consider are the variety of drivers and the computational time. It’s 
important to create an algorithm able to detect different drivers’ reactions in the shortest 
possible time. This can be generalized considering the images as matrices containing 
numbers (pixel intensities). In addition, a statistical approach can contribute to 
measure changes in these matrices and to save computational time.

Due to privacy and ethical issues, throughout this project the faces of drivers are hidden 
to remain anonymous. The tools used in the analysis were placed in locked rooms 
following the requirements on personal data handling. Only  authorized analysts were 
able to see the displayed data in such rooms. An information document was signed 
before getting access to ensure that individual drivers could not be identified by anyone 
except authorized persons. Finally, the extracted data have been revised to include them 
in this report. 

2.2 Definition of training sample 

The training sample is a part of the entire data set used for testing methods. This 
involves testing and searching alternatives to recognize driver’s reaction within a 
limited collection of data. Results from this procedure allow the development of 
potential algorithms able to identify CREs among negative and positive situations. This 
will be further evaluated in a larger data set. 

For the results to be enough consistent, the training sample should be representative of 
the population. In this case, it  contains two-second sequences of eleven different drivers 
randomly selected among positive events. This positive events were obtained using the 
kinematic triggers defined in 100-Car (Dingus et al, 2006) in an initial euroFOT data 
set. By watching those videos is possible to identify  the whole driver’s reaction within 
two-seconds (starting half-a-second before the triggered time). Events have been further 
described in Appendix 2.

The training sample also contains two additional negative events for each driver (see 
Figure 2.2). These have been recorded in the sequences that take place four and two 
seconds before the positive event. Such sequences are related to normal driving, thus 
they are defined as negative events.

Figure 2.2 Procedure to define the training sample.

To sum up, the training sample contains 33 situations, of which eleven are positive 
events. The fact that these are experimented by different drivers is based on the 
requirements established for the algorithm, given that the database is formed by 100 
drivers.  
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2.3 Recognition of driver’s reaction. General structure

Several methods were applied to the training sample in order to:

1) Recognize the positive events among the rest of the sample. Which are the 
differences in driver’s reactions between positive and negative events?
2) Once the differences were established, efforts were focus on finding a way to 
automatically detect as many positive events as the lowest possible of negatives. 
At this point, it was important to save computational time.  

Possible solutions to address both research questions are presented below together with 
some initial steps to prepare the images. Note that this research aims to identify in a 
rough and fast way the reactions of the drivers. Therefore, more specific and accurate 
image processing methods, such as defining specific features in the images and 
analyzing the movement, were not considered. This is mainly limited by the size of the 
database and the variety of drivers.

2.3.1 Data description & Image pre-processing

As specified in previous sections, issues as the computational time and the diversity of 
drivers play an important role together to rightly identify driver’s reaction. Therefore, 
images were treated as matrices containing pixel intensity values. Since the collected 
data in euroFOT is available in MatLab, the scripts to access and evaluate the data were 
also programmed in its language. This section covers technical issues about the 
structure of the data and initial steps to extract and prepare the images (see Figure 2.3).

Figure 2.3 Steps of data acquisition and image pre-processing.

Extracting sequences from videos_ Three video sequences of two-second duration 
were extracted from files in format .avi for each of the drivers of the training sample5. 
The original images are in grayscale with 288x352 pixels. The frame rate is 12,5 fps6. 
Each frame was saved to a level of array, which is defined by two other structures: 
cdata and colormap (see Figure 2.4).

Figure 2.4 Unfold of array structure and frames information.
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Cutting images_ Since images are in grayscale, one plane was enough for defining 
the pixel values (colored images are defined by three planes). Only a certain area of the 
matrix stored in cdata was saved around the driver’s torso to remove superfluous 
information (see Figure 2.5). Thus, the final sizes of the images were 283x231 pixels.

Figure 2.5 Clipping the torso of the driver7. 

Removing flashes_ Over-bright images were removed from the sequences to avoid 
false changes in pixel intensity. Observations from the training sample indicate a 
constant frequency of one flashed frame each five. This effect was observed in some of 
the drivers, but this pre-filtering script was applied to all the sequences without 
distinction. Although this implies to eliminate right information in some cases and 
makes the sequences faster than in reality, it is preferable to false intensity changes.

Mask in window_ Superfluous information, as 
outside movements in the window’s area, may affect the 
results by generating changes in pixels intensities not 
related with driver’s motion. Therefore, a binary mask 
changed the pixel’s intensities to null values in the 
window’s area. A situation in which the driver’s body 
leans forward was taken as dimensional reference to not 
lose information of the driver’s motion.

Figure 2.6 Mask polygon in window’s area.
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2.3.2 Recognition of driver’s reaction in sequences

Following this first phase, the images were already preprocessed and the training 
sample was defined by a collection of frames for each situation in 33 arrays, of which 
11 were positive events. Below, there is an explanation of the three different methods 
applied in the identification of  those events based on driver’s reaction recognition

2.3.2.1 T-test and Vartest. Comparison of false&positive events

Frames are defined as matrices containing values of pixel intensity. These values change 
depending on the motion in the scene. Since negative and positive situations are 
recorded for each driver, it is possible to compare both to see how different the 
distribution of pixel values in each case is.

A way to use this information is conducting a t-test of the null hypotheses that data in 

a certain pixel position along both arrays of each sequence are from the same 

normal distribution. This theory was applied using two different functions in MatLab:

- Ttest2: tests the null hypothesis that values for each pixel position come from 
populations with equal means, against the alternative that means are unequal 
(unequal variance is assumed).

- Vartest2: tests the null hypothesis that values for each pixel position come from 
populations with equal variance, against the alternative that variance is unequal.

Under 5% of significance level (by default), functions return h=1 if the null hypothesis 
is rejected and h=0 on the contrary, so results can be represented as binary images. In 
addition, it computes a p-matrix containing the probability  of observing the values as 
extremes. Three different populations were considered in this calculation:

- Intensities in the same pixel position over time in both sequences.
- First derivative values for each pixel position over tie in both sequences: deriving 

also takes into account the time changes. Those most obvious (the largest change 
in intensity in less time) were expected to be blank areas in the h-matrix. 

- Square of the first derivative values for each pixel position over time in both 
sequences: if the pixel intensity decreases during the sequence, the first derivative 
becomes negative. Then, the square values consider whether this effect can affect 
the results.

For each population, two binary images resulted from the calculation of two different t-
tests: one with two negative events and the another with a positive and a negative event. 
The procedure was the same when performing a vartest. 
It was expected that the binary image resulting from the comparison of a negative and a 
positive events contained more white areas than the resulting from the two negatives. 
This would mean that the intensities in those pixels have experienced more changes and, 
therefore, rejected the null hypothesis. According to this theory, the positive event could 
be recognized in the following steps (see Figure 2.7):
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Figure 2.7 Procedure of recognition using t-test&vartest as potential triggers.

 
First, t-test and vartest were applied to compare a negative and a positive sequence for 
the three different populations. The aim was to detect which population and which test 
were most suitable for recognizing the driver’s motion. Results of the first  approach are 
shown below (see Figures 2.8 and 2.9):

Figure 2.8 Binary images from vartest of: intensities, first derivative of intensities 
and square of first derivative of intensities (driver A686).

Figure 2.9 Binary images from vartest of: intensities, first derivative of intensities 
and square of first derivative of intensities (driver A686).
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As can be seen in Figure 2.8, the binary image from the t-test of square-of-first-
derivative of intensities seemed to be the most representative of the driver’s motion. It 
highlights the areas that have undergone major changes: the hand and the driver’s head. 

Using the square-of-first-derivative of intensities as population, t-tests were performed 
in two negative sequences and in a positive and a negative sequences applying the 
procedure detailed in Figure 2.7. When comparing the positive and the negative events, 
more white areas were expected on the resulting binary image that collects the h values. 
Finally, grouping and measuring these white areas might be used to determinate which 
of two comparisons belong to a positive event (driver’s reaction).

Figure 2.10 Binary images from t-test of square of first derivative of intensities.
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In most of the drivers, the t-test comparing positive and negative sequences (event VS. 
2-second bef.) resulted in more white areas than the obtained from two negative 
sequences. This effect is observed in drivers A686 and A484 in Figure 2.10, since the 
images on the left have more white areas than the images on the right resulting of the 
comparison of two negative sequences. Nevertheless, the opposite occurred in the driver 
A567. Similar results are also observed in some of the drivers of the training sample.

The binary images are quite noisy, which makes difficult to relate the driver’s reactions 
with the white areas from the rejected null hypothesis. Then, it seems unclear to define a 
certain white-area threshold to highlight the reaction. The main problem is that some 

maneuvers while driving may be related with a broad change in the rate of pixel 

intensities. For instance, turning the steering wheel creates a larger white area when is 
compared via t-test with a sequence of driving on a straight road. Then, alternative 
methods were explored to distinguish the driver’s reactions.

2.3.2.2 Standard Deviation of Jerk

Given that  results from the t-test were unclear in the discrimination between positive 
and negative events, possible alternatives are discussed below. 

As noted with the conventional triggering procedure, the reactions of drivers are mostly 
related to sudden quick motions of the driver’s torso. Therefore, the time in which the 
action takes place appears to be an important factor. One way to take the motion’s time 
into account is by deriving intensities in each pixel position over time. 

Velocity (first derivative) and acceleration (second derivative) represent rate of change 
of position and velocity over time, respectively. If each derivation level is related to a 
rate of change of what is deriving, then the third derivative represents a rate of change 
of acceleration. Young relates control with third derivative in “The Reflexive Universe” 
to explain any fact of the daily life. He illustrates that controlling the car can be 
expressed with the third derivative since it is related to changes in acceleration (Young, 
2004). The third derivative is also called jerk, and its application can be extrapolated to 
various fields of mathematics and engineering (Iradier, 2006).

The jerk of intensity values at each pixel location over time can give an idea of how 

sudden these changes are. Calculating the jerk for each driving sequence allows 
studying whether the positive sequences have values significantly  different from the 
negatives. From this calculation, an array  containing matrices with jerk values for each 
sequence was obtained as result. Two ways to look into these arrays were considered:

- Computing the standard deviation (STD): The wider variance in a normal 
distribution of jerk values, the more different that they have been over time. It was 
expected from this analysis that the highest changes in accelerations were 
represented as whiter areas in a grayscale image. 

- Representing the maximum square of jerk values: Peaks in jerk distribution can 
also be represented as white areas in a grayscale image, without taking into 
account how different these values have been in the distribution. The squared 
values are used to avoid any influence from negative numbers when the pixel 
intensity changes to a lower value by deriving.
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Prior to compute the jerk and its variance, over-bright images were removed from the 
sequence to avoid false changes in pixel intensity. Observations from the training 
sample indicated a constant frequency of one flashed frame each five in most of the 
drivers. This pre-filtering algorithm was applied to all the sequences without distinction. 
Thus, it was possible to lose information by removing right  frames and it also made 
sequences faster than in reality.

The resulting images from both calculations in the three sequences for one of the drivers 
(two negatives and one positive) of the sample are presented below. The goal was to 
distinguish the positive event (called just event from now) from the other two situations:

Figure 2.11 Maximum of square of jerk values: negative, negative and positive events.

Figure 2.12 STD of jerk values: negative, negative and positive events (driver A241).

The rates of acceleration changes during the event were not significantly  different from 
those obtained in negative sequences. In fact, maximums were mainly achieved when 
drivers were maneuvering in sequences previous to the event. Thus, driver’s reaction 
might not be related to peaks in jerk values. However, differences between negative and 
positive images from the standard deviation of jerk  (STD of jerk) seemed noticeable, as 
shown in Figure 2.12.
As can be seen in the image from the positive event in Figure 2.12, a white silhouette 

of the driver appeared when calculating STD of jerk during the event. If driver had 
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remained in the same position, a dark image was obtained as a result. On the other hand, 
maneuvers seemed to generate a certain white area in the image. This effect can be 
observed in the image on the middle in Figure 2.12, when the driver turns the steering 
wheel. In this context, it’s interesting the case of one of the drivers of the sample:

Figure 2.13 STD of jerk values: negative, negative and positive events (driver A1064).

As commented before, the sequences of the training sample were chosen randomly from 
the previous triggering procedure. In this specific case, it was unexpected clearly 
recognize the driver’s reaction since the motion was almost imperceptible in the video 
sequence. However, by looking at  the Figure 2.13, the driver silhouette obtained in the 
positive sequence enables to make a distinction respect to the other two previous states.

These results support the theory  that the driver’s reaction during a CRE seems to 

involve the whole body (rigid body motion in the driver’s torso), while maneuvers 

seem to involve just a certain part. This fact makes important to consider the area in 
which the changes take place to make the distinction. 

In most of the drivers of the sample, the resulting driver’s silhouette from STD of jerk 
allowed an intuitive recognition of the driver’s reaction and hence the positive events.  
Therefore, the possibilities were to post-process the STD-of-jerk images to identify the 
threshold that relates the graphic silhouette with the driver’s motion (a conversion from 
graphical to numerical information), or to keep trying other methods.

2.3.2.3 Optical Flow

A numerical alternative to the graphical method discussed in the previous paragraph was 
the calculation of the optical flow. Its original formulation came from Horn and 
Schunck (1981), who defined optical flow as “the distribution of apparent velocities of 
movement of brightness patterns in an image”. This distribution provides information 
about the object motion in terms of spatial allocation and rate of change. The optical 
flow constrains equation is defined as:

            Ix·u+Iy·v+It=0                                                                                                (2.1)
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Ix, Iy, It: spatiotemporal image brightness derivatives.
u=horizontal optical flow
v=vertical optical flow



This equation relates the intensity changes in a sequence of images with three-
dimensional object motion. Nevertheless, this relationship could result  unclear in some 
cases. For instance, the optical flow is zero in all the points of a rotating movement of a 
sphere. However, assuming the surfaces are flat, motion may  be related to changes in 
brightness. Therefore, velocities of object motion can be estimated by solving u and v8. 

 
During the last years, several studies have been carried to improve the performance of 
the classical formulation. In this context, D. Sun, S. Roth and M. J. Black (2010a,b) 
have recently contributed developing a more accurate optical flow. They  published a 
public Matlab code to compute this new optical flow formulation under educational 
proposes (Sun, 2010). Outputs are two matrices with the horizontal and vertical 
components of optical flow (OF from now) for each pair of processed images.

 Estimating flow in drivers_ The OF code developed by  Sun et al. (2010) were 
implemented in the training sample with the parameters established by default9. The 
main objective was to assess whether the body’s motion of the driver can be 

estimated with changes in brightness in a two-dimensional image.

Such script returned two matrices containing speed components for each pair of 
computed images. In this case, matrices were combined into a single keeping the 
magnitude of speed, since this value seemed more significant than the flow’s direction. 
Each matrices collection was kept in an array  for each of the sequences in the training 
sample. 

As commented in the previous section, the highest changes in acceleration in STD of 
jerk images weren’t reached during the driver’s reaction. This led to consider other 
alternatives that peaks in speed along the arrays to make the distinction. 

As happened in the calculation of jerk, pre-filtering alters the results since intermediate 
values are lost. However, this was preferable to false intensity changes due to flashes. 
Taking as reference one of the drivers of the sample, initial estimates consisted on using 
speed data from the OF calculation in each array (with and without filtering frames) to 
calculate:

- Local maximum from Optical Flow (OF): peak in speed of optical flow over the 
array of each sequence.

- Maximum sum of the whole array: maximum value in a matrix resulting from 
the sum of individual matrices with velocities of the entire OF array for each 
sequence.

- Number of pixels above or equal to the 95% of the peak in a matrix resulting 
from the sum of individual matrices of the entire OF array for each sequence.
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Table 2.1 Comparative of OF values in negative and positive events (driver A686).

Sequences
 (driver A686)

Original sequence Filtered sequence

Local 
max. 

Max.
sum of 

the whole 
array

Nº of pixels with 
speed>=95% of 
the highest speed 

in total sum 
matrix

Local 
max. 

Max.
sum of 

the whole 
array

Nº of pixels with 
speed>=95% of 
the highest speed 

in total sum 
matrix

Negative (4 sec. before) 39,79 74,5798 1 38,98 59,7046 155
Negative (2 sec. before) 30,49 93,219 122 28,65 84,4021 277

Positive event 18,88 112,603 206 11,01 96,6913 298

By looking at the Table 2.1, some differences might be identified between the 
calculation with the original and the filtered sequence. Anyway, maximum values were 
achieved in the same categories. Local peaks of speed were not recorded during the 
positive event. However, it  registered the maximum when considering in the calculation 
a single matrix containing the sum of speeds over time. Besides, this matrix had more 
pixels with higher sum of velocities than the negative sequences.

Anyway, differences were not enough consistent to establish these values as criterion of 
discrimination. For instance, the number of pixels containing the highest sum of 
velocities was 277 in the negative filtered sequence (with 84.4021 of peak speed) and 
298 in the positive (with 96.6913 of peak speed). This suggested analyzing the speed 

of the optical flow between single frames instead of using a matrix containing the 

sum of values along the array.

Results of performing the same calculation on single frames from each of the sequences 
for the same driver are presented below:

 Average speed on single frames

As can be seen in the Figure 2.14, 
the average speed was 
significantly greater during the 
event (red line in the graph) than 
in negative sequences (obtained 
two and four seconds before the 
event). The peak was achieved in 
the 16th matrix of the OF array 
resulted from processing the 
images of the positive sequence.

Figure 2.14 Speed average over OF frames in positive and negative sequences.
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 Peak speed on single frames

However, the peak speed wasn’t 
obtained in the OF of the positive 
event. As can be seen in the 
Figure 2.15, the highest peak 
speed was recorded in the 
negative sequence, which takes 
place four seconds before the 
event.

Figure 2.15 Peak speed over OF frames in positive and negative sequences.

 Number of pixels sharing highest peak speeds on single frames

As shown in Figure 2.16, at the 
time of maximum speed average 
(16th matrix of the event 
sequence, see in Figure 2.14) the 
number of pixels with, at least, 
the 95% of the peak speed was 
760. Another maximum was 
observed on the 13th of the array 
with 847 pixels. However, in 
comparison with other sequences, 
the maximum was registered in 
one of the negatives two seconds 
before the event. 

Figure 2.16 Peak speed over OF frames in positive and negative sequences.

The most significant speed rate during the event was recorded in the 16th matrix of the 
OF array. It resulted from the estimation of speeds between 16th and 17th frames of the 
original filtered sequence. Note that OF interpolation warps the second image and its 
derivative toward the first10. Those original frames are shown below to know the 
significance of such peak speed:
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Figure 2.17 Frames of the event sequence corresponding to peak speed (driver A686).

As can be seen in Figure 2.17, Frame 16 corresponded to the biggest change in motion 
during the reaction, when the body leaned forward. In Frame 17 driver was back to the 
original state. The change in motion was evident in this part of the sequence. 

The greatest differences between the event and second-before sequences seemed to be 
related to the average speed on single frames. According to this, sudden changes might 
be recognized by deriving. The Figure 2.18 shows the second derivative values of the 
average speed vectors for each sequence.

 Jerk of average speed on single frames

The biggest slope matched with 
the change in motion between the 
14th and 15th values during the 
event sequence. At that moment, 
driver’s body  leaned forward due 
to the inertia of harsh braking. 

Rates of acceleration changes 
recorded two seconds before the 
event kept values into a rate 
during the whole array. However, 
other significant change occurred 
between the 4th and the 5th 
derivative values four seconds 
before the event.

Figure 2.18 Jerk of average speeds over OF frames in sequences.

As can be seen in Figure 2.19, the second biggest slope in the sequence that occurs four 
seconds before the event was due to a change in the driver’s position:
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Figure 2.19 Frames of the negative corresponding to peak speed (driver A686).

Given these findings, it seemed that peaks in the distribution of jerk from OF 

velocities were associated with the driver’s motion. Nevertheless, the main obstacle is 
the computational time required to estimate the OF

2.3.3 Silhouette detection in STD of Jerk images

In the last section, several methods were applied in the recognition of driver’s reaction 
in presence of CREs. Among these methods, the OF and the STD of jerk were identified 
as potential algorithms. The main limitation of the OF was the computational time 
spending. Although it didn’t concern the STD of jerk, its results were graphical. So, this 
graphical information should be converted into numerical to facilitate an automatic 
detection method. This automatic detection mostly involved the study of the properties 
which characterize the images of the STD of jerk in the event among the negative 
sequences.  

Figure 2.20 Converters from graphical to numerical information in STD of jerk.
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2.3.3.1 Mean 

A first alternative to the use of graphic information from the STD of jerk was conducted  
by plotting the sum of the values along rows. The reason was to try to find out a 
silhouette in the images corresponding to the driver’s reaction. According to this 
hypothesis, it  was thought that the mean11 would be higher during the event than in 
previous sequences. This was based on the dispersion of pixels over the image to 
generate the driver’s silhouette. 

Taking as reference a driver from the training sample, the STD of jerk values were sum 
along rows for each of the sequences. The resulting vectors are plotted below together 
with the STD of jerk images of the driver (see Figure 2.20 and 2.21). 

Figure 2.21 STD of jerk values: negative, negative and positive events (driver A936).

As evidenced in Figure 2.20, 
the sudden motion from the 
driver’s reaction generated a 
white silhouette in the event 
sequence. Its distribution of 
STD values along rows 
reached a mean of 11900, 
while means in previous 
sequences are 2598 y 7299, 
respectively. The peak in  
the distributions of STD 
corresponded to the two-
second before image, where 
a bright white area is 
concentrated in the middle 
of the figure.

Figure 2.22 Distribution of sum of STD of jerk values along rows (driver A936).

This result was unexpected since in the pre-filtering procedure over-bright images were 
removed. By reviewing the video it was checked that  this area corresponds to a 
movement of the driver, who moves the arm from the steering wheel to the mouth.
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2.3.3.2 Harmonic mean

In educational fields, the harmonic mean is commonly used to calculate the final grades 
of students to ensure a reasonable level of work during the academic year (Wilson, 
2006). This case was also somewhat related given that mean was affected by local peaks 
in distributions. Hasna and Alouini (2002) used this formulation to study the 
performance of wireless communication. They defined the harmonic mean as follows:

“Given two numbers X1 and X2, the harmonic mean of X1 and X2, �H(X1,X2), is defined 
as the reciprocal of the arithmetic mean of the reciprocals of X1 and X2, that is:

    

                        
It is clear that the harmonic mean of two numbers is equal to the square of their 
geometric mean divided by their arithmetic mean.” (Hasna and Alouini, 2002).

The harmonic mean is not affected by the outliers (related to maneuvers) and it’s also 
useful when the data are resulted from indirect calculations. In this case, jerk belongs to 
derivatives of intensity  changes in pixels over time. Therefore, this method was thought 
as an alternative of the mean calculation when distributions of STD of jerk were 
affected by normal driving maneuvers and position changes in the driver.

As can be seen in Table 2.2, the mean of the negative sequence that takes place 4-
seconds before the event was 7299, which corresponds to a 61,33% of the mean 
achieved during the event (11900). This influence was lower in the case of the harmonic 
mean. Assuming as 100% the harmonic mean achieved during the event (6393), the 
value recorded in the 4-seconds-bef. sequence represents a 18,62% (1190,5). 

Table 2.2 Comparison between mean and harmonic mean in the distribution of sum 
of STD of jerk values along rows in sequences of driver A936:

Criterion 2-sec. bef. 4-sec. bef. Event

Mean 2598 7299 11900
Harmonic mean 369,8246 1190,5 6393

2.3.3.3 Counting pixels in intensity intervals

Since the maximum values of STD of jerk weren’t achieved during the event, another 
option was to consider the number of pixels with a certain STD within an interval. This 
same concept is in the calculation of the image histogram. This method allows 
representing the intensity levels respect to the number of pixels that share such 
intensities. Histograms can be used to obtain the parameters of a texture (Alba et al., 
2006). In some way, the driver’s silhouette is related to a texture given that it’s defined 
by a relationship between pixels. Some of the properties of histograms can be 
summarized as follows (Olmos, 2008):
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- Images can’t be rebuilt from their histograms.

- Two images can be associated to the same histogram.

- Histograms not contain spatial information about the image.

In the next trial, the driver A686 was took as reference to analyze the intensity levels 
generated by changes in driver’s position. Images of STD of jerk from the event and a 
previous sequence are represented below in a three-dimensional graphic (see Figures 
2.23 and 2.24). This graphical representation gave an idea about the rates of STD and 
their location over the image in a negative and in a positive situation.

Figure 2.23 Tridimensional distribution of STD of jerk over the image in one of the 
negative sequences of driver A686.

Figure 2.24 Tridimensional distribution of STD of jerk over the image of the positive 
sequence (event) of driver A686.

As shown in the graphs above, the negative sequence concentrated highest values of 
STD in the area generated by  the hand movement. It seems that the widest variances 
might be not related to the driver’s reaction. Results from counting the number of pixels 
within certain intervals of STD of jerk in each images are presented as follows:
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As can be seen in Figure 2.29, the 
differences were more significant 
in the fourth and fifth interval of 
STD. These intervals were groups 
of pixels with STD of jerk between 
50 and 20. In this range of STD, a 
higher number of pixels were 
counted during the event than in the 
previous sequences.

Figure 2.25 Distributions of number of pixels within intervals of STD in the event and
in previous sequences for the driver A686.

The numerical values associated to Figure 2.25 are represented in Table 2.3:  

Table 2.3 Number of pixels within intervals of STD of jerk during the event and
previous sequences.

Driver A686 Number of pixels within a certain interval of STD of jerk

Nº of interval
(STD)

1 (300-150) 2 (150-100) 3 (100-50) 4 (50-20) 5 (20-10) 6 (10-5) 7 (0)

Event 1542 4178 11708 19422 26384 32199 28559
2-second before 871 2430 6167 11030 20147 30255 30152
4-second before 5229 8195 12788 17063 20705 28007 28962

By adding the values of the fourth and fifth intervals (columns “4 (50-20)” and “5 
(20-10)” in Table 2.3), the numerical difference between the event and the previous 
sequences was not enough significant to discriminate between both situations. The 
number of pixels during the event was 45806, while 31177 and 37768 pixels were 
counted in previous sequences, respectively. This suggested taking into account the 
spatial distribution of pixels in next tests.

2.3.3.4 Edge detection: Hough transform

The Image Processing Toolbox in MatLab contains several procedures to detect edges in 
an image. In the following test, the Hough transform method was applied to a positive 
and a negative situation for the same driver. This method is based on the parametric 
representations of lines in a plane (MathWorks, 2011): 

�=x·cos�+y·sin� (2.3)
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The general procedure consists in detecting edges using Sobel or Canny algorithms. The 
resulting images may have open forms and isolated points. Then, the correction is 
possible by taking an initial point and drawing straight lines in a polar coordinate 
system. � and � values are accumulated in a matrix called Standard Hough Transform 
(SHT) to guess which pixel is more likely to belong to each edge. Peaks in SHT 
represent potential lines in the input image. Finally, houghlines command finds the 
extremes of the lines and fills the small gaps. 

This method was applied to a pair of images from the same driver, one obtained from an 
event and another from 2-second before the event. The Hough transform was 
represented in a graph and its peaks (potential lines) appeared in squares. Then, the 
detected lines were colored on the input images.

   

Figure 2.26 Hough transform and detected lines from sequence 2-sec. before the event

Figure 2.27 Hough transform and detected lines from the event’s sequence.

By looking at Figures 2.28 and 2.29, the detected lines were not clearly different to 
discriminate between both situations. This method is usually  useful in detecting roads in 
aerial images. However the straight lines seem not fit with the driver’s silhouette. This 
method can be also applied with curve lines by  previously  defining an original shape. 
This shape might be not clear definition in this case, due to the variety  of drivers and the 
camera positions.
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2.3.3.5 General silhouette

Since maneuvers and changes into positions seem to generate white areas in the STD of 
jerk images, another possibility in the identification of events was to define a certain 
area where the reactions were likely to take place to avoid false positives.

To define this area, several silhouettes obtained from different drivers of the sample 
were combined into a single one. Three different procedures were applied using the 
command wfusimg in MatLab. This program merges two images using fusion methods. 
Thus, the images containing the drivers’ silhouettes from STD of jerk during the events 
were merged in pairs (see procedure in Figure 2.28):

In the Figure 2.28, x and y are sub-
images from intermediate fusions of 
pairs of images. zt represents the final 
merged image. 

Figure 2.28 Schema of combination of silhouettes.

The command wfusimg allows to define levels of approximations and details. The 
following are zt images resulting from variations in these parameters:

Figure 2.29 Resulting images using different inputs in the fusion command. 

Matrices of STD of jerk contain different values depending on the movement of the 
driver during the sequence and the illumination conditions, for instance. Merging 
images based on mean values for approximations and details (see image on the right in 
Figure 2.29) tends to highlight the drivers with widest variances in such matrices. 
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However, the merged silhouette should provide an idea about the area in which 
commonly reactions take place, regardless of STD values. 

Since the merged images with maximum and minimum levels were quite similar, one of 
them was selected and a freehand region was drawn around the driver’s place (see 
image on the left in Figure 2.29). Areas of windows, rear seats and the steering wheel 
were not taken into account to avoid false positives. Although several reactions and 
evasive maneuvers are related to turn the steering wheel, this area seems to tend to 
confusion when discriminating between positive and negative events. 

This procedure was just an approximation to facilitate the study of changes in pixel 
intensities in a given area. The position of this Region Of Interest (ROI) was saved into 
an N-by-2 array in MatLab. This ROI could be applied as binary mask to the image in 
combination with the rest of the methods, aiming to improve their performance. 

2.3.3.6 Gray level co-occurrence matrix 

Texture filters often use the image’s histogram to statistically  evaluate the texture. 
Although this provides information about its properties, shape or spatial distribution 
over the image are unknown (IZMIRAN, 2005). 

Another statistical procedure of texture analysis that considers the spatial distribution is 
the Gray Level Co-occurrence Matrix (GLCM). GLCM contains how often pairs of 

different combination of pixel intensities occur in an image (see procedure in Figure 
2.35). This texture analysis is originally from Heralick et al.(1973) and today  is 
commonly used in medical image processing, modeling of forests attributes or studying 
the sea-ice, among others. In this case, this method was thought to identify the driver’s 
silhouette in images of STD of jerk based on its distribution. 

Figure 2.30 Process Used to Create the GLCM, [electronic print] Available at 
<http://matlab.izmiran.ru/help/toolbox/images/enhanc15.html>[Accessed May 2011].
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This method can be applied in two main steps: 

 Definition of GLCM: Calculating the frequency of certain relationship between 
pixels requires the choice of:

-Offset: distance between the related pair of pixels.

-Direction of offset: direction in which the pair of pixels are going to be evaluated. 
This choice is based on a visual examination of what it’s likely to be more 
characteristic of the texture.

-Gray levels: the input image is scaled in a certain number of intensity levels. The 
lower scales, the lower computational time. Besides, the statistical study is improved 
by reducing the number of levels. 

 Calculation of statistics using GLCM: Once the GLCM  is defined, several 
statistical methods can be used to identify the texture’s properties. Hall-Beyer (2007) 
has created an online tutorial about how to define a GLCM and its possibilities. She 
defines three main groups derived from GLCM calculations, which are summarized as 
follows together with the possibilities offered in MatLab:

Contrast: the diagonal of the GLCM contains pairs of pixels with the 
same gray  level. If there is a high frequency  of these combinations, then 
the image doesn’t have much contrast. This measure is the sum of square 
of variances and increases away from the diagonal(=0 if constant image).

Homogeneity: closeness in the distribution of combinations in the 
GLCM. It increases with less contrast (=1 in the diagonal).

Energy: uniformity in the image that is measured by adding the squared 
elements (moment of inertia) in the GLCM (=1 for uniform image).

GLCM correlation: dependency of gray levels between neighboring 
pixels (=+1 or -1 for perfectly correlated image). This doesn’t take into 
account the frequency of occurrence of a pixel, but its frequency together 
with a given pixel value. 

Measures group 1: distance to the GLCM diagonal (contrast)

Measures group 2: how regular the pixels are within the image

Measures group 3: descriptive statistics of GLCM
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The Table 2.4 contains some results of testing the GLCM  together with a Fusion mask 
in two drivers of the sample. The drivers were turning the steering wheel and moving 
the hand in previous sequences. These situations were chosen to define problematic 
situations that could interfere in the recognition of the driver’s silhouette.

Table 2.4 Properties in four directions of the GLCM in drivers A241 and A686 
(offset=200).

Driver A241 Driver A686 Contrast Correlation Energy

Event

A241:
[0.1598 0.0007 
0.2925 0.0031]

A686:
[0.6412 2.1862 

1.9693 0]

A241:
[0.3671 -0.0004 
0.2036 -0.0016]

A686:
[-0.0565 -0.2229 

-0.0400 NaN]

A241:
[0.8380 0.9984 
0.6473 0.9938]

A686:
[0.7625 0.3703 

0.3482 1]

2-sec. 
bef.

A241:
[0.0595 0 0.1335 0]

A686:
[0.0283 0.0696 

0.3453 0]

A241:
[-0.0085 NaN 
-0.0289 NaN]

A686:
[-0.0143 -0.0360 

-0.0402 NaN]

A241:
[0.9580 1 0.8710 1]

A686:
[0.9451 0.8705 

0.6109 1]

4-sec. 
bef. 

A241:
[0.0304 0 0.1766 0]

A686:
[0 0 1.4572 0]

A241:
[-0.0085 NaN 
-0.0356 NaN]

A686:
[NaN NaN 0.0481 

NaN]

A241:
[0.9625 1 0.8439 1]

A686:
[1 1 0.5422 1]

The contrast was one of the properties resulted in more significant differences between 
the event and previous sequences. These differences were more evident when increasing 
the offset between the pair of pixels. This might be due to the sizes of the driver’s torso 
in the silhouette. This dispersion might not be large enough in the area from 
maneuvering or moving the hand. 

Respect to the correlation, in driver A241 the value recorded in the first direction 
(horizontal) was positive during the event and negative in previous sequences. However, 
this effect wasn’t observed in driver A686, since values were quite similar in both 
negative and positive sequences12.  In the case of the energy, some values were higher in 
previous sequences than during the event, depending on the direction of the GLCM. 
This fact might indicate a higher uniformity in images from negative situations.
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2.4 Evaluation criteria. Data set definition

The goal of this project is to create an algorithm able to run throughout the triggered 
events of the database and to save only those in which the drivers react in presence of 
CRE. Potential methods of recognition of driver’s reaction have been commented in 
previous sections using some positive and negative situations. The performance in the 
training sample will provide an idea about which combinations are more likely to 
identify the CREs.

Nevertheless, the evaluation of the proven methods requires the use of a larger data set 
containing different situations from those used previously. This data set, called 
validation data set from now, comes from a triggering process with kinematic triggers 
in the euroFOT database and a subsequent evaluation by the annotators. The validation 
data set contains 120 different situations chosen randomly among the events that have 
been considered positive or have been rejected by the annotators when watching the 
videos of candidates to CRE.

Figure 2.31 Schema of procedure of algorithms’ evaluation.

Several thresholds have been considered when implementing the algorithms in the 
baseline. If the threshold is not strict, then it  will result in a greater number of true 
positive events (CRE rightly triggered), but also false negatives (normal driving 
situations wrongly triggered as positives). The ideal situation would only capture the 19 
positive events without any  negative (19 true positives and 101 true negatives). Since 
this only could be possible in a further study with the adequate adjustments from this 
preliminary project, there should be a compromise between the true positives to be 
achieved at the expense of false negatives. Such compromise can be represented in 
terms of specificity and sensitivity using Receiver Operating Characteristic (ROC) 
curves.

The ROC curve is a graphical representation of a rate of true positives against the rate of 
false positives for different thresholds in a diagnostic test (Tape, n.d.). This method was 
originally  developed in the World War II in radar-signal detection (Mason and Graham, 
2002). Nowadays is common and widespread used in the medical field for diagnosis of 
diseases.

There is a trade-off between sensitivity (rate of positives well diagnosed by the test) and 
specificity (rate of negatives well diagnosed by the test). If the sensitivity increases, 
then the specificity  decreases and vice-versa. In this case, true positives are CRE rightly 
triggered (Y-axis) and false positives are normal driving situations wrongly triggered 
(X-axis).
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The closer the curve is to the left point, the 
more accurate the test (see representation in 
Figure 3.2). On the other hand, the less 
accurate test, the closer to the diagonal. The 
area under the ROC curve is commonly used 
as a measure of accuracy. The following 
values can be used as guide (Tape, n.d.):

.90-1 = excellent (A)

.80-.90 = good (B)

.70-.80 = fair (C)

.60-.70 = poor (D)

.50-.60 = fail (F)

Figure 2.32 Tape T., The Area Under an ROC Curve, [electronic print] Available at 
<http://gim.unmc.edu/dxtests/ROC3.htm>[Accessed on May 2011].

In this case, the main limitation of using the AUC when comparing methods is that is 
more important to save true positives even if this means an increased number of false 
negatives. Thus, the evaluation of the methods for the whole set of false positives (the 
area under the entire ROC curve) seems not be the most appropriate in this case. One 
alternative is to analyze a portion of the ROC curve (Katzman, 1989; Cleveland, 2011). 

An estimation of the relevant portion of the curve can be defined by a range of false 

positives below 60% and a range of true positives above 80%.  The main reason is to 
keep  almost all the true positives (sensitivity) even if it  means increasing the false 
negatives (1-specificity). Therefore, the negative events in the database may be reduced 
in at least 40%, without losing more than 20% of positive events. The numerical 
meaning according to the dimensions of the validation data set is to reduce by 40 the 
total of 101 negative events and keep at least 16 of the 19 positives.
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3 Results

In the previous chapter, several algorithms were considered and tuned up in a training 
sample with eleven drivers and three different situations for each driver with the aim to 
distinguish CREs from a collection of negative and positive events. This chapter covers  
the performance of such algorithms in the training sample and their validation within a 
larger data set. The ideal algorithm should be able to identify as many positive events 
with the minimal negative situations. Results are presented below making use of ROC 
curves.

3.1 Performance in the training sample

Along the last chapter, several methods have been applied in the recognition of driver’s 
reaction to identify  safety critical situations. Initial assumptions, as classification based 
on t-test results, seem to generate noisy images and an unclear definition of the state of 
the driver’s motion. Nevertheless, analyzing changes in pixel intensities over time 
suggests that the sought motion may be related to a sudden change in a group of 

pixels intensities. 

This same concept is behind the images of STD of jerk and the OF calculations. By 
looking at the grayscale images from STD of jerk is possible to identify which is the 
positive event without any  additional information in most of the cases. The key of this 
identification is the silhouette of the driver, which means that there are a group of pixels 
that share a wide variance of jerk distribution over time. In the case of the OF, peaks in 
jerk distribution from the average of OF velocities in each frame contribute to 
discriminate between previous sequences and the event. The calculation is based on 
average speeds, so a group of pixels change quickly between frames. 

To assess the validity of this theory, these calculations must be performed throughout 
the entire training sample. The following is the example of results obtained for one of 
the drivers. Jerk distributions are presented together with the images from STD of jerk, 
which are also evaluated as distributions of sum of values along rows. The Appendix 4 
covers the same calculations for all the drivers of the training sample.

It is expected that  a driver’s silhouette appears during the event when plotting the STD 
of jerk. Distribution of sum of values in rows for each column pursues to distinct 
between normal driving maneuvers (just certain white areas in the images) and reactions 
in CREs. Thus, normal maneuvering may be related to local peaks in these curves, 
while a higher mean may  be related with the positive events. This is because white areas 
are dispersed along the image to reproduce driver’s silhouette.
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Figure 3.1 STD of jerk: 4-sec. before the event, 2-sec. bef.  and event (driver A484).

The driver remains in the 
same position in sequences 
before the event. Therefore, 
the images of STD of jerk 
seem to be a clear indicator 
of when the driver reacts. As 
can be seen in Figure 3.2, 
the sum of values along the 
rows for each column is also 
significantly higher during 
the event than in previous 
sequences.

 

Figure 3.2 Distribution of STD of jerk values along rows and columns.

Since the driver remains in 
the same position over time, 
distributions of jerk should 
be relatively constant before 
the event. Some unexpected 
results were obtained four 
seconds before the event at 
8th iteration, as shown in 
Figure 3.3. Anyway, the 
maximum jerk is reached 
during the event.

Figure 3.3 Distribution of jerk from OF velocities.

Range: 1.694-(-3.745)=5.439
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3.1.1 Optical Flow

Findings in the training sample support that peaks in distribution of jerk from OF 

velocities are related to the drivers’ reaction in presence of a CRE. This hypothesis 
is accomplished in ten of the eleven drivers of the sample, in which the ranges of jerk 
are significantly higher during the event than those obtained in previous sequences.

Uncertainties are which range of jerk is 
related to the driver’s reaction, since these 
values are different for each driver (see 
Figure 3.4) and the computational cost of 
running the optical flow code. Given the 
dimensions of the database, the computational 
time is an important limitation. 

Figure 3.4 Ranges of jerk for drivers of the training sample.

To sum up, jerk peaks from OF velocities and images of STD of jerk were identify as 
potential indicators of positive events. Both methods base the discrimination in the 
presence of the drivers’ reaction when CREs occur. The main limitation when 
calculating the OF is the consumption of computational time. On the other hand, it 
was observed a relationship between the driver’s reaction and images of STD of jerk. In 
most of the cases was possible to identify what the positive event is by just looking at 
the driver’s silhouette. As this is graphic information, several converters have been 
addressed in the last chapter to transform this information into numerical.

3.1.2 Mean criterion

The figure below includes the distribution of mean values for each sequence in all the 
drivers of the training sample:

Figure 3.5 Mean of distribution of sum of STD of jerk values along rows for all the
drivers of the training sample

CHALMERS, Applied Mechanics, Master’s Thesis 2011:38                                                                    37



As shown in Figure 3.5, the mean values are higher during the event than in previous 
sequences in nine of the eleven drivers of the sample. In both exceptions ( 5th and 10th 
position in the sample), maneuvering in sequences before the event generates peaks in 
the distribution of STD of jerk values and, consequently, the mean value increases. 
Images of STD of jerk of both cases are presented below to analyze why the mean value 
differs from those obtained in the rest of the sample.

Figure 3.6 STD of jerk in negative sequences of drivers A567 and A686. 

Marked areas of moving the hand and turning the steering wheel stay  pixels with wide 
variance in jerk values over time. This causes the mean increases in such situations in 
comparison with the figure obtained from the positive event. Thus, the mean criterion 
not seems consistent enough in itself to discriminate between positive and negative 
situations. 

Since the values were added only along rows, distributions can be also tested in another 
direction. This involves calculating the mean of the distribution of sum of STD of jerk 
values along columns instead of rows. Distributions in both directions using one of the 
drivers from the exceptions are plotted in the figures below together with the number of 
zeros (black color) in the images:

Figure 3.7 Distribution of sum of STD of jerk values along rows (driver A567).
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Figure 3.8 Distribution of sum of STD of jerk values along columns (driver A567).

As can be seen in Figures 3.7 and 3.8, peaks of sum of STD values are higher in the 
previous sequence than during the event along rows and columns. Then, the white area 
when turning the steering wheel still generates a higher mean in this case. Besides, the 
number of zeros is very similar in all the sequences. 

If comparing this result with those obtained for the rest of the sample, it is observed that 
in both exceptions (drivers A567 and A686) the mean is also higher in other sequences 
than during the event (see Table 3.1). Regarding the number of zeros, this value is not 
significant enough to distinct between positive and negative sequences.

Table 3.1 Mean of distributions of sum of STD over columns and Number of non-
zero values in the training sample.

Mean of STD distribution over columns Number of non-zero values

Driver 4-sec. Bef. 2-sec. Bef. Event 4-sec. Bef. 2-sec. Bef. Event

A34 4190 8092 17920 144,2 148,4 172,5
A241 2885 3869 6198 126,8 130,5 152,7
A481 2505 1892 5295 183,7 181,9 191
A501 6204 10410 12010 162,9 178,7 181,9
A686 7393 3485 5489 128,7 124,5 130,1

A1064 2071 1916 3656 122,8 124,6 132,9
A131 9519 10330 20950 168,4 163,6 200,2
A352 3342 4045 8982 205,2 206,9 217,9
A484 1505 1381 7214 158,6 156 172
A567 3767 6708 6287 154,8 156,2 154,7
A936 2121 5958 9711 98,91 108,2 142,9

In conclusion, the mean values of distributions of sum of STD of jerk along rows 

and columns have been calculated to recognize the driver’s silhouette as a wider 
dispersion of intensities over the images. Since this value is affected by concentrated 

areas in the image from maneuvering and changes in position, other statistical 
measures are taken into account.
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3.1.3 Harmonic mean

As was performed with the mean in the last section, the harmonic mean is estimated in 
the distributions of sum of STD of jerk values along rows and columns. Again, the 
reason is to try to locate the silhouette by the dispersion of pixels in the image with the 
difference that harmonic mean is not as affected by outliers. The sum of each par of 
values (harmonic means in rows and columns) is presented below as “Combination of 
harmonic means” for all the drivers of the training sample: 

As shown in Figure 3.9, 
combinations of harmonic 

means reach higher values 

during the event than in 

previous sequences for all 

the drivers of the training 

sample. This result in also 
observed in drivers in 5th and 
10th position in the sample, 
exceptions of the mean 
criterion,who register in this 
case a higher sum of 
harmonic means during the 
event.

Figure 3.9 Distribution of combination of harmonic means in the training sample.

Looking at the range of values of harmonic means in different drivers (see in Figure 
3.9), the main issue is to establish a threshold able to identify as many events at the 
expense of negative situations. 

3.1.4 Mean&General mask

The mean value was also calculated considering the Fusion mask, binary mask created 
from the combination of several driver’s silhouettes. 

The Figure 3.10 shows 
the mean values using 
the binary Fusion mask 
in images of STD of 
jerk. Despite the fact 
that the size of the 
training sample is not 
large enough to have a 
statistical sense, these 
results suggest higher 
means in those images 
from events than from 
previous sequences.  

Figure 3.10 Mean values by applying Fusion mask in STD of jerk images.
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3.1.5 GLCM properties

The contrast  and the energy of the GLCM  have been tested as well in the entire training 
sample considering an offset of 200:

Figure 3.11 Sum of contrast in four directions of the GLCM in the training sample.

Figure 3.12 Energy of the GLCM in the training sample

The Figure 3.11 shows the sum of contrasts in four different directions of the GLCM 
with an offset of 200 pixels for the sequences of the training sample. This value appears 
to be greater in some of the positive events regarding the previous sequences, but is not 
a clear discriminator in some cases. The same occurs using energy as property of study 
in GLCM. It seems that values are generally lower during the events in comparison to 
previous sequences. The main limitation would be to set a value that discriminates 

between both situations. 
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3.2 Results in the validation data set

As mentioned previously, the training sample is used to test different methods and 
identify potential features to discriminate between positive a negative events. However, 
its dimensions are not large enough for a statistical sense. Therefore, the evaluation 
requires the use of the validation data set. 

Below, ROC curves are plotted for each method with different combinations of masks in 
the images and thresholds. The range of variation of threshold values has been chosen 
according to the results of the training sample. These are represented as dots on the 
graph for the entire false positive rate. This gives an idea of the accuracy  of the curve. 
However, only  a certain area under a portion of the curve is relevant. It is bounded by 
two lines on the graphs. The largest  area within these boundaries determines which 
method is the most  accurate based on the requirements specified in the Evaluation 
criteria in Chapter 2. 

Another consideration when comparing the methods arises in the computational time. 
This is estimated in terms of how long (in seconds) processing each second of trip  takes. 
This is calculated by taking the time of computing all the iterations when changing the 
threshold values and considering the two-second duration of each file in the baseline.

3.2.1 Mean criterion

The mean criterion evaluates the presence of driver’s silhouette in images of STD of 
jerk by  adding STD values along rows and columns. Both vectors containing partial 
sums are combined into a single. The mean is calculated in its distribution. 

60 iterations have been considered by  changing the threshold values with a step of one 
unit. Three different input images have been considered:

-without mask: original image crop around the torso.

-BW mask: binary mask hiding the window.

-Fusion mask: binary  mask around the area in which driver’s silhouettes 
commonly take place. 

In comparison with the commented evaluation criteria, the curves in Figure 3.13 are 
closer to the shape of good accuracy. However, better results would obtain if the curve 
was closer to the upper left  corner. The area under the bounded portion of the curve 
seems larger without using any mask. The second best option according to this area 
suggests the use of fusion mask.
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Figure 3.13 ROC curves of thresholding with different combinations of mean 
criterion.
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3.2.2 Harmonic mean

The distribution of partial 
sums of STD of jerk along 
rows and columns is now 
evaluated using the 
harmonic mean. Unlike the 
previous test, this method 
discriminates the outliers 
of such distribution, mostly 
regarding with maneuvers. 

The threshold values vary 
between harmonic means 
of 400 and 10000, resulting 
in a stepped ROC curve.

Figure 3.14 ROC curves of thresholding with harmonic mean criteria.

The harmonic mean criterion emerged as an alternative of using the mean. Among the 
33 cases of the training sample, the harmonic mean was higher in the 11 that were 
positive. However, as can be seen in Figure 3.14, the bounded area is null. The slope at 
the beginning of the ROC curve is positive in terms of a further increase in sensitivity 
against (1-specificity). Nevertheless, variations from a certain threshold values don’t 
seem to affect the rate of true and false triggered. The best result obtained with this 
method according to the initial criterion is achieved with harmonic means above 2635. 
In that case, the false positive rate is 60,4%, while the true positive is 89,4%.

3.2.3 Ranges of jerk from OF

The calculation of the 
optical flow (OF) is a 
numerical alternative to the 
use of STD images in the 
estimation of rates of 
change in pixel intensities.

Events in the baseline have 
been triggered above three 
different intermediate 
values of range of jerk (1, 2 
and 6). This low sampling 
rate is mainly due to the 
computational cost of 
implementing the OF

Figure 3.15 ROC curves of thresholding with OF Criteria.
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OF velocities have been 
calculated using the 
original images and them 
combinations with binary 
masks. For the three cases 
observed in Figure 3.15, 
ROC curves are closer to 
the diagonal. Although the 
results are slightly better 
with the use of fusion 
mask, the method seems 
inaccurate for identifying 
positive events.

This contrasts with the
results of evaluating the OF 
in the training sample. In 
ten of the eleven drivers,  
the peak in the jerk 
distribution in positive 
situations was clearly 
significant in comparison 
with those obtained in 
negative sequences. The 
main limitation arise in the 
threshold value, since it 
changes for each driver. 

Figure 3.15 ROC curves of thresholding with OF Criteria.

In any case, the potential application of this method together with the use of fusion 
mask reduce by 40% the number of negatives while triggering 17 of the 19 positive 
events (see table 3.1). 

Table 3.2 Results of triggering with ranges of Jerk of OF speeds above one in 
combination with fusion mask over the original images.

Range>1
TRUE FALSE

Positive 17 2
Negative 38 63
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3.2.4 GLCM properties

A statistical approach in the 
identification of the drivers' 
silhouette in images of STD 
can be done according to 
the spatial distribution of 
pair of pixels over the 
images. This involves 
es t imat ing how the 
properties of GLCM 
change in positive and 
negative events. 

As can be seen in Figure 
3.6, the trend at the 
beginning of the ROC 
curve when thresholding 
with Energy values is better 
than the obtained using the 
Contrast. This is due to an 
increase in sensitivity at a 
low rate of (1-specificity). 
However, the bounded area 
seems to indicate a better 
diagnostic using Contrast 
as threshold in order to 
trigger almost all the 
positives of the baseline.

Figure 3.16 ROC curves of thresholding with properties of GLCM.

The iterations have been done with a GLCM Contrast  between 0 and 4 (step of 0,05) 
and GLCM Energy  between 0 and 1 (step of 0,02). The best result is obtained when 
thresholding with Contrast above one. In that case, the rate of negatives is reduced in a 
60%, while keeping the 84% of the positives. 
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3.2.5 Analysis of false negatives and positives

The comparison between bounded areas suggests that triggering with GLCM  Contrast 
and with Mean Criterion without mask are the most accurate methods when keeping 
above the 80% of the positive events and losing at least  40% of the negatives. Between 
both cases, the bounded area is slightly  higher in the case of the Mean criterion. Means 
above a threshold of 24 reaches a sensitivity  of 84,2% together with a specificity of 
61,4%. This result extrapolated to the baseline’s dimensions means that  55 events are 
triggered among 120, containing 16 of the 19 positives.

The analysis of the false positives and negatives from this procedure might provide a 
better understanding of the failures of the algorithm. This information is essential in 
order to improve the algorithm and use images as triggers in future research. 

Table 3.2 Descriptions of false positives from Mean Criterion.

False positives Description

The driver was overtaking when another car appeared in the blind 
spot. He reacted by turning the steering wheel. Although the 
motion is not  so evident, the driver’s silhouette appears in the 
image from STD of jerk. Note that  these trials were doing based 
on Mean criterion without mask, therefore the area in the window 
is not hidden by a binary mask. 

The driver was looking to the right. When he looked back on the 
road, a car has appeared in front  of him. The driver reacted by 
braking. There wasn’t an evident motion in driver’s torso. 
Anyway, a driver’s silhouette appeared in the STD of jerk image 
(although the mean values is not  enough higher to be triggered 
with the proposed threshold). 

In this situation driver was overtaking when another car tried to 
change to its lane. The driver braked and pressed the horn. Its 
seems like the driver is aware during the whole sequence that  the 
car can take its lane, so the situation could be unexpected for him. 
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Although the mean values wasn’t enough higher to be triggered, the silhouette of the 
driver appears in the false positives, as can be seen in Table 3.2. Among the false 
negatives, three main categories of failures have been observed: 

 Rough pavement / bumps on the road:

Due to the state of the pavement or the presence of bumps on 
the road, the motion in the driver is closer to jump in the seat. 
This situations are mainly related with peaks in longitudinal 
acceleration. 

Figure 3.17 Example of false negative due to a bump on the road.

 Closed curves: 

The driver is taking a closed curve. Due to kinematic forces, 
the motion generates a silhouette in the plot of STD of jerk. 
Looking at the image, the shoulders don’t generate a white 
shadow. This detail could be study as possible discriminator 
factor in future research. A STD of jerk image for a CRE by 
the same driver is plotted below, together with two other 
normal driving situations that take place two and four seconds 
before the event. Comparing both triggered situations (the 
negative from the triggering procedure with Mean criterion 
and the one from the real CRE), it´s possible to appreciate a 
different motion in the driver’s torso. 

Figure 3.18 Example of false negative due to kinematic forces in a closed curve. 

  

Figure 3.19 STD of jerk: 4-sec. before the event, 2-sec. bef. and CRE. 
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 Occlusion in the camera / Irregular illumination: 

The irregular illumination originates continuous shadows in the frames collection. Pre-
filtering just removes those frames that are supposed to be flashed by the devices of the 
instrumented car. 

Figure 3.20 Example of false negatives due to camera occlusions and irregular 
illumination. 

Throughout this project, the driver’s motion has been estimated from changes in pixel 
intensity. In the case of closed curves and bumps on the road, false negatives come from 
a motion in the driver other than the reaction when a CRE. This suggests a more clear 
definition of the specific motion in the driver’s reaction. However, the driver’s motion 
can’t be estimated by variations in pixel intensity  when the illumination is irregular. In 
such situations, these effects should be corrected before performing the analysis. 

3.2.6 Mean criterion in motion’s detection

Assuming that, once the illumination is corrected, false negatives will arise due to the 
detection of a motion different from the reaction, results can be recalculated without 
considering these situations in the validation data set. This would provide a true 
interpretation of the algorithm failure detection in motion.

The mean criterion has been applied in the validation data set without sequences with 
irregular illumination. This represents a total of 93 situations containing 19 positives. 
Results are presented below (see in Figure 3.21). 
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Figure 3.21 ROC curves of thresholding with different combinations of mean 
criterion.
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Figure 3.22 ROC curve from applying the mean criterion without mask in a central 
part of the image (rows: 15 to 220; columns: 30 to 210). 

3.2.7 Comparison 

The Table 3.3 contains a compilation of results for each algorithm in the original 
validation data set (19 positive and 101 negative events). The information about each 
algorithm is given by: 

- The range of thresholds used along the iterations.
- The highest sensitivity and specificity  achieved based on the minimum 

requirements (portion of the ROC curve)13 and the corresponding number of true 
positives and false negatives.

- The entire area under the ROC curve as general measure of accuracy (AUC).
- The computational time requires for each algorithm in processing the whole 

baseline with a specific threshold.
- The ratio between trip/computational time: taking into account the number of 

files in the validation data set and a duration of two seconds each one, it’s 
possible to calculate how long processing each second of trip takes. Results of 
these estimations are listed in Ratio between trip/computational time. This value 
is dimensionless, since it’s a ratio of two quantities in seconds. The lower the 
ratio is, the higher the computational time is saved. 

As can be seen in Table 3.3, the best results were achieved using the mean and the 
GLCM contrast  criteria. According to the accuracy  levels based on the AUC14, these are  
in the range of fair accuracy level of recognition (AUC between 0,7 and 0,8). In both 
cases is reached a sensitivity  of 84,21% together with a specificity of 61,39% and 
59,41%, respectively. The numerical meaning according to the data set dimensions is to 
keep  16 of the 19 positives with 39 and 41 of the negatives in each case. Although the 
ideal is to achieve a higher specificity, these results suggest a reduction of the 60% in 
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the quantity  of negatives. Thus, the dimension of the list of candidates to CRE is 
reduced from 120 to 55 situations.

Given that the OF algorithm requires several iterations in its pyramidal process, this   
affects the computational time. The consumption is significantly higher in comparison 
with the rest of the methods. It  requires processing during 200 seconds each second of 
recorded trip15. Nevertheless, the low accuracy achieved with the OF in unexpected.  In 
ten of the eleven drivers of the training sample the peaks in the jerk distribution of 
average of OF speeds were significantly  higher during the event than in previous 
sequences. However, the ranges were different in each case, hence the limitation of 
establishing a threshold. 

Table 3.3 Compilation of results in the original validation data set (120 situations).

Algorithm

Mean     
(without mask)

Mean          
(BW mask)

Mean         
(fusion mask)

Harmonic 
mean

Optical flow 
(fusion mask)

Optical flow 
(BW mask)

Optical flow 
(without mask)

GLCM energy 
(fusion mask)

GLCM contrast 
(fusion mask)

19 positives / 101 negatives Computa-
tional 

time (by 
one 

iteration) 
(sec)

Ratio 
trip/

compu-
tational 

time

Thresholds TP Sensitivity FN Specificity Thres. AUC

1 to 80 16 0,8421 39 0,6139 24 0,7387 19,16 0,08

1 to 60 16 0,8421 60 0,4059 13 0,7241 17,36 0,07

1 to 60 16 0,8421 52 0,4851 9 0,7327 22,16 0,09

400 to 10000 16 0,8421 61 0,3960 2745 0,6899 27,02 0,11

0 to 4 17 0,8947 63 0,3762 1 0,6087 48000 200

0 to 4 17 0,8947 73 0,2772 1 0,5862 48000 200

0 to 4 19 1,0000 94 0,0693 1 0,5735 48000 200

0 to 1 17 0,8947 63 0,3762 0,02 0,6959 21,00 0,09

0 to 4 16 0,8421 41 0,5941 1 0,7030 21,63 0,09

The study of the false negatives from this first trial showed that  some sequences of the 
validation data set were affected by an irregular illumination. Thus, in those cases the 
driver’s motion can’t be rightly estimated without a previous preprocessing (changes in 
pixel intensity  are due to variations in the illumination instead of motion in the images). 
Therefore, those sequences were removed to have a true interpretation of the 
algorithms’ performance in driver’s reaction detection among other kind of motions. 
The Table 3.4 contains the results of applying some of the algorithms to a validation 
data set with 19 positives and 74 negatives situations.
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Table 3.4 Compilation of results removing irregular illumination and camera 
occlusions from the validation data set (93 situations).

Algorithm

Mean (without mask)

Mean (BW mask)

Mean (fusion mask)

Mean (80:170,80:140) 

Mean (15:220,30:210)

Harmonic mean

GLCM contrast (fusion mask)

19 positives / 74 negatives

Thresholds TP Sensitivity FN Specificity Thres. AUC

1 to 80 16 0,8421 15 0,7973 24 0,8364
1 to 60 16 0,8421 34 0,5405 13 0,8133
1 to 60 16 0,8421 26 0,6486 9 0,8471

400 to 10000 17 0,8947 35 0,5270 24 0,7809
1 to 60 16 0,8421 32 0,5676 18 0,7760
1 to 60 16 0,8421 25 0,6622 26 0,8417
0 to 4 16 0,8421 18 0,7568 1,1 0,8350

The best level of accuracy  based on the area under the entire ROC curve is achieved 
using the mean criterion together with the fusion mask (binary  mask with general 
driver’s silhouette). In that case, the AUC is the 0,8471, which means a good accuracy 
level of recognition (areas between 0,8 and 0,9). Nevertheless, according to the 
minimum requirements, the use of mean without mask achieves a sensitivity of 84,21% 
together with a specificity of 79,73%. By removing the irregular illuminated sequences, 
the specificity has increased in a 18% from the result obtained in the first trial. The 
GLCM contrast also achieved the same sensitivity with a 75,68% of specificity. 
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4 Discussion & Conclusions 

Throughout the past chapters, several algorithms to recognize the drivers’ reaction in a 
CRE have been described and tuned up using a training sample. Then, such algorithms 
have been evaluated in a larger sample containing 120 events and adapted to achieve a 
maximal increase in sensitivity and specificity. In this chapter, conclusions from this 
evaluation, reasons to rely on driver’s reaction recognition, and possibilities for future 
research are addressed.

4.1 Where did the idea of recognizing driver’s reaction 

come from? Triggering in euroFOT based on the 100-

Car study algorithms

The idea of developing a trigger based on driver’s reaction recognition comes from a 
conventional process of data reduction carried out using the triggers from the 100-Car 
Naturalistic Driving study (Dingus et al., 2006) in an initial collection of euroFOT 
data16. Reasons were to address the problem of triggering the data and to try to locate 
CRE based on the experience of a public large-scale project as the 100-Car Naturalistic 
Driving study.

The following explains the technical bases of this initial data reduction and the 
conclusions when triggering with kinematic values of cars. Note that creating an 
algorithm able to identify the driver’s reaction and use it as potential trigger wasn’t  the 
first idea at the beginning of this project. This idea came after watching more than 400 
videos containing not even two dozen positive situations.

Rydström et al. (2009) compared the most common kinematic triggers and associated 
thresholds implemented in driving studies. They refers to longitudinal acceleration, 
lateral acceleration and TTC17. This comparative doesn’t show significant differences 
between NDS with the same type of vehicle (if conducting a NDS with a fleet of trucks 
the thresholds would be lower than in cars).

Table 4.1 shows the performance of the triggers applied in 100-Car study.  The most 
common detected cases were rear-end events, so that longitudinal acceleration and 
forward TTC reach more positive events. It’s worth noting the high percentage of 
negative events obtained in all categories. Therefore, a multivariate statistical analysis18 
was carried out after triggering the data to improve the identification performance (the 
scope of this procedure was limited to only lead/following vehicle conflicts).

54 CHALMERS, Applied Mechanics, Master’s Thesis  2011:38

16 at the time of this first triggered process (January 2011), only part of the data is already available (note 
that data collection lasts until December 2010).

17 time remaining before a collision that can be used to indicate the severity of the incident (the lower 
TTC, the higher risk) (Sidaway et al., 1996).

18 building a complex classification matrices by mathematically synthesizing the data (Dingus et al.2006).



Table 4.1 Results of triggering in 100-Car Naturalistic Driving study (Dingus et al., 
2006). 

Trigger type %Positives %Negatives

Lateral acceleration 3,5 91,3

Longitudinal acceleration 44,7 66,4

Event button 8,4 69,9

Forward TTC 56,5 86,4

Rear TTC 4,6 59,9

Yaw rate 21,7 91,1

Lane tracker 0,6 96,1

Side conflicts 3,1 96,5

Although results from other studies do not seem promising, an initial collection of data 
from euroFOT was triggered taking the triggers and associated thresholds used in 100-
Car Naturalistic Driving study as reference. Thus, it allowed a better understanding of 
the problem and the situations that were triggered. Additionally, situations in which 
Lane Departure Warning system19 alerts drivers were also analyzed. The following table 
gives a summary of trigger definitions and results obtained20.

As can be seen in Table 4.2, percentages of valid events are quite low compared to the 
total number of cases triggered. Longitudinal acceleration and LDW registered best 
performances by detecting, approximately, a 30% of positive events. Other potential 
kinematic triggers observed are the brake pressure signal combined with the car speed 
and the longitudinal acceleration. In this context, several events were detected in 
highways with velocities above 100 km/h and around 30 bar of brake pressure.  Such 
events weren’t triggered since longitudinal decelerations were around -3 m/s2 (below the 
6 m/s2 used as threshold21). Note that triggering were carried out when the transference 
of data was starting, so some videos were missing at this time. Also, the size of the data 
is not enough to generalize these results. 

Nevertheless, more than 400 videos from the triggered events were visualized and those 
situations were described in a further report. Thus, results seemed enough consistent to 
have an idea about the complications when triggering with kinematics and the typical 
wrongly triggered situations.
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Table 4.2 Summary of results of triggering initial euroFOT data based on 100-Car.

Trigger definition
Total cases 
triggered

% Positives %Video not available

Lat. Accel. �|6,867m/s2| 34 0 1 (2,9%)

Long. Accel. �|5,886m/s2| 119 40(33,61%) 14 (11,77%)

Long. Accel. �|4,905m/s2| 
TTC � 4s 12 3 (25%) 3 (25%)

|4,905m/s2| � lat. accel. �|
3,924m/s2| 
TTC � 4s
At min. TTC, FW�30,48m

14 3 (21,43%) 3 (21,43%)

Min. Variation: -4 to 4 
degrees/s (or vice.)
(3s window)
Neutral position at the 
beginning and end of the 
range

7 1(14,28%) 4 (57,14%)

BLISS signal
Turn indicator=On
Speed � 24,12 km/h
(+/-1s window)

153 (turn to left) 
only 49 checked

96 (turn to right) 
only 15 checked

4 (8,16%)

2 (13,33%)

0

0

Min. Variation: -2 to 2 
degrees/s (or vice.)
(3s window)
Neutral position at the 
beginning and end of the 
range
-Speed � 24,12km/h

17 1(5,88%) 1 (5,88%)

-LDW State=3
-LDW warning 
-Not activated turn indicator
-Speed � 100 km/h

1266

(167 checked)
58 (34,73%) 0

Throughout this analytical work it is concluded that driver’s reaction may be the key to 
discriminate between normal driving and crash relevant events. In fact, whether an 
event if safety-critical or not depends on the driver. Styles and experiences while driving 
are different, so the same acceleration value can be critical in some drivers while others 
are fully aware. Given this diversity of drivers and personalities, reviewers examine 
which is the driver attitude in the videos to guess whether the situation is critical for 
him/her. While conventionally  this classification is a subjective decision of reviewers, 
an automatic process can be developed by recognising drivers’ reactions.
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4.2 Recognizing drivers’ reaction as potential trigger

In Chapter 2, recognizing the drivers’ reaction has been used in a second phase to 
reduce the number of false negatives after a triggering procedure with kinematics 
triggers. However, since a percentage of CRE is missing when triggering with 
kinematics (overall near-crashes and incidents), an alternative is using the driver’s 
reaction recognition as potential trigger directly  in the database. Although the developed 
algorithms have been previously  used as complement of kinematic triggers, in the next 
trial the performance of using one of them as main trigger is analyzed. Findings when 
applying the Harmonic mean criterion in a 40-minute trip are presented below. 

 Recognizing drivers’ reaction (trials with Harmonic mean): The Harmonic mean 
criterion has been used in the past chapters to recognize the driver’s reaction in 
complement to the kinematic triggers. Results from this criterion in the training sample 
were promising in the discrimination between CRE and previous situations. To analyze 
the potential use of Harmonic mean as main trigger, the algorithm was applied to a long 
trip instead of using a list of candidates to CRE from kinematics triggers. 

The selected video is a trip of approximately 40 minutes with a different driver from 
those used previously. An event at 1174 seconds was recorded in the conventional 
triggering with an initial euroFOT data set. Longitudinal acceleration was used as 
trigger. The registered values of decelerations at such time were -6,714 and -6,723 m/s2. 
In the video, the driver is overtaking on the fast lane (at, approx., 80 km/h) on a two-
lane road. The leading vehicle starts braking and the driver of the subject vehicle slams 
on the brakes (two hands on the wheel and 60 bar of brake pressure) and turns the 
steering wheel to avoid a possible contact. Due to the delay in the reaction, the driver’s 
response is clear in the video sequence.

A first  approximation in the training sample using 6000 as threshold of harmonic mean 
detects nine of the eleven events (81,81%) together with two negatives (6,06%). 
However, the sample is not enough large to take these results in consideration. They 
could be used as approximation to define thresholds.

The script  runs into the trip  calculating every two seconds the STD of jerk. Then, 
harmonic means are calculated along rows and columns, respectively, to try to identify 
driver’s silhouette. If the sum of harmonic means is above 6000, then the number of the 
frame and the harmonic mean are saved.

The following figure (Figure 4.1) shows the triggered frames and the harmonic mean 
values associated. A total of 86 situations were triggered with sum of harmonic means 
above 6000. Some of these results are explaining below.
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Figure 4.1 Triggered frames and associated harmonic means in a 40-minute trip.

Point 1_The maximum sum of harmonic means is 20238. This corresponds to a 
negative event described in the following frames from its sequence (also the STD of 
jerk image is represented at the right):

Figure 4.2 Single frames and STD of jerk of the sequence of Point 1 in Figure 4.1.

The changes in pixel intensities during the sequence may affect the results by increasing 
the variance. However, this action is supposed slower than a sudden reaction in the 
driver. Anyway, some frames have been removed when preprocessing the image, which 
makes the action faster than in reality.

Point 2_ The sum of harmonic means at this point is 16875. 

Figure 4.3 Single frames and STD of jerk of the sequence of Point 2 in Figure 4.1.
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In this case, the STD of jerk image is affected by changes in pixel intensities due to 
constant shadows in the image. On the contrary  to Point 1, changes are not belonged to 
movement in the image. The luminosity is not uniform and pixels are changing between 
bright and dark values during the sequence. This also might result in a false positive 
when calculating optical flow vectors, since such algorithm is based on a constant 
brightness.

Point 3_ The sum of harmonic mean at this point is 13997. Another false positive is 
detected due to occlusion in the camera during the sequence:

Figure 4.4 Single frames and STD of jerk of the sequence of Point 3 in Figure 4.1.

The event has not been triggered since the sum of harmonic values are 2238,8 (below 
6000). Nevertheless, the silhouette of the driver is represented in the image from the 
STD of jerk, similar to those obtained in the training sample (see in Figure 4.5). This 
difference is also more evident in comparison with the image of STD of jerk obtained in 
two-second before sequence.

Figure 4.5 Single frames and STD of jerk of the CRE sequence. Image on the right: 
STD of jerk of sequence 2-sec. before the event (false event). 

As exemplified, occlusions in the camera and luminosity changes create changes in 

pixel intensity not related with driver’s motion. Therefore, is important to consider 
these false indicators when using driver’s reaction recognition in images as potential 
trigger. However, the driver’s silhouette appears during the event in contrast with the 
image from two-second before sequence. This makes possible to continue relying on a 
relationship  between the driver’s reaction and the silhouette when plotting the STD of 
jerk. 
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4.3 Final conclusions

 Recognition of driver’s reaction to identify CREs: Throughout this project  has been 
shown that driver’s reaction is the key to validate and identify CREs. This idea came 
after watching more than 400 videos from a conventional triggering procedure based on 
the 100-Car NDS algorithms.  

NDS are an important source of information for a better understanding of the causes of 
road accidents. Commonly, just a few crashes (if any) are registered in the whole data 
set given their low frequency  of occurrence. However, to have statistical sense is 
essential that a large enough population take part of the analysis. This can be just 
achieve with near-crashes and incidents. The sensitivity and specificity  of kinematic 
triggers in the identification of such situations is very low. This is mainly  due to 
kinematic values are quite similar to those obtained while normal driving. Therefore, 
one of the most important reasons for recognizing driver’s reaction is mostly  built  in the 
basis of the identification of near-crashes and incidents. 

 Quantifying the empathy: Driver’s reaction has been identified during this work as a 

sudden motion of the driver’s torso that can be quantified by given changes in 

pixel intensities. This allows an objective definition of what safety-critical is. 

The identification of safety-critical situations in a large data set requires empathy with 
the drivers. In previous NDS this was an exercise carried out by reviewers when 
watching videos of candidates to CRE. However, these are subjective decisions mostly 
based in their experience at the wheel, which makes inaccurate the comparison between 
different NDS. 

 How identify driver’s reaction?: Among the several methods tested based on 
recognizing the driver’s reaction, the STD of jerk has emerged as a possibility in the 

detection of CREs by identifying a driver’s silhouette. 

Given the variety of drivers and the computational time, a statistical approach has been 
considered in the recognition of driver’s reaction.  Sudden intensity changes in a group 
of pixels have been estimated by computing the optical flow and the standard deviation 
of jerk. This last option allows important savings in computational time while changes 
are represented as whiter pixels in a grayscale image. Throughout this work, three 
different situations have been detected:

-dark image when driver remains in the same position.

-certain white area in driving maneuvers.

-driver’s silhouette in critical situations. 

 Automatic detection of driver’s silhouette: The combination of STD of jerk 

together with the Mean criterion achieves a sensitivity of 84,21% and a specificity 

of 79,73%. This procedure requires images with regular illumination, is not 

computationally demanding and allows reducing in a 66,67% the validation time. This 
implies a reduction of human and technical resources in the identification of CRE 
among the candidates while keeping above the 84% of the positives. 
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 Future research: On basis to these findings, possibilities in future research could be:

- In order to develop an algorithm able to complement or substitute in the future 
the conventional kinematic triggers is essential to uniform the illumination. 
This can be done by implementing an adaptive threshold that differences 
between ranges of intensity  changes due to luminance changes and due to real 
motion. Alternatives are the photometric normalization algorithms, mainly  used 
to address the irregular lighting in faces verification systems or histogram 
manipulation functions (Struct, 2009; Heusch et al., 2005). It is also possible the 
use of techniques of detection of different intensities light events that affect 
locally or globally the frames collection (Ekiza and Marqués, 2010).

- A more specific definition of motion when drivers react in presence of CREs 
and when they drive in closed curves or over bumps on the road. The driver’s 
shoulders seem to be an important area to make possible the discrimination. 

- More specific methods of the field of image processing can be applied for an 
accurate definition of the driver’s reaction and its associated motion, such as:

- Scale-Invariant Feature Transform (SIFT) is used in the recognition of 
objects by  taking features (specially high-contrast regions, as edges) and 
individually comparing each feature and finding candidates in an image 
collection (Lowe, 2004). 

- A multi-scale sequential image differencing can be carried out to estimate 
individual intensity differences in a group of pixels between pair of frames 
(Down, n.d.). Is possible relate this motion with specific kinematic values. 
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6 Appendix 1

 

This appendix contains  the results  from triggering  an initial euroFOT data set 

using  100-Car triggers in MatLab.  These have been programmed by following the 

triggers  description in 100-Car report (Dingus  et al., 2006). Most of them are 

associated with common evasive maneuvers  and acceleration peaks. Additionally, 

situations in which the Lane Departure Warning  system alerts drivers have also 

been analyzed. 

Validation of triggered events  is  based on video viewing. According  to the driver’s 

reaction, the triggered candidates to CRE are classified as  positive or negative, 

depending  on how critical the situation is  by the driver. This report just contains 

general results, although each triggered situation has been described in another 

document.

The following results are described in terms of :

-Trigger definition

-Number of valid events

-Most common actions

-Observation

Introduction

Triggers&Results
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 Lateral acceleration

Trigger definition Total cases triggered % Valid %Video not 

available

Lat. Accel. �|6,867m/s2| 34 0 1 (2,9%)

As  can be seen in the table, the 

most common situations are 

overspeed taking closed curves 

and turning  intersections. In 

all the analyzed events, drivers 

are aware and don’t loose the 

control of the car. In this 

context, a 11,7%  of triggered 

events  are parking  maneuvers, 

which suggests taking speed 

into account.

Has  also been observed some 

peaks  around 12-15 m/s2 in 

lateral acceleration when 

downloading data.

.

Other observations: In one of the cases, driver is  playing  with a  kid in the rear seat just turning  the 

steering wheel in both directions.  

 Longitudinal acceleration

Trigger definition Total cases triggered % Valid %Video not available

Long. Accel. �|5,886m/s2| 119 40 (33,61%) 14 (11,77%)

One of the most typical response in drivers  is  to hit the brakes  trying  to avoid a possible 

incident or collision on the road. These hard braking  situations  are usually related with peaks 

in longitudinal acceleration.  Therefore, situations in which longitudinal acceleration is  above a 

certain threshold can indicate that an incident happens.  

One possible classification of triggered events can be done in terms of why the driver brakes:

Most common situations Cases Valid

Leading vehicle is braking/stopped:

-Surprise&Wrong calculation 

of stop distance
27 19

-Eyes out-off the road 5 5

Bus incorporation 3 1

Intersections (low visibility) 10 5

Speed bump on the road 3 0
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Most common situations Cases(%)

Roundabouts 3 (8,8%)

Closed curves 10 (29,4%)

Direction changes 2 (5,8%)

Turning in intersections 5 (14,7%)

Full-curves road 2 (5,8%)

Parking maneuvers 4 (11,7%)

Error values when downloading data 4 (11,7%)



Most common situations Cases Valid

Roundabout 8 3

Vehicles changing lane 6 6

Traffic jam 2 0

Traffic lights 8 0

Dodging obstacles 1 0

Vehicle in opposite way 2 1

Overspeed in curves/intersections 11 1

Parking 3 2

Particular cases:

- On a  one-lane road, the driver is  talking  with a child that is  in the rear seat. He takes  his  eyes 

off the road for approx. 4 seconds at 20 km/h. When he looks  back at the road (two hands  on 

the wheel), he realizes  that is  closer to crash with some shrubs.  He doesn’t brake, only steers 

the wheel (from 1023 to -632 deg/s2 of steering  angle jerk), but there is  a brake pressure of 63 

bar before turning  the head to talk with the rear passenger.  So, the real incident is  not a 

result from triggering with longitudinal deceleration, it starts just before the triggered event.

- Driver is  continuously turning  the wheel in both directions  to entertain a child in the rear 

seat. This event was also triggered using Lateral accel. Thresholds

- Driving  on one-lane road, at approx. 50 km/h, driver slams  on the brakes and stops the car 

without apparently reason (brake pressure: 163 bar), and, then, she continues  driving. It 

seems  that she is  talking with somebody else (it’s night, ice in the road, not images  from 

more possible passengers in the car).

- Driving  at 42 km/h (one hand on the wheel)  on an urbanization road, driver is  using  a device 

that is between the two front seats (undetectable in the camera), when a ball appears  on the 

road. In this moment, he is  aware of the situation and reacts  by braking  (47 bar) but few 

seconds ago he was checking the device and not looking to the road. (73)

 Longitudinal acceleration & TTC

Trigger definition Total cases triggered % Valid %Video not available

Long. Accel. �|4,905m/s2| 

TTC � 4s
12 3 (25%) 3 (25%)

In one of the cases, there is  not apparently reason for a  TTC low value. There is not traffic in 

front of the car (another car is  coming  for the next lane in an opposite direction, but is  quite 

far when the trigger happens).  Three valid cases are found with this trigger, but two of them 

are, also, found by only triggering with longitudinal acceleration.
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Most common situations Cases Valid Observations

Leading vehicle is braking/

stopped

6 2 -Both cases: Speed 60 km/h 

-Leading  vehicle starts  braking 

and also the subject car (car is 

braking itself). When it’s  too 

closer, driver slams  on the brake 

(60 bar) and turning the wheel 

(from 706 to -635 degr/s2 of 

steering angle jerk variation).

-41 km/h, 31 bar

Parking 1 0

Roundabout 1 1 -Driver is  taking a roundabout.  

He checks  the traffic situation into 

the roundabout. He realizes in the 

last moment (before a possible 

contact) that the leading  car is 

stopped and waiting  to get into. 

He stops  from a speed of 35 km/

h, (123 bar, one hand on the 

wheel, also when the incident 

happens)

 Longitudinal acceleration & TTC & FW:

Trigger definition
Total cases 

triggered
% Valid

%Video not 

available

|4,905m/s2| � lat. accel. �|3,924m/s2| 

TTC � 4s

At min. TTC, FW�30,48m

14 3 (21,43%) 3 (21,43%)

Most common situations Cases Valid

Leading vehicle is braking/stopped 7 32

Traffic lights 1 0

Roundabout 3 1
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 Yaw rate:

Trigger definition
Total cases 

triggered
% Valid

%Video not 

available

Min. Variation: -4 to 4 degrees/s (or 

vice.)

(3s window)

Neutral position at the beginning and 

end of the range

7 1(14,28%) 4 (57,14%)

Triggering  with yaw rate aims to identify rapid changes in vehicle heading  due to evasive 

maneuvers. Assuming that the yaw rate is  in a neutral position at the beginning  and at the end 

of the range, it’s  supposed that driver is  on a  straight road. Possible variations  of this  method 

could consider only changes in a yaw rate within a certain time window. 

Only is possible to check the video in three of the seven triggered events.

Most common situations Cases Valid Observations

Vehicle in opposite direction 2 1 -One lane / two-way traffic

-Giving  way to another car 

(narrow road)

Parking maneuver 1 0

 Side turn light:

Trigger definition Total cases triggered % Valid
%Video not 

available

BLISS signal

Turn indicator=On

Speed � 24,12 km/h

(+/-1s window)

153 (turn to left) only 

49 checked

96 (turn to right) only 

15 checked

4 (8,16%)

2 (13,33%)

0

0

This trigger aims to identify events  in which any object is detected by BLISS system  within 

+/-1 second of turn signal activation. This means  that the driver tries  to change lanes  or turn, 

and another car is on the blind spot. The original trigger in 100-Car is  defined by using side 

radar signal. Since the system is  not included in euroFOT fleet, BLISS is  used instead (in the 

events  the system is  switched-off so drivers  not receive warnings).  Vehicle speed also has  to be 

higher than 6,7 m/s (24,12 km/h). 

As  evidenced by filtering, dynamics  of the car is not enough to discriminate between valid 

and invalid events.  Throughout the analytical work in this  report the key to validate is based 

on driver reaction. However, in lane changes  driver is  commonly aware, so that another 

important factor to take into account is  the behavior of others drivers (Do they allow the lane 

change? Is the subject vehicle forcing other cars to stop?).
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Example of valid event: 

-On a three-lane road (traffic jam), driver is  in the middle lane trying to change lanes. First 

attempt: car is  stopped and there is  a van in the left lane. Driver starts  accelerating, tries to 

change lane but aborts maneuver. Second attempt:  At approximately speed of 25 km/h, there is 

a car on the right side on the subject vehicle, driver is aware that such car is there, but 

continues with the maneuver. The driver brakes to avoid a collision between both cars.

Example of invalid event: 

-On a three-lane road, driver is  in the middle lane and changes to the left one. A car stops  to 

allow the changing. Driver in the next lane is  aware and allows  the subject vehicle to change 

lane (also subject vehicle driver is aware).

Applying this  criterion, these are the results  from the checked videos (49 trying  to turn left 

and 15 to right):

 

Most common situations Cases Valid Observations

Changing lanes 27 6 -Average speed: 30 km/h

-Several lanes road (2 or 3 lanes in 

most of the cases)

-Driver using a phone in one case

Joining from additional lane 13 1 -Average speed: 26 km/h

False BLISS warnings

Vehicles in different lanes 

turning at the same time 3 0

-BLISS warns  when vehicles  in 

different lanes  turn together in 

intersections

Intersections

10 0

-In two cases car is carrying a 

towing

-Average speed: 33 km/h

Roundabouts 5 0 -Average speed: 35 km/h

As  can be seen in the results, this  trigger not performs  well related to event validation, but can 

be useful to define a scenario with several lanes and traffic jam situation. 

 Side yaw rate:

Trigger definition
Total cases 

triggered
% Valid

%Video not 

available

Min. Variation: -2 to 2 degrees/s (or 

vice.)

(3s window)

Neutral position at the beginning and 

end of the range

-Speed � 24,12km/h

17 1(5,88%) 1 (5,88%)
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This trigger aims to identify events  in which yaw rate go to the neutral, to +2 degr./s, oscillated 

back to -2 degr./s  (or vice versa) and then return to neutral within a 3-second-window-time. It’s 

less restrictive than the Yaw Rate filter, however speed is take into account:

Most common situations Case

s

Vali

d

Observations

Turning steering wheel before taking 

an intersection

4 0 -Average speed: 32 km/h

Speed bump 2 0

Dodging a pothole 4 0

Road works 1 0

Stopping on the road to talk 

with a pedestrian
1 0

Controlling the steering wheel 

with one hand while talking on 

the phone

1

-Speed: 30 km/h

In this case, the only triggered event considered valid is:

-On an urban road, driving  at 35 km/h, driver turns  the steering  wheel because a  vehicle 

parked on the right suddenly opens its door. Surprise reaction in the driver. 

 Lane Departure Warning:

Trigger definition
Total cases 

triggered
% Valid

%Video not 

available

-LDW State=3

-LDW warning 

-Not activated turn indicator

-Speed � 100 km/h

1266

(167 checked)
58 (34,73%) 0

This trigger aims  to identify events  in which LDW system detects a  car deviation above 100 

km/h of speed. The defined state of LDW is  3, which means that the lane tracker is  performing 

well and there is  a  good visibility.  Velocities  above 100 km/h can also be a referent of high 

speed roads  where driver is  more likely to be distracted (maybe drivers are more aware on 

urban roads).  An event is considered valid if car deviation is  unintended. It’s  not sure to 

assess that car corrections belong to warnings. 

In most of the cases, vehicles  are driving  in a highway and drivers  are involved in secondary 

tasks, as  talking  by phone, taking  pictures  or using the computer. Also in some cases, the 

system was activated due to symptoms of driver’s sleepiness when driving at night.
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7 Appendix 2

Definition of training sample

The training sample contains a two-second sequence of video of eleven different events. 
These have been true triggered from a conventional triggering process. The triggers 
used in each case are explained below together with a description of the situation. The 
different states experimented by some drivers during the whole sequence are explained 
as example. 

A686

Triggered by: Longitudinal acceleration (-7,9270; -7,3620 m/s^2)

Description: Car is stopped waiting to turn left in an intersection. Leading car starts 
driving so the driver presses the accelerometer and at the same time checks the phone 
(no hand on the wheel). When the driver realizes that the leading car is braking he slams 
on the brakes to prevent the collision (82 bar of brake pressure) and grabs with one hand 
the steering wheel (but he doesn’t move the steering wheel).

States: 

-Initial state: driver is checking the mobile phone (without hands on the steering wheel).
-Second state: change in driver’s face expression, looking ahead, one hand on the wheel 
(other hand on the phone along whole the sequence).
-Third state: the driver’s body leans forward (it’s detected a change in the visible area of 
the rear window regarding driver’s head position). 
-Forth state: driver returns to the starting position but with the head tilted slightly back.

A484

Triggered by: Longitudinal acceleration (-8,8430; -9,8090; -9,0350; -8,0840; -8,0340; 
-7,7460)

Description: On a two-lane road, driver is manipulating some buttons in the wheel (two 
hands on the wheel) at speed of 50 km/h. The leading vehicle starts stopping, so she also 
brakes, but she is looking at something in the middle of the car (probably  the cd player, 
during a 3-seconds glance). When she realizes the leading vehicle is too closer, so she 
slams on the brakes (97,5 bar) and turns the steering the wheel to the right (steering 
angle jerk from 1502 to -1042 degrees/s^2). 

States: 

-Initial state: driver manages with both hands on the steering wheel (not looking at the 
road). 
-Second state: there is a change in driver’s face expression, looking ahead, and same 
position with hands on the wheel. 
-Third state: the driver’s body leans forward (it’s detected a change in the visible area of 
the rear window regarding driver’s head position). 
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-Forth state: driver returns to the starting position and looks back to the same object 
from the beginning. 

A241

Triggered by: Longitudinal acceleration (-8,3560; -7,1660 m/s^2)

Description: On an urban road, driver manages with left hand on the steering wheel (in 
the other he carries an object, apparently a phone). In the moment of the incident, he is 
driving at  low speed (around 30-20km/h) and he is looking at right to a truck that is 
maneuvering. He doesn’t realize that the leading car is braking and he reacts by 
slamming on the brakes (brake pressure=80bar).

States: 

-Initial state: river with head turned to the right, one hand on the steering wheel and the 
other holding a phone.
-Second state: change in driver’s face expression, looking ahead, same hands position.
-Third state: the driver’s body leans backward (due to slams-on-the-brakes action). 
-Forth state: driver backs to the initial position.

A481

Triggered by: Longitudinal acceleration (-7,399 m/s^2) &TTC (1,822s)

Description: The subject vehicle gets an exit at 60 km/h (one hand on the wheel). The 
leading vehicle starts braking and, also, the subject car brakes (not movement in the 
right foot, seems that it’s the car which is breaking itself). When it’s too closer to the 
leading car, driver slams on the brakes (60 bar) and turns the steering wheel (from 706 
to -635 degr/s^2 of steering angle jerk variation).

A567

Triggered by: Longitudinal acceleration (-6,8220 m/s^2) &TTC (0,9030 s)

Description: The subject vehicle intends to take a roundabout. He is checking the 
traffic situation into the roundabout. He realizes in the last moment (before a possible 
contact) that the leading car is stopped and waiting to also get into the roundabout. He 
stops from a speed of 35 km/h, (123 bar of brake pressure, one hand on the wheel 
remaining in the same position during the incident).

A131

Triggered by: Longitudinal acceleration (6,6120 m/s^2) 

Description: The subject vehicle is in a parking at  speed of 30 km/h. Driver is talking 
with a kid that is in the front seat. Suddenly, a parked car reverses. Then the driver of 
the subject vehicle slams on the brakes (44 bar) and turns the steering wheel (from 5713 
to -3981 degr./s^2).
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A34

Triggered by: Longitudinal acceleration (-6,2730 m/s^2) 

Description: On an unpaved road in a country side, the subject vehicle is driving at low 
speed (10 km/h). Driver is looking outside (his head is turned) and he doesn’t realize 
until the last moment that there is a tree in front of the car. He reacts by braking (23 bar 
of brake pressure) and by turning the steering wheel (7000 to -3287 degr./s^2).

A352

Triggered by: Longitudinal acceleration (-6,3490 m/s^2) 

Description: The driver of the subject vehicle slams on the brakes given that a car from 
he next  lane intends to change to its lane. The motion is very evident in driver’s body, 
who also releases both hands on the steering wheel. 

A936

Triggered by: Longitudinal acceleration (-6,0470; -6,1420 m/s^2) 

Description: The subject vehicle is driving at 65 km/h. It’s night. The driver releases 
the steering wheel and starts opening a candy. Six-seconds later she manages the 
steering wheel with both hands again, and she starts looking outside. Then she turns to 
look at the road and she realizes that the leading vehicle it’s braking. She reacts by 
turning the steering wheel (from 2065 to -4372 degr. /s^2 of steering angle jerk) and by 
slamming on the brakes (109 bar of brake pressure).

A501

Triggered by: Side yaw rate

Description: On an urban road, driving at 35 km/h, driver turns the steering wheel 
because a vehicle parked on the right suddenly opens its door. The driver of the subject 
vehicle reacts by turning the steering wheel. 

A1064

Triggered by: Longitudinal acceleration (-9,5850 m/s^2)

Description: On a two-lane road, the subject vehicle is on the right lane at 82 km/h. It 
seems that the driver is talking, but its night and it’s not possible to identify in the 
images if there are more passengers in the car. The road is wet. The leading car stops. 
The driver reacts later by slamming on the brakes (101 bar of brake pressure).
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8 Appendix 3

More specific information about Optical Flow

 Classical flow formulation: Horns and Schunck_The following method was 
developed by  Horns and Schunck (1981) to compute the optical flow in sequences of 
images. Assumptions are that the illumination is uniform across the surface and the 
brightness varies smoothly, without discontinuities (so it’s differentiable). However 
discontinuities appear when one object hide another, so results can be not clear in the 
steering wheel area, for instance. The relationship between brightness and speed motion 
is expressed as follows:

Exu+Eyv+Et=0

Horn and Schunck state that additional constrains are needed to calculate the optical 
flow in independent pixels (without information from the neighborhood). This is 
because pixel speed requires two components to be defined and the change in brightness 
due to the motion is only  one. Then, an additional constraint called smoothness 
constraint is used to minimize the square of optical flow velocity gradient. So, Horn-
Schunck’ method estimates the velocity vector [u v]T along time by  minimizing this 
equation:

Where is a (x,y) point of the image at time t, brightness is denoted by E(x,y,t). 

Brightness derivatives approximation: Since brightness’ measurements are discrete 
values, brightness derivatives can be estimated using as reference a point in the center 
of a cube formed by eight measurements. Then, Ix, Iy and It are the average of first 
differences along each parallel edges of the cube. 

Figure 8.1 Figure with equations of derivatives reproduced from: Horn B. and 
Schunck B. (1981): Determining Optical Flow, Artificial Intelligence 17, pp. 185-203 . 
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Figure 8.2 Representation of brightness derivatives approximations reproduced 
from: Horn B. and Schunck B. (1981): Determining Optical Flow, Artificial Intelligence 
17, pp. 185-203.

Estimating Laplacian of smoothness constrain: The square of the gradient of optical 
flow velocity  is used as smoothness parameter. The Laplacian is approximated by 
calculating an average of weighted values in neighboring pixels:

Figure 8.3 Figure with Laplacian equation reproduced from: Horn B. and Schunck 
B. (1981): Determining Optical Flow, Artificial Intelligence 17, pp. 185-203.

The weights of neighboring pixels are:

Figure 8.4 Weights of neighbour pixels, reproduced from: Horn B. and Schunck B. 
(1981): Determining Optical Flow, Artificial Intelligence 17, pp. 185-203.
Iterative solution: By taking these approximations, Horn-Schunck’ method minimizes 
the general equation to obtain the velocity vector [u v] for each pixel in the image, 
which is defined by:

Figure 8.5 Figure with equations of OF velocities reproduced from Horn B. and 
Schunck B. (1981): Determining Optical Flow, Artificial Intelligence 17, pp. 185-20
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 Contributions to classical optical flow: Sun, Roth & Black_ The classical 
formulation of optical flow relies on constant  brightness and smoothly variations. 
However, it seems that the quadratic formulation is not enough robust to outliers. 
Solutions are to replace the quadratic error function with a robust function, as using 
smoothness values or image segmentation. Therefore, variations using as base this 
classical formulation have been developed during the last years. 

D. Sun, S. Roth and M. J. Black (2010) find that applying a median filter to 
intermediate flow values every warping step improves the accuracy. They distinguish 
two concepts depending on optical flow calculations: the model (“objective function 
that defines the problem”), and the method (“optimization algorithm and 
implementation used to minimize it”). A “non-local term” is added to the classical 
formulation “to integrate information over large spatial neighborhoods” (Sun, Roth & 
Black, 2010).
 
Before the flow estimation, they propose to convert the image to LAB space. By doing 
this, the brightness is ignored and the white, pink and blue colors are used to define 
images. Therefore, images can be represented using three layers:
           
                         L*a*b                   

Then, the texture is decomposed in a linear combination of structure and texture by 
using the Rudin-Osher-Fatemi (ROF) method. Optical flow is estimated in a pyramidal 
process that warps the second image and its derivative (using a 5-point derivative filter) 
toward the first one in a bicubic interpolation. Standard deviation of the Gaussian anti-
aliasing filter is used as down-sampling factor.

They  perform an analysis on the Middlebury training set and evaluate the results using a 
Wilcoxon rank, considering three different penalty functions:

-Quadratic (HS)
-Charbonnier (Classic-C)
-Lorentzian (Classic-L)

They  find that  the best performance is achieved by using a Charbonnier penalty 
function, although is not as robust  as a Lorentzian one22. Also, they  conclude that 
median filtering allows to achieve better accuracy by making the flow less noisy. 
However, it seems that median filtering changes the objective function that is optimized, 
which makes higher energy in flow values (oversmoothing). To solve it, they propose to 
weight the non-local term taking into account which pixels are from the same surface,  
using spatial, color-value distance, or occlusion state. 

To sum up, the main and recent contributions in their CVPR 2010 publication (Sun, 
Roth & Black, 2010) to optical flow can be addressed as follows:

L=luminosity layer
a=chromacity layer (red-green)
B=chromacity layer (blue-yellow)
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- Image conversion to the LAB space and texture decomposition.
- Flow estimation in a pyramidal process, by warping the second image and its 

derivative (using 5-point derivative filter) toward the first in a bicubic 
interpolation.

- Use Charbonnier penalty function
- Apply median filtering to intermediate flow values every  warping step. Although 

this improves the accuracy  by making the flow less noisy, some values are over 
smoothed. To solve it, they  propose to weight the non-local term taking into 
account which pixels are from the same surface. Boundaries are defined by Sobel 
edge detection method.
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9 Appendix 4

A34

Images from the standard 
deviation of the 3rd derivative 
suggest that  there is a 
relationship between the driver’s 
silhouette and the response 
reaction at the event. One way to 
detect the difference it’s by 
looking at values distribution of 
each image.
This graph shows the 
distribution of sum of values 
along rows in each column. 
Since the white area is more 
significant at the moment of the 
event, values are relatively 
higher respect  seconds-before 
sequences.

From optical flow values, the rate 
of change of acceleration is 
considerably higher in the event 
than seconds before, with a range 
of jerk of 8,579 (red line in the 
graph).

Range:3.456-(-5.123)=8.579
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A241

T h e m o v e m e n t s w h e n 
manoeuvring are located in 
certain areas of the standard 
deviation pictures. The main 
difference with a response 
reaction in the driver is that it 
involves the whole body. Then, 
i t ’s expected a higher 
distribution of sum of non-zero 
values along the columns in such 
images. 
As can be seen in the graph, that 
is the tendency in the event line 
unt i l 170-column. Then 
sequences from seconds before 
the event achieve highest sum of 
values, due to white areas from 
turning the steering wheel.

Trends of jerk distribution in 
sequences before the event are 
rather stable along the frames in 
the “Jerk of average speeds” 
graph. The steepest slope is 
given during the event over 
again, with a range of change in 
acceleration of 6,540.

Range: 2.056-(-4.484)=6.540
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A481

The graph shows a clear 
influence of white areas in the 
sequence of the event over 
previous times. Black areas are 
represented as zeros in the 
images, so the greater sum of 
non-zero values along the rows, 
the more white pixels in such 
column.
By looking at the images from 
standard deviation of 3rd

derivative seems like the driver 
remained in the same position 
seconds before the event. 

The jerk distribution from 
optical flow calculation reaches 
the minimum and maximum 
values during the event. Unlike 
in previous cases, two main 
ranges can be distinguished in 
the graph. 
During the sequence there is a 
clear forward movement of the 
driver due to hard braking. Both 
ranges may correspond to this 
forward movement and its return 
to the original position, 
respectively.

Range: 1.817-(-1,265)=3.082

Range: 1.666-(-1,554)=3.220
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A501

In this case the event is not as 
evident as in other drivers in the 
images from standard deviation 
calculus. Driver is turning the 
steering wheel seconds before 
the event and she also reacts in 
that way during the real event. 
As can be seen in the graph, 
distributions are really close, 
although there is an appreciable 
difference in 190’s column. This 
shape is more related with 
manoeuvres than with the driver 
response reaction, since the main 
white area is concentrated in one 
part of the image. Given that the 
response should affect the whole 
body, distribution should be 
more uniform to asses this 
theory.

Results from the jerk calculation 
are also unexpected. The highest 
rate in acceleration changes 
occurs two seconds before the 
real event, in a completely 
normal driving situation (green 
line).

Range: 1.104-(-2.926)=4.030

Range: 1.807-(-4.006)=5.813
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Given that some frames were removed from the sequence, accelerations may have been 
affected. During this sequence in particular, the flashes are not observed. Anyway, the filter is 
applied without distinction, removing those frames that have more light every certain frequency. 
To verify the repercussion of this fact, calculations were carried out again taking the entire 
sequence:

The distribution of sum of row 
values from STD of jerk is very 
similar to the previous one. 
Although there are few 
differences after the 200’s 
columns, the shape remains.

However, the curves of jerk 
distribution are quite different. It 
seems that removing some 
frames affects the results from 
the optical flow estimation of 
velocities.
In this figure, it can be seen the 
two peaks from the previous 
case. Anyway, the highest ranges 
are also reached during the event 
and in the two seconds-before 
sequence. 
In comparison with previous 
drivers, this value of acceleration 
rate is not very significant. 

Range: 0.7251-(-0.5487)=1.2738

Range: 0.5208-(-0.8039)=1.3247
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A1064

This case can be complex since 
there is not an appreciable 
change in driver’s motion during 
the event. Anyway, results from 
STD of jerk are surprisingly 
positive in terms of reaction 
recognition (the driver ’s 
silhouette appears during the 
event, as can be seen in the 
images above). In addition, the 
distribution of sum of values 
along rows is relatively higher 
during the event than seconds 
before, as shown in the graph.

About the jerk distribution, a 
peak is registered during the 
event with a rate of change 
slightly lower than in previous 
drivers, but significantly higher 
in comparison with the other 
sequences.

Range: 1.122-(-1.848)=2.970
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A131

In this case, the driver’s 
silhouette is in all the images 
from STD of jerk, although the 
grea tes t whi te area is 
concentrated in the event due to 
an evas ive manoeuvre . 
Therefore, the distribution is 
relatively similar in all 
sequences along the first 
columns of images but is 
significantly higher when driver 
turns the steering wheel during 
the reaction.

Respect to the jerk of average 
speeds, the highest range in the 
whole data sample is achieved in 
this case with 10.833 of rate in 
acceleration changes.
Trends of previous sequences 
are relatively stable along both 
arrays.

Range: 3.867-(-6.966)=10.833
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A352

This distribution is a good 
example of what it’s expected 
from the STD of jerk calculus, 
because in almost all the 
columns the sums of values 
along rows are higher during the 
event than in seconds before 
sequences. This means that there 
are more pixels containing white 
values along the columns in the 
image from the event, so they 
can represent a possible 
silhouette. 
It is also possible due to the 
reaction of the driver is 
accompanied by movement in 
the body, especially in the area 
of the hand. 

The peak in jerk distribution is 
also achieved during the event. 
Sequences from previous time 
remain stable along their arrays.

Range: 1.694-(-3.745)=5.439
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A484

The driver remains in the same 
position in both sequences 
before the event. Therefore, the 
image from the STD of jerk may 
be an indicative of the driver’s 
reaction in this case. The sum of 
values along the rows for each 
column is also significantly 
higher than in previous time as 
can be seen in the graph.

Since the driver remains in the 
same position over time, the 
distributions of rate in 
acceleration changes should be 
relatively constant before the 
event. Some unexpected results 
were obtained four seconds 
before at 8th iteration of jerk 
calculation from optical flow 
values. Anyway, the maximum 
jerk is reached during the event.
In this case, the sequence is 
affected by flashes every five 
images, but these have been 
removed in a previous step 
before the optical flow 
estimation.

Range: 1.694-(-3.745)=5.439
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A567

The driver’s silhouette begins to 
be visible in the image from the 
event. Therefore, sums of the 
STD of jerk values are higher in 
the first columns than in 
previous sequences. 
Nevertheless, driver was turning 
the steering wheel two seconds 
before the event. Then, as can be 
seen in the graph, the green line 
reaches the maximum at almost 
the middle of the image. This 
might be the main difference 
between the driver’s reaction and 
a normal manoeuvre: the 
presence of concentrated white 
areas in a certain part of the 
image.

Regarding the jerk distribution, 
the minimum and maximum 
correspond to the event 
sequence. The peak in the green 
line from two-seconds-before 
values can be due to position 
changes in the driver, who 
moves the head and turns the 
steering wheel. 
It is interesting to notice as the 
changes in acceleration ranges 
vary depending on the driver. In 
this case, the main range of jerk 
of average speeds is 3.823 (in 
terms of acceleration changes).

Range: 1.539-(-2.284)=3.823
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A936

In general, distribution of STD 
of jerk reaches higher values 
along the columns of the image 
from the event than in those 
from second-before sequences. 
The peak corresponds to the 
second image (green line), where 
a bright white area is 
concentrated in the middle of the 
figure. This may seem strange 
given that in the pre-filtering 
process over-bright images have 
been removed. By reviewing the 
video it’s checked that this area 
corresponds to a movement of 
the driver, who moves the arm 
from the steering wheel to the 
mouth.

The jerk distribution of the event 
is characterized by several 
peaks, probably due to the 
excessive reaction of the driver. 
It also can be seen that the 
movement of the arm previously 
mentioned in the 2-second-
before sequence is not 
significant by looking at jerk 
values in the graph.

Range: 4.03-(-3.968)=7.998
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A686

As shown in the figure, 
distributions of sum of values 
f rom STD images are 
characterized with local peaks 
due to movements of the arm in 
second-before sequences. 
Therefore, the mean value in 4-
sec. bef. curve is higher than 
during the event, although it 
ranges greater sums before and 
after its peak. This happens 
because white areas are more 
dispersed in the image to draw 
driver’s silhouette.

The jerk distribution is 
characterized by two peaks, one 
reached during the event and 
another due to the change of 
position discussed before. The 
range of the last one is closer to 
other drivers’ ranges in true 
events. This makes unclear at 
what value of range to establish 
the difference between a mere 
change of position and a true 
reaction in the driver.

Range: 2.438-(-3.929)=6.367

Range: 1.404-(-2.506)=3.910
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