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Finite element computations of the dynamic impact and contact of interacting bodies are
notoriously difficult.

F. Cirak and M. West, 2005
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ERIK SVENNING
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Chalmers University of Technology

Abstract

A Finite Element model for simulation of paper forming has been developed and
validated. Paper forming is the first step in the paper machine where a fiber sus-
pension leaves the headbox and flows through a forming fabric. The fibers land on
the fabric and start to form the fiber web. Understanding this process is important
for the development of better paper products, because the orientation and distri-
bution of the individual fibers during this step have a large influence on the final
quality. Simulation of paper forming offers great challenges since it involves struc-
tures with large displacements and large rotations, flow with complex boundaries,
fluid-structure interaction with strong coupling and dynamic collisions.

The fiber model, which is based on a dynamic co-rotational formulation of the
Euler-Bernoulli beam equation, accounts for geometric nonlinearities under the as-
sumption of small strains. Two contact models have been implemented, a penalty
method and the impulse based method Decomposition Contact Response. These
models can handle fiber-fiber collisions as well as collisions between fibers and the
forming fabric, which may have arbitrary geometry. Friction is included in the mod-
els and elastic/inelastic collisions are accounted for with the coefficient of restitution.
The fiber model was implemented in C++ and the nonlinear system of equations was
solved with Newton’s method. The flow around the fibers was simulated with the
CFD software IBOFlow developed at FCC. IBOFlow is based on a finite volume dis-
cretization on a Cartesian octree grid that can be dynamically refined and coarsened.
The flow around the moving fibers is resolved and the Hybrid Immersed Boundary
Method is used to model the presence of fibers in the flow.

Extensive validation of the implementation has been performed against several
demanding test cases from the literature. These cases include static instability with
postbuckling, large amplitude oscillation of slender structures and dynamic impacts.
Large effort was dedicated to making the code robust and efficient.

The code was used to study two fluid-structure interaction problems. First, a
single fiber oscillating in a cross flow was studied and the numerical results were
compared to an analytical solution obtained from a Fourier series expansion of the
Euler-Bernoulli beam equation. Paper forming with two forming fabrics of different
geometry was also studied. A qualitative comparison of the resulting distribution
and orientation of paper fibers was made.

Keywords: paper forming, fluid-structure interaction, FEM, contact modeling, Immersed
Boundary Methods
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Nomenclature

δu Infinitesimal change in u

δDirac Dirac delta function

δij Kronecker delta

λ Lagrangian multiplier

µfr Coefficient of friction

ν Poisson’s ratio

u An overbar indicates the deformational part of a quantity.

ρ Density

ω Spin axis

θ Angle

A Angular acceleration

ex, ey, ez Base vectors in the current configuration.

f Force

n Unit normal

pe Subscript e indicates a variable associated with the end point of an element.

ps Subscript s indicates a variable associated with the start point of an element.

ploc Subscript loc indicates a variable expressed in local coordinates.

q Vector that rotates with the major axis of the cross section.

t Unit tangent

uel The superscript el indicates that the variable is associated with an element.

vrel Relative velocity

w Angular velocity

Ω Spin tensor

E Change of coordinates matrix. The base vectors in the current configuration are the
columns of E.

Iρ Inertia tensor

T Rotation tensor

Tg Subscript or superscript g denotes a variable expressed in global coordinates.

Γ Matrix that relates the rotation of the element frame to the displacements and
rotations at the element nodes.
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B Matrix containing the derivatives of the base functions.

F Matrix used in the computation of the geometric stiffness. F is a function of the
internal force vector only.

H Matrix that transforms the tangent stiffness and internal force vector from angles
to spin variables.

K Tangent stiffness matrix

M Mass matrix

P Projector matrix

Ψ Rotational pseudovector

p Momentum

ϕ Twisting angle of undeformed cross section

cd Drag coefficient

E Young’s modulus

ecor Coefficient of restitution

fn Normal force

g Gap function

i Index: i = 1, 2, 3; Einstein’s summation convention is used where summation is
implied over repeated indices unless otherwise stated.

L Length of undeformed segment.

l Length of deformed segment.

M Bending moment

Ra Radius of major axis of the elliptical cross section

Rb Radius of minor axis of the elliptical cross section

S () Spin operator

V Potential energy
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1 Introduction

Paper forming is the first step in the paper machine where a fiber suspension leaves the
headbox and flows through a forming fabric. The fibers land on the fabric and start to
form the fiber web. Understanding this process is important for the development of better
paper products, because the orientation and distribution of the individual fibers during
this step have a large influence on the final paper quality.

Simulation of this process offers huge challenges since it involves transient fluid flow
with many immersed solid objects subjected to large displacements. The problem involves
fluid structure interaction with strong coupling: the immersed objects are forced to follow
the fluid, but the fluid is also strongly influenced by the immersed objects. The effect
of strong coupling can be described by throwing a ball in air and water. The trajectory
of a ball thrown in air can be described relatively accurate even without considering the
surrounding fluid, the coupling is quite weak and the weak coupling makes the problem
easier. The trajectory of a ball thrown in water is much more difficult to predict, the water
will have a very strong influence on the motion of the ball. The difficulty of the problem
is influenced by how heavy the ball is compared to the fluid. The ball is heavy compared
to the air, which makes the case of a ball in air easy. When compared to water, the weight
of the ball is relatively low. As a result, the motion of the ball is influenced more by the
fluid forces than by its own inertia. This effect makes the formulation of the fluid-structure
coupling important and the problem becomes difficult. The problem becomes very difficult
when the object has the same density as the fluid. When this occurs, the object is said to
be buoyant. Paper fibers in water are buoyant.

Strong coupling is not the only challenge in simulations of paper forming, contact
phenomena play an important role when the fibers fall down onto the forming fabric.
Contact forces with friction keep the fibers from falling off the forming fabric and beeing
carried away by the flow. The number of contacts increases as more and more fibers lay
down on top of the fiber web. Since the fiber web is kept together by contact forces, very
robust modeling of contacts is required.

Understanding the phenomena governing paper forming requires DNS simulations where
the coupling between the fluid and the solid objects is handled properly and the flow around
every fiber is resolved. Simulations of fibers described in the literature use drag correlations
instead of resolving the flow around the individual fibers and model the fibers as chains of
spheres or rigid rods instead of employing rigorous beam models that are normally used
to study slender structures. Therefore, an implementation of more accurate methods is
necessary.

1.1 Purpose

The goal of the project is to develop a model that can be used to study initial paper
forming. To achieve this, a nonlinear Finite Element beam model with collisions is required.
Therefore, the goal of this thesis consists of two parts:

• Implement and validate a Finite Element code for simulation of paper fibers. The
model must be rigorous and derived from fundamental laws of continuum mechanics.
The code must be fast and robust. In order to ensure that the implementation
is correct and physically sound, the code should be validated against demanding
structural dynamics problems described in the literature.

• Show that the code can be used to simulate paper forming. Especially, it must be
shown that the code can handle a large number of interacting fibers without stability
problems.
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1.2 Limitations

The project is mainly restricted in the following directions:

• Linear elastic material is assumed, other constitutive models are not considered.

• Initial simulations of paper forming are performed in order to demonstrate the capa-
bilities of the code. However, there are not enough computational resources available
to perform a full set of simulations of paper forming.

• Two contact models are implemented and compared. It is not the purpose of this
project to implement all possible classes of contact algorithms.

• It is not the purpose of this project to investigate the effects of turbulence on the
process.

1.3 Approach

FCC’s in-house CFD code IBOFlow [16] (Immersed Boundary Octree Flow solver) is used
to simulate the fluid flow around the paper fibers. Geometrical descriptions of forming
fabrics and paper fibers are generated with GeoDict [10]. A Finite Element fiber model
based on a co-rotational formulation of the Euler-Bernoulli beam equation is implemented.
Two contact models are also implemented and included in the Finite Element model and
demanding test problems from the literature are chosen for validation of the fiber code.
The FE code is coupled with the CFD code, resulting in a simulation software capable
of handling fluid-structure interaction with strong coupling and dynamic impacts between
the solid objects. The Immersed Boundary Method is used to resolve the flow around the
fibers, while the forming fabrics are described numerically with voxelizations.

A simple drag correlation with one-way coupling was also implemented. The results
obtained from these simplified simulations should be interpreted carefully, but this option
gives the possibility to show that the FE code can handle a large number of fibers without
stability problems. It is also shown that relevant postprocessing data can be extracted
from the simulations and a qualitative comparison between two forming fabrics is made.

The code is written in C++ and generic high performance libraries are used for distance
searches, matrix computations and solution of the large and sparse system of equations.
The open source program Paraview is used for 3D visualizations and Matlab is used to
draw 2D plots.

1.4 Review of beam models

Beams are slender objects characterized by the fact that one dimension is much larger than
the other two dimensions. Many researches have derived equations governing the dynamic
motion of such objects. Two widely used examples are the Euler-Bernoulli beam theory
and the Timoshenko beam theory [12]. In the classical, small displacement formulation, the
Euler-Bernoulli beam equation includes the effect of translational inertia, but it neglects
the effect of rotational inertia. Bending is included in the strain energy, but shearing is
not. The Timoshenko beam equation includes rotational inertia as well as shearing in the
cross section. It does, however, assume small rotations and small strains. Both the Euler-
Bernoulli and the Timoshenko beam theories are good approximations for slender beams
oscillating at low frequencies, but the Timoshenko beam theory is a better approximation
for non-slender beams and high frequencies. In simulations of paper forming, the paper
fibers will be transported by the fluid flow field and may be subjected to large displacements
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as well as large (finite) rotations. The Euler-Bernoulli and Timoshenko beam theories as
presented in [12] do not allow finite rotations and therefore these models can not be used
without modification. Han et al. [12] also discuss the Rayleigh beam theory and the Shear
beam theory. These models suffer from the same fundamental weakness, they do not allow
finite rotations.

Ibrahimbegović and Mikdad [17] derived a beam model based on the Reissner beam
theory. The model is geometrically exact and it is capable of handling finite strains as well
as finite rotations. Different ways of parametrizing large rotations were discussed.

Simo and Vu-Quoc [29] derived a fully nonlinear, geometrically exact beam model. The
model is capable of handling finite strains as well as finite rotations. Several numerical
examples were given and the computational aspects of the implementation were discussed.

Nour-Omid and Rankin [25] derived a co-rotational formulation which can be used to
extend a linear Finite Element model so that finite rotations are allowed. The funda-
mental idea of the co-rotational approach is that the linear equations are formulated in
a co-rotational frame which moves with the element. In this way, finite rotations can be
allowed even if the original Finite Element model assumes small rotations. The consistent
linearization of the co-rotational formulation results in a projector matrix, which is used to
modify the linear element model. The model proposed in [25] is derived for static problems.

Crisfield, Galvanetto and Jelenić [5] studied the dynamics of co-rotational beams sub-
jected to finite rotations. The weak form of the inertia terms was derived and different
time stepping schemes were discussed.

Several authors interested in the motion of fibers in a fluid flow have modeled fibers as
a chain of spheres or rods. One example is the model proposed by Lindström and Uesaka
[18, 19, 20], where fibers are treated as a chain of rigid rods connected with springs. The
derivation of the model proposed in [19] starts with Newton’s second law for linear and
angular momentum. The fibers are considered to be inextensible, but the inextensibility
constraint is neither enforced with Lagrangian multipliers nor with an axial stiffness in the
setting of a penalty method. Instead, a constraint on the velocity in the joints between
the segments is proposed. However, no discussion is given on how the resulting constraint
force is computed or how it enters the equation of motion.

The equations in the models proposed by Crisfield et al. [5], Ibrahimbegović and
Mikdad [17], Nour-Omid and Rankin [25] and Simo and Vu-Quoc [29] are solved with
Newton’s method. Therefore second order convergence of the iterations is obtained with
these models, so that an accurate solution is obtained after just a few iterations. Further-
more, Newton’s method is very robust, so that these models will converge even in cases
where strong nonlinearities occur. It is unclear if Lindström and Uesaka [19] use Newton’s
method.

A beam model suitable for simulation of paper fibers must allow finite rotations. The
classical theories described in [12] do not fulfill this criterion without modification. It is
desirable to use a fiber model based on a beam theory. Therefore, three possible choices
remain: the finite strain Reissner beam model proposed by Ibrahimbegović and Mikdad
[17], the finite strain beam model proposed by Simo and Vu-Quoc [29] and the finite rota-
tion co-rotational formulation proposed by Nour-Omid and Rankin [25] with inertia terms
computed according to Crisfield et al. [5]. Paper fibers falling down onto a forming fabric
will be subjected to large rotations, but the strain will be small or moderate. Therefore,
the extra complexity in [17] and [29] needed to allow finite strains is not necessary for the
purpose of the present work.

The models in [17], [25] and [29] are all physically sound models that would be suitable
for simulations of paper forming. The co-rotational approach described by Nour-Omid and
Rankin [25] with inertia accounted for as described by Crisfield et al. [5] is the simplest
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model that fulfills the requirements for simulation of paper fibers. Therefore, this model
is chosen for the implementation in the present work.

1.5 Review of contact models

The contact models described in the literature can roughly be divided into three classes of
algorithms [13]: penalty methods, methods based on Lagrangian multipliers and impulse-
based methods. All three classes of contact models suffer from different kinds of numerical
problems. There is no perfect contact model that works well for all types of problems,
the choice of contact model will depend on the properties of the problem studied and the
desired level of detail of the simulation. This section gives a short overview of the different
types of contact models available.

In the following, the overlap is characterized by the gap function g, which measures the
penetration in the normal direction of the contacting surfaces.

1.5.1 Penalty methods

Penalty methods allow the elements to overlap and add a repulsive force which increases
with increasing overlap. Explicitly adding a contact force which depends on the magnitude
of the overlap is the fundamental idea of this algorithm and this idea is used in all different
formulations of penalty methods. The difference between different penalty methods is
how this repulsive force is computed. Wriggers [32] added a quadratic term to the energy
potential, resulting in a penalty force that varies linearly with the overlap. This approach
is energy conserving, all collisions are considered to be elastic. Crowe, Sommerfeld and
Tsuji [6] use a penalty force based on Hertzian contact theory for spheres of equal size,
where the normal force is given by:

fn = −f0 (−g (x))1.5 − ηvrel · n (1.1)

Here, f0 is the normal stiffness and the Hertzian theory is extended with dissipation char-
acterized by a damping coefficent η. This approach allows modeling of collisions that are
not completely elastic, but the relation between η and the coefficient of restitution ecor is
not trivial. A relation between η and ecor for a sphere is given in [6]. However, it that
relation η depends on the mass of the sphere as well as the overlap. Since η depends on
the configuration of the system, it can no longer be interpreted as a constant material
parameter.

Harmon [13] proposed several extensions to penalty methods in his PhD thesis. One
such modification is the introduction of penalty layers. The gap function g is usually
defined in such a way that g = 0 when the distance between the impacting elements is
zero and g < 0 when the elements are overlapping. It is possible to shift the gap function
so that g = 0 when the distance between the elements is small but not zero. The gap
function then becomes negative when the distance is exactly zero. The idea of a shifted
gap function is visualized in figure (1.1). In this way, a penalty force can be applied when
the elements are close rather than actually overlapping. Harmon [13] suggests using this
approach for cases where the geometrical effects of overlap are difficult to repair. Such a
case occurs when the geometry of the problem is complicated. In this case, it is fairly easy
to determine the distance from a point to a surface, but it could be difficult to determine if
the point is outside the geometry or if it is inside the geometry so that overlap has occured.
If this is a problem, a penalty layer can be applied to ensure that overlap never occurs in
the simulation.

4 , FCC, Master’s Thesis 2011:05
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Figure 1.1: Introduction of penalty layer. If no penalty layer is used, the gap function is zero
when the elements are separated and it becomes negative when the elements overlap. The gap
function can be shifted by introducing a penalty layer. The gap function then becomes negative
already when the elements are close, but have not yet started to overlap.

Harmon [13] also proposed that inelastic collisions could be accounted for by introducing
the coefficient of restitution ecor directly in the energy potential:

V (g) =
1

2
c (vn) · f0 · [g (x)]2

c (vn) =
{

1 if vn≤0
ecor otherwise (1.2)

Here vn is the relative velocity in the direction of the contact normal, g is the gap function
and x is the vector of variables in the configuration space. Equation (1.2) states that
an inelastic or partly inelastic collision can be modeled by applying a lower force during
decompression than during compression: the force is reduced by a factor ecor during the
decompression phase compared to the compression phase. Therefore, the equation gives a
direct correlation between the coefficient of restitution and the repulsive force. A possible
drawback of this approach is that the force will be discontinuous in time at the turning
point where vn changes sign.

Many different formulas for the penalty force have been proposed in the literature. A
linear force and a force based on Hertzian contact theory have already been mentioned.
de la Fuente and Felippa [7] used a bell shaped penalty function while several authors
use a penalty function that increases exponentially with the overlap. Regardless of which
penalty function is chosen, the contact stiffness f0 will always have to be chosen and this
is associated with two fundamental problems which are characteristic for penalty methods
[13]:

• Choosing f0 too high will make the resulting system of equations stiff and require
very small timesteps.

• Choosing f0 too low will allow the elements to pass through each other without
stopping the collision.

Many applications of practical interest involve friction. Coulomb friction is often assumed
and the main problem is then to separate the cases of sliding and sticking. A possibility
to avoid treating the cases of sliding and sticking separately is to use a regularization of
Coulomb’s law as discussed by Wriggers [32]. According to Coulombs law, the friction
force is a discontinuous function of the relative velocity. To use a discontinuous function is
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impractical in the setting of penalty methods. Therefore, the aim of the regularization is to
approximate the discontinuous Coulomb law with a differentiable function that is as similar
to the Coulomb law as possible. This is achieved by constructing a function that depends
on a parameter ε in such a way that ε→ 0 reduces to Coulomb’s law exactly while a finite
but small ε gives a smooth approximation to Coulomb’s law. This idea is illustrated in
figure (1.2). The regularization can be constructed in different ways. Wriggers [32] suggests
formulations based on a square root function, a function including the hyperbolic tangent
or a piecewise polynomial function.
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Figure 1.2: Square root regularization of Coulomb friction. A small value of ε gives higher
accuracy but may require shorter time steps.

1.5.2 Lagrange multipliers

A contact problem can be considered as a set of constraints that have to be satisfied. There
are two types of constraints [13]:

• Bilateral (two-sided) constraints: a function is constrained to have an exact value

• Unilateral (one-sided) constraints: a function can take values in an allowed configu-
ration space, but motion out of this space is prohibited

An example of a bilateral constraint is that the length of an inextensible bar is constant.
A ball bouncing on the floor is an example of a unilateral constraint: the ball may move
up from the floor, but it may not move downwards and penetrate into the floor. Contact
constraints, which are unilateral constraints, can be resolved with the method of Lagrange
multipliers.

A contact constraint can be imposed on the configuration by adding a term to the
potential energy [32]:

V LM
c =

∫
Γc

(λngn + λt · gt) dA (1.3)

Here λn and gn are the Lagrange multiplier and gap function corresponding to the normal
direction. λt and gt are the Lagrange multiplier and gap function corresponding to the
tangential direction. λn corresponds to the contact pressure in the normal direction. If no
adhesion occurs between the contacting surfaces, the contact pressure pn must be negative
or zero. If the contacting surfaces are not allowed to penetrate into each other, the gap
function gn must not be negative. Furthermore, if the gap function is postivite, then the
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contact pressure must be zero and if the contact pressure is not zero, then the gap function
must be zero. Therefore, the contact pressure and normal gap function are subjected to
the Kuhn-Tucker-Karush conditions [32]:

gn ≥ 0 pn ≤ 0 gnpn = 0 on Γc (1.4)

In the equation above, Γc is the part of the boundary subjected to contact.
Coulomb’s law can be used in the tangential direction and slip-stick behavior can be

enforced exactly without regularization. In order to do this, the cases of slip and stick
must be treated separately.

Many variants of the Lagrange multiplier method exist. The constraint equations can
be discretized either implicitly, enforcing the constraints at the end of the time step, or
explicitly, enforcing the constraints at the start of the time step [13]. Furthermore, per-
turbed Lagrange formulations exist, where a Lagrange multiplier method is mixed with a
penalty method [32].

The Lagrange multiplier method can be used for dynamic problems with perfectly
elastic collisions [3]. For such cases, the constraint equations can be formulated by requiring
that the overlap is zero at the end of the time step.

In order to model inelastic collisions with Lagrange multipliers, it would not suffice to
add a constraint on the displacement. In principle, a constraint could instead be added on
the velocity to ensure that the pre- and postcollisional velocities are related by the coeffi-
cient of restitution. However, if a constraint on the velocity is imposed, the impenetrability
constraint on the displacement would have to be sacrificed.

1.5.3 Impulse based methods

A collision between two solid objects results in a high contact force during a short time
interval. Instead of resolving the high force and the short time interval, the contact forces
can be treated as instantaneous forces, i.e. impulses [13]. Impulse based methods use this
approach to predict a change in momentum due to the collision instead of predicting a
change in acceleration.

One example is the Hard sphere model discussed in [6]. In that model, instantaneous
contact between two spheres is considered. Elastic and inelastic collisions are accounted
for with the coefficient of restitution ecor.
There are two possible choices for the time stepping strategy in impulse based methods:

• Simulate until a collision occurs, resolve the collision and then simulate until the next
collision occurs. An advantage of this approach is that geometry overlap will never
occur, because the simulation is halted just before impact and the collision is resolved
before proceeding. A disadvantage is that there are cases when this algorithm will
not be able to reach the end time of the simulation tend in a finite number of time
steps because an infinite number of collisions occur before reaching that time [2].
An example of this phenomenon is a ball with 0 < ecor < 1 bouncing on the floor.
At each bounce, a fraction of the kinetic energy in the ball will be restituted and
the time to the next impact will be smaller than the time between the previous two
impacts. As a result, the ball will hit the floor an infinite number of times before
coming to rest. Chatterjee and Ruina [2] suggest that this problem could be handled
with extrapolation or truncation of the motion.

• Predictor-corrector steps: first take a time step with a predefined time step size,
then resolve all the collisions that have occured during that time step. When all
collisions have been resolved, a new time step can be taken. If this approach is
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chosen, some overlap must be allowed and this overlap must be handled in a robust
way. The main advantage of this approach is that a fixed time step can be used and
therefore the number of time steps needed to simulate a given physical time interval
will be known a-priori. An example of this approach is the Decomposition Contact
Response (DCR) algorithm proposed by Cirak and West [4]. This algorithm relies on
a decomposition of the momentum p = M ·v into a normal and a tangential part. The
normal direction is defined as the gradient of the constraint function: n = ∇g. The
impulse in the normal direction is found by projecting p onto n = ∇g and from this
the tangential impulse can be computed. When the impulse has been decomposed
into its normal and tangential parts, the coefficient of restitution ecor can be used to
update the normal impulse and Coulomb’s law can be used to update the tangential
impulse. This algorithm can handle the different cases of sliding and sticking without
difficulty.

2 Theory

2.1 Fluid model

The motion of an incompressible viscous fluid is governed by the Navier-Stokes equations:

∂uj
∂xj

= 0 (2.1)

ρf
∂

∂t
(ui) + ρfuj

∂ui
∂xj

= − ∂p

∂xi
+

∂

∂xj

(
µ
∂ui
∂xj

)
+ ρggi (2.2)

In the equation above, ρf is the fluid density, ui is the velocity in coordinate direction
i, p is the pressure, µ is the fluid viscosity and gi is the gravity. (2.1) is the continuity
equation and (2.2) gives the momentum equations in the three coordinate direction. The
four equations in (2.1) and (2.2) can be used to solve for the four unknowns: the three
components of the velocity and the pressure. The Navier-Stokes equations are nonlinear
and coupled, note that each velocity component is present in all four equations. Therefore,
the equations in (2.1) and (2.2) can not be used one by one to solve for one variable at
a time. The equations can be solved simultaneously, or they can be rewritten to enable
solution of one equation at a time. The nonlinearity in the equations could be handled
by solving them with e.g. Newton’s method or fix-point iterations. The widely used CFD
codes use fix-point iterations and solve the equations in a segregated way, thus solving
for one variable at a time. Two problems must be handled to solve the equations in a
segregated way. First, the coupling of the equations must be handled sufficiently well, so
that the iterative solution converges. The second problem is that the momentum equations
(2.2) offer equations for the velocity components, but the continuity equation (2.1) can not
be used to solve for the pressure without modification. A popular way to solve (2.1) and
(2.2) in a segregated way is to use the SIMPLE method and rewrite the continuity equation
as an equation for pressure correction. The SIMPLE method can be summarized as follows
[21]:

1. Solve the momentum equations (2.2) with a guessed pressure.

2. Solve the pressure correction equation.

3. Update the pressure with the computed pressure correction. Correct the velocity so
that continuity holds.
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Figure 2.1: Domain discretized with the finite volume method.

Figure 2.2: A fiber immersed in a fluid: the forces from the fluid cause the fiber to deflect and
the presence of the fiber disturbs the fluid. The streamlines are colored by the fluid velocity.

4. Use the new pressure as initial guess for the new iteration and return to 1.

5. Terminate when converged.

The Finite Volume method guarantees global as well as local conservation. It is there-
fore often used to discretize the Navier-Stokes equations. The discretization is carried out
by dividing the domain into small control volumes. The discrete equations for each control
volume are then established by integrating the Navier-Stokes equations over the control
volume and using the Divergence theorem to rewrite volume integrals of divergence as
surface integrals. As a result, the discrete equations describe a balance of fluxes over the
faces of the control volume. The discretization is illustrated in figure (2.1), which shows
a domain divided into small cells. Two options are available for storage of the unknown
variables: staggered and co-located grid arrangement. A staggered grid means that veloc-
ities are stored at the cell faces and the pressure is stored at the cell centers. A co-located
arrangement implies that all variables are stored at the cell centers. A co-located grid is
easier to construct, but it has the drawback that pressure oscillations may occur. The
pressure oscillations can be suppressed with Rhie-Chow interpolation.

Immersed objects, such as e.g. fibers, may be present in the flow. The fluid will exert a
force on the immersed objects and the immersed objects will disturb the fluid. The result
is a mutual coupling between immersed objects and fluid as shown in figure (2.2). The
coupling between immersed objects and fluid requires special attention. In the present
work, the coupling is resolved with the Immersed Boundary Method, as described below.

2.1.1 Fluid-structure coupling

The Immersed Boundary Method [21, 22] constrains the fluid velocity to follow the surface
velocity of the immersed object. This constraint is enforced without the need of a body
fitted mesh as shown in figure (2.3), which enables fast and efficient mesh generation.
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Figure 2.3: Flow field close to an Immersed Boundary (black line). The flow field (white lines)
follows the surface of the immersed object without need of a body fitted mesh. The cells are colored
by the fluid velocity: blue denotes low velocity and red denotes high velocity.

Application of an Immersed Boundary method requires classification of the cells in the
grid. The cells are divided into the following groups [22]:

• Fluid cells : Cells located outside the immersed object, far away from the object.

• Internal cells : Cells located inside the immersed object, sufficiently far from the
surface of the object.

• Mirroring cells : Cells located inside the immersed object, close to the surface of the
object.

• Extrapolation cells : Cells located outside the immersed object, close to the surface
of the object.

The velocity in the internal cells is set to match the velocity of the immersed object in that
point. A Dirichlet boundary condition is used to enforce this constraint. For mirroring
cells, an exterior normal point pe is defined as [22]:

pe = pmi + 2.0 (pib − pmi) (2.3)

In the equation above, pmi is the center of the mirroring cell and pib is the closest point
on the IB. For extrapolation cells, an exterior point is defined as:

pe = pib + 2.0 (pex − pib) (2.4)

In the equation above, pex is the cell center of the extrapolation cell. The boundary
condition for a mirroring cell is:

umi + ue
2

= uib (2.5)

The boundary condition for an extrapolation cell takes the following form:

uib + ue
2

= uex (2.6)

The velocity in the point pe is interpolated and inserted into the Immersed Boundary
condition. As a result, (2.5) and (2.6) become implicit boundary conditions which can be
added to the matrix in the discretized equations. This results in a fictitious fluid velocity
field inside the immersed object. Mass conservation is ensured by excluding the fictitious
velocity field in the discretized equations. The result is a robust method that is second
order accurate in space.
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Figure 2.4: Geometry of a forming fabric.

2.1.2 Simplified alternative for fluid-structure coupling

Sometimes it is desirable to get approximate results fast. To offer this possibility, a sim-
plified one-way coupling using a drag correlation was implemented. This was done by first
simulating a steady-state solution of the fluid and then tracking the fibers using the drag
correlation for long cylinders given in [23]. It is emphasized that this is an additional
feature for rough estimates, the obtained results should be interpreted carefully.

2.1.3 Treatment of complex boundaries

Forming fabrics with complex geometries are studied in the present work, one of the forming
fabrics is shown in figure (2.4). The forming fabric shown in figure (2.4) would be difficult
to describe analytically due to its complexity, so a numerical description of the geometry is
needed. In the present study, a voxelization has been used to describe the forming fabrics.
With this method, the forming fabric is defined by a cloud of points that lie on the surface
of the forming fabric. Each point, or voxel, has a radius so that the cloud of points and
their radii cover the surface of the forming fabric. This is illustrated in figure (2.5). The
voxelizations were generated from CAD data with GeoDict [10].

Figure 2.5: Numerical treatment of complex forming fabrics: CAD geometry (left) and the
corresponding voxelization (right). Forming fabric geometry courtesy of Albany International.

2.1.4 CFD solver used in the present work

FCC’s in-house CFD solver IBOFlow [16] is used to predict the behavior of the water
surrounding the paper fibers. IBOFlow is a highly efficient code capable of performing
transient DNS simulations with complex and moving boundaries. It relies on a finite volume
discretization of the incompressible Navier-Stokes equations and the SIMPLEC method
is used to handle the pressure-velocity coupling. All variables are stored in a co-located
arrangement and Rhie-Chow interpolation is employed to prevent pressure oscillations. The
solver uses a Cartesian octree grid to efficiently handle moving boundaries and automatic
moving refinements. IBOFlow offers two possibilities to account for the presence of fibers
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in the flow: the Mirroring Immersed Boundary method [21] and the Hybrid Immersed
Boundary method [22]. These methods are capable of fully resolving the flow around each
individual fiber and constraining the fluid velocity to follow the fiber velocity with second
order accuracy. The resolved velocity field allows computation of the fluid force acting on
a fiber segment by integrating the traction vector over the surface of the fiber segment.

2.2 Fiber model

The Finite Element (FE) model of a fiber is built up in several steps. First, the geometry of
a fiber is described and definitions are introduced. Then the static FE model of a segment
which is only subjected to small rotations is formulated. This is a classical problem which
can be found in many standard books on Finite Elements, see e.g. [15, 26]. However, here
we have the additional complication of a varying cross section. When the linear FE model
is established, the extensions necessary for finite rotations are described. This is achieved
by using the method of co-rotational frames. Finally, inertia terms are added to the static
model so that transient simulations can be performed. Newmark’s interpolation is used to
interpolate velocities and accelerations in time. Hilber’s α-method [14] is used to introduce
numerical dissipation without sacrificing the second order accuracy.

The ultimate goal of the discussion in this section is to obtain a tangent stiffness matrix
and a residual force vector that can be used to perform a transient simulation with Newton’s
method. The internal force vector f

int
and the inertia force vector f

m
can be computed as

described below. Fluid forces, contact forces and possibly gravity are added to the external
force vector f

ext
. When the solution has been found, the inertia force and internal force

should be balanced by the external force. Therefore, the residual is computed according
to:

res = f
ext
− f

int
− f

m
(2.7)

In the same way, the tangent stiffness matrix is composed of the Jacobian of the internal
force, the Jacobian of the inertia force and the Jacobian of the external forces:

K = K
int

+K
m

+K
ext

(2.8)

When the tangent stiffness matrix and the residual have been computed, these can be used
to take an iteration and find the increment ∆x:

∆x = −K−1 · res (2.9)

The increment vector ∆x contains the displacement increments ∆u and the rotation (spin)
increments ∆ω. The nodal coordinates are updated with the displacement increments
according to:

uk+1 = uk + ∆u (2.10)

The spin increment ∆ω is used to update the rotation matrix of the node as described later.
When the displacements and rotations have been updated, the velocities and accelerations
are updated with Newmark’s method as described in [5].

2.2.1 Geometry of a fiber

A fiber is discretized by dividing it into several elements. Each element is associated with
two nodes, a node at the start point and a node at the end point. Figure (2.6) shows the
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centerline of a fiber with nodes and elements highlighted. The fiber is assumed to have an
elliptical cross section with major radius Ra and minor radius Rb. The cross section may
be hollow with interior major radius Ra,int and interior minor radius Rb,int. The major
axis of the ellipse does not have to be aligned with the local ey-axis. The angle between
the major axis and the local ey-axis in the undeformed configuration is ϕ. A typical fiber
cross section with Ra, Rb and ϕ highlighted is shown in figure (2.7). The major radius Ra,
the minor radius Rb and the angle ϕ are not constant, they may vary linearly along the
axis of the element.

Geometric nonlinearities will be accounted for in the present work and therefore a local
coordinate system is associated with every element. The base vectors of this local frame
are defined as follows: The local ex vector lies along the line joining the start point and the
end point of the element. If the start point is denoted by ps and the end point is denoted
by pe, then ex is computed as:

ex =
pe − ps
|pe − ps|

(2.11)

The local ey-axis is aligned with the major axis in the start point when the element is
undeformed. When the element is deformed, ey and ez are defined as proposed by Nour-
Omid and Rankin [25]: Let q be a vector in the direction of the major axis in the start
point. q is rigidly attached to the start point and rotates with the start point. ey and ez
are computed from ex and q:

ez =
ex × q
|ex × q|

(2.12)

ey = ez × ex (2.13)

In this way, an orthogonal frame is constructed from the location of the nodes and the
direction of the major axis of the cross section.

Every node has 6 degrees of freedom: translation in 3 directions and rotation about 3
axes. Hence a beam element has 12 degrees of freedom (dofs):

• 3 coordinates describing the location of the start point

• 3 angles describing rotation about the coordinate axes in the start point

• 3 coordinates describing the location of the end point

• 3 angles describing rotation about the coordinate axes in the end point

Figure (2.8) shows a typical fiber consisting of several elements.
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Figure 2.6: Centerline of a discretized fiber. The blue lines are the elements and the blue
numbers above the centerline show the element numbers. The red circles show the nodes and the
red numbers below the centerline show the node numbers.
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Figure 2.7: Cross section of a fiber. The major radius Ra and the minor radius Rb are shown
with red color. The local base vectors ey and ez are shown with blue color. The major axis of the
ellipse is not aligned with the local ey-axis, the angle between them is ϕ.

Figure 2.8: A typical fiber divided into several elements.
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2.2.2 Small rotation FE formulation

A deformable fiber segment can be subjected to stretching, twisting and bending. The
bending can occur in the local ey direction as well as in the local ez direction. If the
cross section of the segment is symmetric about the ey-axis and the ez-axis, only plane
bending will occur. This means that a force in the ey direction gives rise to a deflection in
the ey direction, but no deflection occurs in the ez direction. (The same holds for the ez
direction.) In the problem studied in this thesis, the cross section of the segment will not
necessarily be symmetric about the ey-axis and the ez-axis. Therefore, skew bending may
occur. This means that a force in the ey direction may give rise to a deflection in the ez
direction. In summary, the deformation of a fiber segment is composed of:

• Bending of an Euler-Bernoulli beam in two dimensions (the local ey and ez directions)

• Twisting of the segment around its own axis

• Stretching of the segment in the axial direction

For a detailed discussion on beam theory in the context of small deformation elasticity
and Finite Elements, see a good standard text book on Finite Elements, e.g. [15, 26]. The
discrete Finite Element equations of a linear elastic, static beam element are outlined in
the following.

The Euler-Bernoulli beam equation for the case of static bending can be written as:

∂2

∂x2
(Mα) = qα, α = y, z (2.14)

Twisted cross sections are considered and therefore skew bending must be included. There-
fore, the bending moment Mα will consist of two parts: plane bending and skew bending.
Multiplying (2.14) by a test function, using Galerkin’s method and integrating by parts
over the length of the element gives the bending terms of the stiffness matrix:

KBend

α
· u =

∫ L

0

BT
(
Mplane

α +M skew
α

)
dx (2.15)

Here, the matrix B contains the second derivatives of the test functions and the partial
integration was used to move two derivatives from the bending moment to the test function.
For a linear elastic material, the bending moment around the axis α can be computed as:

Mαα = EIα
∂2wα
∂x2

, Mαβ = EDαβ
∂2wβ
∂x2

, α = y, z, β = y, z (2.16)

By introducing base functions for the deflection, the different components of the stiffness
matrix can be identified. Bending can occur in y- and z-direction. Plane bending and skew
bending in both directions must be considered. Therefore, the bending stiffness terms can
be divided into:

• Deflection in y-direction as a result of force in the y-direction (plane bending):

Kyy
el,beam =

∫ L
0

(
N
′′

y,beam

)T
EIz (x)N

′′

y,beamdx

• Deflection in y-direction as a result of force in the z-direction (skew bending):

Kyz
el,beam =

∫ L
0

(
N
′′

y,beam

)T
EDyz (x)N

′′

z,beamdx
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• Deflection in z-direction as a result of force in the y-direction (skew bending):

Kzy
el,beam =

∫ L
0

(
N
′′

z,beam

)T
EDzy (x)N

′′

y,beamdx

• Deflection in z-direction as a result of force in the z-direction (plane bending):

Kzz
el,beam =

∫ L
0

(
N
′′

z,beam

)T
EIy (x)N

′′

z,beamdx

Here N
′′

denotes the second derivative of the base function N with respect to x.
The stiffness terms corresponding to twisting of the element around the x-axis can be

computed with the same approach:

Ktwist
el =

∫ L

0

(
N
′

twist

)T
KG (x)N

′

twistdx (2.17)

The stiffness terms corresponding to stretching in the axial direction become:

Kaxial
el =

∫ L

0

(
N
′

axial

)T
EA (x)N

′

axialdx (2.18)

As mentioned previously, each node has 6 degrees of freedom: 3 deflections ux, uy, uz and
3 rotations θx, θy, θz. Thus, a fiber segment has 12 degrees of freedom. We would like to
write the force equilibrium as:

f
el

=



Relsx
Relsy
Relsz
Mel
sx

Mel
sy

Mel
sz

Relex
Reley
Relez
Mel
ex

Mel
ey

Mel
ez


= K

el
·



uelsx
uelsy
uelsz
θelsx
θelsy
θelsz
uelex
ueley
uelez
θelex
θeley
θelez


= K

el
· uel (2.19)

To achieve this, the elements of the stiffness matrices from bending, twisting and elongation
are gathered in the following way:

K
el

=



Ka
el11 0 0 0 0 0 Ka

el12 0 0 0 0 0

0 Kyy,b
el11 Kyz,b

el11 0 Kyz,b
el12 Kyy,b

el12 0 Kyy,b
el13 Kyz,b

el13 0 Kyz,b
el14 Kyy,b

el14

0 Kzy,b
el11 Kzz,b

el11 0 Kzz,b
el12 Kzy,b

el12 0 Kzy,b
el13 Kzz,b

el13 0 Kzz,b
el14 Kzy,b

el14

0 0 0 Kt
el11 0 0 0 0 0 Kt

el12 0 0

0 Kzy,b
el21 Kzz,b

el21 0 Kzz,b
el22 Kzy,b

el22 0 Kzy,b
el23 Kzz,b

el23 0 Kzz,b
el24 Kzy,b

el24

0 Kyy,b
el21 Kyz,b

el21 0 Kyz,b
el22 Kyy,b

el22 0 Kyy,b
el23 Kyz,b

el23 0 Kyz,b
el24 Kyy,b

el24
Ka
el21 0 0 0 0 0 Ka

el22 0 0 0 0 0

0 Kyy,b
el31 Kyz,b

el31 0 Kyz,b
el32 Kyy,b

el32 0 Kyy,b
el33 Kyz,b

el33 0 Kyz,b
el34 Kyy,b

el34

0 Kzy,b
el31 Kzz,b

el31 0 Kzz,b
el32 Kzy,b

el32 0 Kzy,b
el33 Kzz,b

el33 0 Kzz,b
el34 Kzy,b

el34

0 0 0 Kt
el21 0 0 0 0 0 Kt

el22 0 0

0 Kzy,b
el41 Kzz,b

el41 0 Kzz,b
el42 Kzy,b

el42 0 Kzy,b
el43 Kzz,b

el43 0 Kzz,b
el44 Kzy,b

el44

0 Kyy,b
el41 Kyz,b

el41 0 Kyz,b
el42 Kyy,b

el42 0 Kyy,b
el43 Kyz,b

el43 0 Kyz,b
el44 Kyy,b

el44


(2.20)

Third order Hermite polynomials are used for the discretization of the bending terms
while linear base functions are used for the twisting and the elongation. The integrals are
evaluated with Gaussian quadrature.

With (2.19) and (2.20) we have a linear element stiffness matrix and corresponding
force vector. These can be computed for all elements and assembled to a large and sparse
linear system of equations of the form:

K · u = f (2.21)
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This equation can be solved for u. For a discussion on the topic of assembling the element
matrices to a global matrix, see e.g. [15].

2.2.3 Mathematics of finite rotations

In linear theory, angles are assumed to be small so that the local coordinate system of
each element is constant. In the present work, angles can not be assumed to be small and
therefore the local element frame will not be constant. This fact necessitates the treatment
of rotating coordinate systems. Therefore, the elementary mathematics of finite rotations
is reviewed before proceeding with the formulation of nonlinear beam elements.

A coordinates system in space can be described with 3 base vectors: ex, ey and ez.
These are the base vectors of the local frame, expressed in the global coordinate system.
With these base vectors, a second order tensor E that transforms a vector from the local
coordinate system to the global coordinate system can be formed. This tensor has the
local base vectors expressed in the global frame as columns:

E =
[
ex ey ez

]
(2.22)

A first order tensor v is transformed from local to global coordinates according to:

vglob = E · vloc (2.23)

A second order tensor A is transformed from local to global coordinates according to:

Aglob = E ·Aloc · ET (2.24)

As noted in [5], E is an orthogonal tensor and therefore has the following properties:

E−1 = ET ; det (E) = 1 (2.25)

An orthogonal second order tensor T can also represent a rotation. In such a case,
there is a relation between the spin axis ω (a vector), the spin tensor Ω (a skew symmetric
tensor) and the rotation tensor T (an orthogonal tensor). The relation between ω and Ω
is defined by the spin operation S() [25]:

Ω = S (ω) = ω× =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (2.26)

As noted in [25], S() is related to the cross product through (ω and r are vectors):

S (ω) · r = ω × r = −r × ω = −S (r) · ω (2.27)

The function axial() reverses the effect of spin:

axial (Ω) = axial

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 =

ω1

ω2

ω3

 = ω (2.28)

The relation between the spin tensor Ω and the corresponding rotation tensor T is
given by the matrix exponent:

T = exp (Ω) (2.29)
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The matrix logarithm reverses the effect of the matrix exponent:

Ω = log (T) (2.30)

Explicit expressions for the matrix exponential and the matrix logarithm are given in
appendix A.

The above formulas can be used to update the rotations in the nodes. If a spin increment
∆ω has been computed, the rotation matrix T can be updated according to [25]:

Tn+1 = exp (S (∆ω)) ·Tn (2.31)

Here n+1 denotes the new iteration step and n denotes the old iteration step. In equation
(2.31), the rotation tensor is updated with a spin increment ∆ω. The linear FE formulation
presented in the previous section has the rotation angles as unknows. Therefore, it is
necessary to perform a change of variables from angles to spin variables. This can be done
by studying the variation of the angles at a node:

δθ =
∂θ

∂ω
· δω = Λ · δω (2.32)

The tensor Λ in the equation above was derived in [25]. An expression for Λ is given in
appendix A.

2.2.4 Computation of element deformations

Measures of the deformation of an element are necessary to evaluate the internal force
vector. To identify the deformation of an element, consider a fiber segment subjected to
an arbitrary motion expressed in the local coordinate system. The segment has 12 dofs
with corresponding displacements and rotations:

uel = [ uels,x uels,y uels,z θels,x θels,y θels,zuele,x uele,y uele,z θele,x θele,y θele,z ] (2.33)

The local coordinate system is rigidly attached to the first node of the segment, so the
deformational displaclements in the first node are identically zero:

uels,x = uels,y = uels,z = 0 (2.34)

The ex-axis of the local coordinate system is always aligned with the centerline of the
segment. Therefore, the deformational displacement in the second node can be expressed
as:

uele,x = l − L (2.35)

uele,y = uele,z = 0 (2.36)

Here, l is the length of the deformed segment and L is the initial length of the segment.
In summary, the deformation of an element (with rigid body motion filtered out) in local
coordinates can be expressed as:

uel = [ 0 0 0 θels,x θ
el
s,y θ

el
s,z(l−L) 0 0 θele,x θ

el
e,y θ

el
e,z ] (2.37)

To calculate the length of a segment is trivial, but calculation of the deformational rotations
in (2.37) requires further attention. Let E denote the transformation matrix from the local
frame to the global frame in the current configuration, as described in the previous section.
Furthermore, let E0 denote the change of variables from the local frame to the global frame
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in the initial configuration. Also, let T be a rotation matrix associated with each node
describing how a vector attached to that node has rotated. Then, the rotation matrix
corresponding to the rotational deformation can be computed according to equation (14)
in [25]:

Te = ET ·Tg · E0 (2.38)

In equation (2.38), the notation used in [25] has been adopted, so that a superposed bar
denotes the deformational part of a quatitiy. The superscript g denotes quantities expressed
in global coordinates. It should be noted that the expression in (2.38) is not the only way
to compute the rotational deformation. See for example eqn (22) in [5] for an alternative
expression. Eqn (2.38) gives a rotation matrix describing the rotational deformation. The
small deformation formulation requires the deformational rotation angles. Therefore, these
angles must be extracted from Te. This is done by using the matrix logarithm described
in the previous section:

θe = axial(log(Te)) (2.39)

2.2.5 Large rotation Finite Element formulation

This section presents the static terms in the nonlinear FE formulation used in the present
thesis. The co-rotational (CR) formulation proposed by Nour-Omid and Rankin [24],[25]
is used. The essence of the co-rotational technique is that small strains are assumed,
but the small strain finite element formulation is expressed in a coordinate system which
is attached to each element and moves with the element. In this way, the small strain
formulation developed previously can be extended to include large rotation effects.

The linear formulation developed in the previous section is expressed with angles as
rotational parameters. As noted previously, it is convenient to use spin variables to update
the rotation tensors and therefore a change of variables must be performed. Following the
work in [25], this change of variables transforms the small rotation internal force vector
according to:

f
el

a

(
uel,ωel

)
= H

(
θ
el

a

)
· f̃

el

a

(
uel,θ

el
)
, a = s, e (2.40)

Here, H is given by:

H
(
θ
el

a

)
=

I 0

0 Λ
(
θ
el

a

)
 =

I 0

0 ∂θ
el
a

∂ωela

 , a = s, e (2.41)

Λ in equation (2.41) is given in appendix A. Now consider the internal force vector f ,

which in contrast to f and f̃ properly accounts for finite rotations. f is the derivative of
the strain energy Φ with respect to the nodal coordinates and rotations. Therefore, f can
be expressed as:

fi =
∂φ

∂dj
= {Chain rule} =

∂dj
∂di

∂φ

∂dj
= P T

ij f j (2.42)

Here di is a total displacement or a rotation in the node and di is the corresponding
deformational part of the displacement or rotation. The employment of the chain rule in
eqn (2.42) reveals that the internal force vector can be written as a contraction of a matrix
P and the linear, small deformation force vector f .

With the definition above, the matrix P is computed as:

Pij =
∂di
∂dj

(2.43)
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Therefore, a 6 · 6 block of the matrix P , associated with nodes a and b is computed as:

P
ab

=


∂uela
∂uelb

∂uela
∂ωelb

∂ωela
∂uelb

∂ωela
∂ωelb

 ; a = s, e; b = s, e (2.44)

In (2.44), ωela is the spin variable associated with node a, expressed in local coordinates.
Transforming (2.42) to global coordinates gives the following expression for the internal
force vector:

f g = G · P T · f e (2.45)

Here G is the matrix that transforms a 12 · 1 vector from local to global coordinates:

G =


E 0 0 0
0 E 0 0
0 0 E 0
0 0 0 E

 (2.46)

When the global equations of motion are solved, (2.45) enters the residual. To solve
the resulting system of equations with Newton’s method, the variation of (2.45) must be
computed. Following the work in [25], this is computed as:

δf g = G · P T · δf el +G · δP T · f el + δG · P T · f el (2.47)

The three terms in (2.47) are derived in [25]. Somewhat lengthy calculations give the
following expressions:

G · P T · δf el = G · P T ·Kel
(
uel,ωel

)
· P ·GT · δdg

G · δP T · f el = (...) = −G · Γ · F̃
T
· P ·GT · δdg, F̃ =

[
S(felint,a)

0

]
δG · P T · f el = (...) = −G · F · ΓT ·GT · δdg, F =

[
S(felint,a)
S(mel

int,a)

]
(2.48)

In (2.48), Γ is the derivative of the spin of the local element frame with respect to the
nodal degrees of freedom. For a beam element with two nodes it is given by:

ΓT = [ ∂ωE∂us

∂ωE
∂ωs

∂ωE
∂ue

∂ωE
∂ωe

] (2.49)

F and F̃ in (2.48) are matrices which depend on the internal force vector, which has here
been partitioned as:

f el
a

=
[
felint,a
mel
int,a

]
(2.50)

In the equation above, f elint,a is the internal element force associated with node a and mel
int,a

is the internal element moment associated with node a.
An explicit epression for F is given in appendix B. Γ depends on the definition of

the local frame. An expression for Γ with the choice of coordinate system used in the
present work is given in appendix B. Inserting the expressions in (2.48) into (2.47) gives
the following expression for the tangent stiffness matrix in local coordinates:

Kel = P T ·Kel · P − Γ · F̃
T
· P − F · ΓT (2.51)

It should be noted that the second and third terms in (2.51) are unsymmetric. For reasons
of computational efficiency, it is desirable to have a symmetric tangent stiffness matrix.
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In [25] it is proven that the tangent stiffness in (2.51) can be symmetrized in such a way
that second order convergence of the Newton iterations is preserved. This symmetrization
takes the following form:

Kel

symm
= P T ·Kel · P − Γ · F T − P T · F · ΓT , F =


S(felint,s)
S( 1

2
mel
int,s)

S(felint,e)
S( 1

2
mel
int,e)

 (2.52)

The matrix K
el

in (2.52) is the small deformation tangent stiffness expressed in spin vari-
ables. Its 6 · 6 blocks associated with nodes a and b are given by:

K
el

ab

(
uel,ωel

)
= HT

a
· K̃

el

ab

(
uel,θ

el
)
·H

b
+ δab

∂HT

a

∂ωelb
· f el

a
(2.53)

The equations (2.45) and (2.52) give expressions for the internal force vector and the
corresponding tangent stiffness, which can be used directly to solve quasi static problems
such as the quasi static examples in the validation section. As noted in [25], the derivative
of H in (2.53) is negligible for a sufficiently fine grid.

2.2.6 Dynamic FE formulation

The equations (2.45) and (2.52) give the local internal force vector and tangent stiffness for
the quasistatic case. A simulation of paper fibers will be highly transient, especially when
collisions are present. Therefore, inertia effects must be added to the governing equations.
The strong form of the equations of motion are given by equation (27) and (28) in [5]:

∂k

∂t
= f ext +

∂

∂x
(E · f int)

∂π

∂t
= mext +

∂r

∂x
× (E · f int) +

∂

∂x
(E ·mint) (2.54)

Following the notation in [5], k is the linear momentum and π is the angular momentum.
f ext is the externally applied body force and mext is the externally applied body moment.
E is the transformation from local to global coordinates, f int is the internal force in a
point and mint is the internal moment in a point. Since this section deals with the inertia
terms, the expressions for ∂k

∂t
and ∂π

∂t
are considered. Equations (29) and (30) in [5] give

the follwing expressions for k and π for a beam cross section:

k = ρA
∂u

∂t
(2.55)

π = E · J · ET ·w (2.56)

Note that no assumptions on A and J have been introduced in (2.55) and (2.56), so the
geometry of the cross section may vary over the length of the segment. This is in contrast
to the formulation in [5], where the cross section is assumed to be constant. In the present
work, the geometry of the cross section will be allowed to vary throughout the derivation
of the inertia terms.

First consider the linear momentum. Take the time derivative of (2.55) (where u is
given in global coordinates):

∂k

∂t
= ρA

∂2u

∂t2
(2.57)
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Now consider the angular momentum. Take the time derivative of (2.56):

·
π =

·
E · J · ET ·w + E · J ·

·
ET ·w + E · J · ET · ·w =

= S (w) · E · J · ET ·w + E · J · (S (w) · E)T ·w + E · J · ET · ·w =

= S (w) · E · J · ET ·w + E · J · ET · ·w (2.58)

To get the weak form of the inertia force, multiply (2.58) by a test function N and integrate
over the length of the beam element:

f g
m

=

∫ l

0

 N1

·
k

N1
·
π

N2

·
k

N2
·
π

 dx =

∫ l

0


N1ρA

··
u

N1

(
S(w)·E·J·ET ·w+E·J·ET · ·w

)
N2ρA

··
u

N2

(
S(w)·E·J·ET ·w+E·J·ET · ·w

)

 dx (2.59)

Here N1 and N2 are the base functions. Galerkin’s method is used, so the functions used to
interpolate nodal quantities are the same as the test functions. Therefore, the quantities
that may vary with the axial coordinate are interpolated according to:

··
u = N1

··
u1 +N2

··
u2

w = N1w1 +N2w2

·
w = N1

·
w1 +N2

·
w2 (2.60)

Linear base functions are used to interpolate the inertia terms, as suggested in [5]. The
information given above is sufficient to evaluate the element inertia force numerically with
Gaussian quadrature. In order to solve the resulting system of equations with Newton’s
method, it is necessary to calculate the variation of (2.59). Taking this variation will
require taking the variation of the local frame. In this thesis, the local frame is defined as
suggested by Nour-Omid and Rankin [25]. This definition is different than the definition
of the element frame used in [5]. Therefore, the derivation of the Jacobian presented in
[5] can not be used. A derivation of the Jacobian of the inertia force with the coordinate
system used in the present work is given in appendix D.

2.3 Contact detection

Before any contact model can be applied, the fibers in contact must be identified. More
precisely, the point of contact and the overlap must be determined. For circular cylinders
with constant radius, an explicit formula for the contact point can easily be found. For
segments with elliptic cross section with varying radii, the author has not succeeded to
find explicit formulas for the shortest distance between two segments. Therefore, the
shortest distance and the corresponding collision normal must be computed iteratively.
To iteratively locate contact points becomes computationally expensive and therefore it is
necessary to divide the contact detection into two step. First a search is performed based
only on the nodal coordinates in order to find segments that are so close to each other that
there is a possibility that contact might occur. Then the more expensive exact contact
search is applied only to those segments that have been found to be so close to each other
that contact could occur.

The section is divided into three parts. First, the algorithm used for locating segments
that are close each other is described. Then, an iterative scheme for finding the shortest
distance between a segment and a fixed, exterior point is derived. Finally, the shortest
distance between two segments is studied.
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2.3.1 Spatial search - identifying segments that are close to each other

The problem of identifying collision candidates can be solved in different ways. The easiest
way is to loop over all elements and check every element against all other elements. If the
number of elements is N , the computational cost for this algorithm will scale like O (N2).
For problems where N is large, the computational cost for contact detection with this
approach becomes unacceptably high. As noted in [31], the computational time spent in
contact search may be well over 80% of the total CPU time for a typical problem with 1000
elements. Therefore an algorithm which scales better than O (N2) must be employed.

One good way to overcome this problem is to construct a binary search tree and use
the tree structure to search for contact pairs. The computational cost for creating a binary
search tree is O (N log N) and the cost of searching is O (N log N) [32]. Therefore the
total cost will also scale like O (N log N) which is much better than O (N2). In the
present work, a kd-tree is used for the contact search. A kd-tree is a binary tree with
nodes representing points in space. The points are inserted into the tree in such a way
that every node splits the space along one of the coordinate axes. Implementing a kd-tree
was not a part of the present work, an implementation already available was used.

2.3.2 Distance between a segment and a fixed point

Consider a segment with geometry as described previously and a point q with coordinates
(qx, qy, qz). A point on the surface of the segment is described by the parameters s and t.
s describes the axial distance along the centerline, where s = 0 corresponds to the start
point and s = 1 corresponds to the end point. t is a circumferential parameter and t = 0
corresponds to a point on the major axis of the studied cross section. For increasing t,
the surface point rotates counter-clockwise around the ellipse and for t = 2π the point has
completed one full revolution. The definitions of s and t are illustrated in figure (2.9). The
radii along the major and minor principal axes vary linearly with s. The parameter t is
defined such that a point p on the surface is given in local coordinates as:

ploc = {Ls, (Raes+Ras(1− s)) cos(t), (Rbes+Rbs(1− s)) sin(t)} (2.61)

Here Ras is the major radius in the start point, Rae is the major radius in the end point,
Rbs is the minor radius in the start point and Rbe is the minor radius in the end point. It
should be noted that that the parameter t is not equal to the angle between a vector in
the radial direction and the local y-axis. To save computer power, it is assumed that the
segment is not twisted around the centerline.

Figure 2.9: Definition of the surface parameters s (left) and t (right). The red point on the
centerline in the left figure corresponds to s: the distance between this point and the black start
point is s · L. The red surface point in the right figure corresponds to the angle parameter t.

Let ps denote the coordinates of the start point of the element. Furthermore, let E
denote the change of basis matrix from local to global coordinates. Then the surface point
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can be expressed in global coordinates as:

p = ps + E · ploc (2.62)

Let the exterior point be q. Then a vector from the segment surface to the exterior
point can be calculated as:

d = q − p = q − ps − E · ploc (2.63)

The square of the distance between the surface and the exterior point is:

d2 = d · d (2.64)

The parameters (s, t) corresponding to the shortest distance between the segment surface
and the exterior point can be found by solving the following minimization problem:

Find (s, t) such that d(s, t)→ min (2.65)

To find the parameters corresponding to the minimum of a distance which is always pos-
itive, it is sufficient to find the minimum of the square of the distance. Therefore, the
minimization problem in (2.65) can be reformulated as:

Find (s, t) such that (d(s, t))2 → min (2.66)

The function to be minimized in (2.66) has critical points when the gradient is zero:

∂

∂xα

(
d2
)

= 0, xα = (s, t) (2.67)

The equation in (2.67) can be solved with Newton’s method. To recast the problem into
the framework of Newton’s method in several variables, (2.67) is considered as a residual
which should be forced to zero:

resα =
∂

∂xα

(
d2
)
, xα = (s, t) (2.68)

Performing the differentiation in (2.68) gives the residual as:

res1 =
∂d2

∂s
= −2diEij

∂plocj
∂s

res2 =
∂d2

∂t
= −2diEij

∂plocj
∂t

(2.69)

To perform Newton iterations, the Jacobian K of the residual in (2.69) must be computed.
The Jacobian is calculated as:

Kαβ =
∂

∂xβ
(resα) , xα = s, t, xβ = s, t (2.70)

Since the Jacobian of the residual is obtained by differentiating d2 twice, d2 can be consiered
as a potential for the problem to be solved. Since the Jacobian of the residual (the Hessian
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of d2) is derived from a potential, it will be symmetric. Performing the differentiation in
(2.70) gives the following expressions for the Jacobian:

K11 =
∂2d2

∂s∂s
=

∂

∂s

(
−2diEij

∂plocj
∂s

)
= 2Eik

∂plock
∂s

Eij
∂plocj
∂s

K12 = K21 =
∂2d2

∂t∂s
=

∂

∂t

(
−2diEij

∂plocj
∂s

)
= 2Eik

∂plock
∂t

Eij
∂plocj
∂s
− 2diEij

∂2plocj
∂t∂s

K22 =
∂2d2

∂t∂t
=

∂

∂t

(
−2diEij

∂plocj
∂t

)
= 2Eik

∂plock
∂t

Eij
∂plocj
∂t
− 2diEij

∂2plocj
∂t∂t

(2.71)

The derivatives of the surface point coordinates in the local frame needed in (2.69) and
(2.71) are:

∂ploc
∂s

= [L, (Rae −Ras) cos(t), (Rbe −Rbs) sin(t)]

∂ploc
∂t

= [0, sin(t)(−(Raes+Ras(1− s))), cos(t)(Rbes+RbS(1− s))]

∂2ploc
∂s∂s

= [0, 0, 0]

∂2ploc
∂t∂s

= [0, −(Rae −Ras) sin(t), (Rbe −Rbs) cos(t)]

∂2ploc
∂t∂t

= [0, cos(t)(−(Raes+Ras(1− s))), sin(t)(−(Rbes+Rbs(1− s)))]

With expressions for the residual and the Jacobian available, Newton iterations can be
performed to get successively better approximations of the closest point on the segment
surface. For each iteration, perform the following:

• ∆x = −K−1 · res

• x = x+ ∆x

• Terminate when converged

The procedure outlined above solves the unconstrained optimization problem of finding
the point on an elliptic surface which is closest to a given exterior point. It does not
account for the constraint that the segment has finite length, so that the parameter s is
constrained: s ∈ [0, 1]. If s < 0, the closest point on the surface is on the edge at s = 0
and if s > 1, the closest point is on the edge at s = 1. If this occurs, s should be set to 0
or 1, depending on which edge has been encountered, and iterations should be performed
to find the t corresponding to the shortest distance. To achieve this, the Jacobian derived
previously can be reduced so that the iterations do not change the value of s:

res1 = 0 (2.72)

K11 = 1 (2.73)

K12 = K21 = 0 (2.74)

By reducing the Jacobian in this way, the case where a point on the ellipse surface is closest
to the exterior point and the case where a point on the edge is closest to the exterior point
can be handled in the same iteration loop.
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There is one more special case that might occur. Consider the case when the external
point is to the left of the left edge or to the right of the right edge and the point is close
to the centerline of the segment. In such a case, it might happen that the distance to one
of the flat end surfaces of the segment is closer than the distance to the elliptic surface.
This case must be treated separately. Furthermore, if the external point lies within the
volume bounded by the elliptic surface and the flat end surfaces (i.e. inside the segment),
the distance is considered to be negative. By adding a sign to the distance and creating
a signed distance, the signed distance can be used to determine if penetration of the
segement surface occurs. The proposed procedure for finding the closest distance between
the segment surface and an external point, while accounting for the special cases that may
occur, can be summarized as follows:

1. Assume that the closest point is somewhere on the elliptic surface. Guess an initial
value for s ∈ [0, 1] and an initial value for t ∈ [0, 2π].

2. Use (2.69) and (2.71) to get successively better estimates for s and t. If s goes outside
the range [0, 1], then the closest point is on the edge. If this occurs, set s = 0 or s = 1
depending on which edge is closest. Continue iterations with reduced Jacobian.

3. • If s ∈ ]0, 1[ and the exterior point is located outside the segment, then the closest
point is on the ellipse surface and given by (s, t). The distance is positive.

• If s ∈ ]0, 1[ and the exterior point is located inside the segment, then the closest
point is on the ellipse surface and given by (s, t). In this case, the distance is
considered to be negative.

• If s ≤ 0 or s ≥ 1 and the radial distance from the segment centerline to the
exterior point is greater than the radial distance from the centerline to the
ellipse surface, then the closest point lies on the edge. This point is given by
the iteratively found t. s is zero or unity depending on which edge the point is
located on.

• If s ≤ 0 or s ≥ 1 and the radial distance from the segment centerline to the
exterior point is smaller than the radial distance from the centerline to the ellipse
surface, then the closest point lies on the flat end surface of the segment. This
point is found by taking the vector from the start point to the exterior point
and projecting it onto the plane which has the centerline as normal direction
(i.e. the plane spanned by the major and minor axis in the start point).

2.3.3 Distance between two segments

As noted previously, the shortest distance between two segments with constant, cylindrical
cross section can be found analytically. For the case with varying, elliptical cross section,
the shortest distance must be found iteratively. The case with cylindrical cross section is
treated first, since it can be used as an initial guess for the iterative solution. It is also
interesting to highlight the extreme increase in complexity when going from circular cross
sections to elliptic cross sections.

Consider two segments with constant circular cross section. Segment I has start point
pIs and end point pIe while segment II has start point pIIs and end point pIIe. If the
segments are parallel, then any point on one segment can be the closest point. If the seg-
ments are not parallel, a vector that is perpendicular to both centerlines can be computed
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Closest point on the centerline
of segment I

Closest point on the surface of segment I

Closest point on the surface of segment II

Closest point on
the centerline
of segment II

Closest point on the centerline
of segment I

Closest point on
the centerline
of segment II

Closest point on the surface of segment II

Closest point on the surface of segment I

Figure 2.10: Closest points on the surfaces of two segments with circular cross section (left)
and elliptic cross section (right). When both cross sections are circular, the closest surface points
will be on the line connecting the closest centerline points. This simple relationship does not hold
for elliptic cross sections.

as:

exI =
pIe − pIs
|pIe − pIs|

(2.75)

exII =
pIIe − pIIs
|pIIe − pIIs|

(2.76)

n =
exI × exII
|exI × exII |

(2.77)

A vector from the first segment to the second segment is the vector between the start
points:

s = pIIs − pIs (2.78)

The shortest distance between the centerlines is the projection of this vector onto the unit
normal:

dcl = s · n (2.79)

If the segments have radii rI and rII , the shortest distance between the surfaces is:

dsurf = dcl − rI − rII (2.80)

The distance given in (2.80) is valid if the closest point is on the circular surface and not
on the edge. Therefore, it must be checked if the closest point is outside the edge on any
of the segments.

The case with constant circular cross sections is simple: short, explicit formulas can
easily be derived. What makes this case simple is that the vector through the closest points
on the centerlines also goes through the closest points on the segment surfaces. When the
closest points on the centerlines have been identified, the closest points on the surfaces
follow trivially by stepping in the direction of the vector between the centerline points. For
segments with elliptical cross section, this is not the case. The closest points on the surfaces
will in the general case not be located on the line connecting the closest centerline points.
This is illustrated in figure (2.10). This phenomenon makes the case with elliptical cross
sections much more difficult, since studying the centerlines is not sufficient to determine
the shortest distance between the surfaces.

A procedure for computing the shortest (unsigned) distance between two segments is
given in appendix E. The derivation follows the same ideas as for the case when the distance
between a segment and a point is sought.
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2.4 Contact models

This section describes the contact models implemented in the present work. Two contact
algorithms have been implemented: a penalty method and the DCR method proposed in
[4].

2.4.1 A penalty method suitable for paper forming

A penalty method suitable for paper forming has been constructed from the variants of
penalty methods described previously. As discussed earlier, several possible choices exist
for the penalty force in the normal direction. This work is based on a normal force of the
following form:

fn (g, vn) =

 K·
(
−g
dref

)ζ
if vn≤0

ecor·K·
(
−g
dref

)ζ
otherwise

(2.81)

The above expression allows modeling of elastic as well as inelastic collisions by introducing
the coefficient of restitution ecor directly into the expression for the force as proposed in
[13]. The parameters dref and ζ give the possibility to control how rapidly the function
increases with increasing overlap. Note that equation (2.81) reduces to familiar cases for
special choices of parameters: setting dref = 1 and ζ = 1.5 gives Hertz contact theory
while ζ = 1 gives a linear relationship between force and overlap.

In principle, there are two possible ways to handle friction: to handle the cases of slip
and stick separately or to try to find a model that can handle both cases simultaneously.
To handle the cases of sliding and sticking separately in a penalty method is impractical.
The other possibility is to regularize the friction force to give a smooth and differentiable
transition between sticking and sliding. With this approach, the possibility to model perfect
sticking is sacrificed in favour of a smooth expression for the friction force. In the present
work, a square root regularization proposed by Wriggers [32] is used:

ft (fn, vt) = −µ · χ (vt) · |fn|

χ (vt) =
vt√
v2
t + ε2

(2.82)

In (2.82), ε is a small number which controls how accurate (and how stiff) the regularization
is. A small ε gives better agreement with Coulomb’s friction law but also gives stronger
nonlinearities so that smaller time steps may have to be taken. A larger value of ε gives a
smoother transition with less accuracy. This behavior is shown in figure (2.11).
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Figure 2.11: Square root regularization of Coulomb friction. A small value of ε gives higher
accuracy but may require shorter time steps.
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When the magnitude of the normal force and the tangential force have been computed,
the total contact force is computed as:

f = fnn+ ftt (2.83)

Here n is the contact normal direction and t is the tangential sliding direction. n is
computed as (pI and pII are the closest points on segment I and II):

n =
pII − pI
|pII − pI |

if |pII − pI | 6= 0 (2.84)

n =
∂pI
∂s
× ∂pI

∂t∣∣∣∂pI∂s × ∂pI
∂t

∣∣∣ otherwise (2.85)

i.e. the normal is taken as the closest point on surface II minus the closest point on surface
I if these points do not coincide. If the closest points do coincide, the collision normal is
instead taken as the normal direction of surface I.

The tangential sliding direction is computed as:

t =
vtang
|vtang|

if |vtang| 6= 0 (2.86)

t = 0 otherwise (2.87)

Note that t could be set to any value if |vtang| = 0, because in this case the friction force
will be zero any way.

The contact force is a function of the overlap and the relative velocity, which in turn
are functions of the nodal positions at the current time step. As a result, the contact forces
will change during the iterations of a single time step. Therefore, only adding the contact
forces to the right hand side without changing the tangent stiffness matrix will destroy
the second order convergence of the Newton iterations. In order to retain second order
convergence, the Jacobian of the contact must be computed and added to the tangent
stiffness matrix. As mentioned previously, the author has not succeeded to find an explicit
expression for the contact point. Therefore it is not possible to compute the Jacobian of
the contact force analytically and two options remain:

• Compute the Jacobian of the contact force numerically. This is always possible, but
it comes at an increased computational cost.

• Perform the simulation without using a Jacobian for the contact force and accept
that the convergence will not be second order.

Both options have been tried in the present work. It was found that the loss of convergence
was small for the cases of interest here and therefore most of the simulations were performed
without using a Jacobian for the contact force.

2.4.2 Decomposition Contact Response

The algorithm proposed by Cirak and West [4] has been implemented in the present work.
Next, the algorithm given in [4] is described in greater detail than in the introduction.
Then, modifications are proposed to make the algorithm suitable for simulations of paper
forming.

The DCR method is an algorithm of predictor-corrector type: first a predictor time step
is taken as if no contacts occured, then interpenetrations are removed and velocities are
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corrected. In [4], the signed volume of intersection is used as contact constraint function.
However, as noted in [4], any properly defined constraint function such as the gap function
can be used. The DCR method relies on a decomposition of the momentum of two bodies
in contact, which can be expressed as:

p = M · v (2.88)

where M is the mass matrix and v is the velocity vector. The constraint function g has
the following properties:

• g = 0 corresponds to a configuration where contact just occurs, but no interpenetra-
tion occurs

• ∇g gives the contact (non-unit) normal

First, the momentum vector is decomposed into a normal and a tangential part:

p = p
norm

+ p
tang

(2.89)

The normal component is taken as the projection of p onto ∇g. This definition gives the
following condition on p

norm
(eqn (17) in [4]):

(∇g)T ·M−1 ·
(
p− p

norm

)
= 0 (2.90)

Since p
norm

is defined to be in the direction of ∇g, it can be written as:

p
norm

= a1∇g (2.91)

for some scalar a1. Inserting (2.91) in (2.90) gives:

(∇g)T ·M−1 · (∇g) a1 = (∇g)T ·M−1 · p (2.92)

⇒ a1 =
[
(∇g)T ·M−1 · ∇g

]−1

· (∇g)T ·M−1 · p (2.93)

⇒ p
norm

= a1∇g =
[
(∇g)T ·M−1 · p

] [
(∇g)T ·M−1 · ∇g

]−1

∇g (2.94)

When the normal part of the impulse has been extracted, the normal contact can be
modeled by introducing the coefficient of restitution ecor. Let p− denote the momentum
prior to collision and let p+ denote the momentum after collision. Then the momentum in
the normal direction can be expressed as:

p+

norm
= (−ecor) p−norm (2.95)

The normal impulse transferred during the collision is:

Inorm = − (1 + ecor) p
−
norm

(2.96)

To include friction, the part of the impulse that causes relative motion between the contact-
ing bodies must be separated from the rigid body motion. This is achieved by introducing
a vector h between the contact points of the two bodies:

h = xL − xR (2.97)

30 , FCC, Master’s Thesis 2011:05



The rigid body velocity M−1 · p
fix

keeps h unchanged:

(∇h) ·M−1 · p
fix

= 0 (2.98)

(2.98) can be used to find a condition for p
nonfix

:

(∇h) ·M−1 ·
(
p− p

nonfix

)
= 0 (2.99)

⇒ (∇h) ·M−1p− (∇h) ·M−1p
nonfix

= 0 (2.100)

p
nonfix

must be in the direction of ∇h and therefore it can be written as:

p
nonfix

= (∇h)T · c2 (2.101)

for some vector c2. This vector can be computed by inserting (2.101) in (2.100):

(∇h) ·M−1p = (∇h) ·M−1 · (∇h)T · c2 (2.102)

⇒ c2 =
[
(∇h) ·M−1 · (∇h)T

]−1

· (∇h) ·M−1 · p (2.103)

⇒ p
nonfix

= (∇h)T ·
[
(∇h) ·M−1 · (∇h)T

]−1

· (∇h) ·M−1 · p (2.104)

When p
nonfix

and p
norm

are known, the sliding part of the impulse, responsible for friction,

can be computed as:

p
slide

= p
nonfix

− p
norm

(2.105)

When friction is present, the momentum jump equation for a contact is written as:

p+ = p− + Inorm + Islide (2.106)

The impulse in the sliding direction is given by equation (45) in [4]:

Islide =

 −p
slide

if pT
slide
·M−1 · p

slide
< µpT

norm
·M−1 · p

norm

−µ
(
pT
norm

·M−1·p
norm

pT
slide
·M−1·p

slide

)
p
slide

otherwise
(2.107)

In the equation above, the first case corresponds to sticking, while the second case corre-
sponds to sliding. Note that this model is capable of modeling perfect stick, in contrast to
the penalty model developed in the previous section, where sticking could only be fulfilled
approximately.

2.4.2.1 DCR for fiber-fiber contact
The DCR algorithm can be summarized as follows:

1. Update nodal positions and velocities without considering collisions

2. Update velocities by using the momentum jump equation

3. Remove penetrations by using closest point projection
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Step 1 above does not need any further clarification. In step 2, the nodal velocities should
be updated by using (2.96), (2.106) and (2.107). These formulas require the mass matrix
M , the gradient of the gap function g and the gradient of the vector h. To be consistent, the
same mass matrix as used when assembling the inertia stiffness should be used. However,
to reduce the computational cost and simplify the calculations, Cirak and West [4] suggest
using a lumped mass matrix instead when solving the momentum jump equation.

The gradient of g is also required. Since no closed form expression for g has been found,
the derivative of g must be computed numerically. Since a contact involves two segments
and each segment has 12 degrees of freedom, each contact involves 24 dofs and g will have
24 entries:

∇g =

[
∂g

∂uaI

∂g

∂θaI

∂g

∂ubI

∂g

∂θbI

∂g

∂uaII

∂g

∂θaII

∂g

∂ubII

∂g

∂θbII

]
(2.108)

Hence, ∇g will have dimension 24 · 1. The gradient of h, which is evaluated in the same
way, will have dimension 24 · 3.

Step 3 above corrects the nodal positions by moving interpenetrating segments in such a
way that the surfaces exactly touch each other. Let n denote the contact normal, directed
from segment I to segment II as described previously. Note that n is the physical contact
normal in R3, so this n is not equal to ∇g, which is in R24. Since the gap function gives the
penetration distance in the normal direction, the closest point projection can be achieved
by moving the nodal coordinates of segment I a distance g

2
in the direction of −n and

moving the nodal coordinates of segment II a distance g
2

in the direction of n.

2.4.2.2 DCR for fiber-fabric contact
In the present work, the forming fabric is considered to be rigid. The fabric is described
by a cloud of points defining the surface of the fabric. Contact between the fibers and the
fabric is accounted for by computing the distance between the fiber nodes and the fabric
points. If this distance is smaller than a chosen penalty layer thickness, the collision is
resolved by applying the DCR method to the contacting node. In this case the lumped
mass matrix of the contacting node is used instead of using the mass matrix of the whole
segment.

2.5 Measures of fiber web properties

Some measures that can be used to characterize a fiber web need to be defined. Two such
measures are proposed below.

2.5.1 Mass distribution (Grammage)

It is interesting to study how the paper fibers are distributed in the plane of the fiber
web. For this purpose, an area mass distribution can be computed [19]. Consider a fiber
web in the xy-plane so that the thickness of the web is in the z-direction. A rectangular
grid is defined in the xy-plane with Nx elements in the x-direction and Ny elements in
the y-direction, see figure (2.12). All fiber segments within a specified bounding box are
projected onto the xy-plane and all segments corresponding to a given 2D-grid element
are identified. The mass of all segments corresponding to a 2D-grid element are added to
that 2D-grid element. In this way, a certain mass of paper is associated with each 2D-grid
element. Dividing this mass by the area of the 2D-grid element gives a mass per unit area.
This mass per unit area can be used to study how the distribution of fibers varies in the
fiber web.
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Figure 2.12: Domain with forming fabric divided into two-dimensional elements for postpro-
cessing. Forming fabric geometry courtesy of Albany International.

2.5.2 Fiber directions (anisotropy)

An important property of the fiber web is the orientation of fibers. The direction of the
fibers could be fully randomized, or the fibers could be aligned in some direction. A simple
measure is to define a 2D-grid as described above and compute the direction vector eix of
the centerline of each fiber segment i. When directions are studied, the vector eix should
be equivalent to the vector −eix. Therefore, a direction vector rotated to the right half
plane is defined:

ai =

{
eix if eix,1 ≥ 0
−eix if eix,1 < 0

(2.109)

When the direction vector a has been computed, the angle between this vector and the
centerline can be used as a measure of the orientation of the fibers segment. When the
angle of each segment has been computed and assigned to a 2D-grid cell, the mean value
and standard deviation of the angle in each cell can be computed.
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3 Numerical results

3.1 Validation of FE solver

Before proceeding with simulations of paper forming, the different models implemented
in the present work must be validated. If the fiber model does not give accurate results
for cases without fluid coupling, it can not be expected that the fiber model will give
accurate results when a fluid is present. Therefore, the fiber model is first validated for a
number of cases where no fluid is involved. First two static validation cases are studied
and compared to results from the literature. The purpose of this part is to show that the
code is capable of handling complex structural behavior including large rotations. Then
two cases involving large three dimensional motion are studied and it is shown that the
solver can handle dynamical problems with large rotations. Finally, two contact problems
are studied. In the first contact problem, a collision between two bars is studied and it is
shown that the displacement history agrees with results from the literature. The second
contact problem involves inelastic contact with friction between a beam and a rigid table.

3.1.1 Validation of static problems

3.1.1.1 Hockling of a cable
In the first static test case, the cable segment shown in figure (3.1) is twisted around its
own axis. This is a linear problem for small twisting angles, but here the cable is twisted so
much that its capacity to store energy in torsion is exceeded. The result is that the cable
becomes unstable and buckles with a complex three-dimensional response. The problem
has previously been studied by Nour-Omid and Rankin [25] and later by Gruttmann, Sauer
and Wagner [11]. Nour-Omid and Rankin analyzed the problem with their co-rotational
beam model while Gruttmann et al. used a model with Timoshenko beam kinematics.

The cable is modeled with 20 cubic beam elements of equal size. The right end is fixed,
while the left end is allowed to twist around the x-axis and translate along the x-axis.
Displacement control is used to control the simulation: the left end of the cable is twisted
one revolution around the x-axis. The cable has the following properties:

• Total length: L = 240.0 mm

• Polar moment: Ix = 2.16 mm4

• Area moments: Iy = Iz = 0.0833 mm4

• Young’s modulus: E = 71240 N/mm2

• Poisson’s ratio: ν = 0.31

• Shear modulus: G = 27190 N/mm2

Mx

L

x

y

z

Figure 3.1: Geometry of the cable considered in the first static test case.
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Figure 3.2: Reaction torque as a function of twisting angle.

During the first steps of the simulation, the cable shows a linear response and twists around
its own axis without any deflection in the y- or z-direction. A critical point is reached when
the twisting angle is roughly 1 radian. The cable is unstable at this point and bifurcation
to a secondary path is possible. A small perturbation was added to the system by twisting
the left end 10−4 radians around the y-axis. This small perturbation was enough to initiate
buckling, which results in large deflection in the y- and z-direction. The applied torque
decreases during this process and the cable deforms into a helical shape when the left end
of the cable is pulled to the right. The left end continues to move to the right, which results
in a gradual change of the shape of the cable from a helical form to a circle. Figure (3.3)
shows the shape of the cable at different stages of this deformation process. The circular
configuration is the second critical point of the cable. From this point, with negative
torque, the cable untwists into a circular configuration free of torsion. This is exactly the
behavior predicted by Nour-Omid and Rankin [25]. Figure (3.2) shows the reaction torque
as a function of the twisting angle. The values predicted by Nour-Omid and Rankin as
well as Gruttmann, Sauer and Wagner are also shown for comparison. The agreement is
excellent.

This problem is a good test of the models capability of handling geometrical nonlin-
earities. Especially, this example shows that the model is capable of handling coupling
between bending and torsion.

300 time steps were used in the simulation, where the left end of the cable was twisted
2π
300

radians each time step. The simulation time necessary for this problem was 1.9 s on a
single thread of an Intel Core 2 Quad @ 2.40 GHz with 8 GB of RAM.
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Figure 3.3: Deformed shapes of a hockling cable: view in the positive y-direction (top), view in
the negative z-direction (center) and perspective view (bottom).
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Figure 3.4: Geometry of the hinged frame studied in the second static test case.

3.1.1.2 Lateral buckling of a hinged frame
The second static test case is concerned with lateral buckling of a hinged, right angled
frame. This problem was introduced by Argyris et al. [9] and has later been analyzed by
several authors. Nour-Omid and Rankin [25] studied the problem with their co-rotational
beam model, which was also implemented in the present work, while Simo and Vu-Qouc
[28] applied their finite strain beam model. Gruttman, Sauer and Wagner [11] used a beam
model with Timoshenko kinematics to analyze the problem.

The geometry of the frame is shown in figure (3.4). As can be seen in the figure,
the structure is symmetric about the y-z plane. This symmetry can be exploited by only
modelling the right half of the frame and prescribing symmetry about the y-z plane as
a boundary condition for the node in the elbow. The support is allowed to translate in
the x-direction and rotate about the z-axis. The half frame is modelled with ten equal
EB-beam elements with cubic base functions. Nour-Omid and Rankin also used ten EB-
beam elements, while Simo and Vu-Quoc used ten beam elements with quadratic base
functions. Gruttmann et al. discretized the structure with 10 three-noded beam elements.
In the present work, displacement control was used to control the simulation and a small
perturbation load was added to initiate buckling.

A bending moment about the z-axis is applied at the support as indicated in figure
(3.4). This bending moment is applied in such a way that the support is twisted one
revolution about the z-axis. The initial response is linear, but a critical point is reached
when the bending moment is M ≈ 0.62 Nm. At this point, the frame buckles with a large
displacement in the out-of-plane direction. The frame rotates two full revolutions out of
plane as the support is twisted one revolution about the z-axis. As noted is [11], the arc
length method must be employed to follow the second revolution. The arc length method
has not been implemented in the present work and therefore only the first revolution could
be simulated. The reaction moment as a function of the twisting angle is shown in figure
(3.6) and the trajectory traced by the apex of the frame in the y-z-plane is shown in figure
(3.7). The agreement with [25] and [11] is very good. It is interesting to note that the
reference solutions are based on different strain measures: the present work and [25] assume
small strain, while [28] use the deformation gradient and [11] use the Green-Lagrange strain.

Figure (3.8) shows the shape of the centerline of the frame as well as the deformed frame
surface at different stages of the deformation process. Note the large three-dimensional
rotations and the extreme aspect ratio of the cross section, which makes this problem very
challenging. The simulation time necessary for this problem was 2.0 s on a single thread
of an Intel Core 2 Quad @ 2.40 GHz with 8 GB of RAM.
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Figure 3.5: Perspective view of the geometry of the hinged frame studied in the second static
test case. Note the extreme aspect ratio of the cross section.
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Figure 3.6: Reaction torque as a function of twisting angle.

38 , FCC, Master’s Thesis 2011:05



−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
First revolution of a hinged frame − z vs y

z [m]

y 
[m

]

 

 

Euler−Bernoulli Co−Rot.

Nour−Omid and Rankin (1991)

Figure 3.7: Trajectory of the frame apex in the y-z-plane.

Figure 3.8: Deformed shapes of the frame: perspective view (top left), view in negative x-direction
(top right), view in negative z-direction (bottom left) and perspective view of the deformed frame
surface (bottom right). The ”cut” in the frame surface at the elbow is an artifact from the
visualization routine.
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3.1.2 Validation of dynamic problems

3.1.2.1 Free vibration of right-angle cantilever beam
The first dynamic test case hase been studied by several authors, among others Simo and
Vu-Quoc [29] and later Ibrahimbegović and Mikdad [17]. In this problem, the L-shaped
cantilever beam shown in figure (3.9) is studied. A point force is applied in the out-of-
plane direction at the elbow. Figure (3.9) shows the time history of the force, which has
a maximum value of 50 N and is applied for two seconds. The geometry of the beam is
defined in figure (3.9) and the properties of the cross section are:

• GAy = GAz = EA = 106

• EIy = EIz = GJ = 103

• Aρ = 1

• Iρx = 20

• Iρy = Iρz = 10

It should be noted that in the present work, a model based on the Euler-Bernoulli beam
theory was used, which implicitly assumes GAy = GAz = ∞. As will be seen, this
assumption does not have a noticeable effect on the results for this test case. The reason
for this is most likely that the structure studied in this problem is indeed very slender and
therefore the Euler-Bernoulli assumption is justified.

The beam is initially at rest and starts to deflect when the external force is applied.
After the force has been removed, the structure performs free vibrations with large magni-
tude. As noted in [17], the amplitude of the vibration is of the same order of magnitude as
the length of the structure. Therefore, this problem is a good test of the models capability
of handling transient problems involving large rotations and displacements.

Figure (3.10) shows the z-displacement of the elbow as a function of time, while figure
(3.11) shows the z-displacement of the tip. Values predicted by Ibrahimbegović and Mikdad
[17] as well as by Simo and Vu-Quoc [29] are also shown for comparison. Note that the
agreement is good even though different beam models were used in the reference solutions
[17] and [29]. Ibrahimbegović and Mikdad used the Reissner beam theory while Simo and
Vu-Quoc used a geometrically exact finite strain rod model. The results shown in figure
(3.10) and (3.11) were obtained with the same time step size as used by Simo and Vu-Quoc:
∆t = 0.25 s, but 20 elements were used for the spatial resolution. The solution presented
by Simo and Vu-Quoc was obtained with ten elements with quadratic base functions, and
in that study it was not investigated whether the solution obtained was grid-independent or
not. This lack of grid-independency is probably the reason for the discrepancy observed for
the deflection of the elbow at t ≈ 17 s. Here, the result from the present study agrees well
with the results predicted by Ibrahimbegović and Mikdad while slightly different results
are given by Simo and Vu-Quoc.

Figure (3.12) shows the temporal convergence of the solution and figure (3.13) shows
the spatial convergence. An element size of h = 2 m corresponding to a mesh consisting of
ten elements gives a fairly grid independent solution. However, note that ∆t = 0.25 s does
not give a solution independent of the time step size. With a time step size of ∆t = 0.25 s,
the displacement of the tip shows a valley in the curve at t ≈ 24 s. This valley is levelled
out when the time step is decreased.

Figure (3.14) shows the centerline of the deformed beam at different instants in time
and the surface of the deformed beam is shown in figure (3.15). The simulation time
necessary for this problem, with 40 elements and 480 time steps, was 3.9 s on a single
thread of an Intel Core 2 Quad @ 2.40 GHz with 8 GB of RAM.
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Figure 3.9: Geometry of the L-shaped beam considered in the first dynamic test case (left) and
the corresponding loading history (right).
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Figure 3.10: Out-of-plane displacement of the elbow.
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Figure 3.11: Out-of-plane displacement of the tip.

0 5 10 15 20 25 30
−6

−4

−2

0

2

4

6

8
Displacement at elbow

t [s]

z
 [

m
]

 

 

Simo and Vu−Quoc (1988)

Ibrahimbegovic and Mikdad (1998)

Euler−Bernoulli Co−Rot. ∆ t = 0.25 s

Euler−Bernoulli Co−Rot. ∆ t = 0.125 s

Euler−Bernoulli Co−Rot. ∆ t = 0.0625 s

0 5 10 15 20 25 30
−10

−5

0

5

10
Displacement at tip

t [s]

z
 [

m
]

 

 

Simo and Vu−Quoc (1988)

Ibrahimbegovic and Mikdad (1998)

Euler−Bernoulli Co−Rot. ∆ t = 0.25 s

Euler−Bernoulli Co−Rot. ∆ t = 0.125 s

Euler−Bernoulli Co−Rot. ∆ t = 0.0625 s

Figure 3.12: Temporal convergence of the out-of-plane displacement of the elbow (left) and the
tip (right).
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Figure 3.13: Spatial convergence of the out-of-plane displacement of the elbow (left) and the tip
(right).
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Figure 3.14: Centerline of the deformed beam at different instants in time.

Figure 3.15: Surface of the deformed beam at different instants in time.
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Figure 3.16: Cantilever beam with twisted cross section.

3.1.2.2 Vibration of a cantilever beam with twisted cross section
All the numerical examples studied above have a constant cross section. Therefore, it is
necessary to validate the model for a case with varying cross section. For this purpose, the
cantilever beam shown in figure (3.16) is studied. The beam is clamped at the left end,
while a constant force in the negative z-direction is applied at the right end. The beam
has an elliptical cross section and the major axis of the ellipse is aligned with the y-axis
at x = 0. For 0 < x ≤ L, the major axis of the ellipse is not aligned with the y-axis: the
angle between the global y-axis and the major axis of the ellipse is ϕ, see figure (3.17).
ϕ = 0 at x = 0 and ϕ = 60o at x = L. The properties of the beam are as follows:

• Young’s modulus: E = 210 GPa

• Poisson’s ratio: ν = 0.3

• Length: L = 0.400 m

• Major axis: a = 0.020 m

• Minor axis: b = 0.010 m

• Twisting angle: ϕ =
(
x
L

)
· ϕtot, ϕtot = 60o

At t = 0, a constant load of Fz = −50 · 103 N is applied at the right end. This load is
applied during the whole simulation time of ttot = 30 ms. As a result, the beam oscillates
with large amplitude as shown in figure (3.23).

For comparison, the same case was also simulated with the open source FE code Cal-
culix [8]. The simulation was performed with the beam elements available in Calculix.
These elements are implemented in such a way, that after they have been defined as beam
elements, they are converted to three-dimensional 20-node brick elements in the simula-
tion. Geometric non-linearities were included and the α-method with α = −0.05 was used
for the time stepping.

Figure (3.18) shows the tip displacement in x-, y- and z-direction predicted by Calculix
and by the code developed in the present work. The agreement is very good. Note that
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Figure 3.17: Cross section of a fiber. The major radius Ra and the minor radius Rb are shown
with red color. The local base vectors ey and ez are shown with blue color. The major axis of the
ellipse is not aligned with the local ey-axis, the angle between them is ϕ.

due to the twisted cross section, the force in z-direction gives rise to deflection in the
y-direction.

The temporal and spatial convergence of the Calculix simulation are shown in figures
(3.19) and (3.20). The temporal and spatial convergence of the code developed in the
present work are shown in figures (3.21) and (3.22). It is interesting to note that the code
developed in the present work performs better than Calculix on coarse grids. The reason
for this is most likely that the code developed in the present work allows the cross section
to vary over the element, while the simulation in Calculix assumed the cross section to be
constant over an element. The simulation time necessary for the case with 80 elements
and 30000 time steps was 4 m 5 s on a single thread of an Intel Core 2 Quad @ 2.40 GHz
with 8 GB of RAM. The simulation time necessary for the same case with Calculix was
78 m 53 s on a single thread of an Intel Core i5 Duo @ 3.20 GHz with 8 GB of RAM.
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Figure 3.18: Displacement versus time for a cantilever beam with twisted cross section. Com-
parison between Calculix and the code developed in the present work.
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Figure 3.19: Temporal convergence in Calculix.
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Figure 3.20: Spatial convergence in Calculix.
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Figure 3.21: Temporal convergence of the code developed in the present work.
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Figure 3.22: Spatial convergence of the code developed in the present work.

Figure 3.23: Deformed shapes of cantilever beam with twisted elliptical cross section.
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Figure 3.24: Geometry of two impacting rods.

Figure 3.25: Deformed shapes of two impacting rods.

3.1.3 Validation of problems involving contact

3.1.3.1 Collision of two rods
In this example, which was previously studied by Cirak and West [4], one-dimensional
impact of two rods is considered. The geometry of the two identical rods, meshed with
100 elements each, is shown in figure (3.24). Rod 1 has an initial velocity of v1 = 0.1 m/s
to the right and rod 2 has an initial velocity of v2 = 0.1 m/s to the left. The rods are
located next to each other so that impact occurs at t = 0 s. The dimensions and material
properties of the rods are as follows:

• Length L = 10 m

• Young’s modulus E = 1 Pa

• Density ρ = 1 kg/m3

• Cross section area A = 1 m2

• Time step ∆t = 0.01 s
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Figure 3.26: Displacement of the impacting tips of the two rods.
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Figure 3.27: Temporal (left) and spatial convergence (right) of impact simulation.

Simulations were performed with the DCR method and the penalty method described in
the theory section. Figure (3.25) shows the deformed shape of the rods at different instants
in time. Substantial deformation occurs due to the low value of E and some high frequency
oscillations can be seen. Figure (3.27) shows the displacement of the impact points of the
two bars. The agreement with the reference solution in [4] is very good for the DCR
method as well as for the penalty method implemented in the present work. The temporal
and spatial convergence of the simulation are shown in figure (3.27). It can be concluded
that the time step size of ∆t = 0.01 s used by Cirak and West is sufficient to resolve the
displacement of the points in contact. Furthermore, it can be noted that a coarser grid
than 100 elements per bar is sufficient to capture the overall motion.
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3.1.3.2 Impact between spinning rod and table
The last validation case is a spinning rod falling onto a table. This problem, which involves
fricton and inelastic contact, was previously studied by Stewart and Trinkle [30]. The rod
shown in figure (3.28) is released from a height of 1 m with an angle of 30o to the horizontal.
Initially, the center of mass of the rod has no translational velocity, but the initial angular
velocity is 4 rad/s about the center of mass. Gravity causes the rod to fall downwards
and impact the table located at y = 0. The table is rigid and the coefficient of friction
for the contact between the rod and the table is µfr = 0.6. The impacts are considered to
be inelastic with ecor = 0. The length of the rod excluding the rounded ends is l = 0.5 m
and it has a radius of r = 0.05 m. The mass of the rod is 1 kg and its moment of inertia
with respect to the center of gravity is J = 0.002 kgm2. Stewart and Trinkle studied a
rigid rod. The code developed in the present work deals with elastic problems and can not
simulate perfectly rigid objects. Instead, the rod was meshed with one element and the
material parameters of steel were used (E = 210 GPa, ν = 0.3). In this way, the rod will
behave as almost rigid in the simulations.

The initial angular velocity causes the rod to rotate as it falls towards the table. It
impacts the table with one of its ends and continues to rotate towards the table with its
other end. Eventually the other end hits the table and the rod comes to rest. Figure (3.29)
shows the centerline of the rod at different instants in time as it falls towards the table.
Note that the rod has a radius of r = 0.05 m and therefore the centerline of the rod stops
at a distance of 0.05 m from the table.

The problem has been simulated with the penalty method and the DCR method imple-
mented in the present work. When the penalty method was used, the penalty parameter
was set to K = 1.0 · 104 N . The reference length was set to dref = 5 · 10−2 m and the
exponent was set to ζ = 1.0 resulting in a linear penalty force. Figure (3.30) shows a
comparison with the results given by Stewart and Trinkle [30]. The agreement between
the penalty method and the reference solution is good. Note that this good agreement was
achieved even though a regularization of Coulomb’s law was used in this simulation. The
agreement between the DCR method and the reference solution is fair, but som discrep-
ancy can be seen between t = 0.4 s and t = 0.6 s. Especially, note that the DCR method
predicts a slightly too high vertical velocity after the first impact at t = 0.4 s. The reason
for this could be the explicit character of the DCR method: the closest point projection
leads to an increase in internal energy, allowing for a light bounce-off when this internal
energy is released as kinetic energy.

The temporal convergence of the simulations performed is shown in figure (3.31) for
the penalty method and in figure (3.32) for the DCR method. A time step of ∆t = 62.5 µs
gives a reasonable resolution for both methods. This can be compared to the results given
in [30], where a time step of 5 ms gave a solution independent of the time step length. The
reason for the difference in necessary time step length is most likely that [30] used a rigid
body code to study a rigid body problem, while the present work used an elasticity code
to study the same rigid body problem.

The simulation time for this problem with a time step of ∆t = 31.25 µs was 13.7 s
with the penalty method. A time step of ∆t = 31.25 µs corresponds to 32000 time steps
and the simulation was performed on a single thread of an Intel Core 2 Quad @ 2.40 GHz
with 8 GB of RAM. The simulation time needed by the impulse based method was 16.5 s
with the same settings and the same computer.
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Figure 3.30: Vertical (left) and horizontal (right) velocity of a rod impacting a table.
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Figure 3.31: Temporal convergence of vertical (left) and horizontal (right) velocity of a rod
impacting a table. The simulations were performed with the penalty method.
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Figure 3.32: Temporal convergence of vertical (left) and horizontal (right) velocity of a rod
impacting a table. The simulations were performed with the DCR method.
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3.2 Fluid-Structure Interaction without contact

3.2.1 Oscillating cantilever beam in cross flow

The first FSI problem investigates the interaction between a fluid flow and a slender struc-
ture. An elastic beam is clamped at the wall in a domain filled with Newtonian, incom-
pressible fluid. The beam is initially at rest, but the forces from the fluid cause the beam
to deflect and start oscillating. These oscillations are gradually damped out by the fluid
and a wake develops due to the presence of the beam. The problem has been studied
with three methods: a DNS simulation with two-way coupling, a simulation with one-way
coupling and a Fourier series expansion.

Figure (3.34) shows a perspective view of the fluid domain considered in this problem.
The domain is hexahedral in shape and cubic cells are used for the discretization. z+- and
y−-views of the domain are shown in figure (3.33). The beam is surrounded by water with
viscosity µf = 1.0 · 10−3 Pas and density ρf = 1000 kg/m3. The fluid domain is bounded
by its lower and upper corner:

• Domain lower corner: ( 0, 0, 0 ) mm

• Domain upper corner: ( 0.5, 3.0, 1.0 ) mm

A uniform grid is used for the initial discretization of the fluid domain. When the uniform
base grid has been built, the desired number of refinements is added around the beam.
Each refinement halves the cell size next to the beam and the refinement length was set to
0.2 mm, which corresponds to 10 times the diameter of the beam. The cubes in the base
grid have a side length of h0 = 5.0 · 10−5 m. The bottom plot in figure (3.34) shows a slice
through the fluid domain with a number of refinements around the beam.

The beam is made of a linear elastic material with Young’s modulus E = 1.0 · 107 Pa
and Poisson’s ratio νs = 0.3. The density of the beam material is ρs = 5000 kg/m3. The
beam has a circular cross section and its geometry is defined by the start point, the end
point and the radius:

• Start point: ( 0, 1.0, 0.5 ) mm

• End point: ( 0.15, 1.0, 0.5 ) mm

• Radius: r = 0.01 mm

15 elements are used for the discretization of the beam. The time step length was set to
∆t = 0.3125 µs, resulting in a CFL number of roughly 0.5 on the finest grid. The end
time of the simulation was set to tend = 1 ms and the inlet velocity was set to one meter
per second: vin = (0, 1, 0) m/s. The fluid boundary conditions are illustrated in figure
(3.33). In summary, the following boundary conditions are imposed on the fluid:

• xbottom : wall (no slip)

• xtop : symmetry

• ybottom : inlet

• ytop : outlet

• zbottom : symmetry

• ztop : symmetry
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Figure 3.33: Fluid domain seen in z+-direction and y−-direction.

Simulations were performed with several different grids and the deflection of the beam tip
was monitored. The beam was kept fixed for the first 1.0 · 10−4 s in all the simulations in
order to allow the boundary layer around the beam to develop. Five different grids were
used, ranging from 3 refinements and 2.8 · 104 cells to 6 grid refinements and 2.0 · 105 cells.
These grids are described in table (3.1). The first order upwind scheme was used for the
convective terms and the implicit Euler scheme was used for the temporal discretization
in the fluid simulation. DNS simulations were performed, hence no turbulence model was
used. Hilber’s α-method with α = −0.05 was used for the temporal discretization of the
Finite Element equations describing the motion of the beam.

Figure (3.35) shows the velocity field in a slice through the center of the domain. The
deflection of the beam as well as the gradual development of the wake can be seen. Note
the effect on the wake when the beam springs back at t = 330 µs: the motion of the beam
gives a thicker wake at the tip of the beam than at the center of the beam.

The deflection of the beam tip as a function of time predicted with the different grids
is shown in figure (3.36). The results predicted with 3 and 4 refinements, corresponding
to approximately 3 and 6 grid cells over the diameter of the beam, are clearly not grid
independent. The differences between the finer grids are much smaller. 5 refinements,
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Figure 3.34: Top: perspective view of fluid domain and beam. Bottom: Fluid grid with refine-
ments seen in the z+-direction.

Table 3.1: Fluid grids used in convergence study.

Number of refinements Number of cells Min. cell size [m]
3 28212 6.25 · 10−6

4 42660 3.125 · 10−6

5 67356 1.5625 · 10−6

6 203156 781.25 · 10−9

corresponding to 13 cells over the diameter, gives a reasonably converged solution.

Figure (3.37) shows the temporal convergence for the case with 6 refinements. It can
be concluded that the time step of ∆t = 0.3125 µs used in the spatial convergence study
is sufficiently grid independent. Even a time step of ∆t = 0.625 µs corresponding to a
CFL number of unity is sufficient. Therefore, the time step is in this case restricted by
the CFL number rather than the need to resolve high frequency oscillations. The flow
is almost uniform, which results in a quite uniform force on the beam. The effect of the
uniform load is that almost all the energy transfered from the fluid to the beam enters the
first eigenmode: oscillations of higher frequency are not visible to the naked eye in figure
(3.36). The system response is therefore dominated by the lowest eigenfrequency.

The time history of the total force on the beam is shown in figure (3.38). The pressure
part and the viscous part of the force are also given. A high force is predicted at the start
of the simulation because the boundary layer around the beam has not developed at this
stage. The beam experiences a rapidly decreasing force during the first time steps of the
simulation, but the decrease starts to level out very soon. A new rapid decrease is noted
at t = 1 · 10−4 s when the initially fixed beam is released. Two distinct oscillations in the
force can be seen as the the beam oscillates, but the low frequency oscillations die out after
t ≈ 6 · 10−4 s and the force approaches the steady state value asymptotically.

The oscillation of a beam in a fluid was also studied with modal analysis. A Fourier
series expansion of the Euler-Bernoulli beam equation was computed and the influence of
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Figure 3.35: Flow field around an oscillating beam.
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Figure 3.36: Tip deflection in y-direction of a beam oscillating in a fluid.
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Figure 3.37: Temporal convergence of a beam oscillating in a fluid.
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Figure 3.38: Pressure force, viscous force and total force on a beam oscillating in a fluid.
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Figure 3.39: Tip deflection in y-direction of a beam oscillating in a fluid: comparison of results
obtained with DNS, simulation with one way coupling and Fourier series analysis.

the surrounding fluid was included as a distributed load under the assumption of one-way
coupling. The flow field was assumed to be uniform and a drag correlation for long cylinders
was used to estimate the fluid force. The derivation of the Fourier series expansion is given
in appendix C.

Figure (3.39) shows a comparison between the results obtained with the Fourier series
analysis described above, the DNS simulation and the simulation with one-way coupling.
The solution obtained from the Fourier series expansion is nearly identical to the simulation
with one way coupling. This is expected, because both of these computations use the same
assumption for the fluid force: one way coupling is used and it is assumed that the drag
force is the only important force. The small difference between the Fourier series solution
and the one-way coupling simulation can be attributed to the fact that the Fourier series
expansion assumed a uniform flow field while the one-way coupling simulation sampled
the fluid velocity from the simulated flow field. This simulated flow field is not perfectly
uniform due to the effect of the wall, even though the boundary layer is thin compared to
the length of the beam. The DNS simulation predicts an oscillation with larger amplitude,
especially during the first period. The reason for this is most likely that the DNS simulation
accounts for the history force and the added mass force, which were neglected in the
simplified analysis. Furthermore, the DNS simulation predicts a slightly larger period time
due to the strong coupling with the fluid. It is interesting to note that all three methods
approach the same steady state value. This is also expected, because the simplified analysis
included the stationary force but neglected transient forces. The differences between the
DNS simulation and the simplified analysis are noticeable, but the error decreases when
steady state is approached. This observation suggests that the DNS simulation could be
used to improve the drag correlation. Since the discrepancies occur during the transient
phase, the drag correlation could be extended by adding a transient term which depends
on the relative acceleration. The DNS simulation could then be used to determine the
coefficient in this term.
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3.3 Simulations of paper forming

This section investigates the possibilities to simulate paper forming with the code devel-
oped in the present work. First, the problem setup is defined. Then, a simulation of
paper forming with 50 fibers is described. Finally, the robustness of the fiber model is
demonstrated by simulating a larger number of fibers under the simplification of one-way
coupling.

3.3.1 Problem description

The simulation starts with a cloud of fibers randomly distributed in the fluid domain. As
the simulation evolves, the fibers follow the fluid and fall down on a forming fabric in the
lower part of the domain and start to form a fiber web. The progress of this process is
shown in figure (3.40), where fibers suspended in the fluid gradually fall down on a forming
fabric. Note the large number of contacts involved when the fibers pile up on the fabric.
The load on the fibers in the web increases as more and more fibers lay down on top. This
is stressful for the FE solver and puts a very severe test on the implementation of the
contact model: any weakness in the implementation will cause rapid divergence.

Figure 3.40: A cloud of fibers falls down onto a forming fabric. Forming fabric geometry
courtesy of Albany International.

Two different forming fabrics are studied in this project. Figure (3.41) shows the geometry
of the two forming fabrics, in the following called fabric A and fabric B. Note the geometric
complexity of both forming fabrics. As can be seen in figure (3.41), the representation of
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fabric B has been constructed by mirroring a smaller part of the true geometry. The
geometrical description of fabric B used in this study is therefore an approximation.

Figure 3.41: Geometry of forming fabrics used in the simulations: perspective view (top) and top
view (bottom). As can be seen, the representation of fabric B has been constructed by mirroring
a smaller part of the true geometry. The geometrical description of fabric B used in this study is
therefore an approximation. Forming fabric geometry courtesy of Albany International.

The simulation domain is filled with water with viscosity µf = 1.0 · 10−3 Pas and density
ρf = 1000 kg/m3. The domain is hexahedral and it is bounded by its lower and upper
corner:

• Lower corner (0, 0, 0) m

• Upper corner (2.15 · 10−3, 1.91 · 10−3, zuc) m

zuc is the height of the domain, which is varied depending on the number of fibers used in
the simulation. If many fibers are simulated, a higher domain is necessary. The forming
fabric is located in the lower part of the domain as shown in figure (3.42). Figure (3.43)
shows slices through the domain with the fluid boundary conditions indicated. The water
with the suspended fibers flows through the domain from top to bottom. In summary, the
boundary conditions on the fluid are:

• xbottom : inlet

• xtop : inlet
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Figure 3.42: Forming fabric and simulation domain. Forming fabric geometry courtesy of
Albany International.

Figure 3.43: Fabric and simulation domain.

• ybottom : inlet

• ytop : inlet

• zbottom : outlet

• ztop : inlet

The inlet velocity was set to vin = (0, 0,−1) m/s.
The geometrical description of the paper fibers was generated with GeoDict. To perform

a simulation, the mechanical properties of the fibers need to be defined. Material data for
for dry, pressed sheets of paper are relatively easy to find in the literature. However,
material data for wet individual fibers, which have not been pressed, is much more difficult
to measure and difficult to find in the literature. In the present work, buoyant fibers with
a density of ρs = 1000 kg/m3 were studied. A Young’s modulus of E = 5.0 · 107 Pa and
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a Poisson’s ratio of νs = 0.3 were assumed. The coefficient of friction was set to µfr = 1
and the collisions were modeled as inelastic with ecor = 0.

The first order upwind scheme was used for the convective terms and the implicit Euler
scheme was used for the temporal discretization of the Navier-Stokes equations. Hilber’s
alpha method with α = −0.3 was used for the temporal discretization of the FE equations.

3.3.2 Laydown simulation

50 fibers falling down onto forming fabric B were simulated. The height of the domain was
set to zuc = 3 mm. The time step length was set to ∆t = 0.25 µs. The penalty method was
used for contact between fibers and the DCR method was used for contact between fibers
and forming fabric. Figure (3.44) shows the grid seen in the y-direction. Note the adaptive
refinements around the fibers as well as around the forming fabric. The grid consists of
roughly 700000 cells and 8000 time steps were taken. The simulation time necessary for
this problem was 5 days on two threads of an Intel Core 2 Quad @ 2.40 GHz with 8 GB
of RAM.

Figure 3.44: Grid refinements around fibers and forming fabric. The grid is colored by the fluid
velocity.

Figure (3.45) shows how the fibers fall down on the forming fabric. The streamlines are
colored by the fluid velocity and the forming fabric is shown partly transparent to reveal
the flow pattern through the holes of the forming fabric. The flow is quite uniform far
away from the forming fabric, but highly complex close to the forming fabric. The fluid is
accelerated from the free stream velocity of 1 m/s to approximately 8 m/s when passing
through the holes of the forming fabric. As a result, the fibers falling down on the forming
fabric are subjected to both collision forces and a nonuniform flow field. However, fibers
flowing freely in the domain far away from the forming fabric follow the fluid because the
fibers are buoyant. As a result, the fibers have the same velocity as the water before they
come close to the forming fabric, but fibers impacting with the forming fabric experience
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Figure 3.45: 50 fibers falling down on a forming fabric. The streamlines are colored by the fluid
velocity.

a rapid change in velocity due to the collision. The contact forces from the forming fabric
prevent the fibers from following the water downwards through the domain. Therefore, the
fibers will disturb the fluid more when they are resting on the forming fabric, thus getting
support from the forming fabric. This phenomenon is shown in figure (3.46), which shows
the velocity in a slice through the domain. The thick white circles show the contours of
the forming fabric and the thin white ellipses show a slice through the surface of the fibers.
The fibers in the left plot in (3.46) are located in the free stream quite far away from the
forming fabric. They therefore follow the fluid, the velocity is uniform close to the fibers.
In the plot to the right in (3.46), several fibers rest on the forming fabric. The wakes visible
below these fibers reveal that the fibers disturb the fluid. Figure (3.47) shows the region
close the the forming fabric zoomed in. The effect of the fibers on the flow field is clearly
to be seen even though the grid used is quite coarse.

As described above, the fibers have a strong influence on the flow field close to the form-
ing fabric, but fibers far away from the forming fabric follow the fluid without disturbing
the flow. This observation suggests a possible simplification of the model to improve the
efficiency without loosing too much accuracy. The Immersed Boundary Method and a drag
correlation could be combined: the flow around fibers close to the forming fabric could be
resolved with the Immersed Boundary Method, but a drag correlation could be used for
fibers far away from the forming fabric. In this way, the flow around fibers which disturb
the flow will be resolved, but the flow around fibers that do not disturb the flow will be
neglected. This approach has not been implemented in the present work, but it would be
a very interesting extension in a future project.

The moving adaptive grid refinements avaiable in IBOFlow are essential for the simu-
lation of this problem. Figure (3.48) shows how the grid refinements follow the fibers as
they flow through the water. Note the structure of the refinements where each refinement
halves the size of the fluid cells. This type of refinement prevents deterioration of the mesh
quality: since cubic cells are always used and the refinements are always done by cutting
the cell size in half, cells with extreme aspect ratio will never occur in the grid.

The quality of a fiber web can be evaluated by studying variations in grammage and
fiber direction. To get a statistically meaningful measure of these properties, the fiber web
studied must contain sufficiently many fibers. 50 fibers are not enough for a meaningful
analysis of grammage and fiber directions. The postprocessing capabilities of the code are
therefore demonstrated in the next section instead.
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Figure 3.46: 50 fibers falling down on a forming fabric: slice colored by the fluid velocity.

Figure 3.47: 50 fibers falling down on a forming fabric: forming fabric region zoomed in.
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Figure 3.48: 50 fibers falling down on a forming fabric. The adaptive grid refinements move
with the fibers as they flow through the water. The grid is colored by the fluid velocity.
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Figure 3.49: Velocity field in a plane through fabric A (left) and fabric B (right)

3.3.3 Qualitative comparison of two forming fabrics

A qualitative comparison of two different forming fabrics has been performed. The simula-
tions were performed with one-way coupling and roughly 400 fibers were distributed in the
domain as shown in figure (3.40). The larger number of fibers is stressful for the FE solver
and the simulations are therefore a good test of the robustness of the code. A steady state
solution of the flow through the fabric was simulated and the fibers were tracked in the
stationary fluid. The fluid mesh used in this case consists of approximately 5.0 · 105 cells.
Figure (3.49) shows the flow field through the two forming fabrics and the corresponding
pressure drops are shown in figure (3.50). The pressure drop over forming fabric A is higher
than the pressure drop over forming fabric B because forming fabric A has a thicker, more
complex geometry with narrower channels. In this simulation, the velocity at the inlet was
prescribed. An alternative would be to prescribe the pressure drop. This would probably
result in larger differences between the velocity fields through the two forming fabrics. The
velocity through fabric B would then be higher than the velocity through fabric A due to
the larger resistance in fabric A. These velocity differences could result in differences in
the formed fiber webs. Such effects will not be captured in this simulation and will be
investigated in the future.

The resulting fiber webs built up during the simulations are shown in figure (3.51). The
fiber webs formed on the two fabrics look relatively similar in the top figure in (3.51), but
the bottom figure in (3.51) reveals that the fibers follow the topology of the forming fabric:
the fibers are sucked into the holes of the forming fabric. This phenomenon is particularly
pronounced for fabric B, which has larger holes. Figure (3.52) shows the same fiber webs
seen from above. This simulation example shows that the code can handle forming of
larger fiber webs, no stability problems occur even though the fiber web is kept together
only by contact forces and fluid forces.

An important measure of the quality of a paper is how evenly the fibers are distributed.
The distribution of fibers can be studied with the code developed in the present work by
computing the grammage as described in the theory section. Figure (3.53) shows plots of
the grammage for fabric A and B. The mass distribution is relatively unsmooth on both
forming fabrics and it is difficult to draw conclusions based on figure (3.53). The reason
for the unsmooth plots is probably that 400 fibers are not enough to form a continuous
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Figure 3.50: Pressure drop over fabric A (left) and fabric B (right)

Figure 3.51: Fiber web built up on two different forming fabrics. The lower figure, where the
forming fabric is transparent, reveals that the fiber web follows the topography of the forming
fabric: the fibers flow into the holes of the forming fabric. This phenomenon is particularly
pronounced for fabric B, which has a simpler geometry. Forming fabric geometry courtesy of
Albany International.

fiber web with homogeneous thickness. This effect can also be seen in figure (3.52): the
forming fabric is not completely covered by fibers. Therefore, more fibers should be used
in the simulation in order to get a good average.

The hypothesis that the unsmooth distribution seen in figure (3.53) is caused by too few
fibers in the simulation has been investigated. For this purpose, a simulation with 1300
fibers falling down onto Fabric B was performed. Figure (3.54) shows the distribution
of fibers on forming fabric B when 400 and 1300 fibers were used in the simulation. The
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Figure 3.52: Top view of fiber webs built up on two different forming fabrics. Forming fabric
geometry courtesy of Albany International.

simulation with 1300 fibers gives a much smoother distribution, confirming that more fibers
are needed to get meaningful results from the postprocessing.

Figure (3.55) shows the fiber web formed during this simulation and the fiber web
formed during the simulation with 400 fibers. As can be seen on the structure of the fiber
web, the fibers are sucked into the holes of the fabric. The simulation with 1300 fibers
reflects this observation in the variation of the grammage: the grammage has peeks above
the holes. Comparing with the plot to the left in figure (3.55) reveals that this effect is less
pronounced in the simulation with 400 fibers. The trend of fibers being sucked into the
holes of the fabric can be seen when looking at a web with 400 fibers. However, more fibers
are needed to see a clear impact on the variation of grammage. This comparison of fiber
webs of different size shows that care must be exercised when studying properties of the
fiber web: a fiber web with a moderate number of fibers can reveal interesting trends if it
is inspected visually, but a large number of fibers is necessary to get meaningful statistical
measures.

Figure 3.53: Variation of grammage in the fiber web predicted with 400 fibers.

Since 400 fibers were found to be insufficient, a simulation with a larger number of fibers
falling down onto forming fabric A was also performed. A comparison between the fiber
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Figure 3.54: Variation of grammage in the fiber web predicted with 439 fibers and 1348 fibers.

Figure 3.55: Grammage in a slice through a fiber web simulated with 439 fibers (left) and 1348
fibers (right). Blue indicates low grammage and green indicates high grammage.

webs built up on the two forming fabrics is shown in figure (3.56). The mass distribution
and the mean angle are shown in figure (3.57). These simulations predict smoother mass
distributions than the simulations with 400 fibers. The mean angle is close to 45 degrees
(≈ 0.8 rad) on both forming fabrics. Since the angle may vary from 0 to 90 degrees, a
mean value of 45 degrees indicates that the fibers have not been aligned in a particular
direction. One reason for the randomized fiber orientation is probably that the simulations
were performed without horizontal velocity. Adding a horizontal velocity component would
probably induce anisotropy. Furthermore, the orientation of fibers in a real paper machine
will be highly anisotropic when the suspension leaves the headbox. The anisotropy from
the headbox was not accounted for in this simulation, instead a fully randomized fiber
orientation was assumed.
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Figure 3.56: Fiber web built up on forming fabric A (left) and forming fabric B (right).

Figure 3.57: Mass distribution (top) and mean angle with the x-axis (bottom) of the fiber webs
built up on the two forming fabrics.
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4 Summary and Conclusions

A Finite Element beam model with geometric nonlinearities and contacts with friction
has been implemented. The implementation has been validated against several demanding
problems described in the literature. It can be concluded that the code performs very well
for the test cases considered, even when compared to other beam models that account for
finite strains and shearing of the cross sections. It has been shown that the code can handle
postbuckling, dynamic problems with finite rotations and contacts with friction. Newton’s
method is used to solve the nonlinear system of equations, which results in a very robust
code.

Contact detection for elements with elliptical cross section has been studied. Collision
candidates were identified with a kd-tree and the shortest distance between two elements
was computed with an iterative algorithm. It was concluded that it is difficult and com-
putationally expensive to determine the overlap of two elements, but the distance between
two non-overlapping elements can be found at a reasonable cost. Based on this observation,
a small penalty layer was added in the contact models, so that collisions are resolved when
the fibers are very close, but not actually touching. This approach allows the contacts to
be resolved much faster.

Two contact models have been implemented: a penalty method and an impulse based
method. Inelastic or partly inelastic contacts are modeled with the coefficient of restitution
and friction is modeled with Coulomb’s law. A regularization of Coulomb’s law is used in
the penalty method. Both models give acceptable results for the test problems and both
models are robust enough to simulate paper forming. The penalty method seems to give
slightly more accurate results for the test problems, but the impulse based method has
the benefit of being able to handle perfect stick. The impulse based method as well as
the penalty method can be adapted to run in parallel. Both contact models are therefore
valuable.

The FE code has been coupled with the CFD code IBOFlow with the Immersed Bound-
ary Method. This method is implicit, second order accurate and very robust. A beam
oscillating in a cross flow has been studied with DNS, a drag correlation and a Fourier
series approximation. It was found that DNS is necessary to fully capture the transient
response, but the simplified Fourier series analysis and the drag correlation give the same
steady state response. The DNS simulation could be used to improve the drag model so
that the transient response can be captured. This could be done by adding a transient
term to the drag correlation and using the DNS simulation to determine the coefficient
of this term. This approach offers a possibility to use DNS simulations to improve the
accuracy of simpler models.

The code has been used to simulate paper forming. The robustness of the implemen-
tation was very satisfactory for this extremely difficult problem. The large displacements
of the immersed objects are handled without difficulty and the complex geometry of the
forming fabric has no negative effects on the fluid mesh quality. The moving adaptive grid
refinement technique available in IBOFlow is essential for the treatment of complex moving
boundaries. The cubic cells in combination with the octree structure used to represent the
fluid grid ensures that the mesh quality never deteriorates. The fast and robust FE code
handles large rotations without difficulty. The collisions do not cause convergence prob-
lems if suitable time step lengths and simulation settings are chosen. However, short time
steps are necessary to resolve inelastic collisions with friction. The Immersed Boundary
Method is robust, buoyant fibers can be simulated without stability problems.

A qualitative comparison of two forming fabrics was performed with a larger number
of fibers. The simulations were performed under the assumption of one-way coupling. It
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was shown that the FE code is fast and robust enough to handle more than 1000 fibers. It
was also demonstrated that relevant output data such as grammage and fiber orientations
can be extracted from the simulations. It was found difficult to draw conclusions about
variations in grammage if too few fibers are used in the simulation. If too few fibers are
used, they do not form a continuous fiber web and then it is not meaningful to talk about
a continuous variation of grammage. Even though problems were encountered with the
statistical measures, interesting trends could be identified by inspecting the formed fiber
webs. It was found that the fibers tend to flow into the holes of the forming fabric and
here a difference could be seen between the forming fabrics.

5 Further work

Even though the code developed in the present work is highly efficient, the computational
cost of the simulations is a problem. Small cells are needed to resolve the flow around the
fibers and a huge amount of time steps is required to perform a full laydown simulation.
The simulation time is dominated by the fluid solver, so a speedup of the simulations
could be gained by increasing the speed of the CFD solver. In the future, IBOFlow will
be parallelized so that simulations can be performed on clusters. This will allow much
larger problems to be studied. The contact detection routines will also be adapted to run
in parallel.

The FE code developed in the present work has been validated against several de-
manding problems described in the literature. The fluid-structure interaction has been
examined by comparison with simpler, but well established models. Test cases involving
fluid-structure interaction with strong coupling and large deformation of structures are
difficult to find in the literature. It would be very interesting to set up an experiment with
a demanding fluid-structure interaction problem and compare with simulation results from
FCC’s code. One example of such a problem could be a dambreak where an elastic beam
is hit by the collapsing water column. Then the problem would include a combination of
FSI and VOF, making the problem highly interesting on its own.

It is possible to combine the Immersed Boundary Method and a drag correlation. This
can be done by using the IBM in regions where strong interaction between the fibers and
the fluid is expected, but using a drag correlation in regions where the fibers are expected
to follow the fluid without disturbing the fluid. This approach would allow the interaction
between fluid and fibers close to the forming fabric to be captured, but the interaction
between fibers and fluid far away from the forming fabric could be neglected. The number
of cells needed for a simulation would then decrease dramatically.

The present work has described initial development of models that can be used to study
the behavior of fibers suspended in a fluid. The project will continue and more detailed
simulations will be performed. The models will be refined by taking the effect of fillers
and fines into account. The present work has demonstrated that the code can be used to
study the effect of different forming fabrics or different boundary conditions. It would be
very interesting to perform parametric studies with the aim of optimizing the process.

The effect of chemicals on the interaction between fibers and forming fabric has not
been studied in the present work. Chemicals play an important role in the process of
paper forming, so good models are needed for the interaction between chemicals and fibers.
Including fillers and fines in the simulation and modeling the effect of chemicals on fillers,
fines and fibers would improve the accuracy of the simulations.
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A Formulas for three-dimensional rotations

As noted in [25], the exponential T of a skew-symmetric 3 ·3-matrix can be computed with
the formula first given by Rodrigues:

Θ = S (θ) (A.1)

θ = |θ| (A.2)

T = exp (Θ) = I +
sin θ

θ
Θ +

1− cos θ

θ2
Θ2 (A.3)

The matrix logarithm, which is the inverse of the matrix exponential, can be computed as:

τ =
1

2

∣∣axial (T−TT
)∣∣ (A.4)

Θ = log (T) =
arcsin τ

2τ
axial

(
T−TT

)
(A.5)

The transformation from angles to spin variables, Λ, was derived in [25]. It can be com-
puted as:

Λ =
∂θ

∂ω
= I− 1

2
Θ + ξΘ2 (A.6)

Θ = S (θ) , θ = |θ| (A.7)

ξ =
2 sin θ − θ (1 + cos θ)

2θ2 sin θ
(A.8)

B Formulas for the static co-rotational formulation

B.1 Γ

The matrix Γ is used when the internal force vector and tangent stiffness are calculated.
It relates an infinitesimal motion of the element frame to an infinitesimal motion of the
nodal degrees of freedom. Γ is defined as follows:

ΓT =
[
∂ωE
∂x1

∂ωE
∂ω1

∂ωE
∂x2

∂ωE
∂ω2

]
(B.1)

A complete derivation of Γ is given in [24] for the choice of local coordinate system used
in the present work. The main steps are recited here and the final result is given.

As can be seen in equation (B.1), Γ contains the derivative of the spin of the element
frame with respect to all element degrees of freedom. The derivation of Γ requires taking
the variation of the local frame, which is defined as follows: The first base vector is given
by the centerline of the element:

e1 =
xe2 − xe1
|xe2 − xe1|

=
xe2 − xe1

l
(B.2)

To define the second and third base vectors, a vector q is introduced. This vector is
initially aligned with the e2-axis in the start point and rotates with the start point when
the element deforms:

qloc = ET ·T1 · E0 ·
[

0
1
0

]
(B.3)
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Note that equation (B.3) gives q in local coordinates. The second and third base vectors
are defined as:

e3 =
e1 × q
|e1 × q|

(B.4)

e2 = e3 × e1 (B.5)

The variation of ωE can be related to the variation of the base vectors by taking the
variation of the transformation matrix E:

S (δωE) = ET · δE (B.6)

Writing out the terms in (B.6) gives: 0 −δω3
E δω2

E

δω3
E 0 −δω1

E

−δω2
E δω1

E 0

 =

e1 · δe1 e1 · δe2 e1 · δe3

e2 · δe1 e2 · δe2 e2 · δe3

e3 · δe1 e3 · δe2 e3 · δe3

 (B.7)

Identifying terms in (B.7) gives the following expressions:δω1
E

δω2
E

δω3
E

 =

−e2 · δe3

−e3 · δe1

e2 · δe1

 (B.8)

The expression in (B.8) is given as equation (51) in [24]. With the help of equation (B.8),
the problem of computing the variation of the spin of the local frame has been reduced to
taking the variation of the base vectors e1 and e3. Taking the variation of e1 gives:

δe1 =
1

l
(I− e1 ⊗ e1) · (δu2 − δu1) (B.9)

δe3 is also required. From the definition in (B.4), it can be seen that e3 depends on e1

and q. Therefore, the variation of e3 can be expressed as:

δe3 =
∂e3

∂q
· δq +

∂e3

∂e1

· δe1 (B.10)

Evaluating the derivatives in (B.10) by using the definition (B.4) gives the variation of e3

as:

δe3 =
1

lq2

[
e2

(
q1

(
δx3

2 − δx3
1

)
− lδq3

)
− e1q2

(
δx2

2 − δx2
1

)]
(B.11)

Inserting (B.9) and (B.11) into (B.8) gives the following expression for the variation of the
spin of the local frame (equation (54) in [24], but note the spelling mistake on the index
in [24]):

δωE =

 1
lq2

(lδq3 − q1 (δx3
2 − δx3

1))

−1
l

(δx3
2 − δx3

1)
1
l

(δx2
2 − δx2

1)

 (B.12)

Taking the variation of q gives:

δq = S (δωs) · q (B.13)

Combining the above expressions gives the following expression for Γ:

ΓT =

[
0 0 η

l
1 (−η) 0 0 0 (− ηl ) 0 0 0

0 0 1
l

0 0 0 0 0 (− 1
l ) 0 0 0

0 (− 1
l ) 0 0 0 0 0 ( 1

l ) 0 0 0 0

]
(B.14)

η =
q1

q2

(B.15)
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B.2 P

According to eqn (33) in [25], the 6 · 6 blocks of the matrix P can be computed as:

P
ab

= Iδab −Ψ
a
· ΓT

b
(B.16)

By taking Γ from (B.14) and Ψ from equation (34) in [25], the projector matrix P is found
to be:

P =



1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 −η/l 0 η 0 0 0 η/l 0 0 0
0 0 −1/l 0 1 0 0 0 1/l 0 0 0
0 1/l 0 0 0 1 0 −1/l 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 −η/l −1 η 0 0 0 η/l 1 0 0
0 0 −1/l 0 0 0 0 0 1/l 0 1 0
0 1/l 0 0 0 0 0 −1/l 0 0 0 1


(B.17)

B.3 F

The matrix F depends on the internal force vector of an element. Let n1 and m1 be the
internal force and moment in the start point of the element. In the same way, let n2 and
m2 be the internal force and moment in the end point. The matrix F is defined in [25] as:

F =



S (n1)

1
2
S (m1)

S (n2)

1
2
S (m2)


(B.18)

Here, S () denotes the spin operator described in the theory section.

C Fourier series expansion of an oscillating cantilever

beam in a fluid

The force on a cylinder submerged in a fluid can be described by the drag force. Other
forces, such as the history force, may also be important. However, only the drag force is
considered in this simplified Fourier series expansion. For a given cylinder geometry, the
drag coefficient cd can be obtained from tabulated data or curve fitting formulas and the
total drag force on the cylinder is computed as [6]:

Fdrag =
1

2
ρF cdAproj

∣∣∣uF − ·
w
∣∣∣ (uF − ·

w
)

(C.1)

In the present work, values for cd for flow around a long cylinder given by Clift et al. are
used [23]:

cd = 9.689
Re0.78

(1 + 0.147 ·Re0.82) if 0.1 < Re < 5

cd = 9.689
Re0.78

(1 + 0.227 ·Re0.5) if 5 ≤ Re < 40

cd = 9.689
Re0.78

(1 + 0.0838 ·Re0.82) if 40 ≤ Re < 400

(C.2)
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The projected area of a circular beam is Aproj = 2r · L, where r is the radius of the beam
and L is the total beam length. The force per unit length on a thin slice of the beam is
therefore:

q =
1

2
ρF cd2r

∣∣∣vF − ·
w
∣∣∣ (vF − ·

w
)

(C.3)

With the fluid properties and simulation settings used here, the boundary layer on the
lower wall will be thin compared to the length of the beam. Therefore, the far-field fluid
velocity is regarded as constant. As a result, the fluid force on the beam will only vary
with the beam velocity in that point.

The Euler-Bernoulli beam equation can be written as [1]:

α
··
w =

q

EI
− wIV , α =

Acsρs
EI

(C.4)

Here, a superscript with roman letters denotes derivative with respect to x, the coordinate
in the axial direction of the beam. Acs is the cross section area of the beam and w denotes
the deflection of the beam. The problem can be studied with modal analysis by making
the following ansatz for the deflection:

w (x, t) ≈
m∑
n=1

Xn (x)Tn (t) (C.5)

In the equation above, Xn is a function of x only and Tn is a function of t only. Subscript
n denotes functions associated with mode n and m is the total number of modes included
in the approximation. The functions Xn must fulfill the boundary conditions. For Euler-
Bernoulli beams, Xn can be expressed in Duncan functions [1]:

Xn = A1ns1 (µnx) + A2nc1 (µnx) + A3ns2 (µnx) + A4nc2 (µnx) (C.6)

s1 (ξ) = sin ξ + sinh ξ (C.7)

c1 (ξ) = cos ξ + cosh ξ (C.8)

s2 (ξ) = − sin ξ + sinh ξ (C.9)

c2 (ξ) = − cos ξ + cosh ξ (C.10)

As noted in [1], the Duncan functions are related through:

c2 (ξ) = s
′

2 (ξ) = c
′′

1 (ξ) = s
′′′

1 (ξ) (C.11)

Furthermore, the Duncan functions are ideal for Dirichlet boundary conditions at ξ = 0
because they have the following convenient properties [1]:

s1 (0) = s2 (0) = c2 (0) = 0, c1 (0) = 2 (C.12)

c
′

1 (0) = s
′

2 (0) = c
′

2 (0) = 0, s
′

1 (0) = 2 (C.13)

s
′′

1 (0) = c
′′

1 (0) = s
′′

2 (0) = 0, c
′′

2 (0) = 2 (C.14)

s
′′′

1 (0) = c
′′′

1 (0) = c
′′′

2 (0) = 0, s
′′′

2 (0) = 2 (C.15)

The beam studied in this example is clamped at the left end and free at the right end.
Therefore, the deflection and the angle are zero at x = 0. The bending moment and the
transverse force are zero at the free end at x = L. These boundary conditions must be
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fulfilled at all instants in time and therefore Xn must fulfill these conditions. The resulting
conditions on Xn are:

Xn (0) = 0 (C.16)

X
′

n (0) = 0 (C.17)

X
′′

n (λnL) = 0 (C.18)

X
′′′

n (λnL) = 0 (C.19)

By inserting these conditions into (C.6), the eigenvalue λn and three of the constants
A1n, A2n, A3n and A4n can be obtained. The result is the following expression for Xn:

Xn (x) = A4n

[
c2 (λnx)− c1 (λnL)

s1 (λnL)
s2 (λnx)

]
(C.20)

If the constant A4n is included in the time function Tn (t), the deflection can be expressed
as:

w (x, t) =
∞∑
n=1

Tn (t)

[
c2 (λnx)− c1 (λnL)

s1 (λnL)
s2 (λnx)

]
(C.21)

Insert (C.21) into the PDE in (C.4):

∞∑
n=1

Tn (t)λ4
n

[
s1 (λnx)− c1 (λnL)

s1 (λnL)
c2 (λnx)

]
= (C.22)

=
∞∑
n=1

(
−Acsρs

EI

··
T n (t)

[
s1 (λnx)− c1 (λnL)

s1 (λnL)
c2 (λnx)

])
+

q

EI
(C.23)

Define ω2
n = λ4

n
EI
Aρs

and bn = c1(λnL)
s1(λnL)

. Insert these definitions together with the expression

for the distributed load in equation (C.23):

∞∑
n=1

[
ω2
nTn +

··
T n

]
[s1 (λnx)− bnc2 (λnx)] = − q0

Acsρs

∣∣∣ ·wrel∣∣∣ ·wrel (C.24)

Expand the load in the same Fourier series as X (x):

f = − q0

Aρs

∣∣∣ ·w − vf ∣∣∣ ( ·w − vf) !
=
∞∑
n=1

an (t) [c2 (λnx)− bns2 (λnx)] (C.25)

To compute the coefficients an, start by multiplying (C.25) by the eigenmode shape
[c2 (λmx)− bns2 (λmx)] and integrate over the length of the beam:∫ L

0

f · [c2 (λmx)− bns2 (λmx)] dx =

∫ L

0

∞∑
n=1

an (t) [c2 (λnx)− bns2 (λnx)] [c2 (λmx)− bms2 (λmx)] dx =

=
∞∑
n=1

an (t)

∫ L

0

[c2 (λnx)− bns2 (λnx)] [c2 (λmx)− bms2 (λmx)] dx︸ ︷︷ ︸
I1

(C.26)

The integral I1 in equation (C.26) was evaluated numerically. It was found that the or-
thogonality of the eigenmodes holds and the value of the integral was found to be:

I1 =

∫ L

0

[c2 (λnx)− bns2 (λnx)] [c2 (λmx)− bms2 (λmx)] dx = L · δmn (C.27)
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Here δmn denotes the Kronecker delta. Inserting (C.27) in (C.26) gives an as:

an (t) =
1

L

∫ L

0

f · [c2 (λnx)− bns2 (λnx)] dx =

=
1

L

∫ L

0

q0

Aρs

∣∣∣ ·w − vf ∣∣∣ ( ·w − vf) [c2 (λnx)− bns2 (λnx)] dx (C.28)

The integral in equation (C.28) above is a complicated function of x and would be difficult
to integrate analytically. Especially, note that q0 depends on cd which in turn is a function
of the Reynolds number Re. The Reynolds number is calculated from the local relative
velocity, which varies with x, so that q0 = q0 (x). Therefore, the integral in (C.28) is
integrated numerically with the Runge-Kutta 45 scheme. When an has been evaluated,
the expanded expression for the load can be inserted in equation (C.24):

∞∑
n=1

[
··
T n + ω2

nTn

]
[c2 (λnx)− bns2 (λnx)] =

∞∑
n=1

an (t) [c2 (λnx)− bns2 (λnx)] (C.29)

Equation (C.29) gives an ordinary differential equation for each Tn:

··
T n + ω2

nTn = an (C.30)

Equation (C.30) can be integrated in time with Newmark’s method. Let k denote time
step. The acceleration at the new time step is computed as:

··
T
k+1

n =
1

β∆t2

[(
T k+1
n − T kn

)
−∆t

·
T
k

n −∆t2 (0.5− β)
··
T
k

n

]
(C.31)

Insert (C.31) in (C.30):

1

β∆t2
T k+1
n +

1

β∆t2

[
−T kn −∆t

·
T
k

n −∆t2 (0.5− β)
··
T
k

n

]
︸ ︷︷ ︸

ck

+ω2
nT

k+1
n = ak+1

n (C.32)

If semi-explicit integration is used, so that an is evaluated at the previous time step instead
of at the current time step, T k+1

n can be computed as:

T k+1
n =

akn − ck(
1

β∆t2
+ ω2

n

) (C.33)

When T k+1
n is known the velocity and acceleration are updated according to:

·
T
k+1

n =
γ

β∆t

(
T k+1
n − T kn

)
+

(
1− γ

β

)
·
T
k

n + ∆t

(
1− γ

2β

)
··
T
k

n (C.34)

··
T
k+1

n =
1

β∆t2

[(
T k+1
n − T kn

)
−∆t

·
T
k

n −∆t2 (0.5− β)
··
T
k

n

]
(C.35)

D Jacobian of inertia force

To compute the Jacobian of the inertia force, first consider the variation of the translational
terms:

δ
(
NaρA

··
u
)

= NaρAδ
··
u = NaρA

∂
··
u

∂u
· δu (D.1)
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The derivative of the nodal acceleration with respect to the nodal displacement must be
determined to evaluate the expression above. In the present work, Newmark’s interpolation
is used to interpolate the nodal quantities in time. In the following, β and γ denote the
Newmark interpolation parameters. The relation between the coordinate and acceleration
at the new time step is given by equation (53) in [5]:

··
u
n+1

=
1

β∆t2

[(
un+1 − un

)
−∆t

·
u
n
−∆t2 (0.5− β)

··
u
n]

(D.2)

Take the derivative of (D.2):

∂
··
u
n+1

i

∂un+1
j

=
δij
β∆t2

(D.3)

Insert (D.3) and (2.60) in (2.59):

δ
(
NaρA

··
u
)

=
NaρA

β∆t2
δu =

NaN1ρA

β∆t2
δu1 +

NaN2ρA

β∆t2
δu2, a = 1, 2 (D.4)

The formula above gives an explicit expression for the inertia stiffness terms corresponding
to the translational degrees of freedom.

Next, consider the variation of the rotational terms, which is more involved. Taking
the variation of the rotational terms in (2.59) gives:

δ
[
Na

(
S (w) · E · J · ET ·w + E · J · ET · ·w

)]
=

Na (δS (w)) · E · J · ET ·w︸ ︷︷ ︸
c1

+NaS (w) · (δE) · J · ET ·w︸ ︷︷ ︸
c2

+NaS (w) · E · J ·
(
δET

)
·w︸ ︷︷ ︸

c3

+

NaS (w) · E · J · ET · δw︸ ︷︷ ︸
c4

+Na (δE) · J · ET · ·w︸ ︷︷ ︸
c5

+NaE · J ·
(
δET

)
· ·w︸ ︷︷ ︸

c6

+NaE · J · ET · δ ·w︸ ︷︷ ︸
c7

(D.5)

To evaluate the first term above, first note that δS (w) = S (δw). Then consider the
Newmark interpolation for the angular velocity given by eqn (54) in [5]:

wn+1 =
γ

β∆t

(
Ψn+1 −Ψn

)
+

(
1− γ

β

)
wn + ∆t

(
1− γ

2β

)
·
w
n

(D.6)

⇒ ∂wn+1
i

∂Ψn+1
j

=
γ

β∆t
δij ⇒ δw =

γ

β∆t
δΨ (D.7)

Here Ψ is an additive angle parameter. The relation between this angle and the corre-
sponding spin variable is given by:

δΨ = H (∆Ψ) · δω (D.8)

Now use (D.7) and (D.8) to evaluate c1 in (D.5):

c1 = −N iγ

β∆t
S
(
E · J · ETw

)
·H · δω (D.9)

To evaluate c2, the variation of the local element frame must be computed. To achieve
this, first consider the variation of the local frame contracted with an arbitrary vector z:

δE · z = S (δωgE) · E · z = −S (E · z) · δωgE (D.10)
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Now consider the variation of the element frame in global coordinates with respect to the
nodal degrees of freedom in global coordinates:

δωgE = E · δωeE = E · ∂ω
e
E

∂xe
· δxe = E · ∂ω

e
E

∂xe
·GT · δxg, (D.11)

G =

[
E 0 0 0
0 E 0 0
0 0 E 0
0 0 0 E

]
, (D.12)

δxg = [δus δωs δue δωe] (D.13)

By comparing (D.11) with [24] and [25], it is noted that:

∂ωeE
∂xe

= Γ (D.14)

By using the explicit expression for Γ for a beam given in [24], δωgE can be expressed in
known quantities:

δωgE = E · Γ ·GT︸ ︷︷ ︸
Γg

·δxg (D.15)

Inserting (D.15) in (D.10) gives the variation of the local frame contracted with a vector
z:

δE · z = −S (E · z) · Γg · δxg (D.16)

Use the expression above to evaluate c2:

c2 = NiS (w) · (δE) · J · ET ·w︸ ︷︷ ︸
z

= −NiS (w) · S
(
E · J · ET ·w

)
· Γg · δxg (D.17)

To evaluate c3, first consider the variation of the transpose of the local frame contracted
with an arbitrary vector z:(

δET
)
· z = (S (δωgE) · E)T · z = ET · S (δωgE)T · z =

−ET · S (δωgE) · z = ET · S (z) · δωgE = ET · S (z) · Γg · δxg (D.18)

Inserting (D.18) into the expression for c3 gives:

c3 = NiS (w) · E · J · ET · S (w) · Γg · δxg (D.19)

c4, c5 and c6 can be evaluated in the same way:

c4 = NiS (w) · E · J · ET · δw =
Niγ

β∆t
S (w) · E · J · ET ·H · δω (D.20)

c5 = Ni (δE) · J · ET · ·w = −NiS
(
E · J · ET · ·w

)
· Γg · δxg (D.21)

c6 = NiE · J ·
(
δET

)
· ·w = NiE · J · ET · S

·
(w) · Γg · δxg (D.22)

To evaluate c7, the derivative of the angular acceleration with respect to the nodal degrees of
freedom must be computed. This can be done by starting with the Newmark interpolation
given by equation (55) in [5]:

·
wn+1 =

1

β∆t2

(
Ψn+1 −Ψn −∆twn −∆t2

(
1

2
− β

)
·
wn

)
⇒ ∂

·
wn+1

∂Ψn+1

=
1

β∆t2
δij (D.23)

⇒ δ
·
w =

1

β∆t2
δΨ (D.24)
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Insert (D.24) into the expression for c7:

c7 =
Ni

β∆t2
E · J · ET · δΨ =

Ni

β∆t2
E · J · ET ·H · δω (D.25)

By inserting the above expressions into (D.5), the contribution to the tangent stiffness
from the rotational inertia is obtained.

E Shortest unsigned distance between two segments

Consider a point pI on the surface of segment I and a point pII on the surface of segment
II. Expressed in the local frame of the corresponding element, the coordinates of these
points are:

plocI = {LIsI , (Rae,IsI +Ras,I(1− sI)) cos(tI), (Rbe,IsI +Rbs,I(1− sI)) sin(tI)}
plocII = {LIIsII , (Rae,IIsII +Ras,II(1− sII)) cos(tII), (Rbe,IIsII +Rbs,II(1− sII)) sin(tII)}

(E.1)

Let pIs and pIIs be the start point of segment I and II, respectively. Then, the coordinates
of the surface points can be expressed in the global frame as:

pgI = EI · plocI + pIs (E.2)

pgII = EII · plocII + pIIs (E.3)

The change of basis matrices EI and EII are not a function of s or t and therefore they
are constants. A vector d from a point on segment I to a point on segment II can be
computed as:

d = pgII − p
g
I = EII · plocII − EI · plocI + pIIs − pIs (E.4)

The square of the distance between the two points is:

d2 = d · d (E.5)

The distance d has extreme values when the square of the distance d2 has extreme values.
d2 has extreme values when the gradient is equal to zero:

∂d2

∂xα
= 0, xα = {sI , tI , sII , tII} (E.6)

The system of equations in (E.6) can be solved with Newton’s method. Recasting the
problem into the framework of Newton’s method, the residual becomes:

res1 =
∂d2

∂sI
= −2diE

I
ij

∂pI,locj

∂sI

res2 =
∂d2

∂tI
= −2diE

I
ij

∂pI,locj

∂tI

res3 =
∂d2

∂sII
= 2diE

II
ij

∂pII,locj

∂sII

res4 =
∂d2

∂tII
= 2diE

II
ij

∂pII,locj

∂tII
(E.7)
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The Jacobian corresponding to the residual in (E.7) is:

K11 =
∂2d2

∂sI∂sI
= 2EI

ik

∂pI,lock

∂sI
EI
ij

∂pI,locj

∂sI
− 2diE

I
ij

∂2pI,locj

∂s2
I

K12 =
∂2d2

∂tI∂sI
= 2EI

ik

∂pI,lock

∂tI
EI
ij

∂pI,locj

∂sI
− 2diE

I
ij

∂2pI,locj

∂tI∂sI

K13 =
∂2d2

∂sII∂sI
= −2EII

ik

∂pII,lock

∂sII
EI
ij

∂pI,locj

∂sI

K14 =
∂2d2

∂tII∂sI
= −2EII

ik

∂pII,lock

∂tII
EI
ij

∂pI,locj

∂sI
K21 = K12

K22 =
∂2d2

∂tI∂tI
=

∂2d2

∂tI∂sI
= 2EI

ik

∂pI,lock

∂tI
EI
ij

∂pI,locj

∂tI
− 2diE

I
ij

∂2pI,locj

∂tI∂tI

K23 =
∂2d2

∂sII∂tI
= −2EII

ik

∂pII,lock

∂sII
EI
ij

∂pI,locj

∂tI

K24 =
∂2d2

∂tII∂tI
= −2EII

ik

∂pII,lock

∂tII
EI
ij

∂pI,locj

∂tI
K31 = K13

K32 = K23

K33 =
∂2d2

∂sII∂sII
= 2EII

ik

∂pII,lock

∂sII
EII
ij

∂pII,locj

∂sII
+ 2diE

II
ij

∂2pII,locj

∂s2
II

K34 =
∂2d2

∂tII∂sII
= 2EII

ik

∂pII,lock

∂tII
EII
ij

∂pII,locj

∂sII
+ 2diE

II
ij

∂2pII,locj

∂tII∂sII
K41 = K14

K42 = K24

K43 = K34

K44 =
∂2d2

∂tII∂tII
= 2EII

ik

∂pII,lock

∂tII
EII
ij

∂pII,locj

∂tII
+ 2diE

II
ij

∂2pII,locj

∂t2II
(E.8)

The derivatives of the surface point coordinates in the local frame (
∂pI,lock

∂sI
and so on )

are computed in exactly the same way as for the case when the shortest distance between
a segment and a point is sought. Note that pI is independent of sII and tII . In the same
way, pII is independent of sI and tI . With the residual in (E.7) and the Jacobian in (E.8),
Newton iterations can be performed to find the closest surface points on two segments. As
for the case when the distance between a segment and a point is sought, the algorithm
must account for the fact that the segments have finite length, so that only sI ∈ [0, 1] and
sII ∈ [0, 1] is allowed. This can be achieved by reducing the Jacobian, thus constraining
the solution to the closest segment edge:

• if sI < 0, then set sI = 0 and reduce the Jacobian and residual according to:

1. res1 = 0

2. K11 = 1

3. K12 = K13 = K14 = K21 = K31 = K41 = 0

• if sI > 1, then set sI = 1 and reduce the Jacobian and residual according to:
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1. res1 = 0

2. K11 = 1

3. K12 = K13 = K14 = K21 = K31 = K41 = 0

• if sII < 0, then set sII = 0 and reduce the Jacobian and residual according to:

1. res3 = 0

2. K33 = 1

3. K31 = K32 = K34 = K13 = K23 = K43 = 0

• if sII > 1, then set sII = 1 and reduce the Jacobian and residual according to:

1. res3 = 0

2. K33 = 1

3. K31 = K32 = K34 = K13 = K23 = K43 = 0

The procedure outlined above can be used to find the shortest unsigned distance between
two segments. It can, however, not be used to determine the overlap (signed distance)
in the case of overlapping segments. If the segments are overlapping, the algorithm will
return the shortest unsigned distance, which is zero. This fact must be taken into account
in the contact algorithm, e.g. by employing a penalty layer so that overlap never occurs.
If the overlap must be computed, a possible solution is to start with the algorithm above
and first locate the values of s and t corresponding to zero distance. When the Newton
iterations get stuck on this point, one can proceed with an optimization algorithm that
is not based on derivatives, e.g. Powell’s method [27]. The s and t found with Newton’s
method could then be used as initial guess for Powell’s method.
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