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Abstract  Microfibrillated cellulose (MFC) is known to provide strong reinforcing effects in polymer 

nanocomposites, and has also been shown to be highly efficient as a filler material in polysodium acrylate 

superabsorbents (SAPs), altering swelling and mechanical properties. In this study three types of MFC with 

differences in structure and surface charge were used at low concentration as filler materials in SAPs. The swelling of 

the composite hydrogels was determined in 0.9 % NaCl solution as well as in deionized water. The shear modulus of 

the samples was determined through uniaxial compression analysis after synthesis and after swelling in 0.9 % NaCl 

solution. Furthermore, the ability to retain filler effects after washing was investigated. The results showed that all of 

the investigated MFCs had a strong reinforcing effect on the shear modulus after synthesis. The filler effect on 

swelling, and on the associated shear modulus of swollen samples, showed a more complicated dependence on 

structure and surface charge. Finally, it was found that the filler effects were reasonably retained after washing and 

subsequent drying. The results confirm that MFC holds great potential as a filler material in superabsorbent 

applications. Furthermore, the results provide some insight on how the structural properties and surface charge of 

MFC will affect gel properties depending on swelling conditions. This information should be useful in evaluating the 

use of different types of MFC in future applications. 
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INTRODUCTION 

Hydrogels are a class of materials that has been and currently is researched intensively. This is because of 

their use and potential in applications such as hygiene products, drug delivery, cell scaffolds, sensing 

systems, etc. [1-4]. Polyacrylic acid (PAA) neutralized with sodium ions is commonly used in 

superabsorbent hydrogels as it is cheap and easy to produce. The performance of such polysodium 

acrylate superabsorbents (SAP) is highly dependent on their swelling and shear modulus (G) [5]. The 

swelling and shear modulus are in turn strongly connected, as seen from the equation describing the 

swelling pressure of a gel [6-8]: 

 π = π𝑚𝑖𝑥 + π𝑖𝑜𝑛 + π𝑒𝑙𝑎𝑠𝑡𝑖𝑐  (1) 

where π𝑚𝑖𝑥  is osmotic pressure from the mixing of the polymer chains with the solvent, π𝑖𝑜𝑛 is the 

osmotic pressure derived from counterions within the gel and π𝑒𝑙𝑎𝑠𝑡𝑖𝑐  is the opposing elastic pressure 

derived from the deformation of the polymer network during swelling. That is, the positive contribution 

from mixing of the polymer chains with the solvent and the osmotic pressure from the counterions, which 

are constrained to the hydrogel due to charge neutrality, is opposed by the deformation of the network. 

Thus, the swelling of a SAP decreases with the ionic strength of the swelling medium and with 

increasing shear modulus of the swollen hydrogel. Conventionally, the shear modulus of SAPs is varied 

by the amount of crosslinker incorporated into the hydrogel network, where a high crosslink density 

corresponds to a high shear modulus. 

Much work has been done on composite hydrogels, e.g. using different fillers to improve gel 

properties. One filler material being of great interest is microfibrillated cellulose (MFC), as it has 

interesting structural properties in combination with the raw material cellulose being abundant and 

renewable [9-11]. In a previous study we showed that MFC, utilized at low concentrations, as a filler 

material in SAP was highly efficient in increasing the shear modulus of the swollen gels [5]. The effect 

of MFC on swelling and shear modulus was in fact equivalent to that of the same mass of conventional 

covalent crosslinker. However, the structure and surface charge of MFC will differ greatly depending on 

raw material and method of preparation, and even more so if also including cellulose whiskers and 

nanocrystals [10, 12-14].  

From traditional filler theory the reinforcing effect will be greatly dependent on the aspect ratio of 

the filler particles, where a high aspect ratio is expected to increase the reinforcement and to cause filler 
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interactions to become important at lower concentrations [15]. The reinforcing effect is also known to be 

dependent on the filler-network interactions, where two extreme cases can be identified [16]: 1) No 

interactions; at small deformations this results in a decrease in gel modulus with volume fraction of filler. 

2) Strong interactions; at small deformations this results in an increase in gel modulus with volume 

fraction of filler. For swelling systems the strength of the filler-network interactions will determine the 

degree to which the filler modifies the equilibrium swelling of the systems. For perfectly adhering, i.e. 

strongly interacting systems, the swelling of the polymer network will be restricted at the filler-network 

interface but will be increasingly unaffected with increasing distance from the filler. On the other hand, 

for non interacting systems, swelling will cause detachment of the network from the fillers, creating a 

liquid vacuole around the fillers [17, 18]. This liquid vacuole will cause an overestimation of the network 

swelling if determined from sample mass, and should cause a decrease in shear modulus. For interactions 

in between the two extremes, the limiting effects on swelling will be increasing with increasing filler-

network interaction, as reasoned in the work by Kraus [17]. 

In the special case of nano-fillers, the surface area per mass is very high, and the distance between 

filler particles is small even at low volume fractions [5, 19]. This will cause the interfacial filler-network 

regions to occupy large volume fractions and to percolate at relatively low concentrations of filler [18]. 

However, it has also been shown and stated that nano-fillers are not very “nano” when utilized in 

composites [20]. Ubiquitous aggregation was reported to cause nano-fillers with different structural 

properties to actually behave similarly in most cases. 

In this study we investigated how three different types of MFC, having differences in structural 

content and surface charge (see Materials section), differed in their reinforcing effect when used at low 

concentration as filler materials in superabsorbents. The swelling of the samples was investigated in 

deionized water and in 0.9 % NaCl solution using gravimetric analysis. The shear modulus of the 

samples was determined using uniaxial compression analysis. Finally, the reinforcing effect after 

washing and drying was investigated. 

EXPERIMENTAL 

Materials 

The three different types of microfibrillated cellulose were: MFC1 bought from the Paper and Fibre 
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Research Institute PFI, Trondheim, Norway. MFC1 had been prepared from commercial bleached kraft 

pulp using a mechanical pre-treatment followed by homogenization according to Eriksson et al [21]. 

MFC1 has previously been characterized as highly heterogeneous, having structural content ranging from 

mico to nanoscale [5]. MFC2 prepared from softwood sulfite pulp though a pre-treatment step involving 

enzymatic degradation and mechanical beating, followed by a homogenization process using a 

Microfluidizer M-110EH (Microfluidics Ind., U.S.A.). MFC2 nanofibers have a width in the 10-40 nm 

range and a length of several micrometers, as previously described [22]. MFC3 prepared by 2,2,6,6-

tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation combined with one pass through a 

Microfluidizer. The resulting nanofibers have a regular width of 4-5 nm and a length of several 

micrometers. Furthermore, MFC3 has a high carboxylate content (negative surface charge) compared to 

MFC1 and MFC2, this due to the conversion of primary hydroxyl groups to sodium carboxylate groups 

during the TEMPO-mediated oxidation [23]. 

The following used chemicals were of analytical grade and were used as received; acrylic acid [AA] 

(Fluka, Belgium), N,N’-methylenebisacrylamide [MBA] (Sigma-Aldrich, Germany), sodium chloride 

(Sigma-Aldrich, Germany), sodium hydroxide (Sigma-Aldrich, Germany), potassium persulfate [KPS] 

(Sigma-Aldrich, Germany). Used H2O was of Milli-Q grade. 

Methods 

Synthesis 

The SAP hydrogels were synthesized by free radical copolymerization as follows: A stock solution of 

AA was drop wise neutralized on ice, to 60 mol%, with 30 w/w NaOH solution. The MFC suspensions 

were diluted to the same concentration (0.87 % w/w) using Milli-Q water. To the neutralized AA stock 

solution the crosslinker MBA was added for a MBA:AA ratio of 1:1000 followed by addition of KPS to a 

concentration of 39 mmolal, all on ice. To Erlenmeyer-flasks containing 4.7 ml of the different MFC 

suspensions (or pure H2O) 5.3 ml of the stock solution was added. The mixtures were bubbled with N2 

gas under stirring while kept on ice for about 30 minutes. The samples were then immediately transferred 

to 7x40 mm autosampler vials (NTK KEMI), which were placed in a water bath at 70 °C for 6 h for the 

synthesis solutions to polymerize. Finally the samples were allowed to settle over night at room 

temperature before breakage of the vials and further analyses. 

Shear modulus determination 
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The shear modulus of the gels was determined as previously described [5]. Briefly, gel cylinders were 

analyzed using uniaxial compression. For the uniaxial compression of Gaussian chain networks the 

following equation is valid [24]:  

 𝑃 = 𝐺(𝛼 − 𝛼−2) (2) 

where P is the pressure, G is the shear modulus and α is the ratio deformed length to initial length. 

For deformation ratios up to 20 % the shear modulus was determined as the slope of the linear region in 

the graph P versus (α-α-2), similar to previous works [5, 25-29]. The non linear data for low strains was 

discarded as it is derived from imperfect geometries of the sample ends [27, 29]. 

Swelling analysis 

Samples were prepared for swelling by cutting of and discarding the uppermost part of the gel cylinders. 

For samples to be swollen in NaCl solution after synthesis, the weights were recorded and the theoretical 

dry weights were calculated, assuming a yield of 100% from the synthesis, as previously described by 

others [30, 31] and by us [5]. Samples were swollen for 6 days in 900 ml 0.90 % NaCl solution or in 5 l 

deionized water, after which their equilibrium weights were recorded. The deionized water was 

replenished daily (washing). After the washing, the samples were dried at 80○C and the dry weights were 

determined. Washed samples were again swollen in NaCl solution, as described above. The swelling 

degree was calculated as: 

 𝑄 =
𝑚𝑒𝑞−𝑚𝑑𝑟𝑦

𝑚𝑑𝑟𝑦
 (3) 

where meq is the mass of the swollen gels and mdry is the mass of the dry gels, calculated or 

measured. 

RESULTS AND DISCUSSION 

Synthesis of Hydrogels 

During the preparation of synthesis solutions containing the different MFCs, it was observed that the 

synthesis solution containing MFC3, prepared by TEMPO-mediated oxidation, was rather heterogeneous. 

The solution contained regions of more gel like character in combination with more liquid regions. 

Probable causes for this behavior are entanglement of the cellulose fibers, due to their very small 

diameter and high aspect ratio and incompatibility of the negatively charged surface of the MFC3 fibers 

with the acidic synthesis solution. MFC1 and MFC2 were more homogeneously dispersed, even though 
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the MFC2 containing synthesis solution was more viscous than the one containing MFC1. Despite the 

differences between the three synthesis solutions, high quality gels were produced, appearing 

homogenous on the macroscopic scale (see Fig. 1). The visual appearances of the gels were; MFC1 – 

opaque, MFC2 – slightly opaque and MFC3 – clear with some diffuse light scattering effects dispersed 

through the gel. In conclusion, MFC1 was the easiest to handle during synthesis, MFC2 was manageable, 

whilst MFC3 was out right difficult to use. 

Shear Modulus after Synthesis 

The analysis of the shear modulus after synthesis revealed that all of the used MFCs had a strong 

reinforcing effect on the hydrogels; with MFC2 having the greatest effect (Fig. 2). To evaluate the 

reinforcing effect, the increase in modulus was compared with traditional hard filler theory for spherical 

fillers, utilizing the simple Einstein-Smallwood equation [32]: 

 𝐺 = 𝐺𝑚(1 + 2.5𝜙) (4) 

where Gm is the shear modulus of the matrix, and is 𝜙 is the volume fraction of filler. Assuming a 

density of 1 g / cm3 for the filler and the gel matrix, the reinforcing effect of the MFCs is approximated to 

be 30-60 times greater per volume fraction of filler than expected for hard spherical fillers. Finally, the 

small error bars presented in Fig. 2 also indicate that the samples are of good quality, homogeneous on 

the macroscopic length scale, this despite the inhomogeneous appearance of the synthesis solution 

containing MFC3. 

Hydrogel Swelling 

To evaluate how the different MFCs influenced the equilibrium swelling degree (Q) of the SAPs, 

swelling studies were conducted. Samples were swollen in 0.90 % NaCl solution and in deionized water 

(washing) for 6 days, at which point the samples were close to equilibrium. In addition, washed samples 

were swollen in 0.9 % NaCl solution to evaluate if the reinforcing effect remained after swelling. As seen 

from Fig. 3a, the swelling in 0.9 % NaCl solution was reduced with the addition of all investigated 

MFCs. The swelling after synthesis was reduced similarly much by MFC1 and MFC2, whilst MFC3 had 

less impact on the swelling. For swelling in deionized water MFC2 reduced the swelling the most, whilst 

MFC1 and MFC3 had less effect on the swelling (see Fig. 3b). For the re-swelling of washed samples in 

0.90 % NaCl, again looking at Fig. 3a, it is seen from the increase in swelling that some of the 

reinforcing effect had been lost. However, much of the filler effect still remained, in particular for MFC2. 
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Taken together, the swelling of samples in deionized water and of washed samples indicates that upon 

washing some of the interactions between filler and matrix were destroyed. Furthermore, it seems from 

the swelling data as if the reinforcement of MFC2 was less affected by washing, possibly due to a 

stronger filler matrix interface leading to less detachment of the matrix from the filler during washing. 

Shear Modulus after Swelling 

To evaluate the mechanical performance of the swollen hydrogels, non-washed samples swollen in 0.90 

% NaCl were subjected to uniaxial compression analysis and the shear modulus (G) was determined. As 

seen in Fig. 4, all of the MFC containing samples displayed an increased shear modulus. In addition the 

order of the modulus was well in agreement with the swelling results. MFC1 and MFC2 containing gels 

displayed a similarly high modulus, for the MFC3 containing gels, the modulus was still increased as 

compared to pure SAP, but not nearly as much as for MFC1 and MFC2. In order to evaluate the actual 

performance of the samples, i.e. the modulus at a given equilibrium swelling degree, the shear modulus at 

equilibrium swelling was compared with the data from our previous work [5] in a plot of log G versus 

log Q (Fig. 5). In that work, MFC1 was used as a filler material at different concentrations in SAP gels 

with different degree of crosslinking. For a swollen polymer network, where only the degree of 

crosslinking changes, such a plot of log G versus log Q should be linear if only the degree of crosslinking 

changes within the network [33-35]. As seen in Fig. 5, the data points from this study correlates well with 

the data from our previous work. It can be concluded that even though MFC3 had somewhat less 

reinforcing effect on swollen hydrogels than MFC1 and MFC2, all of the investigated gels displayed a 

shear modulus at equilibrium swelling similar to what would be expected for samples with traditional 

covalent crosslinker at the same equilibrium swelling. 

CONCLUDING REMARKS 

In this study we investigated how microfibrillated cellulose prepared by different methods, having 

differences is structural content and surface charge, performed when utilized as filler materials in 

superabsorbent polysodium acrylate hydrogels. All of the investigated MFCs showed a strong reinforcing 

effect on the hydrogels after synthesis. However, for swollen samples MFC prepared by TEMPO 

mediated oxidation was the least effective in altering the gel properties, despite its very small dimensions 

and high aspect ratio. This is most likely due to repulsion between the negatively charged surface of that 
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MFC and the negatively charged polymer network, i.e. the filler-network interaction is weak and is 

disrupted during swelling. The MFCs prepared by purely mechanical treatment and enzymatic 

pretreatment showed similar reinforcing effect on non-washed samples swollen in NaCl solution. 

However, in deionized water the enzymatically pretreated MFC showed a greater reinforcing effect, 

possibly due to the more homogeneous high aspect fiber content. The enzymatically pretreated cellulose 

also retained the most of the reinforcing effect after washing, this being important for many applications. 

All investigated samples showed shear modulus at their equilibrium swelling that would have been 

expected if addition of covalent crosslinker had been used to achieve the same equilibrium swelling. This 

indicates that the gels were of good quality with good structural integrity. Finally, for applications it is 

concluded that MFC prepared by TEMPO-mediated oxidation probably is not very suitable to reinforce 

negatively charged hydrogel networks. This given its limited reinforcing effect compared to the other 

MFCs in combination with it being difficult to handle during gel synthesis. On the other hand, both 

purely mechanically prepared and enzymatically pretreated MFC shows good potential as reinforcement 

materials in SAP gels. For applications where samples need to be washed under high swelling conditions 

and where a reinforcing filler material is wanted, it seems as if the enzymatically pretreated MFC would 

be beneficial to use. However, additional more detailed studies on different MFCs should be performed 

to substantiate this observation. 
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FIGURE CAPTIONS 

Fig. 1 Photograph showing synthesised gels with the different MFCs and a pure SAP gel as reference. 

Fig. 2 Shear modulus after synthesis for gels with the different MFCs and for pure SAP gels. Error bars indicate 

Min/Max (n = 2). 

Fig. 3 (a) Equilibrium swelling degree in 0.90 % NaCl per calculated dry weight for samples swollen after synthesis 

(grey, error bars indicate Min/Max, n = 2) and per real dry weight for washed samples (black). (b) Equilibrium 

swelling degree in deionized water. 

Fig. 4 Shear modulus for gels with the different MFCs and for pure SAP at equilibrium swelling in 0.90 % NaCl. 

Error bars indicate Min/Max (n = 2). 

Fig. 5 Plot of log G versus Log Q for the samples in this study (●) in comparison with previously published data (×) 

for SAPs with different degree of crosslinking, utilizing MFC1 at different concentrations (Larsson et al., 2010,  

Soft Materials, 8: 3, 207 - 225) 
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FIGURES 

Fig. 1 

 
  

SAP
+

MFC1

SAP
+

MFC2

SAP
+

MFC3

SAP



 

13 
 

Fig. 2 
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Fig.3 
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Fig. 4 
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Fig. 5 
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Graphical abstract 

 

DIFFERENT TYPES OF MICROFIBRILLATED CELLULOSE AS FILLER MATERIALS IN 

POLYSODIUM ACRYLATE SUPERABSORBENTS 

 

Mikael Larsson, Qi Zhou and Anette Larsson 

 

Three types of microfibrillated cellulose (MFC) with differences in structure and surface charge were 

used at low concentration as fillers in superabsorbents. The results showed on differences between 

different MFCs that were also dependent on swelling conditions. 
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