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Abstract

We propose a systematic means for achieving a set of overall traffic manage-
ment or planning goals with respect to the performance of the traffic network
through the use of link tolls. The primary goals are defined by a set of link
flow restrictions. The tolls that achieve these goals are obtained by solving a
generalization of the classical user equilibrium model which includes a set of
side constraints on the link flows. The set of toll prices obtained is not neces-
sarily unique; this fact enables the traffic planner to choose a toll scheme which
satisfies exogenous constraints and which may optimize a secondary goal, such
as with respect to the toll itself. The overall model is derived as a special case
of a mathematical program with equilibrium constraints (MPEC) describing a
Stackelberg game involving the traffic manager and the users of the network.
The model is shown to yield valuable information also in the case where the
management goals and exogenous toll constraints are inconsistent with each
other or with the underlying network. We give several examples of possible
applications of the model, including the achievement of a system optimal flow
and the derivation of actions for making public transport more attractive, and
propose a conceptual algorithm for solving it. The paper is hoped to provoke
continued research in both theoretical and applied directions.

Keywords: Stackelberg game; link tolls; mathematical programs with equilib-
rium constraints; side constrained traffic equilibrium; Lagrange multipliers; toll
optimization; network design; system optimal flows; subsidies
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1 Introduction

The criteria by which travellers choose their routes in the traffic network are, to
some degree, in conflict with society’s goal of utilizing the network efficiently:
a traveller can be expected to most often choose a route which minimizes a
combination of travel time and expenses while society’s goal often is to have
low average travel times and little damage to the environment. The traffic
system may be viewed as a non-cooperative Stackelberg game, in which a traffic
manager, represented as the leader, changes the infrastructure so as to achieve
some overall management goal with respect to the distribution of the traffic
in the network. The travellers are then modelled as the followers; they react
to the infrastructure changes by modifying their behaviour, for example by
adjusting their route choices or travel modes. If the manager’s infrastructure
changes are adequate, then the travellers’ response is the desired one. Common
means for achieving such a change in the traffic flows are to invest in traffic
network capacity, to introduce traffic controls such as traffic lights and one-way
traffic, to introduce tolls on some links, or some other network design measure,
and to supply the travellers with information about alternative routes.

This work considers the use of a decentralized traffic control, namely the
instrument of link tolls, to achieve a set of overall management or planning
goals, and proposes a systematic means for deriving adequate toll prices. The
primary goals considered can be quite general, and are defined by a set of
desired restrictions on the link flows. Travellers are assumed to choose their
routes in accordance with Wardrop’s principle of user equilibrium; this means
that the link tolls are to be set at a level such that the desired flow distribution
is the result of an equilibration process where the travel costs equal the link
tolls plus all other costs associated with the trips.

The means for deriving the proper link tolls are mathematical programming
models which generalize the standard user equilibrium model by the introduc-
tion of side constraints describing the goals, and, in particular, the Lagrange
multipliers associated with these constraints. The use of a mathematical model
for the derivation of the link tolls is in contrast to heuristic toll schemes, based
on trial and error, whose resulting traffic flows can never be anticipated. Fur-
ther, the use of side constraints supports the process of identifying the proper
goals to be formulated, and the definitions of the side constraints are quite
flexible with respect to the goals that can be considered.

We analyze this model, in particular with regards to the properties of the set
of tolls that will achieve the management goals, and the consequences of incon-
sistencies within the model. The latter is perhaps the most interesting part of
the analysis, considering that in practice it is very likely that the management
goals are unattainable, or that the tolls achieving them and those satisfying



TRAFFIC MANAGEMENT THROUGH LINK TOLLS

all exogenous toll constraints are incompatible. The work also supplies some
example applications, and interesting topics for future research.

We limit ourselves to the study of a static model (an assumption which is
essential1), with fixed demands and a single class of users having additive link
travel costs (assumptions none of which are essential).

To introduce the setting of the problem studied and most of the notation
used, we discuss the Wardrop equilibrium conditions in the next section. In
Section 3, we introduce the general Stackelberg problem. Section 4 explains
the basic properties of the special case of model studied in the context of toll
networks. A conceptual algorithm, as well as the implications of inconsistencies
in the model, is discussed in Section 5. Finally, Section 6 discusses some
interesting applications.

2 Wardrop equilibrium

Let G = (N ,A) be a strongly connected transportation network, where N
and A are the sets of nodes and directed links (arcs), respectively. For certain
ordered pairs of nodes, (p, q) ∈ C, where node p is an origin, node q is a
destination, and C is a subset of N ×N , there are positive travel demands dpq

(which for simplicity shall be assumed fixed) giving rise to a link traffic flow
pattern.

Wardrop’s user equilibrium principle states that for every origin–destination
(OD) pair (p, q) ∈ C, the travel costs of the routes utilized are equal and
minimal. We denote by Rpq the set of simple (loop-free) routes in OD pair
(p, q), by hpqr the flow on route r ∈ Rpq, and by cpqr = cpqr(h) the travel cost on
the route given the vector h of route flows; with this notation, an equilibrium
flow is defined by the conditions

hpqr > 0 =⇒ cpqr = πpq, ∀r ∈ Rpq, (2.1a)

hpqr = 0 =⇒ cpqr ≥ πpq, ∀r ∈ Rpq, (2.1b)

where the value of πpq is the minimal (or, equilibrium) route cost in OD pair
(p, q). An equilibrium state is reached precisely when no traveller can decrease
his/her travel cost by shifting to another route.

The Wardrop conditions can be stated as a variational inequality problem:
the conditions (2.1) are equivalent to h satisfying

[TAP-VIP-H]

−c(h) ∈ NH(h),

1It does not, however, rule out the possibility of the existence of a natural dynamical
extension of the model. Such a model could be of interest for the study of time-varying
network conditions and corresponding management actions.
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where H = {h ∈ ℜ|R|
+ | ΓTh = d } is the set of demand-feasible route flows (ΓT

is the route–OD pair incidence matrix), c : ℜ|R|
+ 7→ ℜ|R|

++ is the vector of route
travel cost functions, |R| is the total number of simple routes in the network,
and NH(h) denotes the normal cone to H at h, that is, the set

NH(h) =

{

{ z ∈ ℜ|R| | zT(y − h) ≤ 0, ∀y ∈ H }, h ∈ H,
∅, h /∈ H.

In the case where the travel cost of a route is the sum of the travel costs
on the links defining it, or, in other words, the route costs are additive, then
the Wardrop conditions can be described in terms of link flows. (This network
description may be desirable, as the number of routes in a network can be
extremely large.) Letting F denote the (bounded polyhedral) set of demand-
feasible link flows, that is, the link flows f satisfying f = ∆h for some vector h
in H where ∆T is the link–route incidence matrix, the problem [TAP-VIP-H]
can be equivalently written as

[TAP-VIP-F ]

−t(f) ∈ NF (f),

where t : ℜ|A|
+ 7→ ℜ|A|

++ is the vector of link travel cost functions. [The link
and route costs are related by c(h) = ∆Tt(f).] The flow polytope F can,
equivalently by the positivity assumption on the link costs, be described by
node conservation constraints.

For overviews of these models, see Nagurney (1993) and Patriksson (1994).

3 A general Stackelberg model

We start by formulating a general Stackelberg problem; later, we shall intro-
duce reasonable assumptions on the nature of the actions taken by the traffic
manager that will allow us to reformulate it into a much simpler problem.

Consider a situation in which the manager of a traffic system wishes to
achieve certain goals with respect to the performance of the system. The goals
are formulated as a set of flow restrictions of the form

gk(f) ≤ 0, k ∈ K, (3.1)

where K is a finite index set, and gk : ℜ|A| 7→ ℜ are C1 functions. The link
flows that satisfy (3.1) form a closed set in ℜ|A|, which we denote by G.

We let the vector p ∈ ℜ|A| represent the actions taken by the manager;
the actions are assumed to result only in an influence upon the travel costs,
according to some parameterization, t̄(f, p), of the link travel cost. There is a
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large freedom in interpretation of these actions, and several possible examples
were given in the introduction.

These actions are further assumed to be restricted to some set P , which
may be determined by political, practical, environmental and economical con-
straints, and possibly other considerations as well. Among the possible actions
and flows in G, the manager optimizes a function, ϕ : P×F 7→ ℜ of the actions
taken and resulting link flows. This function may include some further mea-
sures of network performance as well as measures of the cost and/or benefits
associated with a given action. (We are deliberately imprecise in the descrip-
tion of this general model, since it will soon be reduced to a simpler model
which we shall deal with in more detail.)

Example 3.1 (Capacity constraints) The most immediate example of a
set of desired flow restrictions is that of upper bounds on some links’ flows. In
the framework of (3.1), such constraints are described by

ga(fa) := fa − ua ≤ 0, a ∈ A, (3.2)

where A ⊆ A and ua ≥ 0 is the upper bound on the flow on link a. 2

Remark 3.2 (Types of restrictions) The restrictions are given in terms of
link flows. Since link flows are the likely ones to be observed and those that may
be affected through control measures, this is a natural assumption. We may,
however, extend the situation described to cover also the cases where the side
constraints are given in route flow variables, and the restrictions distinguish
between different classes of travellers and/or vehicles.

The latter extension could serve as a modelling tool for taking into ac-
count different values-of-time among the travellers; further, it can be used to
derive proper tolls on links leading into a given residential area for tourists
but not for residents there, and tolls and/or additional queueing delays for
private vehicles in order to favour public transport. We discuss these applica-
tions in more detail in Section 6, and note here only that the introduction of
commodity-specific restrictions demands a further requirement of the underly-
ing equilibrium model: if the restrictions are to be fulfilled through the use of
(commodity-specific) tolls, then the equilibrium model must be such that the
commodity flows are uniquely determined. 2

This development results in a mathematical program with equilibrium con-
straints:

[MPEC]

minimize ϕ(p, f) (3.3a)



TORBJÖRN LARSSON AND MICHAEL PATRIKSSON

subject to

p ∈ P, (3.3b)

f ∈ G, (3.3c)

where

−t̄(f, p) ∈ NF (f). (3.3d)

Remark 3.3 (Uniqueness of user equilibrium flows) Should t̄(·, p) be a
strictly monotone mapping for every feasible choice of p, the lower-level (fol-
lower) problem (3.3d) has a unique solution, and as such f can be described
as f(p). Then, the function ϕ is in fact a function of p only. 2

Mathematical programs with equilibrium constraints generalize bilevel op-
timization problems, and are in general non-convex. [For an overview of bilevel
problems in transportation research, see Migdalas (1995).]

Example 3.4 (Network design) A familiar form of the equilibrium network
design problem is an instance of [MPEC]. Let p denote an investment in net-
work capacity; the effect of an investment is that of a reduced travel time;
t̄a is often taken to be t̄a(f, p) = ta(fa/pa). An investment pa is associ-
ated with an investment cost, ψa(pa). The goal is to minimize the total
travel time (at a user equilibrium flow) plus the investment costs, that is,
ϕ(p, f) =

∑

a∈A{t̄a(f, p)fa + ψa(pa)}, while satisfying constraints on the in-
vestments made, P = { p ∈ ℜ|A| | ℓ ≤ p ≤ u;

∑

a∈A pa ≤ U }. In the general
formulation of [MPEC], network performance is measured also by constraints
in the model. 2

Example 3.5 (Signal control) A problem of a form similar to the equilib-
rium network design problem is the signal setting problem. The solution of this
problem aims at finding a set of signal control parameter values which, under
user equilibrium conditions, optimizes some measure of the performance of the
network, such as the total queueing delay. In this case, then, the variables p
are the control parameters, for example the green times allocated to the sig-
nal controls, and the parameterized travel cost mapping t(·, p) measures the
travel times and the delays at intersections. (See Cantarella and Sforza, 1987,
and Smith and Van Vuren, 1993, and references therein for examples of traffic
control policies and mathematical models.) 2

Remark 3.6 (Generalized Nash games) A Stackelberg game in which the
leader imposes constraints on the followers’ strategies is discussed by Harker
(1991) in the context of generalized Nash games. He also derives the incentives
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(taxes or subsidies) that must be given to the players in order to make them
obey the constraints, in the form of their dual variables. The type of constraints
considered is, however, rather special, and there is no apparent relationship
between this model and the one developed in this paper. 2

In the following, we shall introduce assumptions on what the actions p
represent which reduce the problem [MPEC] to a sequence of two (potentially)
well-behaved problems.

4 A toll-based model

We restrict our attention to considering an action of particular interest: on
each link (at least potentially), a fixed toll is levied; thus, the influence on the
travellers can be described by t̄(f, p) = t(f) + p, where p is the toll fee.

Introducing some assumptions on this toll scheme, we first argue that it is
natural to assume that link tolls are introduced only on those links where they
are needed for achieving the goals; in other words, tolls should not be levied on
links that do not contribute to the saturation of any restriction in (3.1). We also
assume that the toll levied on a link can be decomposed into the contributions
of all the different restrictions in (3.1), in a proportional manner according to
their contribution to the saturation of the different restrictions; their contri-
bution is measured in terms of derivatives of the constraint functions. (This
decomposition principle makes it possible to investigate the economics of each
flow restriction, and facilitate the economical evaluation of the toll scheme; the
proportionality principle seems natural from the viewpoint of fairness.)

The implication of these conditions is that the link toll is distributed ac-
cording to

pa =
∑

k∈K(f)

βk

∂gk(f)

∂fa

, a ∈ A, (4.1)

where K(f) is the subset of K for which gk(f) = 0, and βk, k ∈ K, are
nonnegative constants. (In vector notation, then, p = ∇g(f)β, with βTg(f) =
0 and β ≥ 0.)

Example 4.1 (Capacity constraints) In the case of simple upper bounds
(see Example 3.1), the expression (4.1) reduces to pa = βa, a ∈ A. In applica-
tions to queueing networks (see Larsson and Patriksson, 1995a and 1995b), pa

is interpreted as the equilibrium queueing delay on link a. The above comple-
mentarity condition then states that there is a queueing delay (pa > 0) only if
the link is saturated (fa = ua). 2
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The effect of assumption (4.1) is more far-reaching than what might appear
at first sight. The main effect is that of reducing the two-level problem into a
sequence of two single-level ones; the reason is that what appears to be a mere
definition is actually a complementarity condition, linking the two variable
groups. Further, these single-level problems can, under some additional, but
standard, assumptions, be formulated as convex programs.

To avoid having to deal with a lot of mathematical details without reaching
a much deeper insight or generality, we will henceforth assume that G is a
convex set which further satisfies a constraint qualification (e.g., Bazaraa et
al., 1993, Chapter 5) and, until further notice, that F ∩G is non-empty. (The
case of inconsistency is covered in Section 5.) (In the case where all functions
gk are affine, the former requirements are fulfilled automatically.) It follows
immediately from the assumptions that F ∩ G is non-empty, compact and
convex.

With these assumptions in place, we observe that the requirements (3.3c)–
(3.3d) simplify to the primal–dual variational inequality problem of finding
(f, p) ∈ F ×ℜ|A| satisfying2

−[t(f) + p] ∈ NF (f), (4.2a)

p ∈ NG(f). (4.2b)

Remark 4.2 (Properties of (4.2)) (a) The assumptions made on the toll
scheme have the effect of making it possible to place the constraints (3.3c) at
the lower level of [MPEC]; this is instrumental in making the problem tractable.

(b) The formulation (4.2) is valid also when the management goals define
non-convex constraints, through the proper re-definition of the normal cone
mapping NG.

(c) It is clear from the expression (4.2b) that the toll vector p is completely
independent of the way in which the set G is described in terms of constraints.
If, for example, the restrictions in (3.1) are given in different units or are scaled
differently, a rescaling into the same units will not be necessary. Also, clearly,
any presence of redundancy in the description of the set G will have no effect
whatsoever on the resulting toll vector.3 2

In order for the vector p to be naturally associated with a toll, that is, p
is non-negative, NG(f) ⊆ ℜ|A|

+ must hold at every solution f to [TAP-VIP-

2The relation (4.2a) is equivalent to (3.3d), while (4.2b) is a restriction of (3.3c); the latter
is easily verified by observing that, by convex analysis, the relation (4.2b) is equivalent to f

being in the face of G exposed by the vector p, which is a subset of G.
3This fact is highlighted when describing the variational inequality in terms of normal

cones; it was one of the main motivations for choosing this form of presentation. Another
is that the traditional way of describing a variational inequality is not useful in the case of
non-convex constraints.
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SC-F ]. A sufficient condition for this to hold is that ∂gk(f)
∂fa

≥ 0 for all a ∈ A

and k ∈ K [cf. (4.1)]. If the condition is not fulfilled, then some link tolls can
be negative, whence the “toll” should be regarded as a subsidy or a network
improvement. (A natural condition is, however, that t(f) + NG(f) ⊆ ℜ|A|

+

holds.) (Applications of negative tolls are described in Section 6.4.)

Example 4.3 (Capacity constraints) The case of upper bounds on the
link flows (cf. Examples 3.1 and 4.1) is one in which, clearly, tolls will be
non-negative. 2

We now observe that, by convex analysis, NF∩G(f) = NF (f)+NG(f) holds
everywhere, and so solving the system (3.3c)–(3.3d) reduces to finding a solu-
tion f to

[TAP-VIP-SC-F ]

−t(f) ∈ NF∩G(f).

The above assumptions ensure the existence of a solution to [TAP-VIP-
SC-F ] (e.g., Hartmann and Stampacchia, 1966). This problem was studied in
detail in Patriksson (1994) and Larsson and Patriksson (1995b and 1996) (in
the optimization setting), and in Larsson and Patriksson (1994), in the context
of descriptive models of traffic equilibria including queueing effects; the above
development shows that the model is also intimately associated with link tolls.

Remark 4.4 (Queueing models) (a) In applications of side constrained
traffic equilibria to queueing networks, we have in Larsson and Patriksson
(1994 and 1996) derived natural conditions on the queueing dynamics that
ensure the existence of an equilibrium in both link flows and queues. These
conditions, and the results obtained, can be repeated verbatim (with the word
’queue’ replaced by the word ’toll’ throughout) for toll networks, thus obtaining
an existence result for an equilibrium in both link flows and tolls, given natural
conditions on the properties of the tolls during a non-stationary (disequilib-
rium) state. (Essentially, as time passes the toll contributed by a restriction
in (3.1) increases to infinity if the flow violates the restriction, decreases to
zero if the restriction is strictly fulfilled, and stays constant if the restriction
is saturated exactly.)

(b) The descriptive and prescriptive modelling approaches can of course be
combined into a single bilevel model, in which, then, the lower level describes
a queue equilibrium model with toll parameters. 2

One cannot assume in general that the set of multipliers βk for the flow
restrictions (3.1) is a singleton, and therefore, while the link flow solution is
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unique whenever the travel cost mapping t is strictly monotone, the toll vector
p which yields the desired equilibrium solution is not. In the context of queue-
ing networks, this can be considered a drawback, since the vector p is, in that
case, interpreted as a queueing delay. So, in Larsson and Patriksson (1994 and
1996), sufficient conditions were therefore derived under which this equilibrium
link queueing delay is unique. In the context of traffic management through
link tolls, however, the non-uniqueness of the multipliers β is a positive feature
of the model, since it facilitates the fulfillment of the traffic management goals
while also satisfying exogenous restrictions (practical, political, environmen-
tal and economical constraints) on the toll scheme. Furthermore, one could
choose a toll vector which simultaneously optimizes the secondary performance
function ϕ. The non-uniqueness of the tolls is, seemingly, a property with
many interesting consequences; we are, however, not aware of any previous
observations of this fact, besides those for the system optimal problem (see
Section 6.3), and of no model in which exogenous constraints on the tolls are
considered. In the next section, we shall elaborate on this further, and study
means for solving the toll optimization model.

5 Toll optimization

In this section, we study the upper-level problem of [MPEC] in terms of the toll
vector p. We then introduce the further assumption that t is strictly monotone
on F , and denote the unique link flow solution to [TAP-VIP-SC-F ] by f ∗. The
set of toll vectors which achieves this solution while satisfying the requirement
(4.1) is given by the set of solutions to (4.2) with f = f ∗. This set, which we
will denote by T , is clearly a non-empty polyhedral set, since F is described by
linear constraints and G satisfies a constraint qualification, so the respective
normal cones at f ∗ are polyhedral.

5.1 The toll optimization problem

The toll optimization problem is

[TOP]

minimize
p∈P∩T

ϕ(p).

This problem is convex, whenever the set P of feasible toll schemes is convex,
and the function ϕ : ℜ|A| 7→ ℜ is convex. (It is further a linear program
if P is polyhedral and ϕ is a linear function.) To be well-defined, a further
requirement on the problem is that P ∩ T is non-empty. The convexity and
non-emptiness conditions are assumed to hold for the present. We shall further
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assume throughout that P is bounded, and that every vector p ∈ P satisfies
∑

a∈AC
[ta(f

∗) + pa] ≥ 0 for every compatible cycle AC in the network, that is,
there is no feasible toll vector such that a traveller can benefit by travelling a
full cycle. These natural conditions ensure the existence of an optimal solution
to [TOP] (under the above conditions), and that the algorithm proposed for
solving it is well-defined.

Example 5.1 (Secondary goals) Several optimization models of the form
[TOP] are conceivable. We may wish to levy the least total toll in the network,
whence we choose ϕ(p) =

∑

a∈A paf
∗
a , or precisely the opposite; the function

ϕ may also include a measure of the cost of implementing toll stations on the
different links, which we naturally would like to minimize. 2

5.2 An algorithm for the toll optimization problem

5.2.1 Solving the problem [TAP-VIP-SC-F ]

We consider solving [TAP-VIP-SC-F ] using a nonlinear pricing scheme which
simultaneously generates f ∗ and a vector β of multipliers for the side con-
straints. One such example is the (proximal) method of multipliers of Rock-
afellar (1978). Reasons for choosing such a scheme are, at least, threefold:
(1) in the optimization setting, the corresponding augmented Lagrangean du-
alization schemes have been found to work very well in numerical experiments
(Hearn and Ribera, 1980; Larsson and Patriksson, 1995a); (2) a vector β (and
hence, through relation (4.1), a toll vector p ∈ T ) is obtained through a conver-
gent sequence of dual vectors; and (3) even in the case of inconsistency (that is,
P ∩T = ∅), a toll vector with interesting properties is produced. (More on the
last point below.) We refer the reader to Hearn and Ribera (1980), Patriksson
(1994) and Larsson and Patriksson (1994 and 1995a) for further details on the
properties of this class of schemes in the context of traffic problems.

Within this scheme a sequence of subproblems of the form [TAP-VIP-F ]
are constructed and solved; in these problems, the mapping t is augmented
by primal–dual terms associated with the side constraints. When selecting
an efficient algorithm for their solution, we note these important points: (1)
the algorithm should have efficient primal reoptimization capabilities, to utilize
that successive subproblems differ only in the travel cost mapping; this suggests
using an efficient primal algorithm; and (2) when solving the toll problem
[TOP], we must have an explicit description of the set T of optimal tolls, or a
good approximation thereof; this suggests the use of column generation/cutting
plane approaches.

The algorithm chosen is the disaggregate simplicial decomposition (DSD)
method, which has been successfully applied in previous works on optimization
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versions of [TAP-VIP-F ] (Larsson and Patriksson, 1992) and [TAP-VIP-SC-F ]
(Larsson and Patriksson, 1995a).4

We refer the reader to those references and Patriksson (1994, Sections 4.2.3,
4.3.5 and 5.3.5) for details on this method, but mention here that, at termi-
nation, the algorithm stores those routes in each OD pair that have a positive
flow at some optimal route flow solution. In the application to [TAP-VIP-SC-
F ], then, the DSD algorithm will provide, for each OD pair (p, q), the routes in
Rpq which are utilized in one route flow solution h to [TAP-VIP-SC-F ]; these
routes will also [cf. (4.2a)] all be least-cost routes given the fixed link travel
cost vector t(f ∗) + p, where p = ∇g(f ∗)β and β is the vector of multipliers for
(3.1) which is obtained in the limit of the multiplier scheme.

5.2.2 A regularity condition

Using linear programming duality on (4.2a), the set T can be described as the
set of solutions in p of the following linear system in p, β and π:

∆T[t(f ∗) + p] − Γπ ≥ 0, (5.1a)

[t(f ∗) + p]Tf ∗ − dTπ = 0, (5.1b)

p−∇g(f ∗)β = 0, (5.1c)

βTg(f ∗) = 0, (5.1d)

β ≥ 0; (5.1e)

(5.1a)–(5.1b) is a dual description of the normal cone inclusion of (4.2a), and
(5.1c)–(5.1e) is an explicit description of the corresponding inclusion of (4.2b).
The constraints (5.1a) render this system intractable in practice, since it con-
tains as many constraints as there are routes in the network (cf. the dimensions
of ∆T and Γ); the constraints actually needed, however, are defined by the sub-
set corresponding to the union of the routes being at minimum cost for some
multiplier vector β, and should be comparatively very small.

Larsson and Patriksson (1994) introduce a regularity condition on the so-
lution to [TAP-VIP-SC-F ], so that the set of least-cost routes is invariant
over the set of multipliers β for the side constraints, and hence over the set
p ∈ T (cf. ibid, Thm. 2.6). The condition says that, for each such vector, the
Wardrop conditions are satisfied with strict complementarity, that is, that all
routes with the minimal cost are actually used. In this case, using the DSD

4One complication with the DSD algorithm, as with any pricing scheme which includes
shortest-route calculations, is that for some non-optimal multiplier values, negative cycles
may appear. In such cases, one may either derive and incorporate a dual constraint in the
scheme, or, preferably, continue the algorithm, ignoring the route generation stage.
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algorithm for the traffic equilibrium subproblems in the multiplier scheme will
yield all the information necessary to describe the (interesting subset of the)
toll set T explicitly.

If this is not the case, then the least-cost routes are not the same for all
values of the multiplier vector. Although, as remarked earlier, the description
of the toll set T requires the union of the least-cost routes over all values of
the multiplier vector β in the solution to [TAP-VIP-SC-F ], the set of routes
provided by the DSD algorithm will most probably be a very good approxima-
tion of the total number of least-cost routes needed (it is, for example, quite
conceivable that regularity holds at least for some OD pairs), and that is the
main motivation for using the DSD algorithm in this context.

5.2.3 The case of primal inconsistency

If the traffic manager has set unattainable goals, then the result will be
F ∩G = ∅. Under this circumstance, the algorithm will still provide the man-
ager with useful information. In fact, the algorithm will provide the smallest
possible adjustment of the manager’s aspiration levels so that the goals become
achievable, and also provide the toll vector p̂ = ∇g(f̂)β̂ that will achieve these
slightly less ambitious aims.

More formally, in the optimization setting, we may apply Theorem 4.1 of
Golshtein and Tretyakov (1996, Sec. 3.4) to conclude that (a very small adjust-
ment of) the algorithm stated above will yield a primal–dual pair (f̂ , β̂) which
solves a perturbation of [TAP-VIP-SC-F ], in which the original restrictions
(3.1) have been replaced by

gk(f) ≤ εk, k ∈ K,

the vector of εk being that of smallest Euclidean norm which makes the problem
consistent.5

Example 5.2 (Goal programming approach) A traffic manager can uti-
lize this scheme to evaluate several scenarios, possibly involving goals which
are deliberately chosen to be unattainable. In contrast to the consistent case
[cf. Remark 4.2.c], the resulting toll vector is sensitive to the introduction of
scaling factors on the goals. Should the manager be uncertain if the goals are
attainable, he/she can fulfill the most important goals while sacrificing oth-
ers, through the use of different scaling factors on the goals according to their
respective importance (cf. the use of aspiration levels and reference goals in
multi-criteria optimization). 2

5The perturbation ε found is actually the projection of the origin onto the effective
domain of the perturbation function.
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Having observed that the method detects primal inconsistency, and also
in this case yields information that will be of use to the traffic manager, we
move on to consider the problem [TOP] under the assumption that the problem
[TAP-VIP-SC-F ] is consistent.

5.2.4 An algorithm for [TOP]

The above discussion can be concluded with the remark that, at termination
of the multiplier algorithm, the link flow solution f ∗ to [TAP-VIP-SC-F ] and
a toll vector p ∈ T are given. The subset of routes generated within the DSD
algorithm corresponds to a subset of the constraints in (5.1a). With this as the
starting solution and information about the toll set T , a conceptual algorithm
for [TOP] proceeds as follows.

We begin by noting that although the toll vector p is in T , it is not nec-
essarily in the set P of feasible tolls. The fact that we do not know the set
T explicitly further complicates the search for a toll vector which is simulta-
neously feasible (i.e., belongs to P ) and optimal (i.e., belongs to T ), should
such a vector exist. The starting point in the solution of [TOP] is a Phase-I
method, which attempts to find such a vector.

With the vector p as a starting point, we search for a point in the intersec-
tion of P and the set of tolls described by the subset of constraints in (5.1)
currently known. (We shall use the notation T for this set.) This is an ex-
ample of the problem of finding a point in the intersection of a finite number
of convex sets, and a variety of methods exist for its solution (e.g., Bauschke
and Borwein, 1996). Preferably, we should always stay in the set P , since it
is to be considered to be described by hard constraints, while the set T is de-
scribed by soft constraints.6 We note that in the case where P is described by
linear constraints, the Phase-I problem is an ordinary linear Phase-I problem,
as solved within a simplex method.

Two outcomes are possible from this procedure. In the first case, the proce-
dure reports that there is a positive distance between the sets P and T . Since
T ⊆ T holds, it must therefore be the case that the problem [TOP] is incon-
sistent, that is, P ∩ T = ∅. (We refer to this property as dual inconsistency.)

The Phase-I method described above will, at termination, then have at hand
a vector p which belongs to the set P (and is hence feasible), but which does not
belong to the set T . This implies that the link flow f ∗ solving [TAP-VIP-SC-F ]
is not possible to obtain through the use of a link toll scheme which is feasible
with respect to the set P . (The toll vector obtained through the solution of
[TAP-VIP-SC-F ], for example, then clearly is infeasible.) We can, however,

6We can envisage the set P to be described by much simpler constraints than those
describing T , and hence such a procedure should be realistic.
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expect that by using the toll vector obtained, at least a subset of the goals
described by (3.1) will be achieved, and hence, the toll vector obtained will
achieve, by way of the Phase-I procedure, the highest aspiration levels possible
within the limits set by the toll constraints.

The second outcome possible is that the distance is reported to be zero, and
then the output is a toll vector belonging to P ∩ T . The reader is, however,
warned against interpreting this as a confirmation that the problem [TOP] is
consistent.

This toll vector, p, together with the vectors β and π, obtained from the
solution to the above Phase-I problem, is next used to investigate if p ∈ T
actually holds, by checking whether any constraints in (5.1a) are violated.
With the link costs t(f ∗) + p at hand, the most violated, if any, constraint
in (5.1a) for an OD pair (p, q) is obtained by finding the shortest route, r ∈
Rpq say; the constraints (5.1a) for the OD pair are satisfied if and only if
∑

a∈A δpqra[ta(f
∗)+pa] ≥ πpq; otherwise, the most violated constraint has been

identified, and the corresponding route is added to the subset of Rpq currently
known. Performing this test for each OD pair will either result in termination
of the Phase-I procedure, with a toll vector p ∈ T at hand, or to the generation
of constraints (routes) in some OD pairs. In the latter case, a better outer
approximation T of T has been found, and the Phase-I problem is resolved.
This repeated procedure will terminate finitely, since the number of routes is
finite. At termination, the procedure either reports that P ∩T = ∅, or provides
a vector p in this set.

Having already discussed the case of dual inconsistency, we henceforth as-
sume that the Phase-I procedure was terminated with a toll vector in P ∩ T ,7

and hence the problem [TOP] is consistent. We next turn to the Phase-II part
of the algorithm for [TOP].

In the second phase, we solve the modification of [TOP], where T is replaced
by T .8 Let (p, β, π) be a solution to this problem.9 We next investigate if
this solution solves [TOP], by checking whether any constraints in (5.1a) are
violated. This is done in precisely the same manner as described above in the
Phase-I procedure. Performing this test for each OD pair will either result
in termination, with (p, β, π) being a proven optimal solution to [TOP], or to
the generation of constraints (routes) in some OD pairs. In the latter case,
a better outer approximation of T has been found, and (p, β, π) is used as
an infeasible starting solution when solving the improved approximation of

7This solution also provides an upper bound on the optimal value of [TOP].
8We do not discuss particular methods for the solution of these restrictions in this paper;

the adequate method will be a function of the properties of the side constraints and the toll
restrictions.

9Since ϕ is optimized over the intersection of P and an outer approximation of T , ϕ(f∗, p)
is a lower bound on the optimal value of [TOP].
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[TOP]. Obviously, since the number of routes is finite, this procedure is finite,
and its output is a feasible and optimal toll vector, p∗, to [TOP].10

The algorithm stated here is by no means the only one possible; an alterna-
tive constraint generation approach would be the result of using an aggregate
simplicial decomposition (SD) algorithm for the [TAP-VIP-F ] type subprob-
lems in place of the DSD algorithm. The route generation process is then
replaced by the generation of all-or-nothing solutions. Convergence of the dis-
aggregate algorithm given should, however, be much faster, since the latter
algorithm corresponds to aggregating constraints generated in the former.

6 Applications and relations to previous work

6.1 Capacity constraints

6.1.1 Models

In the case of capacity constraints (see Example 3.1), the toll pa equals the
Lagrange multiplier βa associated with the corresponding constraint in (3.2);
see Example 4.1. Hearn (1980) uses these multipliers to define a perturbation
of the travel time formulas so that an equivalent, un-capacitated assignment
model can be given. Characterizations of solutions to capacitated traffic as-
signment models have been presented also in the case where the capacity side
constraints are the result of the presence of traffic controls; then, the multi-
pliers β are the equilibrium queueing delays at the signalized junctions. (See
Larsson and Patriksson, 1995a, for an overview of capacitated models and
their properties.) The use of the multipliers as tolls is implicit in the work of
Beckmann and Golob (1974), albeit for a model governed by the principle of
system optimality.

Ferrari (1995) considers an elastic demand model with environmental ca-
pacity side constraints, and establishes the existence of an equilibrium which
satisfies the capacity constraints in the presence of proper additional costs on
links that would otherwise produce unacceptable environmental damage.

It is to be noted that the above models define special cases of that developed
here. Further, in none of these works is it observed that the tolls that should
be levied to achieve the goals are not necessarily unique; consequently, the in-
teresting applications that are brought forward by this fact are not recognized.

10Convergence of this algorithm can also be monitored by the bounds on the optimal
value of [TOP] generated within the algorithm, and which are remarked upon in previous
footnotes.
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6.1.2 Methods

Algorithms for the generation of f ∗ solving this special case of [TAP-VIP-SC-
F ] appear in Hearn and Ribera (1980) and Larsson and Patriksson (1995a).
Both of these are multiplier methods which simultaneously provide a multiplier
vector β; the latter utilizes the DSD algorithm for the subproblems, and is
therefore an instance of the algorithm for [TAP-VIP-SC-F ] described above.

6.2 Obtaining a particular flow solution

An interesting special case of a goal described by a set of side constraints is
that of achieving an a priori given flow solution f ∗. We may consider several
instances of such solutions; for example, f ∗ may be a calculated system optimal
flow or be based on an observed flow. The model [MPEC] applies to such
models, with the set of side constraints described by

ga(fa) := fa − f ∗
a = 0, a ∈ A. (6.1)

Tracing the above analysis, we find that the normal cone mapping NG is non-
empty exactly at f ∗, where it equals ℜ|A|. Hence, the requirement (4.2b) poses
no further restrictions on p. This implies, in turn, that the solution of [TOP]
is simplified substantially.

Example 6.1 (Extension of the toll set T ) Let f ∗ be the solution to [TAP-
VIP-SC-F ]. Using model (6.1) will result in a larger freedom in choosing the
tolls compared to that given by the toll set T ; it will then be possible to
levy a toll on a link which does not contribute to the saturation of any flow
restrictions. 2

If the given flow f ∗ does not belong to F , then it is not possible to achieve
with any toll vector. In this case, the use of the multiplier scheme outlined
in Section 5.2 will provide the toll which achieves the demand-feasible flow
which is closest in Euclidean norm to f ∗. So, again we observe that the traffic
management scheme given in this paper provides valuable information also in
the case where the goals are unattainable.

Example 6.2 (Goal targets) In the model of Nagurney and Ramanujam
(1996) the flow f ∗ is a goal target; deviations from it are penalized through the
use of penalty functions which are used to derive taxes or subsidies on the links
depending on whether a link flow is above or below the target value. Only in
the case where f ∗ is consistent with F can the two models produce the same
result; the output from our model in the case of inconsistency was discussed
above; the output from their model depends heavily on the choice of penalty
functions, guidelines to which are not provided. 2
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6.3 System optimal flows

Obtaining a system optimal flow by means of link tolls is a classic topic,
with contributions tracing back to Pigou (1920). The traditional approach
is marginal cost pricing, in which the toll levied equals the marginal cost mi-
nus user cost. Dafermos and Sparrow (1971) observe that this toll is not the
only one possible, and that it may have certain drawbacks. (For example, a toll
will be levied on every link.) They proceed to describe the set of toll vectors
which will yield the desired link flow solution, and discuss possible secondary
goals to direct the choice of toll vector.

Alternative tolls for achieving a system optimal flow have much later been
considered also by Bergendorff and associates.

Bergendorff (1995) describes a particular case of capacitated model, wherein
the upper bounds are the system optimal link flows. Based on this model, she
develops a toll optimization problem similar to the one in this paper, but with
no exogenous constraints on the toll vector, and presents a method, working in
the spaces of commodity link flows and node prices, for solving linear instances
of [TOP].

Bergendorff et al. (1996) present characterizations of the set of toll vectors
additional to those of Dafermos, under various assumptions on the travel costs.

It is to be noted that the results reached in these references are, in essence,
special cases of the results obtained in this paper, obtained by choosing side
constraints of the form (6.1) with f ∗ being a system optimal solution.

Through the generality of the traffic management scheme described in this
paper, we can consider more general goals than the achievement of system
optimal flows; for example, we can introduce restrictions of the form (6.1)
only on a subnetwork, thus achieving an approximate system optimal flow
on a subset of the links, while the rest of the network is governed by the
user optimality principle; the resulting model is reminiscent of the combined
equilibrium models (e.g., Harker, 1988) used in the modelling and simulation
of vehicle guidance systems.

6.4 Network improvement, subsidies and the redistri-
bution of resources

Consider a situation in which the traffic manager would like to achieve a given
link flow solution f ∗. The absence of any conditions on the toll vector p other
than (4.2a) makes it possible that some link tolls may be negative. An interest-
ing network design model emanates from this fact. Indeed, while interpreting
a positive value pa as a toll levied on link a, a negative value of pa may be
interpreted as the travel time improvement (or, subsidy) that is necessary in
order to make link a more attractive to some travellers; this information may



TRAFFIC MANAGEMENT THROUGH LINK TOLLS

be used, for example, in the calculation of necessary investments in network
capacity. Note that the network design problem stated here has the reverse
viewpoint to that of the traditional one.

Example 6.3 (Public transport) Side constrained traffic equilibrium mod-
els can be used to derive actions that favour public transport. Denoting the
link flow for private (public) transport by fpr (fpu), side constraints describing
a favourable situation for public transport could, for example, be constraints
of the form

γaf
pr
a − fpu

a ≤ 0, a ∈ A,

where γa ≥ 0 is the least ratio of public transport flows over that of private
transport on link a; other possibilities include constraints describing maximal
travel times for public transport vehicles.

The Lagrange multipliers associated with these constraints in the resulting
side constrained two-mode traffic equilibrium model are then used to derive
(1) an additional queueing delay for private vehicles, or (2) a subsidy to the
public transportation sector. If, further, toll constraints of the form P = { p ∈
ℜ|A| |

∑

a∈A[ppr
a + ppu

a ] = 0 } are introduced in the model, then the subsidy
takes the form of a reallocation of resources from the private to the public
sector; the subsidy is realized, for example, through tolls levied on private
vehicles only or through the design (or, improvement) of designated lanes for
the public transport vehicles or lower ticket prices. 2

6.5 Consistent toll schedules

Wardrop’s user equilibrium principle states that costs are equal among the
routes utilized in an OD pair, but it does not contain a mechanism by which
their respective flows can be uniquely determined. (In technical terms, equi-
librium commodity flows are not unique because the link cost mapping t is not
strictly monotone in the commodity flow variables.) This inherent limitation
of the Wardrop user equilibrium principle has two negative implications, which
we shall shortly describe below; possible remedies to this limitation are then
discussed.

6.5.1 The use of toll revenues

There are several reasons why one might wish to obtain disaggregated infor-
mation about the traffic that passes a particular toll station, rather than just
the total volume. Disaggregated traffic information could distinguish between
(1) local, regional and long-distance traffic; (2) different vehicle modes such as
cars, trucks and buses; (3) resident, commuter and commercial traffic; and (4)



TORBJÖRN LARSSON AND MICHAEL PATRIKSSON

drivers with different values-of-time. A fundamental question raised in studies
of toll schemes is: how should the toll revenues be used? As pointed out by
Small (1992), “the people who benefit from congestion relief and revenue uses
do not necessarily coincide with those who pay the fees or who suffer incon-
venience in order to avoid them”. Having the type of information mentioned
above facilitates an analysis of the pricing policy, for example with the ob-
jective of determining which categories of travellers that are affected by the
toll, and who among those that need to be compensated or who pays less than
their contribution to congestion or environmental effects warrants. (See Rossi
et al., 1989, for a discussion on consistent impact-fee assessment in urban net-
works.) Based on such an analysis, the current revenue distribution could be
re-evaluated. We then note that the Wardrop principle (in the case of additive
cost structures) does not allow for these categories of traffic to be distinguished
in the equilibrium solution, only their aggregates.

6.5.2 Commodity-specific management goals

Suppose that some management goals are described in terms of individual
commodity flows. For example, we may consider restrictions of the form
gpq(hpq) ≤ 0, or gpq(fpq) ≤ 0, where hpq and fpq is the vector of route flows
and link flows, respectively, in commodity (p, q). (See Remark 3.2 for further
examples of possible restrictions over individual flows.) If we are interested
in obtaining flows satisfying these restrictions through the use of tolls, then
the tolls would have to be imposed on the individual commodities, that is,
it would be insufficient to introduce a toll based on the total link flow only.
(This is quite evident from the equilibrium characterization of such a side con-
strained traffic equilibrium model.) Having solved the side constrained model,
we obtain a unique link flow solution, and a consistent commodity flow which
satisfies the side constraints. The commodity-specific toll which is automati-
cally derived will, however, not necessarily influence the flow to satisfy the side
constraints, even though the unique link flow solution will be obtained. The
reason for this apparently counter-intuitive result is that while the link flow
solution is unique, its decomposition into commodity flows is not, and among
these various commodity flows there are some that do not satisfy all the side
constraints.11 (In technical terms, the tolled problem is non-strictly convex in
the commodity flows, a property which in the context of Lagrangean duality
bears the term non-coordinability.)

11The only way in which the situation can be dealt with (within the framework of additive
cost structures) in the Wardrop equilibrium model is that the toll schedule is not fixed, but
is a strictly monotone function of the commodity flows, that is, a nonlinear price schedule

(Jennergren, 1972).
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6.5.3 Remedies

There are basically two remedies to this problem.
The first, and most natural, remedy is the introduction of the principle of

a stochastic user equilibrium, by which travellers are allowed to have different
perceptions of the actual travel costs. (This has the additional advantage of
being a more general model of route-choice.) In most stochastic models pro-
posed (see, e.g., Patriksson, 1994, Sec. 2.8.1) the stochastic equilibrium route
flows are unique. In the context of the discussion on the use of toll revenues,
then, the implication of this property is that the different categories of traffic
that passes the toll station could be distinguished; in the example concerning
commodity-specific traffic management goals, this property has the immediate
implication that tolls (or, taxes) that will achieve the traffic management goals
could be determined. The results presented in this paper are easily transfered
from the deterministic case considered to that of a framework of stochastic
equilibrium models, with Wardrop’s user equilibrium principle replaced by the
principle of stochastic user equilibrium.

The second, and less general, remedy is to introduce assumptions in the
original equilibrium model which makes the commodity flows unique; for ex-
ample, one may introduce non-additive travel costs such that the route flows
are strictly monotone.

6.6 Extensions and further research

The price-directive traffic management schemes described here may possibly
be applied in other areas, where society through prices (taxes or subsidies) may
influence markets. Examples of areas of application include protective duties
in international trades, and environmentally derived taxes and subsidies.

This paper provides the basis for several interesting paths of research, both
in directions of theoretical research and applications, several of which are men-
tioned.
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TORBJÖRN LARSSON AND MICHAEL PATRIKSSON

REFERENCES

Bauschke, H. H. and Borwein, J. M. (1996). On projection algorithms for
solving convex feasibility problems. SIAM Review, 38 (to appear).

Bazaraa, M. S., Sherali, H. D., and Shetty C. M. (1993). Nonlinear Program-
ming: Theory and Algorithms. John Wiley & Sons, New York, NY, second ed.

Beckmann, M. J. and Golob, T. F. (1974). Traveler decisions and traffic flows:
a behavioral theory of network equilibrium. In: Transportation and Traffic
Theory, Proceedings of the Sixth International Symposium on Transportation
and Traffic Theory, Sydney, Australia, August 26–28, 1974 (D. J. Buckley,
ed.), pp. 453–482. Elsevier, New York, NY.

Bergendorff, P. (1995). The bounded flow approach to congestion pricing.
Master’s thesis, Department of Industrial & Systems Engineering, University
of Florida, Gainesville, FL.

Bergendorff, P., Hearn, D. W., and Ramana, M. V. (1996). Congestion toll
pricing of traffic networks. Research Report 96-1, Department of Industrial &
Systems Engineering, University of Florida, Gainesville, FL.

Cantarella, G. E. and Sforza, A. (1987). Methods for equilibrium network
traffic signal setting. In: Flow Control of Congested Networks, Proceedings
of the NATO Advanced Research Workshop on Flow Control of Congested
Networks, Capri, Italy, October 12–18, 1986 (A. R. Odoni, L. Bianco and G.
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