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Abstract—This paper investigates the consistency of the
LASSO-based DOA estimation of the narrow-band signals in
infinitely high SNR. Such a method provides a robust and
accurate approximation of the Maximum Likelihood estimation.
However, as we show, unlike the standard techniques such as
subspace methods the LASSO-based estimation is generally not
consistent in high SNRs. In return, considering the true DOA’s,
we show that the method is consistent for certain configuration of
the sources. This approach leads us to relate such a conditional
consistency to the resolution concept. We next give a condition to
verify the consistency of a given set of directions and simplify it
to a computationally fast equivalent algorithm. The results show
that the resolution in infinitely high SNR case for m sensors
decreases by speed 1

m
.

Index Terms—DOA estimation, LASSO, performance analysis,
consistency analysis, resolution.

I. INTRODUCTION

The Least Absolute Shrinkage and Selection Operator
(LASSO) [1] method is a well known tool in compressive
sensing and sparse linear regression application fields. It is
also being widely used as a reliable technique in many
estimation problems. This method consists of a linear least
square optimization regularized by an additional penalty term
of the 1-norm as a measure of sparseness. The LASSO method
provides a low computational cost algorithm due to its convex
nature. The convexity property also ensures a robust estimation
because there exists only a unique local minimum.

The LASSO technique can particularly, be utilized to
estimate the Directions of Arrivals (DOA) of narrow-band
signals transmitted by far-field sources and received by an
array of antennas. The received signals for such a scenario is
modeled as a linear combination of the steering vectors. The
estimation problem is conventionally solved by the techniques
such as Non-Linear Least Square (NLLS) method, Maximum
Likelihood (ML) [2], and subspace-based methods [3]. The
DOA estimation problem can be reformulated as a selection
problem from a dictionary of sample steering vectors of
the continuous one-dimensional array manifold ([4] and [5]).
This representation allows us to apply the LASSO method to
estimate the directions.

Many questions arise concerning the performance of the
LASSO technique as such an estimation tool. These are
generally discussed in the performance analysis. It is com-
monly expected that a good estimator gives a nearly unbiased
estimation of the true unknown parameters with a relatively
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Fig. 1. The configuration of the sources and the sensors. The direction angles
are measured from the array axis.

small error variance. This can be studied by introducing
an asymptotic consistent situation in which the estimated
parameters converge to the true values[6]. In [7] a condition is
introduced for the LASSO method to be generally consistent in
the asymptotic noiseless case. The condition is generally hard
to verify because it includes a non-convex optimization with
many singular points. For the LASSO based DOA estimation,
we observe that the method is not generally consistent. This
can be interpreted as a resolution limit in the method. In this
case, we modify the condition of [7] to verify the consistency
for each particular configuration of the target sources. Next, we
introduce an auxiliary convex condition to verify the former
condition, which results in a computable lower bound on the
resolution. Later, in Section IV we empirically observe that
the lower bound is in fact the exact resolution limit. Thus, we
claim that the latter auxiliary condition is equivalent to the
former consistency condition, although a complete theoretical
proof is not given.

Equipped with a fast computable tool to verify the con-
sistency of the estimation we investigate the behavior of the
LASSO technique in the noiseless case in Section IV.

II. PROBLEM STATEMENT

A. Direction of Arrival Estimation

Consider a Uniform Linear Array (ULA) of m omni-
directional sensors with separation d receiving narrow-band
signals at frequency f0 from n far-field sources at angles



θ = [θ1, θ2, . . . , θn] as shown in Figure 1. Due to the plane-
wave model of the field around the array the received signals
complex envelope x(t) can be written as [8]

x(t) = A(θ)s(t) + n(t) , (1)

where s(t) and n(t) are the transmitted data and the noise
vector respectively. The noise is assumed to be white, zero-
mean, and Gaussian with covariance matrix σ2I. The matrix
A(θ) = [a(θ1), a(θ2), . . . , a(θn)] is the collection of the
steering vectors corresponding to the directions of the sources.
A steering vector from a direction θ is given by

a(θ) =

⎡
⎢⎢⎢⎢⎢⎣

1
ejφ

ej2φ

...
ej(m−1)φ

⎤
⎥⎥⎥⎥⎥⎦
, (2)

where for simplicity we introduce the electrical angle φ =
2π d

λ cos θ with λ as the wavelength. For a full-resolution
and non-ambiguous estimation, d is normally half of the
wavelength (d = λ

2 ). Later, we may use the notation a(φ)
to represent the steering vector as an explicit function of the
electrical angle.

Such a DOA estimation problem can be reformulated as a
sparse regression one. First, we discretize the problem so that
we are only allowed to choose from a fine grid of directions
G = {θg1 , θg2 , . . . , θgN}. Suppose the true source directions are
in G as well. Next, we introduce the extended ”time” source
vector sg(t) as the 1 × N spatial spectrum of the waveform
signals received from each direction of the space. Ideally, we
have

sgi (t) =

{
sk(t) θgi = θk ∈ θ
0 otherwise

. (3)

Finally, introducing Ag = [a(θg1) a(θ
g
2) . . . a(θ

g
N )] as the large

dictionary of all steering vectors, we can write the model as

x(t) = Agsg(t) + n(t) . (4)

In the following, we will only consider the single snapshot
case, so the time dependence of x, s, and n is dropped.

B. Least Absolute Shrinkage and selection Operator

It can be seen that the model introduced in (4) is under-
determined. It means that the problem does not have a unique
solution until a sparsity limitation is introduced. The LASSO
method is a least square optimization regularized by the �1
norm as a measure of sparsity [1]. In this manner, it combines
the model in (4) with the sparsity assumption. The �1 norm
ensures a sparse solution because it is a piecewise linear
function with the singular points at sparse points. Because
of the nature of the regularization, the optimal point occurs
on one of these singular vertices[1].

The LASSO optimization can be written in a variety of
equivalent forms. However, in our special noiseless, one-
snapshot case. The following form is preferred ([1])

ŝg = argmin
sg

‖sg‖ subject to x = Agsg . (5)

This problem is convex with a linear constraint and it can be
solved efficiently using convex optimization techniques. The
question is now ”under which constraints are the estimated
vector ŝg and the true vector sg0 identical ?”. Note that in the
noiseless case x = Agsg0. Although we are not able to give
an analytical solution, in the next chapter we provide some
observations leading to a computable method of searching for
such consistent cases.

III. CONSISTENCY CONDITIONS

Here, we give some theorems which we later use to give
the consistency criterion. In fact, such a criterion has been
introduced in [7]. We will first paraphrase and complete
it for our application. However, this theorem can not be
solved neither analytically, nor with a computationally fast
method. For the following theorem we introduce the active
set I = {i1, i2, . . . , in} as the set of all indexes in sg0 with
nonzero components. In other words, the elements of I are
the indexes corresponding to true DOAs.

Theorem 1: Consider a set of active basis I =
{i1, i2, . . . , in}. For every nonzero realization of the original
source vector s0 with I as the active set, the solution to
the noiseless LASSO problem, ŝg, is identical to the original
source if and only if ψ(I) ≤ 1

2 , where

ψ(I) = max
δ∈NAg−{0}

∑
i∈I

|δi|
‖δ‖1 . (6)

The NAg − {0} is the null space of the matrix Ag without
the zero vector.

Proof: The proof is given in Appendix A.

We call the cost function in (6) the active portion of the null
vector δ. The following result can immediately be seen from
this theorem.

Corollary 1: The LASSO based DOA is always consistent
for the one-source case.

Proof: assume that I = {i}. For each δ ∈ NA − {0}
we have Aδ = 0. From the first row equation of this matrix

relation we have
N∑
j=1

δj = 0 which can also be written as δi =

− ∑
j �=i

δj . Taking the absolute value and using the the triangle

inequality we have |δi| = | ∑
j �=i

δj| ≤
∑
j �=i

|δj |. Finally, adding

the term |δi| to both sides of the equation we get 2|δi| ≤ ‖δ‖1.
This shows that for each arbitrary null vector δ and active
index i, the active portion is less than half which proves the
corollary.

The condition introduced in (6) gives a criterion for each
possible active basis set to be consistent. However, it is



computationally hard to be verified directly. Thus a simpler
equivalent form should be introduced.

First, note that for the optimum point in (6) there exists
a component δr (r ∈ I) which is nonzero. Without loss of
generality, we can assume that δr = 1, because the active
portion is invariant under scaling transformation. Next, we
observe that maximizing the active portion is equivalent to

maximizing

∑

i∈I

|δi|
∑

i/∈I

|δi| . A high value of the latter can be obtained

by minimizing the denominator while keeping the numerator
high enough. This will be automatically done by adding the
constraint δr = 1. Accordingly, we introduce the following
optimization to approximate the solution of (6).

δ0 = arg min
δ∈NA,r∈I

∑
i/∈I

|δi| subject to δr = 1 . (7)

Computing δ0 is fast because for each r ∈ I the optimization
can be performed by a convex optimization technique. If
the active portion for δ0 is more than half, due to the
condition in (6) the active set is non-consistent. The converse
is not necessarily true. However, in Section IV we present
some empirical results implying the equivalence between two
conditions in (6) and (7).

IV. EMPIRICAL OBSERVATIONS

The results shown in this section are generated by imple-
menting the aforementioned algorithms by MATLAB soft-
ware. We use the CVX [9] toolbox to perform the convex
optimization parts.

A. Two-source case consistency

When there are two active indexes, the concept of consis-
tency can be viewed as the ability of the method to resolve
close sources. This idea leads to the definition of the funda-
mental resolution as the minimum angular separation between
two close sources for which the LASSO based DOA estimation
is consistent in the noiseless case. The term ”fundamental” is
related to the fact that the minimum separation may increase
by adding noise to the problem. From this point of view the
fundamental resolution is the resolution in the infinitely high
Signal to Noise Ratio (SNR) case and the best one.

Due to the circular symmetry of the cost function in (6),
when expressed in terms of electrical angle the resolution is
independent of the direction of the sources. In this case, it is
only a function of the number of sensors m. Let us denote this
resolution by Δφ0(m). Then, for a small value of Δφ0(m)
we have

Δφ0(m) = 2π
d

d0
Δcos θ ≈ −2π

d

d0
sin θΔθ . (8)

this shows that in terms of the direction angle, the resolution
at direction θ is proportional to 1

sin(θ) .
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Fig. 2. The resolution of a half-wavelength ULA with 8 sensors for different
directions. The exact theoretical and the true resolutions coincide.
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Fig. 3. The minimum resolvable electrical angle Vs the number of sensors
for the LASSO-based and the beamforming techniques.

B. The equivalence of the auxiliary optimization

In Section III, we propose the auxiliary optimization (7) to
verify the condition (6). As we explained, the auxiliary one
gives a necessary condition. In the case of two sources, this
implies that we get a lower resolution bound by applying this
optimization. Figure 2 shows the result of examining various
active sets of two directions at angles θ and θ + Δθ. For
each θ we look for the minimum Δθ for which the active
set is consistent. The consistency is verified by (7). Although
this minimum separation is supposed to be a lower bound
for the resolution, direct application of LASSO for different
realizations of the sources shows that LASSO-based DOA es-
timation for separations higher than the values given in Figure
2 is consistent. This indicates that the auxiliary optimization is
actually equivalent to the exact condition in (6). Furthermore,
it can be seen that although we associate the concept of non-
consistency to the existence of at least one waveform with
a wrong solution, in practice, in a non-consistent situation
we get a wrong result for almost all realizations of the
waveform s. Also note that, as we previously explained, the
empirical curve in Figure 2 fits to the pattern in (8), and also
the approximate curve of A

sin(θ) with a proper value of A.
Convinced by the equivalence between the two conditions,
we can compare the resolution of the LASSO-based method
to that of the conventional beamforming technique. Figure
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Fig. 5. The analytical approximation compared to the exact resolution for
different number of sensors.

3 compares the fundamental resolution of the LASSO-based
estimation and beamforming for different numbers of sensors
in a half-wavelength ULA. The resolution is expressed in
terms of the electrical angle. Thus, it is independent of the
direction. The fundamental resolution of the beamforming
method is approximately equal to half of the main-lob beam
width (Δφ0 = 2π

m ). Obviously, the LASSO-based estimation
has a better resolution.

C. Non consistent case analysis and an approximate resolu-
tion formula

When the active set I is non-consistent we can learn the
form of the null vector δ which introduces ambiguity by
looking at the solution of (7). Figure 4 shows such a vector. As
can be seen, the solution is sparse itself. This can be explained
by a reasoning similar to the work of [10]. For the optimum
point in (7), the vector δ consists of two equally large peaks at
the position of active indexes and one other smaller peak. In
the non-consistent scenario these three dominant components
are linearly combined so that the other components become
negligible. Limiting our search to the class of such vectors, we
get the following approximation for the resolution Δφ 0(m).

Theorem 2: In terms of the electrical angle φ, the funda-
mental resolution can be approximated by

Δφ0(m) ≈ 1

max d
dφ(

sinmφ
sinφ )

. (9)

For a large m it can be further simplified as

Δφ0(m) ≈ sin(
π

m
) ≈ π

m
. (10)

The result can be seen in figure 5 where the exact resolution
curve is compared to the curve of Δφ0(m) = sin( π

m ). As can
be seen, the two curves coincide for m ≥ 15 say.

D. More Than Two Source Case

We also examine the condition (6) by the optimization (7)
for some cases in which the active set has more than two ele-
ments. The results firstly emphasis on the equivalence between
the two conditions introduced in Section III. Furthermore, we
find out that adding a new active index will decrease the
resolution by a negligible value. Thus, as a rule of thumb,
we can state that a general set of active indexes is consistent
if any two elements of this set are separated by more than
approximately the fundamental resolution.

V. CONCLUDING REMARKS

A. Summary

In this work we discussed the consistency of the LASSO-
based DOA estimation method. We first observed that the
method is not consistent in all cases even with infinitely high
SNR. This can be expressed as the finite resolution of the DOA
estimation. It is a disadvantage for the method as compared to
the subspace methods with infinite resolution in high SNRs.
However, we show that the resolution is still better than that
of classical beamforming.

Next, we discussed the consistency for each true configura-
tion of the sources and gave a criterion for such a configuration
to be consistent. Because the condition is hard to verify we
introduced an alternative using a convex optimization tech-
nique. From the results, we claim that the tool is equivalent to
the exact criterion. Finally, observing the results, we find and
approximate analytical formula for the minimum resolvable
angle separation which is half of classical beamforming.

B. Why Non-consistency?

As a final conclusion, we give a discussion about the non-
consistent cases. It is based on the results obtained from
applying the auxiliary optimization. For a non-consistent case
there exists a nonzero vector δ in the null space of Ag with
an active portion higher than half. Roughly speaking, such
a ”neutral” vector can be added to the true extended source
vector to remove a big share of �1 norm from the true direction
indexes, and introduce a smaller share at some ”fake” indexes.
The result is a wrong solution with smaller �1 norm and wrong
positions. But why does such a vector exist? The reason is that
the huge dictionary contains samples of a continuous manifold,



which means that close indexes correspond to very close basis
vectors. If we choose such close indexes i and j, as the active
ones then ag

i −agj +v = 0 where v is small. This forms a null
vector with values 1 and -1 at indexes i and j respectively, and
a small ε share of �1 norm at other indexes. As can be seen, for
such a vector the active portion is 2

2+ε . If v is small enough,
so is ε, and the active portion can be bigger than half. By the
same reasoning we can understand that any estimation using
a least square regularized by a continuous norm has a finite
resolution. It should also be pointed out that the resolution
is independent of the sampling method used to generate the
dictionary matrix.

VI. APPENDIX A: PROOF OF THEOREM 1

For simplicity we first introduce the notation ‖δ‖I =
∑
i∈I

|δi|
for any index set I and null vector δ. Now, suppose for an
index set I the condition is satisfied. Also, suppose there
exists a signal vector sg with active vectors at I for which
the solution is some different vector sg′. Then we have
Agsg = Agsg′ and ‖sg′‖1 < ‖sg‖1. Introducing δ = sg′−sg,
we note that δ ∈ NAg and

‖δ + sg‖1 < ‖sg‖1 . (11)

Since ‖sg‖1 = ‖sg‖I , this can be also written as

‖sg‖I > ‖δ + sg‖I + ‖δ‖Ic > ‖sg‖I − ‖δ‖I + ‖δ‖Ic , (12)

where Ic = {i ∈ G|i /∈ I} is the complement index set of I .
The last inequality is the result of the triangle inequality. This
means that ‖δ‖Ic < ‖δ‖I so that δ‖1 < 2δ‖I which violates
ψ(I) ≤ 1

2 , see (6).
Second, suppose there exists δ ∈ NAg − {0} so that

‖δ‖Ic < ‖δ‖I . Let us denote the active basis for this vector
by J . Assume a vector sg with I as active indexes, and the
additional property that its elements at the indexes in I ∩ J
are the negative of the corresponding elements in δ so that
‖δ + sg‖I∩J = 0 and also ‖sg‖I∩J = ‖δ‖I . Then

‖δ + sg‖1 = ‖δ + sg‖I−J + ‖δ + sg‖J−I

= ‖sg‖I−J + ‖δ‖Ic

< ‖δ‖I + ‖sg‖I−J

= ‖s‖I∩J + ‖sg‖I−J = ‖sg‖1 (13)

This shows that there exists a signal vector for which the
estimated extended source vector is different to the true one
both in directions and values.
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