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Abstract 

New vehicles contain more and more electronic aides and control systems. As the number of 

functions increase, the complexity of the system increases at an even greater pace. AUTOSAR is an 

initiative that aims to bring order to embedded electrical systems in vehicles.  

The ever larger software systems naturally generate ever larger amounts of data needing to be taken 

care of, analysed and checked for correctness during the development of the system itself. XCP is a 

network protocol that is mainly used for transferring measurement data and calibration parameters 

during the development process in the automotive industry. In order to utilize the complete capacity 

of the existing in-vehicle network, the protocol has been designed to be independent of the 

transport layer.  

The aim of this thesis is to implement a subset of XCP for execution on a rapid prototyping platform 

developed by QRtech, a high-tech consulting company in Kallebäck, Gothenburg. In order to be 

compatible with the latest technology and methodology XCP has been implemented according to the 

requirements specified by AUTOSAR.  

In the current implementation, all the mandatory requirements are met, have been verified and 

comply with the AUTOSAR standard. Even before completion, the project roused interest in parts of 

the local automotive industry. 

Keywords: XCP, AUTOSAR, CAN Network, Ethernet, Measurement and Calibration, DAQ-list, QR5567. 
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Sammanfattning 

Nya fordon innehåller allt mer elektroniska hjälpmedel och styrsystem. I takt med att funktionerna 

blir fler och fler ökar komplexiteten hos systemet lavinartat. AUTOSAR är ett initiativ för att försöka 

skapa ordning inom de inbyggda fordonselektriska systemen. Genom att skapa standardiserade 

gränsytor mellan alla de funktionella applikationsdelarna och de hårdvarunära delarna är tanken att 

systemet ska vara skalbart och därmed undviks problemet med sambandet mellan komplexitet och 

storlek. 

De allt större mjukvarusystemen generar naturligtvis också mer och mer datatrafik som måste kunna 

läsas och övervakas under framtagningen av systemet. XCP är ett nätverksprotokoll som i huvudsak 

används för att överföra mätdata och kalibreringsparametrar vid utvecklingsarbete inom bilindustrin. 

För att på ett enkelt och smidigt sätt kunna utnyttja hela bilens existerande inbyggda 

nätverkskapacitet är protokollet designat för att vara oberoende av vilket transportmedia som 

används. 

Målet för examensarbetet är att implementera utvalda delar av XCP protokollet för exekvering på en 

prototyputvecklingsplattform framtagen av QRtech, ett teknikkonsultföretag i Kallebäck i Göteborg. 

För att var kompatibelt med de senaste teknikerna och metodikerna så har XCP implementerats 

enligt de krav som AUTOSAR specificerar.  

Som implementationen ser ut idag är samtliga XCP – och AUTOSAR specifika krav uppfyllda, och 

verifierade. Även före fullbordandet visades visst intresse från lokala aktörer inom bilindustrin. 
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1 Background 
Vehicles are becoming increasingly more computerized with up to 90% of all new functionality falling 

into the E/E (Electrics/Electronics) category. As a result it is becoming progressively harder to 

maintain an overview of the E/E system in a vehicle. To counter this, the industry has united in an 

effort to create a single software architecture that can be followed by everyone from car 

manufacturers to suppliers of components and creators of tools. This initiative is known as AUTOSAR 

(Automotive Open System Architecture). 

Because of the increasing amount of electronics and the amount of data traffic that they generate, 

the need to transfer larger amounts of data has arisen. For this purpose a special network protocol 

called XCP (Universal Measurement and Calibration Protocol) has been conceived and specified.  

Because it has the capability to run on different transport mediums it can utilize more of the 

technological progress that has been made within the automotive E/E area. As the name ‘XCP’ 

suggests, the protocol is an evolutionary continuation of CCP (CAN (Controller Area Network) 

Calibration Protocol), where the ‘C’ for ‘CAN’ has been replaced by ‘X’ to indicate an unknown or 

generic transport layer implementation. CCP was developed largely by ASAM (Association for 

Standardization of Automation and Measuring Systems), a consortium of German car manufacturers 

founded in 1998 that provides standards for data models, interfaces and syntax specifications for 

various uses, such as testing, simulation and evaluation. These standards are adhered to mainly by 

European car makers and to a lesser extent by the Japanese and American ditto.  

1.1 Previous work 
QRtech (Qualified Real-time technology) is an independent company that has their own in-house 

developed embedded prototyping platform called the QR5567. Its purpose is to be used for 

advanced engineering projects, mainly in the automotive area. Previous work at the company in 

regards to the QR5567 platform has consisted of implementation of necessary software 

infrastructure, such as start-up routines and programming tools. 

1.2 Purpose 
The purpose of this project is to make a ‘Universal Measurement and Calibration Protocol’ (XCP) 

implementation that complies with the AUTOSAR XCP module specification. This implementation is 

to be run on the Arctic Core AUTOSAR platform targeting the rapid prototyping board QR5567. The 

main communication protocols of interest are CAN (Controller Area Network) and Ethernet. The 

module should not be specific to a single embedded component, but be adaptable to different 

applications of embedded components. Since the size of the project is not fully known by QRtech, 

part of the task is to define which optional components of the protocol to include (see Appendix A 

for further details). 
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1.3 Significance 
Having a standardized protocol for measurement and calibration allows for reusability of toolkits 

between different hardware and software vendors. A generic module for XCP with a configurable 

feature set eliminates the need for reimplementation of the protocol for each use case. Making it 

AUTOSAR compatible widens the area of use. For a company in the automotive sector of today, it is 

vital to be able to offer the latest technological solutions and to have staff with the right 

competence. As the industry surges forward towards the common AUTOSAR platform, expertise in 

the field becomes more and more sought after.   
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2 Scope 
Implementing XCP in its entirety is a considerable task, too large to fit within the given timeframe for 

this project. Some features and functionality had to be excluded in order to ensure completion (see 

Appendix B). The following goals were set from the beginning: 

 Selecting which XCP services to implement 

 Implementing the selected XCP services 

 Verifying the implementation 

2.1 Limitation of Transport Protocols 
XCP can be run on a number of different transport-layer protocols; the initial request from QRtech 

was to make an implementation for CAN (Controller Area Network) and for Ethernet. As work 

progressed it was discovered that some AUTOSAR modules necessary for an Ethernet 

implementation were not yet in place in Arctic Core. As a result Ethernet became of secondary 

importance. For development purposes an Ethernet version was implemented, because the 

possibility to test functionality without the need of reprogramming the device each time was 

considered worth the extra time and effort. The assumption was that it would prove worthwhile in 

the end, especially if the system would live on after the project was completed. It has however not 

been tested or verified while running on the target hardware and must therefore be considered as 

out of the project scope. If or when the necessary Ethernet modules in Arctic Core are implemented, 

XCP for Ethernet could probably be adapted quite easily. 

2.2 Optional XCP features 
XCP contains many features that are not strictly necessary in order to run the core functionality. 

Because of limited knowledge of time requirements for the various implementations, an open 

planning scheme was adopted. Instead of defining what to include or exclude, a prioritization order 

was made, adding optional features if time allowed. The prioritization was revised after input-

meetings with QRtech management as depending on what other projects the company was running 

at the same time, the possible areas of application might vary. 
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3 AUTOSAR platform 
More and more of the added value in vehicles falls within the electrics and electronics (E/E) area. 

Traditionally the way to develop E/E in vehicles is to have one unit for every service. Because of the 

increase in the number of services and the subsequent increased architectural complexity, E/E 

systems are becoming increasingly difficult to manage. This difficulty is of course also associated with 

higher costs for both further development and maintenance of the system already in place. In an 

effort to tackle this problem and move away from the ‘one box, one service’ mentality, a completely 

new approach was needed. Several automotive companies have decided to unite and develop a 

common platform. This initiative is known as AUTOSAR. The aim is to revolutionize the way 

automotive software is developed and also the way in which it is executed on the ECUs in the vehicle. 

The AUTOSAR consortium stipulates the goal of the initiative as follows: 

“The primary goal of the AUTOSAR development cooperation is the standardization of 

basic system functions and functional interfaces, the ability to integrate, exchange and 

transfer functions within a car network and to substantially improve software updates 

and upgrades over the vehicle lifetime. Having this goal in mind, AUTOSAR pushes the 

paradigm shift from an ECU based to a function based system design attempt in 

automotive software development and enables the management of the growing E/E 

complexity with respect to technology and economics.” – FAQ on AUTOSAR.org 

By decoupling hardware and software the AUTOSAR consortium hopes to make development more 

independent. As a way to assist this it was decided that the platform should handle all ECU access. 

This has the effect that a developer does not need specific knowledge about the ECU.  (1) 

3.1 Layered infrastructure 
In order to provide an easy-to-read top-down description, the AUTOSAR platform has layered 

software architecture. It maps the basic software modules to the appropriate layers and shows their 

relationship. There are three main layers in the AUTOSAR software architecture, each with their own 

well defined purpose (see Figure 1 and Figure 3). 

3.1.1 Basic Software Layer 

The bottom layer is the Basic Software Layer (BSW). This is the only layer that can access the 

Microcontroller itself. It consists of a number of modules which are used by the Application layer via 

the Runtime Environment (RTE). Each module has an AUTOSAR specification that specifies the 

modules requirements, its data types and interfaces. The modules are grouped into the following sub 

layers:  
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 Micro Controller Abstraction Layer (MCAL) – Contains internal drivers that have access to the 

microcontroller and internal peripherals. The MCAL makes the higher software layers 

independent of the microcontroller. This means that if for some reason the microcontroller 

needs to be replaced, the rest of the system can be left as it is. The only changes that are 

needed are to those modules concerning the MCAL. The modules of the MCAL are divided in 

to four different blocks (see Figure 2): 

 

o The Microcontroller drivers block consists of four drivers; the General Purpose Timer, 

the Watchdog Driver, the MCU driver and Core Test. 

 

o The Memory Drivers block contains drivers which provide services for memory 

handling, such as reading from, writing to or simply erasing memory devices. In 

terms of memory devices, the AUTOSAR standard supports internal and external 

Flash memory and internal EEPROM (Electrically Erasable Programmable Read-Only 

Memory). 

 

o The Communication Drivers block contain drivers for the different methods of 

communication supported in AUTOSAR such as CAN FlexRay and Ethernet (in 

AUTOSAR 4.0). 

 

o I/O Drivers block contain drivers for input and output modules, such as PWM (Pulse 

Width Modulation) and ADC (Analog Digital Converter). 

 

Figure 1: Schematic view of the different architecture layers including the sub layers in the BSW 
layer. 
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 ECU Abstraction Layer - Makes the higher software layers independent of the hardware 

layout of the ECU. In order to achieve the desired independence the layer is divided into five 

blocks in an attempt to mimic an ECU. 

 

o The I/O Hardware Abstraction provides functionality for handling input and output to 

the system. This is the only block in the ECU abstraction layer that has access to the 

RTE directly, instead of through the system layer as is the case for the other blocks in 

the layer. 

 

o The Communication Hardware Abstraction is a collection of interfaces for each of the 

communication techniques of an AUTOSAR compliant ECU. These interfaces abstract 

the drivers for the specific communication technique and provide the upper layers 

with transmission functionality such as status information and send/receive-

functions. Instead of having direct access to microcontroller hardware, the 

equivalent MCAL driver is used. 

 

o The Memory Hardware Abstraction is in function a lot like the communication 

hardware abstraction. It provides the upper layer with functionality required to 

access memory via the MCAL drivers. 

 

o The Onboard Device Abstraction is used for any devices that do not fit in anywhere 

else. The access to these devices is routed through the MCAL. 

 

o Any components that are not in the AUTOSAR specification but still need to access 

the hardware falls into the Complex Driver Layer. It provides the possibility to add 

extra functionality such as device drivers; some might argue that this isn’t strictly 

part of the ECU abstraction layer.  

 

Figure 2: The modules of the MCAL layer divided into blocks. 
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 Services Layer – Provides services such as memory and OS functionality for the other BSW 

modules and the application layer. 

 

o The System Services module contains the AUTOSAR OS (Operating System) which 

handles scheduling and run-time resource protection and offers reasonable real-time 

performance. It is the scheduling functionality in the OS that executes the upper 

layer software components via the tasks that they are mapped to. 

 

o Communication Services provides the necessary functionality in order to run the 

vehicle network communication. This is done by providing an interface to the 

different vehicle techniques such as CAN and FlexRay, along with network 

management and diagnostics. This includes reworking the message frames and 

omitting transport layer specific data such as message headers and other various 

properties (hardware timestamps for example).  

 

o Memory Services consists of modules which are responsible for managing all non-

volatile data. The purpose of the memory service block is to provide non-volatile 

data to upper layer applications in a uniform and well defined way, abstract memory 

from the corresponding locations and properties relevant to the application. It also 

provides mechanisms for saving, loading, for checksum protection and for 

verification. 

 

 

Figure 3: A selection of modules organized into layers (colors) and blocks (large boxes). 
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3.1.2 Runtime Environment 

The RTE is responsible for mapping the components in the application layer and the basic software 

layer so that they can communicate and make use of each other’s functionality. The way this is done 

in AUTOSAR is through the concept of ports. A port is either of type providing or requiring. A 

providing port in AUTOSAR is realized as an implemented function while a requiring port is realized 

as a function call. The ports can be configured in one of two ways; either as a sender-receiver 

interface or as a client-server interface. Depending on which interface is used and how it is 

configured the behaviour of the RTE may vary. If for instance a requiring port interface is configured 

as asynchronous the RTE will not block in order to call the providing port, instead it will schedule the 

call at a more convenient time and continue execution.  

At the design level the RTE is abstracted to a Virtual Function Bus (VFB) through which all 

communication runs. This also alleviates the communication handling for application layer 

development. In a way the RTE is the heart of the architecture, the glue that binds all the other 

components. Since the entire system is not fully known at the time when the RTE is being developed 

some parts of it must be generated afterwards. This is done when the system is configured, i.e. when 

all the different components are known and their descriptions have been made. A schematic view of 

the connections the RTE provides is seen in Figure 4 

3.1.3 Application Layer 

The top layer is the application layer that consists of software components that provide various 

functionalities and services in the vehicle. The two most significant types are the application software 

component type and the sensor actuator type. The latter is a software representation of a hardware 

component (a sensor or an actuator) while the former can make use of sensor data to provide 

actuators with relevant input. The data that is sent to or received from application layer components 

use the port interface functionality as described in 8.1.2. 

It is the development of application layer software components that the whole AUTOSAR initiative is 

based around and that justify its existence. The lower layers and the RTE have, in essence, the 

purpose of making the development of application layer software components easier and 

standardizing the development of said software components. Everything that uses the AUTOSAR 

platform is located in the application layer; this is the part of the system where the components 

actually do something useful in the vehicle. 



 

10 
 

  

3.2 Open Standard Cross car manufacturers 
One advantage with a standardized platform is the increased exchangeability of hardware and 

software. This exchangeability is present on many different levels, between manufacturer’s 

applications, vehicle platforms and so on. A hardware component manufactured by one company 

can easily be used in any vehicle as long as it has an AUTOSAR Software Components (SWC) that is 

delivered along with the component (e.g. a windscreen wiper motor which would have an actuator 

typed SWC). This means that the system integration phase of the vehicle design process will be easier 

and require less attention. As long as the standard is followed, by all who deliver components to the 

vehicle, they should be able to interact smoothly without any need for software rework apart from 

connecting the hardware’s SWC with the functional SWCs that use them. This should also be a 

reasonably easy task thanks to the standardized API (More on this in chapter 8.3). 

The problem is that in order to get the platform in place, much work is required with little financial 

return until it has been sufficiently utilized. A lot of the platform may not be used in every project 

and some parts might hardly ever be used. By implementing only the infrastructure that is to be used 

in the project at hand, development costs can of course be kept down. The drawback is that this 

makes software reuse very difficult if even possible (certainly impossible among different companies 

as sharing company code with outsiders is not very common). By standardizing the platform the 

initial cost can be motivated because it is shared not only by other car manufacturers but by the 

component manufacturers as well (e.g. Bosch and Continental deliver components to most vehicle 

manufacturers, especially those located in Europe). It is simply worth the extra effort if it means that 

further down the line the same software can be reused. It also opens up the possibility of switching 

components quickly and economically as long as they comply with the standard. The entire necessary 

 

Figure 4: An example of how the different components can be connected and what interfaces they 
use. 
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infrastructure is already in place and it should, in theory, just be a matter of snapping the new 

component (both hardware and software) into place. 

In short; by using a standardized platform the automotive industry can; ‘Cooperate on standards, 

compete on implementation’ which has become something of a motto for the AUTOSAR initiative. If 

integration and infrastructure costs, both in terms of dollars & cents and man-hours, can be reduced 

the amount left for implementing functionality will be much greater than otherwise. This in turn will 

mean more functionality and/or higher quality software in terms of robustness, security and 

dependability. 

3.3 Standardized API for application modules 
In order to achieve some of the goals with the AUTOSAR initiative, standardization of basic system 

functions and functional interfaces, a standardized API is almost unavoidable. The AUTOSAR 

Application Programming Interface (API) defines all the functions and methods that are needed in 

order to utilize the AUTOSAR platform’s functionality (see Figure 5). By following the structure and 

naming conventions of the API, developers can make their code compatible with it making it easier 

for other developers to use the functions implemented. The point is to ensure that all the different 

AUTOSAR implementations are compatible with one another. As a result there is no need for 

adaptation to OEM specific environments simply because there are none. If you know how to 

connect to the AUTOSAR interfaces you have all the knowledge needed to integrate the component 

to the system in question. 

  

 

 

Figure 5: An example from the AUTOSAR API. 
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3.4 Drawbacks with AUTOSAR 
There are of course some drawbacks with AUTOSAR. The layered infrastructure does lead to 

increased requirements in terms of available memory and computing power simply because the 

structure creates more overhead when direct access is denied. This is the price paid for better 

overview. Something that used to be simple to implement, might however become more difficult as 

everything must be done according to AUTOSAR methodology.     

Standardized software can only be as good (in terms of resource use) as, or worse than, software 

that is written exclusively for its specific purpose. If the standardized software would be better, then 

the purpose-written software would be redundant and inferior. I.e. the situation should never occur 

because the standardized software could be used as a template and possibly (likely) be enhanced to 

increase performance. (2) 
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4 XCP - Calibration & Measurement Protocol 
XCP is a generalization of a similar protocol called CCP with clear 

separation between transport layer and protocol layer. Whereas CCP was 

developed to support only CAN communication, its successor, XCP was 

designed to support a wide range of transport protocols. XCP was 

standardized by ASAM (Association for Standardization of Automation and 

Measuring Systems) (3) (4)  

Both XCP and CCP have their roots in the need for calibrating 

Engine/Electronic Control Units (ECU) on the fly during the development 

phase of their lifespan. Today’s vehicle control units often use quite 

complex internal algorithms to calculate output from any given input. The 

algorithms are more often than not parametric in that they have static 

controlling parameters to adjust the behaviour of a standard algorithm. A 

common day example of this could be the Traction Control Systems (TCU) 

and Anti-lock brake systems (ABS) of your normal car. The algorithms used 

in these types of system use input from various actuators (gyros, 

accelerometers, speed, steering angle and so on) to control the brakes 

and engine torque to avoid wheel lock and the car skidding out of control. 

To keep costs down and to ensure proper behaviour, the algorithms used 

to do these types of controls are standardized and often identical between 

different models/manufactures of cars. To cope with the differences 

between vehicles (weight, wheelbase, tires, engine etc) the algorithms can 

be tuned through parameters. (5) 

During the development process, a model of the vehicle is normally used 

to tune the algorithm at the start, but eventually you are forced to tune 

the controller when it is actually controlling the vehicle/system. This is 

where XCP (and its predecessor CCP) comes in. It allows communication 

over standard communication protocols like CAN/Ethernet/USB with the 

ability to accurately measure and modify variables in the running 

controller. 

Figure 6 depicts the basic flow of command execution of the core XCP protocol. 

4.1 Mode of operation 
XCP is designed as a Single Master/Multi Slave system. A single master system, on a development PC, 

can be connected to multiple slaves running on embedded devices. This allows a complete view of a 

larger controlled system. An example situation could be in a vehicle where a single master is 

connected to the ECU handling engine control as well as another ECU controlling adaptive 

suspension. The master controller is then able to measure internal controller states, as well as tune 

parameters for the embedded system while evaluating performance.  

 

Figure 6: Flow chart 
of the XCP protocol 
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4.2 Transport Layer (Ethernet, CAN, USB) 
The XCP protocol was designed from the ground up to be transport layer agnostic and as such can 

support many different types of transport protocols. While each transport protocol puts some 

restrictions on the core protocol, it functions according to the same principles and with the same 

core packet syntax. 

The XCP communication protocol is defined to use the slave’s native byte-order. This implies that the 

master must be able to control two sets of byte orders for the XCP core protocol, but also simplifies 

the implementation of the slave. The byte-order the slave uses is sent as a reply to the master when 

the master connects to the slave for the first time. 

The transport protocol sets limits on the possible throughput of data. A CAN network for example 

has a limit of 1 mbit transfer rate, this however is only possible with no other bus load and can be 

significantly lower if longer transmission cables are required. With Ethernet and USB this 

transmission cap is lifted and much larger throughput is possible. This allows for high speed sampling 

of large amount of data, while on a CAN network you may need to limit sampling speed and quantity 

to not overload the protocol.  

4.2.1 Ethernet 

XCP over Ethernet frames each core XCP packet with a header containing a packet number and 

length, but otherwise makes no changes to the underlying XCP core frame (see Figure 7). It allows for 

transport over both TCP and UDP where UDP imposes a limitation of packet size (DTO1/CTO2) defined 

by the maximum packet size of UDP. (4) 

 

4.2.2 CAN 

The CAN-bus (Controller-area network) is a serial communication bus originally constructed for 

communication between microcontrollers in automotive applications. It is a multi-master broadcast 

system without need for a controlling host computer. It has built in prioritization of messages with 

minimal delay in transmission and reception. 

                                                             
1
 DTO: Data Transfer Object 

2 CTO: Control Transfer Object 

 

Figure 7: Header and Tail for XCP on Ethernet. 
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When the CAN-bus is free, any node on the bus is free to start transmitting. If two nodes start 

sending at the same time, the message with highest priority will be received by all nodes. The node 

transmitting the lower priority message will resend its message after a given delay. Priority of 

messages is defined by the message id, where a lower id has a higher priority than a numerically 

higher id. 

The automatic prioritization of messages functions through a method of recessive and dominant bits. 

Where a logical 0 is considered dominant and a logical 1 is considered recessive. At the start of each 

transmission, nodes send their identifier starting with the most significant bit. After transmitting a 

recessive bit (1) on the serial bus, the node checks if the transmitted bit matches what is currently 

received on the bus. Should any other node have transmitted a dominant bit at the same time, the 

node will detect a dominant bit on the bus and stop transmission. After the full identifier has been 

transmitted, only one node will remain active on the bus and can begin sending its payload. 

XCP over CAN limits packet size (DTO/CTO) to 8 bytes, but allows for transfer of data without 

identifier by leaving that up to the CAN packet identifier. The normal XCP frame over CAN can be 

seen in Figure 8. Interleaved communication3 is not allowed. Each slave has at least two CAN id’s 

reserved, one for receiving commands and one for sending. (4) 

The XCP protocol has one extension when used over CAN which allows for automatic discovery of 

connected XCP slaves on the CAN-bus. If the master broadcasts a GET_SLAVE_ID message on the 

CAN-bus, all connected slaves will reply with a message signalling on which CAN packet id’s they 

communicate. 

 

  

                                                             
3
 Interleaved Communication: allows the master to send multiple commands to the slave without waiting for it 

to acknowledge them. 

 

Figure 8: Header and Tail for XCP on CAN. 
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4.2.3 USB 

XCP over USB frames each core XCP packet with a header containing data length and an optional 

packet number as can be seen in Figure 9. It also appends a tail which ensures that the following XCP 

packet follows a defined alignment. The communication model allows for either single XCP packets 

per USB packet, multiple complete packets in a single USB packet or streaming of XCP packets which 

allows XCP packets to cross USB packet borders. (4) 

Depending on the chosen method of packaging of XCP packets in USB packets, XCP may be limited to 

the maximum size of an USB packet. 

4.3 Online Calibration 
Provides direct read and write access to memory of the ECU. It also allows for access of different 

memory areas with a XCP specific address extension. Each calibration segment of the devices may be 

divided into multiple pages. Each page is semantically identical in the device but allows the master to 

modify multiple parameters without them taking direct effect. When finished it can signal a page 

switch for the embedded device where it starts using all of the newly written parameters at the same 

time. 

Each segment in the device has one ECU active page and one XCP active page. The page active for the 

ECU is the memory the ECU is currently using for its internal control loops. The XCP page is the 

memory area which the XCP master currently can read and write to. If the slave device allows it, the 

XCP and ECU may point to the same memory in which case modifications take effect directly. 

 

Figure 9: Header and Tail for XCP on USB 
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4.4 DAQ Lists – Data Acquisition Lists 
A core feature of the XCP protocol is the DAQ lists. In order to be able to send a large amount of data 

in a small amount of time and with low bandwidth load desirable, XCP offers the ability to configure 

lists that take care of transmitting requested data at a given interval. Each DAQ list (Figure 10) has a 

number of Object Descriptor Tables (ODTs) that in turn contains Object Descriptor Table Entries (ODT 

Entries) as described in Figure 11. Each ODT Entry has an address and a length, these make out the 

description of the parameter that it represents. When the DAQ list is processed the contents of the 

list is copied to the corresponding address of each entry in each ODT. The slave doesn’t receive an 

acknowledgement that the master has received the data correctly. 

Figure 10: For each DAQ-list configurations a number of ODT’s are defined, each having a unique 
identifying PID. 

 

Figure 11: Each ODT entry in a DAQ list points to a memory element with specified address and 
length. 
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4.4.1 DAQ-list configuration 

XCP has two different ways of configuring the DAQ-lists, static and dynamic. While static 

configuration is mandatory according to the specification, dynamic configuration seems to be the 

preferred way (as an example CANape only uses dynamic configuration in their examples). Which 

configuration method that is to be used is decided exclusively by the slave, there is no way for the 

master to request one or the other, nor can both be used in parallel. In addition to the configurable 

DAQ-list (static or dynamic) the slave can also have a number of predefined DAQ-lists. These lists 

cannot be altered in any way. Each ODT entry has a predefined address and size. The only thing the 

master is allowed to do is configure their direction, prescaler, priority and which event channel it 

should be connected to. 

In static configuration the slave already has a structure of DAQ-lists with ODT’s and the ODT’s have 

entries. This configuration cannot be edited. If there is only one DAQ-list, that has three ODT’s and 

the ODT’s have 5 entries each, then this is all the master has got at its disposal. The entries can be 

edited, i.e. the address and address extension that maps it to a memory space can be changed. A lot 

of the DAQ-list’s properties can also be changed just as in the case with the predefined list. 

The dynamic configuration is, as the name suggests, less restricted. The master can request 

allocation of any number of DAQ-lists, each DAQ-list can have any number of ODT’s and the ODT’s 

can have any number of entries. There are some restrictions to the command sequence of the 

allocation, see Figure 12 and the following list: 

 The allocation must always start with sending a command to clear the previous allocations; 

this is done with the FREE_DAQ. This will reduce the number of DAQ-lists to the predefined 

lists if any exists on the device. 

 The next step is to allocate the DAQ-lists; this can either be done one at a time or by 

allocating all the lists at once. If a FREE_DAQ has not been executed before this step the 

device will return an error message. 

 After allocating the DAQ-lists the master can start allocating ODT’s to the different lists. All 

the ODT’s in all the DAQ-lists need to be allocated before the first entry is allocated. 

 Finally the entries are allocated. 

 

 

 

Figure 12: The allowed sequences when allocating a dynamic DAQ-list configuration. 
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The parameter MAX_ODT is a defined in the AUTOSAR specification as maximum number of ODTs 

available on the slave, its range however suggests that it is instead the maximum number of ODTs 

available in the DAQ-list. More about the different XCP parameters can be found in Appendix C – 

Readme for XCP AUTOSAR module. 

4.4.2 STIM Lists – Data Stimulation Lists 

The opposite of DAQ lists are STIM lists. They provide a means for the master to write to (stimulate) 

the slave in a controlled manner. When the master writes to a STIM list, the data is buffered in the 

slave until the STIM list is executed at which point the stimulation data is copied to specified memory 

addresses of the ECU. 

STIM lists execute at a certain interval or at certain points in the program running on the ECU. This 

avoids the problems of directly modifying control parameters on the fly, mid execution of some 

control-loops. Instead it allows the ECU to apply new parameters at controlled points in time. 

STIM lists are built up in the same fashion as DAQ lists. They consist of ODT’s (object data 

descriptors) and ODT entries. Each ODT is transmitted in a single STIM packet from the master to the 

slave, and consists of multiple ODT elements. Each element has previously been configured to point 

to a memory address + extension with a specified length. 
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4.4.3 Processing Event Channel 

Each DAQ-list is connected to an event channel 

that dictates how often the DAQ-list should be 

executed. The DAQ-list also has a parameter 

called a prescaler that states how many event 

channel executions that should occur between 

each time the DAQ-list is run. If this parameter is 

set to 1 the DAQ-list will be run each time the 

event channel is executed. The flow of the data 

acquisition can be seen in Figure 13.  

4.5 Bypassing 
Bypassing is a feature of XCP that allows replacing 

some part of an ECU’s control logic with code that 

resides on the XCP master. For example: one 

could replace part of a calculation in the ECU with 

code that executes in Matlab/Simulink on the 

master to test out new controller methods 

without the need to re-program the ECU. It 

combines the use of DAQ lists with STIM lists to 

achieve this. 

Use of this feature of XCP requires additional 

instrumentation of the ECU’s code in order to 

function. When bypassing is activated on some 

part of the ECU’s program, the ECU will send a 

DAQ packet as it enters the bypassed code, with 

the parameters required to calculate a response 

to the master. Then the slave enters a waiting 

state. When the master receives the DAQ list for 

the bypassed code, it replies with a STIM packet 

containing the result of the calculation. At this 

point the ECU resumes operation with the 

received STIM data as the result of the bypassed 

code. 

4.6 Flashing / Firmware upload 
The flashing feature of XCP allows modification of persistent memory for replacement of firmware or 

calibration parameters. 

Firmware replacement allows the master to do a complete replacement of the code that runs in the 

ECU. After the firmware has been uploaded, the ECU is restarted and is then running with the new 

firmware in place. This avoids the need for a boot loader, and allows an XCP master full control of the 

ECU program without resorting to other tools for replacing ECU firmware. 

XCP also supports a more feature-based flashing to allow only calibration parameters to be made 

permanent in the slave. 

 

Figure 13: Flow chart over the processing steps 
done for an XCP Event Channel each time it is 
activated 
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4.7 Security – Seed & Key  
Each feature-set of XCP can be protected with a Seed and Key architecture. This allows protection 

from tampering with control units. The protection functions according to a seed and key 

methodology to avoid the ability to sniff the password over the transport protocol. The slave 

provides the master with a seed, which is used to compute a password for the feature. 

The actual logic used to calculate the SEED and the KEY is device-dependent and is provided by the 

ECU integrator. 

To allow different XCP master vendors to communicate with a XCP slave protected by a vendor 

specific seed and key logic, it is normal for the master to dynamically load a shared library (for 

example a Windows dll)  which contains the code necessary to calculate the key from the seed. 

This avoids the requirement that the XCP master vendor needs to know the logic used to unlock a 

specific ECU. 
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5 Development Environment 
 

5.1 Arctic Core 
The AUTOSAR platform implementation that was used in the project is Arctic Core. It is developed 

and maintained by ArcCore, a Swedish software company. The platform aims to comply with 

AUTOSAR release 3.1. Some modules are not complete, e.g. parts of the memory interface. 

5.2 Arctic Studio 
Arctic Studio is a rebranded Eclipse release with a few modifications tailored towards AUTOSAR 

compliant software developing. In addition to the regular source code editing capabilities Arctic 

Studio (the professional edition) offers a number of other eclipse based tools that are used for 

AUTOSAR specific development: 

 Extract Builder – The extract builder is used when connecting the different software 

components and creating an ECU extract. When connecting the different software 

components the user can either choose to do so manually or to let the tool do it 

automatically. The connections are created by pairing two ports on different components to 

each other.  If the providing port and the requesting port have the same name they can be 

connected automatically. Because the tool is a part of the Eclipse environment it can 

automatically find the various software components in the project, regardless of which file 

they are located in. This is a particularly useful feature when working in a large project with 

many developers.  

 

 SWC Builder – The Software Component tool is used to create and edit AUTOSAR 

components. By limiting the user’s choices the tool will aid in developing components that 

are sound and make sense. In addition to drag and drop capabilities it also offers validation, 

i.e. ensuring that the configuration is valid. The SWC Builder is also compatible with the 

AUTOSAR XML format (ARXML). 

 

 BSW Builder – The Basic Software Builder is a central tool for using the Arctic Core AUTOSAR 

platform. In the ECU Configuration Overview the user can choose which BSW modules are 

needed for the project and then using the custom editor, adapt them according to the 

intended application. After the appropriate modules have been selected and configured, the 

tool generates new configuration files that are used when creating the AUTOSAR platform. 

As with SWC Builder, the BSW Builder makes use of the validation rules which helps the user 

in keeping the configuration valid.  

 

 RTE Builder – As previously stated, parts of the Run Time Environment (RTE) must be 

generated because of the fact that some software components are unknown at the time of 

the first build. This tool is used to generate the source code for the parts of the RTE that 

cannot be written beforehand. 
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5.3 MinGW 
Arctic Core and Arctic Studio use the MinGW environment to cross-compile binaries for embedded 

devices on Windows. This allows for a toolset that is equal between multiple different operating 

systems used for development of AUTOSAR modules. 

MinGW stands for "Minimalist GNU4 for Windows". It is a library/environment for developing 

Windows applications using a toolset similar to that of Linux/Unix/Bsd. It provides the normal 

GCC/LD binutils with its support for a multitude of different platforms. It differs somewhat from 

Cygwin, in that it does not try to provide full POSIX5 compliance on Windows and as such is fully 

native to Windows. In comparison Cygwin requires emulation of many POSIX features not natively 

supported on Windows and is as such slower. 

5.4 Vector CANape 
As has been previously stated, XCP is a master-slave designed system. In order to test the slave being 

developed a master device has to be available. Vector CANape had previously been used at QRtech 

and was therefore the natural choice for the project. The tool offers a wide range of protocols to use 

for collecting data including XCP which was of course crucial.  

CANape can create a DAQ-list configuration automatically. The user only needs to define the 

variables or parameters that are to be measured; this is done in the following way:  

1. The first step is to add the addresses and properties of the variable to the database (see 

Figure 14).  

2. After the database has been updated with the new value the variable can be included in the 

measurement list.  

                                                             
4
 The name “GNU” is a recursive acronym for “GNU's Not Unix!” 

5 Portable Operating System Interface for Unix 
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3. Once in the measurement list, a number of different methods for data retrieval are available. 

The two most interesting for the project are the cyclic mode and the event channel mode, 

which in essence are the same thing. At ‘connect’ CANape receives a list with all available 

event channels. In event channel mode the user defines which event channel the variable is 

to be connected to. The variable will be sent at the same interval as the event channel rate.  

4. When the ‘Start Measurement’ button is clicked CANape will combine the prescaler and 

event channel so that the DAQ-lists transmission rate is as close to the desired interval as 

possible. 

5. Once the configuration is complete and the DAQ-list(s) have been started CANape will display 

the measurement in a diagram as seen in Figure 15. 

 

 

Figure 14: CANape Database Editor 
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The version of Vector CANape (6.1 with SP 3) that was available during the project did not offer a 

direct way to use DAQ-lists in STIM mode. This proved hampering at first as this was virtually the only 

tool used for testing and verification. Without a way to check the implementation, ensuring 

correctness was very difficult. The solution was to use the script-editor in CANape to write our own 

sequence of commands and thereby having full control over everything that was sent to the slave 

device. This proved useful also for verifying correctness of the implemented protocol’s error 

handling. 

Another problem with the version of CANape used is that it doesn’t care if the DAQ-list is predefined 

or not. Even though the tool acknowledges that there are predefined list and even knows how many 

there are it still tries to write to DAQ-list zero (the predefined lists are always have the lowest 

numbers).  

Another oddity is that CANape defaults to not expecting the counter of TCP slave packets to be 

incremented by normal response packets which the specification says it should be. At least they in 

this case allow you to follow spec by an advanced setting. 

  

 

Figure 15: CANape during measurement 
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5.5 QR5567 
The target hardware for the XCP implementation is the QR5567 platform (also known as the G3-

board or as ODEEP – Open Dependable Electrical and Electronics Platform). It is a rapid prototyping 

platform designed by QRTECH for developing systems and application within the automotive domain. 

The physical layout can be seen in Figure 16. 

The following features are available: 

 128MHz 32-bit FreeScale MPC5567™ microcontroller 

 Four CAN 2.0B interfaces with TJA1050 transceivers 

 Two LIN 2.0 interfaces 

 Two FlexRay interfaces with TJA1080 transceivers 

 10/100mbit Ethernet interface 

 Four 3.0A High Side Driver Outputs (HDO) 

 Four 2.8A Low Side Driver Outputs (LDO) 

 Eight analog or digital inputs 

 Micro SD-Card Interface 

 5V External Output 

 Two H-Bridge Drivers 

 One Universal Serial Bus (USB) interface 

 Compact Layout (160 * 100 mm) 

 

 

Figure 16: The QR5567 rapid prototyping platform. 
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QR5567 is also one of the reference boards for Arctic Core, which means that a significant amount of 

testing has taken place in regards of running Arctic Core on QR5567. This should (in theory) result in 

a higher level of dependability for the project. 

In order to transfer programs from the development platform (usually a PC or similar) to the board 

itself, a programming device is needed. A simple solution to this problem is to use a programmer that 

connects to the board via the JTAG connector and downloads the specified files directly to the flash 

memory area on the board. The one used for the project was a USB Multilink Interface from P&E 

Microcomputer Systems. In addition to the basic flashing feature it also has the capability to verify 

the memory. To have the ability to debug a PEEDI (Powerful Embedded Ethernet Debug Interface) 

from Ronetix was used. By using Telnet and TFTP (Trivial File Transfer Protocol) it is possible to 

program the device and also use debug. 

5.6 Vector CANcaseXL 
In order to run CANape in so called online mode, an external device containing the certification key is 

needed. In addition to this key, the CANcaseXL also contains two physical CAN channels with D-SUB 

connector ports and a power synchronization port.  

In order to make use of the CANcaseXL’s CAN channels a special cable had to be manufactured that 

could connect the D-sub9 connectors with the connectors on the QR5567. This was done in the 

laboratory at QRtech. 

There were some issues with the CANcaseXL, the most severe was the fact that when connected it 

seemed to cause Blue-Screen events at random. Although never confirmed that it was the cause, the 

CANcaseXL was always connected to the computer if it had an occurrence of Blue-Screen, typically 

one or two per day, regardless of whether it was being used or not.  
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6 Development Process 
The initial step in the development process was to create the configuration structures (and some of 

the runtime structures) as defined by the AUTOSAR XCP specification (6). Figure 17 shows an 

example on how the specification defines the runtime/configuration parameters for XCP. 

Configuration and runtime structures in AUTOSAR lend themselves very well to the normal C struct 

feature. This made defining the basic structures a straightforward process. On completion it gave a 

base to build on, with many of the required runtime data structures in place. It also avoided the 

situation of having to conform to the AUTOSAR XCP runtime structures at a later stage in the project. 

6.1 Basic Protocol Infrastructure 
The next logical step in the development was to get some sort of infrastructure in place for handling 

protocol parsing and packet handling. In order to comply with both AUTOSAR and the XCP 

specifications, several considerations had to be made. 

 Requirements on how the XCP module should communicate with other parts of the 

AUTOSAR layered infrastructure. (7) 

 AUTOSAR defines how the code should be structured into files and how they should be 

named. 

 AUTOSAR defines to a large extent how the configuration of the module should look 

 Memory requirements should be known at compile time. 

 XCP has timing requirements on data collection (DAQ) and data stimulation (STIM) (4) 

 

Figure 17: Example view from AUTOSAR Xcp specification on configuration and runtime 
structures 
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6.2 Development of testing tools 
In order to develop and simultaneously test the implementation without the constant need to flash 

the code onto the hardware, it was decided to create a standalone Windows XCP slave (XcpServer6) 

using the same codebase library as would run on the actual hardware. Arctic Core itself was not 

designed to be compiled on a non-embedded system, which ruled out using it as a host for the XCP 

module. 

It was however important that the interface to the core XCP code remained as close as possible to 

that which would be required to run on the actual platform to reduce problems and bugs that might 

be introduced due to differences in behaviour. This implied emulating the interfaces that the XCP 

module would be using when communicating. 

Since it had been previously determined that Arctic Core only had support for CAN communication, 

this would be the initial choice of communication model. As it turns out, Vectors CANape toolkit 

installs a virtual CAN bus, which can be used to communicate with CANape as if the real CANcaseXL 

CAN bus is used, the API of which was available as a download from the authors of CANape. 

The first instance of the XCP slave was using the above mentioned Virtual CAN bus and was working 

as a starting point. However, due to some annoying behaviour of this bus, where a single error could 

throw the whole virtual bus into an error state requiring a ‘disconnect’ of all CAN devices before it 

would normalize, testing was tedious. 

Given that XCP is also defined to run on TCP/IP for which CANape also has support, the development 

platform was rewritten to function as a standard TCP/IP server, and the interface against the core 

XCP module was changed to that which would have been used for TCP/IP communication with the 

module inside Arctic Core had it supported this type of communication. 

This change simplified XcpServer, since it was now using standard Posix7 socket API instead of a 

proprietary API for the virtual CAN bus, it was able to run the XCP slave on one physical computer 

and CANape on another as well as prepare the module for TCP/IP support when Arctic Core adds 

support for TCP/IP as a communication model. 

                                                             
6
 XCP slave based in windows for used in the development of XCP protocol 

7 Portable Operating System Interface for Unix 
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7 Result 
The XCP module is developed in C, taking advantage of C99 features such as designated 

initializers/inttypes.h and varadic macros. It is geared towards integration into an AUTOSAR 

compatible system. However it has few actual requirements on the surrounding system, allowing the 

module to be used in a non AUTOSAR context with only small adaptations. 

7.1 AUTOSAR Integration of the XCP module 
The AUTOSAR XCP specification has defined entry points into the XCP module for the different 

transport protocols. For the two of interest in this case (CAN and Ethernet) the following entry points 

are defined where <module> is either “Eth” or “Can” 

 <module>_Transmit(): 

Implemented by the CanIf/SoAdIf AUTOSAR subsystems. This function is used to signal 

transmission of data over the given transport protocol. It allows for two different modes. A 

buffering model or a copy free model.  

o With the buffering model, the transport subsystem copies the given data into 

internal buffers and transmits at a later stage, at which point it calls a confirmation 

function (Xcp_<module>TxConfirmation()) to signal the finished transmission of data. 

o In the copy free model, only the size of the data requested to be transmitted is given 

in the call to Transmit. When the transport layer subsystem is ready to transmit it 

asks for a pointer to the actual data from the requesting subsystem 

(Xcp_<module>TriggerTransmit()) 

 Xcp_<module>RxIndication(): 

Implemented in the XCP module. This function is called by the CAN/Ethernet subsystems in 

AUTOSAR when a data packet on a XCP assigned PDU is received. It contains the packet and 

the packet length. 

 Xcp_<module>TxConfirmation(): 

Implemented in the XCP module. Called by AUTOSAR CAN/Ethernet… subsystems to confirm 

that a data packet has been transmitted by the transport layer. 

 Xcp_<module>TriggerTransmit(): 

Implemented in the XCP module. Called by AUTOSAR CAN/Ethernet… subsystems when the 

transport layer subsystem is about to send a data packet previously requested by a 

<module>_Transmit() call by XCP. This allows a memory copy free transmit of data.  

Only the buffered approach to transmission was implemented, partly due to its simplicity but mainly 

due to lack of support in the Arctic Core AUTOSAR implementation for the copy free method. 

The specification also states that the XCP module should implement a main function that should be 

called on a fixed cyclic speed. It is said that “These functions are directly called by Basic Software 

Scheduler.” (3) But there is no mention on how this is expected to be realized in the RTE or Basic 
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Scheduler. Thus currently the following functions need to be explicitly called by the integrator of the 

AUTOSAR system. 

 Xcp_MainFunction(): 

Implemented in the XCP module and expected to be called by the Basic Software Scheduler. 

Since this is currently not realized in the Arctic Core AUTOSAR implementation. The 

Integrator is required to call this on a fixed cyclic speed to process received and sent XCP 

messages. 

 Xcp_MainFunction_Channel(channel) 

Implemented in the XCP module and is the entry point for triggering the specified XCP event 

channel. This should be called by the AUTOSAR integrator at the rate configured for that 

event channel and preferably at points in the software where the internal state is consistent. 

7.2 Code Organization 
The AUTOSAR XCP specification also imposes restrictions on the namespace of global variables as 

well as how the file/name and structure of your module should be defined. All global variables in an 

AUTOSAR module must be named according to the standard “<module>(_)<name>” to avoid 

namespace clashes between modules in the AUTOSAR layered architecture. The underscore has 

apparently been deemed optional since it is often omitted in the specifications. Filename should 

follow the same pattern of naming. 

The AUTOSAR XCP specification defines the following files explicitly (see Figure 18 for the 

correlations between the files): 

 Xcp.c – Main code for the XCP subsystem. 

 Xcp_Cfg.c/h – Compile time configuration parameters for the XCP module. 

 XcpOnEth.c – All code concerning XCP being transported over Ethernet. 

 XcpOnEth_Cbk.h – Extern function declarations for callbacks that other AUTOSAR 
components will call on reception of data over Ethernet. 

 XcpOnCan.c – All code concerning XCP being transported over CAN. 

 XcpOnCan_Cbk.h – Extern function declarations for callbacks that other AUTOSAR 
components will call on reception of data over CAN. 

 Xcp_ConfigTypes.h – Should contain all structures required in Xcp_Cfg.h/c to configure the 
XCP subsystem. 
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A few additional files were deemed logical to separate distinct parts of the XCP implementation: 

 Xcp_Memory.c/h – Containing a memory abstraction interface to handle reading and writing 

to memory and ports through the use of an address extension. 

 Xcp_ByteStream.c/h – Containing helper functions and defines for reading and writing to an 

arbitrary bytestream, as well as functions for handling the receive and transmit fifos. 

 

  

 

Figure 18: Organization of code modules 
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7.3 Memory Abstraction 
The XCP specification defines that any address used to reference an object/variable through the XCP 

protocol should be combined with an address extension to fully identify the object. It is quite vague 

in defining how the address extension should be used, but one example mentioned is to be able to 

address multiple CPU’s address spaces even if they do not share physical memory. 

To address this, a lightweight memory access abstraction was added to the module through which all 

memory reading and writing is performed. This has the additional benefit that any internal or 

external data of the ECU can be mapped into a flat address space and read and written as normal 

memory. The use of the memory abstraction layer allowed the implementation of reading and 

writing directly to AUTOSAR DIO8 Ports and Channels without any intermediary code written by the 

user of the XCP module. 

7.4 Demo Application 
During the development process a demonstrator application on the QR5567 was created. A standard 

RC-Servo9 was attached to a PWM port of the QR5567 as well as to an analog port reading the 

electrical current draw of the servo. This allowed monitoring of the current draw over XCP utilizing 

DAQ lists, whilst controlling the servo using the online calibration feature of XCP. 

The XCP demonstrator shows, in an understandable and simple way, the areas of application of XCP 

itself. It could easily be extended to support optional features such as writing to non-volatile memory 

for a more complete demonstration device when implemented in the core XCP module. 

The usefulness of XCP was also made clear, and an actual need for calibration occurred, when the 

initial RC-Servo used had to be replaced. The new servo required different pulse widths in order to 

use its full range.  

 

 

 

                                                             
8
 DIO: Digital Input Output 

9 RC-Servo: Normal servo using in remote-controlled cars/planes/boats 
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8 Discussion 

8.1 Implementation 
The behavior of the protocol is defined by the specification, there for no consideration regarding 

functionality had to be made. The implementation had to conform. This can be an advantage; no 

time needs to be spent on deciding how the implementation should work. The drawback is of course 

that as a developer a lot of freedom is lost. As an example a sizeable amount of rework was done 

when the dynamic allocation of DAQ-lists was added, due to the way in which AUTOSAR’s XCP 

specification defined runtime structures. Initially, the specification was followed to the letter, which 

at the time seemed like the logical choice. This however caused the implementation of dynamic DAQ 

lists to become much more complicated than need be. It was eventually decided to modify the 

runtime structures in a way more suited to dynamic memory allocation.  

The refactoring of the configuration structures could have been avoided if the specification had been 

clear that runtime structures where mainly a guide instead of a requirement which it was eventually 

understood to be. If known in advance, less code would have been written to rely on a suboptimal 

structure. 

Making use of the functionality of the QR5567 proved slightly more labor intensive than was 

assumed at first. The Arctic Core configuration template that maps the AUTOSAR ports to physical 

pins only had support for the LED; the rest had to be added by hand. It should however be 

emphasized that Arctic Core isn’t a QR5567 specific implementation and that no claim ever has been 

made that states the availability of a complete configuration. Even so, the lack of a useable 

configuration did require a lot of work that in essence was outside the scope of the project. 

The Arctic Core AUTOSAR implementation had a nasty habit of crashing when too much debug 

information was enabled and tasks where set to run often. It crashed in a mysterious way during 

scheduling of tasks with no reference to what caused it. Since this was the default configuration, XCP 

had to be limited to run processing at a very slow pace. 4 messages per second were about as fast as 

it could run before triggering scheduling errors. Due to the lack of working debugging tools at the 

start of the project, the reason was unknown during a large part of the initial phase of development. 

This in turn caused the focus to shift to the development of virtual environment for a slave device 

running on windows, rather than running on the targeted ECU. 

8.2 The AUTOSAR initiative 
At a glance, AUTOSAR seems to be offering a lot of pros without any cons. This is of course not 

entirely the case. First of all one must keep in mind that the AUTOSAR initiative is based on the desire 

to make development of new E/E functionality less costly. Less effort has been put into making 

software maintenance simpler. The assumption is that AUTOSAR will reduce the need for 

maintenance and debugging because the platform itself will take care of most of the connections and 

other sources of error. While this might be true, the fact that it is not obvious where the code is 

executed does make it harder to find the source of the error. Whether this will be less time- and 

money consuming than in the past remains to be seen, but at a glance it is uncertain. Introducing a 

completely new architecture also means that knowledge of the old has little value. 
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Another drawback that is not mentioned in the AUTOSAR documentation is the increased complexity 

for repairs and aftermarket services. Today, if there is a problem with an E/E component at the 

brakes for example, the service technician can replace the appropriate ECU-box easily because all the 

functionality is located in the same place. In an AUTOSAR compliant system there is no easy way to 

know which box to replace or even if it is enough to replace just one. This means that auto 

mechanics will have to master the art of computer software, becoming computer technicians as well.   

 

A big incitement for creating large vehicle corporations has in the past been that a lot of the systems 

and solutions can be reused in different car models all of which have essentially the same base 

model. As an example the VW group owns many brands all producing similar standard cars; VW, 

SEAT, Skoda and AUDI have a very similar range in small and medium sized segments. Instead of 

developing a completely new model for each make a common platform is developed and the final 

touch and finish is varied depending on which brand it is being produced as. As was stated in 

previous chapters, the share of E/E in terms of new added value might be as much as 90% and that 

the industry realizes that sharing the cost for the basic infrastructure would be a good idea. One 

argument is that if the lion’s share of new development is in E/E and a lot of this will be done in a 

more public fashion, the gain of having large corporations to reduce development costs might be a 

thing of the past.  

8.3 Future Work 
Programming 

The ability to write to non-volatile memory was left out of the implementation. AUTOSAR and Arctic 

Core have defined means of doing this, but currently reprogramming is left out of the XCP in 

AUTOSAR specification. This does not necessarily hinder adding support for this in the Arctic Core 

framework or for a specific device. It also seems likely that a future updated AUTOSAR XCP 

specification might include XCP as a means for reprogramming devices. 

Protocols 

The big advantage with XCP over CCP is the possibility to run the same protocol over different 

transport layers. As the project stands today the only available transport is CAN and to some extent 

Ethernet.  A logical continuation would be to implement the remaining transport layers. This depends 

on how the development of Arctic Core progresses, if it is to be an AUTOSAR module it must use 

interfaces that are yet to be included in Arctic Core. 

Master 

For some of QRtech’s customers the tools used in this project are considered to be too expensive. 

They are very advanced with a lot of functionality which might not be used on a regular basis, at least 

not in smaller application areas. A long term extension of the XCP project for QRtech could be to 

create an XCP master application. The shape and form of such an implementation is of course open 

to debate; but one option would be to base it on another tool that many customers already have e.g. 

Matlab. This would allow for simple installation and reduced development time as a lot of the 

framework would already be in place. It must however be emphasized that such a task, that of 

writing an XCP master, is considerably larger than the original project i.e. the protocol 

implementation.  
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Appendix A – Thesis proposal 
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Appendix B – Time plan 
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Appendix C – Readme for XCP AUTOSAR module 

 
***************** XCP - Calibration and Measurement Protocol ****************** 
 
XCP is a Calibration and Measurement protocol for use in embedded systems.  
It's a generalization of the previously existing CCP (CAN Calibration Protocol) 
This implementation is designed for integration in an AUTOSAR project. It 
follows AUTOSAR 4.0 XCP specification but support integration into an 
AUTOSAR 3.0 system. 
 
The requirements on the AUTOSAR infrastructure is limited, thus creating 
"emulation" functions to use the XCP module standalone is not a major  
hurdle for integration. 
 
Module support both static an dynamically configured DAQ lists, with 
dynamic DAQ lists the easier of the two to configure. It also support 
predefined DAQ lists when in dynamic mode in preparation for RESUME 
more support. 
 
There is support for reading and writing directly in memory on the device 
as well as a abstraction layer for memory to allow reading/writing 
directly to ports or user defined data. 
 
Module support multi threaded execution of data receive callbacks 
and main functions as long as a global mutex or interrupt disabling 
routine exists. It's only locked for very short periods of time 
during addition or removal of packets from queues. (the code should 
suite itself well for being replaced with a lockless alternative 
with atomic operations instead). 
 
Support Seed and Key protection for the different features of 
XCP.  
 
 LIMITATIONS 
------------- 
 
* Lack of page switching support for Online Calibration means it can 
be a bit error prone if large or multiple variables need to be modified 
while ECU is executing, since there is a risk it will sample the values 
while XCP is writing parts of them. 
 
* Currently in dynamic DAQ list configuration we malloc/free the number 
of DAQ's. This should probably be made into some internal pool of 
memory that can be configured at compile time. The requirements 
of how dynamic DAQ lists are allocated and released makes this internal 
HEAP reasonably simple to implement. 
 
* No support for RESUME mode, ECU Programming and PID off. 
 
* Interleaved mode is only partially tested since it 
is not allowed over the CAN protocol. 
 
* Only simple checksum support is implemented 
 
 INTEGRATION 
------------- 
 
To integrate XCP in a AUTOSAR project add the XCP code files to your project as 
a subdirectory. Make sure the subdirectory is in your C include path, as well 
as that all the .c files are compiled and linked to your project. There is  
no complete makefile included in the project. 
 
The application must call Xcp_MainFunction() at fast 
regular intervals to process incoming packets and send queued 
packets out onto the actual transport protocol. [This will be 
automatically taken care of when Arctic Core get XCP support 
built in] 
 
Arctic Core: 
    Add the Xcp.mk file as an include directive to your projects makefile 
    this should make use of Arctic Core build system to build XCP as a part 
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    of your project. [Currently this will default to CAN interface] 
 
Standalone: 
    Somewhat more complicated since it requires creation of a few headers 
    to emulate AUTOSAR functionality, as well as hooking XCP up to a 
    communication bus (Ethernet or CAN) 
 
    XCP communicate with the actual protocol layer through two defined 
    entry points Xcp_<protocol>RxIndication and <protocol>_Transmit, where 
    <protocol> is either SoAdIf or CanIf depending on what underlying 
    protocol is in use. For example for TCP/UDP the application needs to 
    read first byte to get packet length and then pass this complete  
    packet to XCP. 
     
    For timestamp support the system also need to provide: 
        StatusType GetCounterValue( CounterType, TickRefType ); 
 
    You also need to provide implementation for a global mutex locking: 
        void XcpStandaloneLock(); 
        void XcpStandaloneUnlock(); 
 
 
 CONFIGURATION 
--------------- 
 
All configuration of the module is done through the Xcp_Cfg.h and Xcp_Cfg.c file. 
These files could be automatically generated from AUTOSAR xml files or manually  
configured. 
 
 
Xcp_Cfg.h defines: 
    XCP_PDU_ID_TX: 
        The PDU id the Xcp submodule will use when transmitting data using 
        CanIf or SoAd. 
 
    XCP_PDU_ID_RX: 
        The PDU id the XCP sub module will expect data on when it's callbacks  
        are called from CanIf or SoAd. 
 
    XCP_CAN_ID_RX: 
        If GET_SLAVE_ID feature is wanted over CAN, XCP must know what CAN id it 
        is receiving data on. 
 
    XCP_PDU_ID_BROADCAST: 
        If GET_SLAVE_ID feature is wanted over CAN, XCP must know what PDU id it 
        will receive broadcasts on 
 
    XCP_E_INIT_FAILED: 
        Error code for a failed initialization. Should have been defined 
        by DEM. 
 
    XCP_COUNTER_ID: 
        Counter id for the master clock XCP will use when sending DAQ lists 
        this will be used as an argument to AUTOSAR GetCounterValue. 
 
    XCP_TIMESTAMP_SIZE: 
        Number of bytes used for transmitting timestamps (0;1;2;4). If clock 
        has higher number of bytes, XCP will wrap timestamps as the max 
        byte size is reached. Set to 0 to disable timestamp support 
 
    XCP_IDENTIFICATION: 
        Defines how ODT's are identified when DAQ lists are sent. Possible 
        values are: 
            XCP_IDENTIFICATION_ABSOLUTE: 
                All ODT's in the slave have a unique number. 
            XCP_IDENTIFICATION_RELATIVE_BYTE: 
            XCP_IDENTIFICATION_RELATIVE_WORD: 
            XCP_IDENTIFICATION_RELATIVE_WORD_ALIGNED: 
                ODT's identification is relative to DAQ list id. 
                Where the DAQ list is either byte or word sized. 
                And possibly aligned to 16 byte borders. 
 
        Since CAN has a limit of 8 bytes per packets, this will 
        modify the limit on how much each ODT can contain. 
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    XCP_MAX_RXTX_QUEUE: 
        Number of data packets the protocol can queue up for processing. 
        This should include send buffer as well as STIM packet buffers. 
        This should at the minimum be set to 
            1 receive packet + 1 send packet + number of DTO objects that 
            can be configured in STIM mode + allowed interleaved queue size. 
     
    XCP_FEATURE_DAQSTIM_DYNAMIC: (STD_ON; STD_OFF)   [Default: STD_OFF] 
        Enables dynamic configuration of DAQ lists instead of 
        statically defining the number of lists as well as their 
        number of odts/entries at compile time. 
     
    XCP_FEATURE_BLOCKMODE: (STD_ON; STD_OFF)   [Default: STD_OFF] 
        Enables XCP blockmode transfers which speed up Online Calibration 
        transfers. 
 
    XCP_FEATURE_PGM: (STD_ON; STD_OFF)   [Default: STD_OFF] 
        Enables the programming/flashing feature of XCP 
        (NOT IMPLEMENTED) 
 
    XCP_FEATURE_CALPAG: (STD_ON; STD_OFF)   [Default: STD_OFF] 
        Enabled page switching for Online Calibration 
        (NOT IMPLEMENTED) 
 
    XCP_FEATURE_DAQ: (STD_ON; STD_OFF)   [Default: STD_OFF] 
        Enabled use of DAQ lists. Requires setup of event channels 
        and the calling of event channels from code: 
            Xcp_MainFunction_Channel() 
 
    XCP_FEATURE_STIM (STD_ON; STD_OFF)  [Default: STD_OFF] 
        Enabled use of STIM lists. Requires setup of event channels 
        and the calling of event channels from code: 
            Xcp_MainFunction_Channel() 
     
    XCP_FEATURE_DIO (STD_ON; STD_OFF)   [Default: STD_OFF] 
        Enabled direct read/write support using Online Calibration 
        to AUTOSAR DIO ports using memory extensions: 
                0x2: DIO port 
                0x3: DIO channel 
        All ports are considered to be of sizeof(Dio_PortLevelType) 
        bytes long. So port 5 is at memory address 5 * sizeof(Dio_PortLevelType) 
        Channels are of BYTE length. 
 
    XCP_FEATURE_GET_SLAVE_ID (STD_ON; STD_OFF)   [Default: STD_OFF] 
        Enable GET_SLAVE_ID support over the CAN protocol. 
        Needs the following additional config: 
            XCP_PDU_ID_BROADCAST 
            XCP_CAN_ID_RX 
 
    XCP_FEATURE_PROTECTION: 
        Enables seed and key protection for certain features. 
        Needs configured callback functions in XcpConfig for 
        the seed calculation and key verification. 
 
    XCP_MAX_DTO: [Default: CAN=8, IP=255] 
    XCP_MAX_CTO: [Default: CAN=8, IP=255] 
        Define the maximum size of a data/control packet. This will also 
        directly affect memory consumptions for XCP since the code will 
        always allocate XCP_MAX_DTO * XCP_MAX_RXTX_QUEUE bytes for 
        data buffers. 
 
 
Xcp_Cfg.c: 
    Should define a complete Xcp_ConfigType structure that then 
    will be passed to Xcp_Init(). 
 
    Example config with two event channels and dynamic DAQ lists 
    follows below. The application should call Xcp_Mainfunction_Channel(0) 
    once every 50 ms and Xcp_Mainfunction_Channel(1) once every second. 
 
 
    **************** 
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        #define COUNTOF(a) (sizeof(a)/sizeof(*(a))) 
 
        static Xcp_DaqListType* g_channels_daqlist[2][253]; 
 
        static Xcp_EventChannelType g_channels[2] = { 
            {   .XcpEventChannelNumber              = 0 
              , .XcpEventChannelMaxDaqList          = COUNTOF(g_channels_daqlist[0]) 
              , .XcpEventChannelTriggeredDaqListRef = g_channels_daqlist[0] 
              , .XcpEventChannelName                = "Default 50MS" 
              , .XcpEventChannelRate                = 50 
              , .XcpEventChannelUnit                = XCP_TIMESTAMP_UNIT_1MS 
              , .XcpEventChannelProperties          = 1 << 2 /* DAQ  */ 
                                                    | 0 << 3 /* STIM */ 
            }, 
            {   .XcpEventChannelNumber              = 1 
              , .XcpEventChannelMaxDaqList          = COUNTOF(g_channels_daqlist[1]) 
              , .XcpEventChannelTriggeredDaqListRef = g_channels_daqlist[1] 
              , .XcpEventChannelName                = "Default 1S" 
              , .XcpEventChannelRate                = 1 
              , .XcpEventChannelUnit                = XCP_TIMESTAMP_UNIT_1S 
              , .XcpEventChannelProperties          = 1 << 2 /* DAQ  */ 
                                                    | 1 << 3 /* STIM */ 
            } 
        }; 
 
        Xcp_ConfigType g_DefaultConfig = { 
            .XcpEventChannel  = g_channels 
          , .XcpSegment       = g_segments 
          , .XcpInfo          = { .XcpMC2File = "XcpSer" } 
          , .XcpMaxEventChannel = COUNTOF(g_channels) 
          , .XcpMaxSegment      = COUNTOF(g_segments) 
 
        }; 
 
    **************** 
 
Seed & Key: 
    To support Seed & Key you need to provide two functions to the config structure 
    (XcpSeedFn and XcpUnlockFn) the seed function (XcpSeedFn) should populate the 
    supplied buffer with a seed which will be transmitted to the master for it  
    to calculate a key from. 
 
    After the master have replied with the key, XcpUnlockFn will be called with the 
    seed and key to verify access. If successfull the protected resource will be unlock 
    during this session. 
 
    Example for seed and key functions which just accept an identical reply of the seed: 
    ***************** 
        static uint8 GetSeed(Xcp_ProtectType res, uint8* seed) 
        { 
            strcpy((char*)seed, "HELLO"); 
            return strlen((const char*)seed); 
        } 
 
        static Std_ReturnType Unlock(Xcp_ProtectType res, const uint8* seed, uint8 seed_len, 
                                     const uint8* key, uint8 key_len) 
        { 
            if(seed_len != key_len) 
                return E_NOT_OK; 
            if(memcmp(seed, key, seed_len)) 
                return E_NOT_OK; 
            return E_OK; 
        }     
    ***************** 
     
     
 
 CANAPE 
-------- 
 
    Advanced settings: 
        DAQ_COUNTER_HANDLING: Include command response 
            Oddly CANAPE defaults to not expecting CTR value of tcp slave packets 
            to be incremented by RES packets and the like which the specification 
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            says they should be. At least they allow you to follow spec. 
        DAQ_PRESCALER_SUPPORTED: Yes 
            Implementation support prescaler 
 
 
 
 
 
 
 
 
 
 
 
 


