A new metal-rod-supported hat antenna for potentially combining with the eleven antenna as a dual-band feed for reflectors

This document has been downloaded from Chalmers Publication Library (CPL). It is the author`s version of a work that was accepted for publication in:

Citation for the published paper:

Downloaded from: http://publications.lib.chalmers.se/publication/140137

Notice: Changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published source. Please note that access to the published version might require a subscription.
A New Metal-rod-supported Hat Antenna for Potentially Combining With The Eleven Antenna as a Dual-Band Feed for Reflectors

Jian Yang*, Wei Wei*, Tomas Ostling†, Thomas Schafer†

*Department of Signals and Systems, Chalmers University of Technology
Chalmersplatsen 1, Gothenburg, Sweden
jian.yang@chalmers.se

†Arkivator AB
Gothenburg, Sweden
Tomas.ostling@arkivator.se

Abstract—A new hat feed entirely made of metal without using dielectric material has been developed. Compared to the previous hat feeds, it has lower manufacture cost, higher reliability, and wider bandwidth of reflection coefficient. The feed has been optimized using Genetic Algorithm. A prototype has been manufactured, and measured results are presented to verify the numerical simulations. In addition, the new design opens up the possibility to combine the new hat antenna with the Eleven antenna for a dual-band feed.

I. INTRODUCTION

Hat feeds [1]- [7] are self-supported, rear-radiating feeds which consist of a waveguide (referred to as neck), a piece of dielectric material (head) and a corrugated brim (hat), as shown in Fig. 1. This geometry avoids the blockage of support struts and meanwhile make it possible to locate the transmitter and receiver at the rear side of the reflector. Therefore, hat feed reflector antennas have found many applications, such as in mini-link, satellite-communication terminals [8] and gauge radars.

The paper presents a new solution to hat feed geometry in order to reduce manufacture cost, increase reliability and make it possible to combine the hat antenna with the Eleven antenna [9]- [11] for a dual-band feed. The new hat feed is entirely made of metal without using dielectric material, with a new technique - slits on the waveguide wall.

A prototype of the new hat feed has been manufactured. Simulated and measured performances of the new hat feed are presented in the paper for verifying the new design.

II. GEOMETRY OF THE NEW HAT FEED

The corrugated brims of all previous hat feeds were supported by a piece of dielectric material (head) through gluing the three parts (hat, head and neck) together. The gluing procedure requires high temperature treatment for strengthening the stability, which is time consuming and often causes unqualified products due to the difficult tolerance control for the head position.

Therefore, it will be cheaper to use thin metal rods as support structure instead of dielectric head. Thus, minimizing the effect of the metal rods on the aperture field distribution is a critical issue in the design.

The aperture distribution between the hat brim and the neck waveguide for a hat antenna can be decomposed into two modes [1], \(\varphi \)-mode with only \(\varphi \)-directed E-field, and \(z \)-mode with \(z \)- and \(\rho \)-directed E-fields, see Fig. 3.

From the figure, it can be seen that it will affect the aperture...
distribution minimally and maximally if metal rods are located in the H-plane and E-plane, respectively. Therefore, for dual-polarized hat feeds, an optimal trade-off between the two polarizations for the support structure is four thin straight tilted metal rods in $\varphi = 45^\circ$, 135°, 225° and 315° planes; see Fig. 2. By this geometry arrangement, it also eliminates the radiation along the waveguide while the radiation in other directions remains because the spacing between rods at the waveguide end is less than half wavelength of operating frequencies while the distance between rods at the hat brim is much larger than the half wavelength. In other words, the z-mode fields cannot propagate between the support rods near the waveguide end, which leads the radiation along the waveguide will be reduced and therefore no vertex plate is needed. At the same time, the z-mode fields propagate easily between the support rods close to the hat brim and are reflected by the corrugations towards the reflector. It should be noted that thin tilted rods do not affect the φ-mode field and that the φ-mode field does not radiate along the outer surface of the metal waveguide.

The new hat feed is not pure BOR antenna [12] due to the new support structure, whereas all previous hat feeds were perfect BOR type. Therefore, the BOR_1 efficiency [12] [13] of the new hat feed will not be 100%. Consequently, optimization of the new hat feed configuration is applied to obtain an optimal BOR_1 efficiency.

III. NEW TECHNIQUE - SLITS ON THE WAVEGUIDE END

In hat feed design, the z- and φ-modes should be excited with correct amplitudes and phases so that the E- and H-plane radiation functions are similar and therefore the cross polar radiation level is low[11]. This was achieved by adjusting the aperture size (distance between the hat and the waveguide end) and the shape of the dielectric support material inside the waveguide for the previous hat feeds.

In the present design, we introduce a new technique - longitudinal slits at the end of the waveguide, shown in Fig. 4, so that the z- and φ-modes excitations can be adjusted separately. The longitudinal slits can be modeled as wire grids that allow the φ-mode field to penetrate through but not the z-mode field. Therefore, the wire grids function as a open area for the φ-mode field and a normal waveguide for the z-mode field. Hence, the aperture size for the φ-mode field is h_1 longer than that for the z-mode field where h_1 is the length of the slits; see Fig. 4. By changing the depth of the slits, we can adjust the φ-mode field without changing the z-mode field in the aperture.

It should be noted that the reflection coefficient at the waveguide input port is also affected by these slits so optimization procedure includes the dimensions of the slits. In this design, sixteen slits are used.

IV. SIMULATED AND MEASURED RESULTS

A prototype of the new hat feed was manufactured for verifying the design; see Fig. 2.

Fig. 5 shows that the decrease of the simulated BOR_1 efficiency caused by the 4 metal rods is smaller than 0.3 dB. Meanwhile the polarization efficiencies remains higher than -0.5 dB. Consequently, the deterioration caused by the 4 rods is acceptable.
Fig. 5. Simulated BOR1 and polarization efficiencies of the new hat feed.

Fig. 6. Simulated and measured reflection coefficient of the new hat feed mounted in the reflector.

Fig. 7. The new hat feed mounted in a reflector with a diameter of 654 mm and a subtended angle of 105°.

Fig. 9. Calculated and measured aperture efficiencies of the new hat feed reflector antenna.

V. VISION OF COMBINING THE NEW HAT FEED WITH THE ELEVEN FEED

The metal-rod-supported hat feed opens up the possibility for designing a dual-band feed by combining it with the Eleven feed [9] - [11]. Fig. 10 shows a version of dual band feed combining the new hat feed and the Eleven feed, where the metal rods are replaced by coaxial cables for feeding the Eleven feed. More detailed design and analysis for the dual band feed will be carried out and reported.
VI. CONCLUSIONS

A new hat feed that uses four metal rods as a supporting structure for the head has been successfully designed. The new hat feed not only has a lower manufacture cost than the previous ones, but also opens up the possibility of combining...
Fig. 10. One version of dual band feed combining the new hat feed and the Eleven feed.

the Eleven feed for dual band feed for reflectors.

ACKNOWLEDGMENT

The work was done within Chase Antenna Systems Excellence Center at Chalmers which is supported by VINNOVA (Swedish Governmental Agency for Innovation Systems). Special thanks to Prof. P.-S. Kildal for his helps in the project.

REFERENCES