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Abstract

The optimal truck configuration for a certain customer is very specific and depends
on for what transport mission and in which operating environment the truck is to be
used. In addition, the customers normally specify other feature requirements rang-
ing from visual appearance to advanced driver support systems. For this reason, the
truck configurations that are made available for the customers are highly specialized.
To achieve this in a cost efficient way, the manufacturer must be able to produce these
configurations with a limited set of technical solutions. This is done by the use of a
common architecture, in which technology is shared such that the same parts are
used in different combinations, leading to a relatively small number of parts but a
large number of possible configurations.

This thesis presents an approach to the configuration problem by analyzing it
from a mathematical optimization perspective. By assuming that a truck can be de-
scribed by a number of quality measures, which different customers may appreciate
differently, the problem of deciding on a good product offer can naturally be formu-
lated within a multi-objective optimization framework.

The areas within product development in which mathematical optimization can
be applied are many and most often fundamentally different. In this thesis several
subproblems of the whole product development problem are formulated in mathe-
matical terms, and in the appended papers, the resulting mathematical models are
considered in generalized forms. As established in the different papers, not just one
optimization discipline is relevant in the product development context. The disci-
plines considered include multi-objective optimization, clustering, robust optimiza-
tion, continuous global optimization, and nonlinear integer programming with an
extension to a special type of non-sortable discrete variables.
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For a large number of objectives—typical in many real-world applications— mul-
ti-objective optimization becomes cumbersome; the first appended paper provides a
method for problem reduction such that the representation of the Pareto optimal set
is kept as accurate as possible. The second paper considers a simplification of the
configuration problem of finding appropriate sets of technical solutions that are to
be combined into configurations, by assuming that the decision variables are contin-
uous and box-constrained. Clearly, real-world problems often involve uncertainties
in models and/or data. In the third appended paper, a new measure of robustness
of solutions to multi-objective optimization problem is developed. The preferences
of the decision maker are estimated by an utility function on which the robustness
measure is based. In the fourth appended paper, optimization with respect to a type
of non-sortable discrete variables is addressed. Theoretical and methodological in-
vestigations are performed, and by a reformulation of the problems as nonlinear
integer programming problems mathematical optimization techniques are shown to
be applicable. In the last appended paper, we explore a new principle for contin-
uous global optimization of computationally expensive functions by, for each new
function evaluation, minimizing the resulting worst-case optimality gap.

The main contribution of this thesis is the interpretation and formulation of a
product development problem, including subproblems, in a mathematical optimiza-
tion framework.

The thesis has been written in close cooperation with Volvo 3P.

Keywords: optimization, multiple objectives, platform-based products, heavy-duty
trucks, configuration management, categorical variables, global optimization, ro-
bustness
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1 Introduction

This thesis is the outcome of an industrial PhD project entitled Product Configuration
with respect to Multiple Criteria in a Heterogeneous and Dynamic Environment within an
Extended Enterprise performed at Volvo 3P and in cooperation with the Fraunhofer-
Chalmers Research Centre for Industrial Mathematics (FCC) and the Department
of Mathematical Sciences at Chalmers University of Technology and University of
Gothenburg.

The thesis takes a mathematical optimization perspective on the product devel-
opment of platform-based products with a common architecture enabling shared
technology, specifically trucks, that are developed for heterogeneous markets. In
2008, the licentiate thesis Product Configurations with respect to multiple Criteria – a
Mathematical Programming Approach [37] was published within the same project and
of which this thesis is a continuation. In its introductory part, several aspects of the
main problem were presented and analyzed. In the introduction of this thesis, the
most important parts of [37] will be reviewed once more; however, the scope is nar-
rowed and focuses on the areas in which actual contributions have been made.

One purpose of the introductory Sections 1–6 is to describe the practical problem
at Volvo and to place it in a scientific context. Another purpose is to briefly introduce
the mathematical areas in which the appended papers are localized and to place
the appended papers in their scientific context. To see a clear connection between
the real-world problem and the generalized mathematical problems studied, many
cross-references will be given between the different aspects of the actual problem
and the contents of the appended papers.

1.1 Background

The ultimate goal of a commercial company is to maximize the long-term dividends
to the stakeholders. To enable this it is necessary to offer products to the market
which match its demands in a cost-effective way.

Volvo 3P is a business unit within the Volvo group responsible for product plan-
ning, product development, and purchasing for the four brands Volvo Trucks, Mack
Trucks, Renault Trucks, and UD Trucks. The research work presented in this thesis
has been carried out within the product development of Volvo 3P, whose interest
in this project is to explore the possibilities of utilizing a mathematical framework
to support the development process of a platform-based product. This in order to
provide a broad competitive product offer with high platform efficiency on an in-
creasingly complex and global truck market.

Volvo 3P is a global company whose developed products are used in markets
with very different characteristics concerning operating environments, legislations,
and transport missions. This fact, together with a stiff competition, has led to a high
degree of specialization and truck customization for individual customers. Thus, to
be able to fulfil the demands of the customers, a great variety of truck configurations
must be offered. A number of varying transport missions are illustrated in Figure 1,
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where the diverse necessary superstructures call for differing requirements on the
trucks.

Figure 1: A number of superstructures illustrating various transport missions.

Each individual configuration has a certain perceived quality for each specific
customer, given by his/her utility function1. By assuming that quality can be divided
into a number of components, the quality of a configuration can be represented by
a polygon in a diagram of the type drawn in Figure 2. (Note that the term “quality”
is used for all objectives and should not be confused with the classical “product
quality”.)

A first critical assumption on which the theory in this thesis is based is that the
quality functions exist. A second critical assumption is that each customer evalu-
ates each individual quality in the same way, or at least such that all configurations

1In Paper III, utility functions are estimated in order to measure the robustness of solutions with re-
spect to uncertainties in data and/or quality functions.
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are sorted equally with respect to this quality function. The different customers are,
however, allowed to appreciate the combination of individual quality functions dif-
ferently depending on transport missions, operating environments, personal prefer-
ences, financial strengths etc. It then becomes obvious that customers are not inter-
ested in any truck that is worse than some other truck with respect to all of the indi-
vidual quality functions. Formally, this is a concept called Pareto optimality; it is math-
ematically defined in Section 4.1 and is a central concept in three of the appended
papers. In Figure 2, a Pareto optimal solution corresponds to a polygon which is not
entirely enclosed in any other polygon.

Figure 2: The quality of each configuration (the figure illustrates two configurations)
can be represented as a polygon intersecting each axis at the numeric measure of the
corresponding quality. The gray region represents all possible values of the quality
measures. Good values of a quality measure correspond to values far from the center
of the diagram.

We have an intricate connection that the quality function “Product cost” is a func-
tion both of the individual configuration but also of the whole set of produced config-
urations. This is due to “economy-of-scale” effects when costs for development and
other common activities are shared by utilizing the same technical solutions. This
connection is illustrated in Appendix A of [37], Discretization is a win-win concept, in
which it is shown that each single customer, for a suitable limitation/discretization
of the product offer, may obtain a configuration which is better in all individual
quality measures than what he/she would have received if the product offer was
not limited. The topic of collective quality is also considered in Paper II, where the
optimal sets of technical solutions are sought under the above Pareto perspective on
the customer requirements.
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1.2 Thesis objectives

The vision of the project is to design a procedure that consistently and systematically
reduces the size of the assortment of variants used for configuring the population of
trucks in such a way that each customer is guided towards a configuration that is at
least as good as the one that he/she would have chosen without using the procedure.
The aim is essentially to satisfy as many customers (in selected market segments)
as possible using the least number of technical solutions, and by this increase the
profitability for the company.

To take a step towards fulfilling the vision, the main theme of this thesis is to
create and explore mathematical frameworks for different aspects of the product de-
velopment problem—the configuration problem—and to devise procedures of how
to solve some of the identified subproblems. The main problem considered is to:

Create an optimal set of technical solutions resulting in trucks simultaneously fulfilling a
great variety of customer feature requirements and business objectives for platform efficiency.

An underlying assumption is that there exist functions measuring the different
qualities of a truck. This is a critical assumption, and for the frameworks to be effec-
tive tools, it is an important task for industry to learn what the customers seek, and
hence how quality should be measured.

The appended papers have their own objectives, inspired by the different aspects
of the main problem. These are presented using references from the real-world prob-
lem description in the following sections, and also when the papers are summarized
in Section 6.

The expected benefit for the company from this thesis, and from subsequent work
inspired by it or as a consequence of it, is a reduction of costs related to product
development, production, maintenance, and sales of trucks. In addition, one goal is
to create an understanding of what a company can gain from the use of mathematical
optimization and what this requires from the company in order to function (e.g.,
numerical measures on quality parameters and clear definitions of what is allowed
and what is not). The expected goal for academia is an increased insight into complex
product development, and how to adapt mathematical models and methods to such
an environment. Finally, the expected benefit for the customers is a guidance towards
and within the set of available and verified appropriate vehicle configurations.

1.3 Outline

The introductory sections are organized in the following way: In the next section, we
describe the basic facts about Volvo in terms of how a product is defined and how the
global market, on which the products are to be sold, is structured. These surrounding
facts define the cornerstones of the general framework for our problem formulations.
In Section 3, the product development problem is characterized in terms of different
complexity measures in order to emphasize the most important challenges of the
development of trucks, and to delimit our studies to a well-defined area.
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In Section 4 the various optimization disciplines concerned in the appended pa-
pers are briefly introduced, and relations to the real-world situation described in
Section 2 are presented when appropriate, as well as relations to the appended pa-
pers.

In Section 5 the contributions of the thesis are highlighted, and suggestions for
future work are given in order to continue along the route towards the project vision.
Finally, in Section 6 the appended papers are introduced, summarized, and localized
within the product development process.

2 The product configuration framework at Volvo

At Volvo there is a product development process with an associated organization.
The process with its methods and tools have, together with the organization, been
developed evolutionary over a long time to gradually adapt to a changing envi-
ronment and to continuously improve their efficiency. Needless to say, one cannot
start over from a blank sheet when formulating the mathematical frameworks for
the different subproblems identified, but must adapt to some of the standards and
constraints imposed by the current conditions. We start the following subsections
by describing the product structure at Volvo. Thereafter we describe the market at
which the products are to be sold, and present discretization concepts of operating
environments and customer feature levels.

2.1 The product structure at Volvo

This subsection begins with a description of the current product structure and how
decision spaces for optimization problems given this product structure can be de-
fined. In the following subsection, the concept of Strategic Vehicle Specifications is in-
troduced; this is a recent concept for the discretization of the large number of possible
configurations to a graspable test set representing the product offer.

2.1.1 Variant families, variants and restrictions

An organized product structure can be utilized in many ways: It makes it possible for
different departments to develop different parts of the truck, it enables the company
to ensure that the right physical material is produced and assembled, and it also
makes it possible to secure that each truck fulfills the legislation that is valid at the
market where it is sold.

At Volvo, a truck is specified with its so called variants, each of which belong
to a certain variant family. The variant families describe a vast variety of entities,
some of which represent physical alternatives such as which engine type or which
frame height the configuration should have, while others describe, for example, on
which type of road the truck should be driven. In principle, a truck is completely
specified by its list of variants, in which in almost all cases, exactly one variant from
each variant family connected to the type of truck must be chosen. Therefore, the
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truck specification—the list of all variants—can be viewed as the fingerprint or the
DNA-profile of the truck. An example of a truck specification is shown in Figure 3
containing a part of such a list of variants. A few of the entries are highlighted to give
some examples of actual variants and variant families; these are described in Table 1.
Figure 4 contains pictures of different rear axle installations, each corresponding to
a variant in one of the variant families.

Figure 3: A part of a truck specification. Each entry is a code for a variant in some
variant family.

Variant Variant family Description of the variant
RC-ROUGH Road condition Badly maintained road
6*2 Axle arrangement 6 wheels thereof 2 driving
RFUEL490 Fuel tank at the RHS 490 litre right side fuel tank

Table 1: Examples of items in the truck specification shown in Figure 3.
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(a) RST-MUL

(b) RST-PAR

(c) RST-AIR2

Figure 4: An illustration of different rear axle installation types, defined by one of
the variant families. a) has a multi-leaf spring, b) has a parabolic spring and c) has
an air spring. The captions are the names of the corresponding variants.
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A typical product type (a coarse division of the truck configurations) has about
500 valid variant families, each containing two or more variants. Thus, the number of
possible configurations—if we define a unique configuration by the selection of one
variant from each variant family—is huge (much larger than 2500 ≈ 10150). In reality,
however, not all variants can be combined just anyhow, due to geometrical, physical,
functional, and legislative reasons. In the product structure this is documented by so
called restrictions, which represent disallowed combinations of two or more variants.
This way of defining feasible and infeasible configurations is sometimes denoted
as using a system of positive variants. The opposite, negative variants, presupposes
that all configurations are infeasible except the ones that are explicitly defined as
feasible. Which of the systems to use is a fundamental strategic decision for the com-
pany. The advantages of using a system of positive variants are that the flexibility
increases and that in practice it leads to more configurations and thus more possi-
bilities for customer adaptations. A serious disadvantage is, however, that positive
variants impose a large complexity due to the large number of restrictions required.
In addition, the set of restrictions is dynamic in the sense that restrictions are added
over time whenever an infeasibility is discovered, and it is a huge task to maintain
the set of restrictions and to adapt it to newly developed variants and changes in the
legislations. Currently, the number of restrictions are in the order of 100,000. Since
each restriction represents a prohibited combination of variants, it can cut off a large
number of configurations from the feasible set.

2.1.2 Design and configuration spaces

The purpose of this subsection is to introduce notation necessary for explaining the
development problem in mathematical terms and to set up relations between the
development problem and the problems studied in the appended papers.

We disregard the actual product structure used at Volvo for a while and return
to the actual configuration problem to be solved. The business idea is, in the space
of all possible truck configurations, to produce trucks that are at least close to Pareto
optimal. In addition, the company wants to use common parts for the configurations
that are constructed. To enable a well-functioning product development process and
to facilitate an efficient specification of the product itself, the product must be par-
titioned into groups or subsystems. The current product structure represents an ex-
ample of such a partitioning. Therefore, we identify the different groups with the
different variant families in the current product structure and let Xj be the (possibly
infinite) set of all technically possible variants in variant family j, j = 1, . . . , n. Fur-
thermore, we let the actual variants of today define the sets X̄j ⊆ Xj , j = 1, . . . , n.

We define alternative decision spaces, in which the configurations are located.
The configuration space, or X̄ , consists of all configurations (feasible or not) that can
be defined using the current variants, i.e., X̄ = X̄1 × . . . × X̄n. By allowing new
variants in each variant family we define the design space, or X , as the Cartesian
product of all possible variants (feasible or not) in the current variant families, i.e.,
X = X1 × . . . × Xn. We refer to the licentiate thesis [37] for a broader discussion
about the different decision spaces. In [37], two modes of the configuration problem,
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one in which the decision space equals the configuration space X̄ and one in which
the decision space equals the design space X , are introduced. We denote the former
problem as the mode 1 problem, and the latter as the mode 2 problem. The mode 1
problem is more of an operational type, trying to find good configurations using the
variants already available in the product structure, while mode 2 is more of a strategic
or development type. One obvious difference between the two modes is that the
restrictions/constraints are only formulated for mode 1 while they are unknown for
mode 2. Furthermore, the mode 1 formulation is completely discrete whereas the mode
2 formulation contains continuous portions.

In Paper IV we take a step towards the solution of the mode 1 problem by propos-
ing a solution method for a single-objective version of the problem. In Paper II we
take a step towards solving the mode 2 problem by restricting each variant family to
be represented by a (continuous) interval.

2.1.3 Strategic vehicle specifications

We now return to the actual product structure. The number of configurations in the
configuration space, i.e., the trucks that can be defined using the current product
structure, is much larger than 10150. The number of trucks that are produced ev-
ery year within the Volvo group is in the order of 200,000. Only a few of these are
perfectly identical to another truck. The number of trucks that are evaluated in com-
puter simulations and built and tested at proving grounds during a certain devel-
opment project is however often only around 10–100. The orders of magnitude of
the above numbers are significantly different, and the actual specifications that are
considered constitute just a small fraction of those in the configuration space. To be
able to control the product offer in the best way, a recent definition is that of Strate-
gic Vehicle Specifications (SVSs). These should consist of sufficiently many (possibly
100–1000) specifications in the configuration space and which are thought to be par-
ticularly important. The purpose of using SVSs is that when updating the products
with modified technical solutions, then by analyzing the SVSs the features for all
trucks interesting for the customers should be sufficiently controlled. For this to be
achievable, the SVSs must be suitably spread in the configuration space. The SVSs
can be used as a test set in order to monitor the quality and the platform efficiency
of the product offer over time.

The SVSs can be of different types, depending on why they are seen as particu-
larly important. They can be volume critical, i.e., high volume specifications from a
sales perspective, they can be business critical, i.e., with a high strategic value from
a product offer perspective, or they can be platform critical, i.e., specifications critical
from, e.g., a functional, geometrical, or manufacturing perspective such that non-
fulfillment of requirements leads to corrective actions. The concept of strategic vehi-
cle specifications is roughly illustrated in Figure 5.
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Figure 5: A rough illustration of the SVS concept. All configurations in the product
offer are symbolized as circles and the SVSs of the respective types are marked with
certain patterns. In each coarse segment of the product offer, which can be parti-
tioned differently depending on the stakeholder, there is at least one SVS.

Each SVS should carry attributes explaining why it is considered. When a de-
velopment project is initialized, the SVSs that are believed to be affected should be
selected and analyzed throughout the project. The hope is that by using SVSs, syn-
ergies will arise when constructing test vehicles, including both physical and digital
representations, and also that the definitions of the test vehicles used will be more
clear, simplifying evaluations and comparisons between different analyses and cre-
ating a better historical reference material.

Until now, the SVS definition is in a conceptual phase. Future work should focus
on the automatic creation and maintenance of a suitable set of SVSs with the purpose
of following their performance and efficiency over time and after design changes.
When optimizing a subset of features in a development project, the SVSs should be
used in order to evaluate the whole resulting product offer and, in addition, as a
test set safeguarding against possible deterioration arising in other features or in the
platform efficiency.

2.2 The heterogeneous market

Volvo is a global company whose products are sold world-wide and are to be used
in essentially different operating environments for various transport missions. The
idea of collecting many different products within the same company is the possibil-
ity of creating beneficial synergies since knowledge and technology can be shared.
However, it also imposes a difficulty in the sense that the qualities of the product
may be appreciated differently in different segments of the market.

The feature structure of a truck is at Volvo divided into 8 feature areas. These are
the ones illustrated in Figure 2 on page 3. The areas are decomposed into 32 customer
features, such as e.g., durability, ride comfort, exterior noise and fuel economy. The cus-
tomer features are further divided and translated into technical features (and technical
subfeatures), which should be quantitatively measurable. However, the measurable
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quantities are dependent of each other, which implies the functional complexity of
the product development as discussed in Section 3.

Objective and subjective preferences result in customers not preferring identical
configurations. The objective category comprises the transport mission and the geo-
graphical location, and is directly related to the operating environment and the legis-
lation to adapt to. Subjective preferences are the feature profile wanted and opinions
about the technical solutions (i.e., in the design space X , cf. Section 2.1.2). Intuitively,
it seems like the only important thing is how the truck behaves and not how the ac-
tual technical solution is constructed (i.e., the location in the design space). However,
there may exist underlying requirements such as that the customer may wish to re-
duce the variety in his/her vehicle fleet, or that an old superstructure should be
used also on a new truck. Furthermore, the customer might have strong feelings for
a certain design, such as the size of the engine. A reasonable assumption is that the
customer presets the transport mission of the truck (including what kind of super-
structure that will be used), the cabin type, the engine (or driveline), and the axle
configuration. This is in principle equivalent to defining the product type.

Figure 6 illustrates how the vehicle specification is defined. First, objective and
subjective design requirements preset some of the main characteristics. Then the cus-
tomer feature requirements yields the specification.

Figure 6: The gray silhouette to the left symbolizes the main characteristics of the
truck that are preset by the customer requirements. Together with a preferred feature
profile, the vehicle specification, illustrated to the right, should be defined.

2.2.1 Discretization of environments and customers

In order for the company to achieve a reasonable guarantee that the different mar-
ket segments are covered by the available product offer and that a designed product
targets a certain segment, the customers are discretized in different ways. One dis-
cretization that is made is the operating environment being partitioned into so called
Global Transport Application (GTA) (previously Global Truck Application) cells ([14]).
Parameters defining a certain cell are, for example, the curve density, the ambient
temperature and the yearly usage. Some of the GTAs are currently also considered
as their own variant families in the product structure; one example is given by the
variant family “road condition” in Table 1. The thesis [35] deals with topics related
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to discretization of the operating environment. Parametric statistical models are con-
structed describing lateral loads acting on a truck for customers in different GTA
cells. One of the purposes of [35] is to create input signals for computer simulations
for fatigue analyses adapted to the specific use of the truck. Utilizing these signals,
the aim is to construct trucks that are not overly durable for the intended use, where-
fore, e.g., weight could be saved and thereby the transport efficiency being increased.

Another discretization related to the customers that is under implementation at
Volvo is to target the desired feature levels in order to construct solutions having
sufficiently high feature levels in relation to product cost. The discrete levels Basic,
Economic, and Demanding, respectively, for each of the high-level objectives are used
to define customer requirement profiles. Analogously to the GTA cells, BED cells
(Basic/Economic/Demanding) is being defined. After a strategic choice on which
of the combination of GTA and BED cells that should be covered with the product
offer, the task for the company is then to create products in an as cost-efficient way
as possible in each of these target cells. The BED concept is illustrated in Figure 7.

fj

Product cost

Demanding

Economic
Basic

Figure 7: With the BED concept, the idea is, for each high-level feature (represented
by fj), to discretize the set of potential customers with respect to desired feature
levels when balancing with product cost. The thick curve segments represent the
Pareto front of the feasible set of configurations (the gray area).

In order to define suitable BED levels, it is important to consider what could
be defined as perceived feature steps and willingness to pay. The former represents the
minimum size necessary for a change in a continuous measure of a feature such that
it is perceivable by a customer. The latter is a measure of a customers local evaluation
of a quality increase, which is related to the trade-off, i.e., the slope of the tangent,
to the Pareto front, illustrated in Figure 7. For different markets and different BED
cells, the willingness to pay will possess different threshold values (at which the
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feature receives a high enough value for the product to be interesting) and saturation
levels (at which the value of the feature is sufficiently high, and the customer not
being willing to pay for further improvements). Future research should analyze these
concepts further such that the concept of BED discretization is utilized in the best
possible way. When defining BED cells, it is important to analyze the preferences
of the customers and to evaluate the resulting set of configurations. This is related
to utility function estimation which is performed in Paper III and to evaluations of
approximate Pareto sets (cf. Section 4.1.1), which is considered in Paper I and Paper
II.

3 Complexities in product development

Complexity is a word whose exact meaning is not very clear. In [4], a complex sys-
tem is defined as a collection of interacting parts whose collective behavior cannot
be understood by studying its parts separately. When using the daily interpreta-
tion of complexity as something being very large and incomprehensible, the product
development of trucks can be viewed as a complex environment in at least three
dimensions. In [37], the complexity space for product development (from a truck
development perspective) was defined, and three main dimensions were identified:
functional complexity, combinatorial complexity and dynamic complexity. We defined the
complexity space as the three dimensional space spanned by the functional, combi-
natorial, and dynamic dimensions. Below, the complexity dimensions are briefly re-
viewed; we refer to [37] for a more extensive description.

Figure 8: A complex environment. Product development of trucks comprises com-
plexity components in the three dimensions of functional, combinatorial, and dy-
namic complexity, thereby making the total product development complexity very
high.

The meaning of a “large functional complexity” is that the functions or features
given by a design are not obvious from the design itself, and furthermore, that func-
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tional or feature requirements cannot be partitioned into independent measures,
which can be individually controlled, as illustrated in Figure 9.

Figure 9: The features of a truck are connected and cannot be broken down into inde-
pendent entities. The dotted arrows symbolize connections between the subfeatures,
where a design change targeting one subfeature inevitably also affects others.

With combinatorial complexity we mean the degree of shared parts in the prod-
ucts developed. To be able to meet customer demands and, at the same time, keeping
development and manufacturing costs down, the concepts of Product family design
and Platform-based product development are central in modern product development
([30, 48]). A large number of shared parts that are to be combined to create a great
variety of products (or, configurations) results in a high combinatorial complexity.
With the notation used in [4], this type of complexity is denoted complication. Clearly,
this is the case for Volvo (cf. Section 2.1). With the purpose of reducing the combina-
torial complexity, a software for automatic packaging of chassis components within
the wheel-base area is under development (cf. Section 5.1.3).

Figure 10: The picture shows a large number of tank bracket positions that can be
chosen on the chassis, illustrating one aspect of the large combinatorial complexity.

The dynamic complexity concerns the time axis of the development process,
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where the scale goes from slow (evolutionary) changes to drastic (revolutionary)
changes. Evolutionary changes correspond, for example, to the tuning of current
variants to increase the quality of the truck population, while revolutionary changes
correspond to topological changes in the form of new variants and variant families
representing completely new technologies enabled by innovations or forced by leg-
islation. The truck market is constantly changing with a continuous development of
new technology, and with a legislative environment that is regularly updated, which
means that the dynamic complexity for the truck development process is high.

The functional complexity is addressed in the thesis [38], in which the function-
ality retardation is investigated. For an efficient retardation system, a number of
subsystems are interconnected, providing functional building blocks which together
compose the retardation function.

Another thesis considering aspects of functional complexity is [21]. The thesis
investigates both the interconnections between different sound and vibration com-
ponents for the perceived sound experience in the cabin, and also the problem of
quantification of a certain, typically qualitatively described, quality.

In the thesis [19], the focus is instead on the combinatorial complexity. The the-
sis deals with computer aided design (CAD) and the management of geometrical
building blocks for combinatorial products, in which common parts are to be used
in a large variety of different configurations. Figure 10 is generated using a software
which is an outcome from the project, within which [19] was written.

In this thesis we simultaneously consider the functional and the combinatorial
complexities, i.e., multi-objective optimization of combinatorial products. It was de-
cided that the inclusion of dynamic complexity—which is related to the words “dy-
namic environments” in the project title—in the scope would result in a too am-
bitious task. Instead, an additional PhD project was initiated focusing on research
problems within this area; see [51]. Included in the latter project are questions such
as how to design a product structure that is perspicuous, flexible, efficient, and ro-
bust with respect to, e.g., new developments and new legislations.

What distinguishes the development of trucks from the development of many
other products, is that the complexity contributions in both the functional and the
combinatorial dimensions are high; see Figure 11, which roughly illustrates where
other types of products are located in two dimensions of the complexity space.

Aspects of functional complexity are the targets in the appended Paper I, Paper
III, and Paper V. Paper IV targets in a sense the combinatorial complexity, and Paper
II approaches the combination of functional and combinatorial complexity.

4 Optimization disciplines concerned

Optimization is a vast discipline of applied mathematics containing many subdis-
ciplines, all with their own theory and methods. The common characteristic among
problems considered within the area of optimization is that the goal is to find the
best alternative with respect to some measure given a set of possible alternatives.
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Figure 11: An illustration of the location of some products of different types in the
complexity space projected onto the functional and combinatorial dimensions.

Many of the subdisciplines are considered in this thesis, and for the most im-
portant disciplines, short introductions are presented in this section. Other subdisci-
plines that are not directly considered in this thesis are, e.g., Linear Programming [41],
Quadratic and Convex Programming [5], Mixed-Integer Programming [42], Semi-Definite
Programming [52] and Mathematical Programming with Equilibrium Constraints [39].

The scopes of the following introductions vary greatly, depending on the impor-
tance of the respective subdisciplines for the content of this thesis. The introductions
are not complete in any sense, and their contents are biased towards the utilization
of the respective fields in the appended papers.

4.1 Multi-objective optimization and Pareto optimality

Multi-objective optimization is a discipline which permeates the whole product de-
velopment problem and therefore this introduction is the far most extensive one.

A single-objective optimization problem posed in a finite dimensional (numeri-
cal) space is traditionally written as that to

minimize f(x),
subject to x ∈ X,

(1)

where X ⊆ R
n represents the feasible decision vectors and f : R

n → R. The goal is
to find an x ∈ X that minimizes the objective function f over X .

In a practical optimization problem, there are often several conflicting objec-
tives f = {f1, . . . , fk} that are to be considered simultaneously. Formulating such
a situation mathematically leads to a Multi-objective (Nonlinear) Optimization Problem
(MONP) as that to

minimize {f1(x), . . . , fk(x)},
subject to x ∈ X,

(2)
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where fi : R
n → R, i = 1, . . . , k. The problem (2) is not well-defined in the common

sense if there is a conflict between the objectives, i.e., if there exists no vector x ∈ X
minimizing all fi, i = 1, . . . , k, over X simultaneously. The reason is that there is no
total ordering among vectors; for example, (1, 1)T < (2, 2)T, but how does one order
the vectors (1, 2)T and (2, 1)T? The goal in multi-objective optimization is to find the
Pareto optimal subset P ⊆ X , defined according to the following.

DEFINITION 4.1 Given a set X of feasible vectors and a set {f1, . . . , fk} of objective func-
tions to be minimized, a vector x∗ ∈ X is defined as Pareto optimal if there exists no vector
x ∈ X such that fi(x) ≤ fi(x∗), i = 1, . . . , k, and fj(x) < fj(x∗) for at least one
j ∈ {1, . . . , k}. An objective vector z∗ = f(x∗) is called Pareto optimal if the correspond-
ing vector x∗ is Pareto optimal. The set of all Pareto optimal vectors x∗ ∈ X is denoted
P ⊆ X .

We adopt the convention of extending the minimization operator by allowing
it to apply also to vectors, meaning that this operator extracts the Pareto optimal
subset of X . We define the Pareto operator P : R

n × F → R
n by P (X, f) = P , where

F denotes the space of all functions f : R
n → R

k.
An illustration of Pareto optimality for a MONP with k = 2 is shown in Figure 12.

This picture motivates the fact that the set of corresponding objective points f(P) to
a Pareto optimal set P ∈ X is often denoted the Pareto optimal front.

X Z

f1

f2

{f1, f2}

f(P)
P

Figure 12: The decision space X with the Pareto optimal set P ⊆ X , the objective
functions f = {f1, f2}, the objective space Z = f(X), and the image, f(P), of P .

Historically, the first reference to studies addressing multiple conflicting objec-
tives is usually the book [43] by the Italian economist Vilfredo Pareto, after whom the
concept of optimality is named. As for optimization as a whole, there are also sub-
classifications of multi-objective problems widely differing in theoretical properties
and consequently also in solution methods. Examples include Multi-Objective Lin-
ear Programming ([50]), (continuous) Multi-Objective Nonlinear Programming ([15, 40],
with Multi-Objective Convex Optimization ([36]) as a special case, and Multi-Objective
Combinatorial Optimization ([16]). As for other optimization disciplines, there is also a
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distinction between multi-objective problems with analytical expressions for the ob-
jective and constraint functions, and problems where these are black-box outcomes
from computer simulations or physical experiments. With the introduction of cate-
gorical variables (cf. Section 4.4), it follows that there is also a distinction between nu-
merical discrete multi-objective problems and categorical multi-objective problems.

When solving MONPs, the goal is not always the same. Often, the wish is to
find a single solution x∗ ∈ X that is optimal for a certain decision maker (DM).
This is really a (hidden) single-objective optimization problem, in which the DM’s
scalar-valued utility (or value) function measuring his/her overall preference of the
design points is the single objective function. However, the utility function is often
hard to specify, and a common belief is that it is easier to specify the components
of the utility and to formulate a multi-objective problem using these components as
the objective functions. Then the DM can wait to express his/her preferences until
he/she knows more about the trade-offs between the different criteria, i.e., when
more information about the problem is revealed. In Paper III, the utility function for
each DM is estimated in order to evaluate the robustness of solutions from the DM’s
perspective.

The underlying multi-objective optimization problem in the configuration prob-
lem studied in this thesis is nonlinear with simulation-based objective functions that
are in general not convex. Some of the variables are discrete and many of these are
categorical. There is no obvious structure of the decision space. It is a true multi-
objective optimization problem, in which the entire set P is interesting. Subproblems
hereof are studied in the appended papers. In the multi-objective optimization prob-
lems studied in Paper II and Paper III, the variables are assumed to be continuous.
For the problem considered in Paper I, concerning the reduction of the number of
objectives in the multi-objective problem, the variables can be of any type.

The solution methods for multi-objective optimization problems are designed to
find the Pareto optimal set, or at least an approximate representation of it. A discus-
sion about approximations of Pareto optimal sets is provided in the Subsection 4.1.1.
See [37] for a discussion about various solution methods. In none of the appended
papers concerning MONPs, the focus is to develop or analyze solution methods for
the MONPs; such methods are only used as tools when needed. A possible contin-
uation of Paper IV is, however, to develop a MONP solver for problems involving
categorical variables.

4.1.1 Approximations of the Pareto optimal set

The approximation of Pareto optimal sets is a central concept throughout this the-
sis. For the actual product development problem this concept is important in order
to evaluate the configurations available given sets of technical solutions for each
component or design option or, in other words, to evaluate the collective quality
of a population of configurations. Among the appended papers, approximations of
Pareto optimal sets are considered in Paper I, Paper II and Paper III, and it will also
be for the natural extension to Paper IV to consider multiple objectives.

In practical applications one cannot usually expect to find the whole Pareto op-
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timal set P . For a general nonconvex MONP it is neither possible to find P in finite
time without some further assumptions on the problem properties (such as Lips-
chitz continuity with known constants). Approximating methods, i.e., methods for
creating good approximations of P , are developed for this reason; a survey of such
methods is contained in [46]. When an approximating method is used, it is impor-
tant to obtain a quality measure for the resulting set of solutions. For single-objective
problems, such a measurement is straightforward to define since the objective val-
ues for two solutions can be compared directly. For MONPs, there is no standard
measure for evaluating an approximate solution set. The subject is discussed and
propositions are given in, e.g., [8, 9, 44, 47, 53, 54].

When discussing approximate sets, there is a need for two kinds of distance mea-
sures. First, a measure describing the distance between two points is needed; the
point measure. This measure is then a part of the definition of a second measure, the
set measure, describing the distance between two sets of points.

The distance measures should ideally be defined in both the decision and objec-
tive spaces. While the decision space may contain non-numerical variables (cf. Sec-
tion 4.4), the objective space contains only numerical vectors provided that the ob-
jective functions quantify the qualities considered. Therefore, it is typically easier to
define measures in the objective space. However, from a practical point of view, the
distances in the decision space are also important. How to define these in a meaning-
ful way is strongly problem specific and dependent. In the specific application of the
configuration problem at Volvo, the decision space defined by the product structure
(cf. Section 2.1.2) is heterogeneous with variants and variant families representing
totally different entities, making it hard to define a suitable distance measure in the
decision space.

In the objective space we remark that if the objectives measure different entities
(such as, e.g., safety and cost, or stress and volume), then it is not obvious how to
scale the objectives such that the units (e.g., if measuring cost in Euros or cents) do
not affect the results. A means to handle this difficulty is to normalize the objectives
such that their respective values vary (approximately) between 0 and 1 when the
corresponding decisions vary over P , as suggested in [40]. It is, however, important
to note that if two collections of objectives order the vectors in the decision space
X equally (i.e., the collections {f1, . . . , fk} and {g1, . . . , gk} are such that fi(x) <
fi(y) ⇔ gi(x) < gi(y), i ∈ {1, . . . , k}, x,y ∈ X), then the implied Pareto optimal sets
are equal, but evaluations of approximate Pareto sets are in general not. Therefore,
the actual objective measures matter, and not just their implied orderings of X (this
is usually also true for the result when solving MONPs).

For the application we study, the point measure should reasonably be asymmet-
rically defined. One choice for comparing the point y ∈ X with another point x ∈ X
is to use some norm of the components of f(y) being larger than the corresponding
components of f(x), i.e.,

c(x,y) = ρ(max {f(y) − f(x),0}), (3)

where the max{·, ·} operator is defined element-wise and ρ(·) is a suitable vector
norm. Only deteriorated components are selected in order not to punish objectives
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that are improved. Figure 13 illustrates the indifference curves, i.e., points evaluated
as equally good, induced by the point measure (3) where ρ(·) is chosen as the L2

norm.
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Figure 13: Indifference curves when comparing x0 with f(x0) = (0.5, 0.5) to all
points x with f(x) ∈ Z = [0, 1]2 induced by the point measure c(x0,x) =
ρ(max

{
f(x) − f(x0),0

}
) with ρ(·) being the L2-norm. A darker color means a larger

distance from x0. White color corresponds to zero distance.

The point measure (3) is open to certain objections. For example, one does not
gain anything when the value of an objective is improved if it is already at least as
good as for the reference point. In Paper III we locally estimate utility functions cor-
responding to solution points. We suggest another, more sophisticated, point mea-
sure that better adapts to real customer behaviour.

The set measure can be either symmetrically or asymmetrically defined depend-
ing on the aim of the comparison. If the aim is to compare Pareto optimal sets for two
problem formulations (e.g., if one formulation is a computationally less demanding
but approximate version of the other), then a symmetric measure is reasonable. Such
a measure is utilized in Paper I where the distance between two sets is defined as the
largest (point measure) distance between any point in any of the sets to its respective
nearest point in the other set.

If, instead, the aim is to evaluate the quality of a representation of the Pareto
optimal set, then an asymmetric measure is more reasonable. This is common, e.g.,
when evaluating evolutionary algorithms for MONPs. Such an asymmetric measure
is used in Paper II as the objective function in a single-objective problem consider-
ing the optimal choice of sets of technical solutions, or, in other words, where a good
representation of the Pareto optimal set with a limited set of decision vectors that are
required to share similarities in the decision space is sought. A good representation
R of a Pareto optimal set P should contain points which are (at least) near-Pareto
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optimal as individuals and also well distributed along the Pareto optimal front. One
measure capturing both these properties is, with c(·, ·) being the point measure de-
fined in (3),

d(R,P) = max
x1∈P

min
x2∈R

c(x1,x2), (4)

which is illustrated in Figure 14. This is the Dist2 measure from [9], which we utilize
in Paper II.

fi

fj

f(P)
f(R)

d(R,P)

Figure 14: The (set) distance between R and P defined by (4) is illustrated by an
arrow.

In the actual configuration problem, we search for a discrete subset of the entire
set P of Pareto optimal trucks. Here, it is reasonable to use a point measure that
depends on the region of the objective space Z where the points are located. Sales
volumes and/or other strategical issues could be incorporated in the measures, e.g.,
by using region-dependent weights. By using such a measure, it would be possible
to steer against representations containing certain designs, e.g., trucks with a high
profitability or trucks whose features are carefully validated in simulations and tests
(cf. SVSs in Section 2.1.3). When deciding on the feature levels defining the BED cells
described in Section 2.2.1, the set of the resulting solutions should be evaluated as a
representation of a Pareto optimal set. Here, the point measure should be carefully
defined, truly capturing the perceived feature distances for the customers in the dif-
ferent cells. A measure similar to the point measure developed in Paper III could be
used for this purpose.

4.1.2 Robustness in multi-objective optimization

To be able to utilize optimization for solving a real-world problem, the first step is
to formulate a mathematical model of the problem. This modeling step normally
includes simplifications, quantifications, and limitations of the real-world problem.
Clearly, the model can seldom capture the real-world problem exactly. The next step
is to solve the problem represented by the model, where a problem solved to opti-
mality means that the objective function in the model is minimized. Thereafter, the
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optimal solution found is to be interpreted and implemented in the real-world situ-
ation. Obviously, it is not clear whether or not the solution implemented is really the
best one.

In the area of Optimization under uncertainty, typically with respect to a single
objective, the aim is to quantify the uncertainties of the parameters defining the op-
timization problem and to incorporate these quantities in the solution process. There
are two main disciplines within this area: Stochastic Programming (SP, [7, 34]) and
Robust Optimization (RO, [6]).

In SP, whose origin dates back to the 1950s (cf. [10]), one assumes that the uncer-
tainty in the model has a probabilistic description. The aim is then to optimize, e.g.,
the expected value of the objective function under the constraint that the solution is
feasible for all (or almost all) realizations of the uncertain parameters.

In RO, which was introduced during the 1970s (cf. [49]), the uncertainty is not
stochastic, but rather deterministic and set-based. The idea is to find a set of so-
lutions that are feasible for all outcomes of the uncertain parameters, and among
these, the one that has the best objective value for its worst outcome of the uncertain
parameters.

The inclusion of uncertainties in the problem formulation increases the precision
of the model; it increases, however, also the difficulty in solving the problem. Pos-
sibly, this is the reason why only a few of the papers published on optimization
under uncertainty consider optimization problems with multiple objectives. In the
papers [11, 12, 13] the authors have made a direct extension of SP to multi-objective
problems, by replacing each objective function with its expected value function, in
order to define a robust Pareto optimal set. In Paper III, we suggest a new procedure
for measuring the robustness of points in multi-objective problems by estimating the
utility function for each DM and compute the average loss with respect to optimality
when the uncertain parameters are varied.

4.2 Global and simulation-based optimization

Consider the optimization problem (1). A point x∗ ∈ X is a global minimum of f over
X if

f(x∗) ≤ f(x), x ∈ X. (5)

Further, a point x∗ ∈ X is a local minimum of f over X if there is some neighborhood
N (x∗) of x∗ such that

f(x∗) ≤ f(x), x ∈ N (x∗) ∩ X. (6)

The definition of a neighborhood depends on the characteristic of the problem (1).
In Paper IV we consider optimization problems in categorical variables, and define
a certain suitable neighborhood. If the decision variables are continuous, then N (x)
is typically an open Euclidean ball centered at x with a positive radius.

Now consider the problem (1) when the domain X is convex and when f is a
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convex function over X , i.e., when

x,y ∈ X
λ ∈ (0, 1)

}
=⇒ f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y). (7)

Then, a fundamental theorem in continuous optimization implies that any local min-
imum of f over X is also a global minimum. Therefore, when a problem fulfills these
properties, it is enough to apply a local optimization algorithm in order to find a
global optimum of (1). For example, any descent algorithm with mild conditions on
the step lengths is guaranteed to converge to a global minimum. For further infor-
mation, see, e.g., [2].

If the problem under study is not convex, typical for an optimization problem
from industry, then the problem can contain local minima that are not global minima.
The discipline concerning the problem of finding a global optimum point in this
situation is denoted Global Optimization (GO). Different aspects of GO is considered
in Paper IV and Paper V. In the former, a new method is developed in order to find a
global minimum, or a point which under certain assumptions, in the worst case is as
close as possible to a global minimum with respect to function values. In the latter,
we consider problems defined in categorical variables. A definition of convexity for
such problems is made; for the problems considered this property is, however, not
expected to hold, wherefore we cannot be satisfied with solution methods searching
for local minima. Methods from GO considering integer variables are extended to
the case of categorical variables.

A discipline related to GO is the discipline of Simulation-based Optimization. In this
discipline, the objective and/or constraint functions are outcomes of computer sim-
ulations or physical experiments. Usually it is assumed that the function values are
expensive to evaluate, thus putting a practical restriction on the maximum number
of function evaluations that can be performed. Furthermore, it is often assumed that
there are no analytical derivatives available or, in order words, that the functions are
assumed to be so called black-box functions.

The class of so called Response surface methods (RSMs) are popular for these types
of problems. A review of such methods is given in [31]. In principle, an RSM pro-
vides an approximation, i.e., a surrogate model of the expensive function. This surro-
gate may then be used instead of the true function when performing an optimization.
The surrogate model is usually iteratively updated with new sample points. Exam-
ples of surrogate models used are quadratic approximations ([45]), Kriging-based
interpolations ([33]) and radial basis function interpolations ([23, 29]).

Two other popular methods for global optimization of black-box functions, how-
ever not when function evaluations are computationally very expensive, are DIRECT
(DIviding RECTangles, [32]) and MCS (Multilevel Coordinate Search, [27]). In prin-
ciple, these methods divide the domain iteratively in the regions that are currently
the most promising for containing a global optimum in the sense of balancing large
unexplored territories with good function values.

If the problems are not of the black-box type, that is, if analytical expressions
are available for the functions involved, then there are Branch-and-Bound based



24 4 OPTIMIZATION DISCIPLINES CONCERNED

methods available, utilizing an implicit enumeration of the decision space and it-
eratively cutting off parts of the decision space in which a global minimum cannot
be located as certified by, e.g., interval analysis or the minimization of convex under-
estimates. Also for problems whose involved functions lack analytical expressions,
Branch-and-Bound based methods are available if assumptions can be made on the
values of Lipschitz constants (that is, bounds on the rate of change of the objective
function).

For further information on global optimization, see, e.g., the monographs [24, 25,
26].

In Paper V we present and explore a new principle for global optimization of
computationally expensive black-box functions. The aim is to find points such that
the optimality gap is minimized provided some assumptions on the class of func-
tions that the objective function belongs to. As a special case, we consider Lipschitz
continuous functions.

The applications considered throughout this thesis involve functions that are
simulation-based. In a natural extension of Paper II, surrogate models for multi-
ple objectives should be developed in order to obtain “cheap” approximations of the
simulation-based objective functions that are present in the applications. A difficulty
in this case is that the surrogates must be accurate in a large portion of the decision
space, as compared to for a problem with a single objective.

4.3 Clustering

The scientific area of clustering, or data clustering, concerns the automatic classifica-
tion of a set of objects into more or less homogeneous groups, such that the objects
assigned to the same group are similar according to some suitable distance measure.
The area is widespread with applications in a large number of domains, such as pat-
tern recognition, image analysis, marketing, and machine learning. See [20, 28] for
an overview of the subject.

It is clear that the configuration problem at Volvo fits into a clustering context,
where all wishes, i.e., wanted configurations or points on the ideal Pareto front, are
to be partitioned into a number of groups, each corresponding to a certain truck
configuration. Volvo wishes to produce trucks that are good in the sense of Pareto
optimality, however the Pareto optimal set may be very large and it is not reasonable
to offer all of the corresponding configurations to the customers. Instead, the wish is
to reduce the offer to a limited and discrete set of technical solutions. But our appli-
cation possesses special characteristics leading to aggravating circumstances. First,
due to the combinatorial complexity we cannot cluster the designs using information
from the objective space Z only. Second, since the quality of the configurations is the
central property, neither is it possible to cluster the solutions in a good way using
information from the design space X only. Hence, clustering using a combination of
the two is necessary.

In [37] we presented a distinction between two clustering frameworks: explicit
clustering and implicit clustering, which is reviewed in the following subsections. The
former category contains traditional clustering techniques which possibly can be
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adapted to fit our application, while for the latter category we present a new frame-
work of clustering design solutions implicitly by using optimization. This procedure
by construction takes care of the difficulties of treating the two spaces X and Z si-
multaneously. The focus of Paper II is the implicit clustering.

4.3.1 Explicit clustering

In the configuration problem, assume that all customers possess objective functions
that order the configurations identically. Then, only designs mapped onto the Pareto
front f(P) are desired by the customers (without considering product cost, see Sec-
tion 1.1 and Appendix A of [37]). However, f(P) is a very large set and for cost
reasons, not all of the corresponding configurations should be made available to the
customers. Instead, f(P) should be clustered into a limited set ZD of points corre-
sponding to the configurations XD ⊂ X . These should be such that for every cus-
tomer wish, i.e., a point z∗ ∈ f(P), there is an available configuration x ∈ XD at
some small enough distance c(x∗,x) from x∗, where x∗ is such that f(x∗) = z∗. Such
a clustering is illustrated in Figure 15. This clustering, however, lacks an important
property which is crucial for our application: it does not consider how XD is struc-
tured in X .

X Z

fi

fj

f ={f1, . . . , fk}

f(P)

P

Figure 15: A clustering of the Pareto optimal set P into the set XD, such that ZD =
f(XD) is “evenly” distributed over f(P).

The above description can be denoted as an explicit clustering in the Z space. The
clustering, which is done with respect to f(P), being a numerical set, is straightfor-
ward since there exist natural distance measures between pairs of numerical points.
The textbook [20] describes various algorithms that could be used for this type of
clustering. Common to the explicit clustering algorithms is that they try to partition
the set into subsets, or clusters, such that the distances within clusters are small,
while distances between points in different clusters are large.

It is also possible to define an explicit clustering in the decision space X , possibly
with the aim of partitioning P ⊆ X into groups. Then it is, however, not clear how to
control that the set of representative points ZD = f(XD) is a good representation of
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f(P) (cf. Section 4.1.1 for a discussion on approximations of Pareto sets). But, more
seriously, it is hard to control the structure of XD such that the number of contained
variants is of reasonable size. A third difficulty is that distance measures between
points in the X space needs to be defined, which is hard when the set of variables
types is heterogeneous or when the variables are of a categorical type, as discussed
in Section 4.1.1.

It is possible that explicit clustering in the composition of the decision and objec-
tive spaces, i.e., in X ×Z, could be used. How such a clustering should be defined is,
however, not known to us. Instead, we propose so called Implicit clustering, in which
we solve an optimization problem whose solution represents a clustering both with
a desired structure in X and which represents a good approximation of f(P) ⊆ Z.
Further, the problem of defining a suitable distance measure in the design space is
resolved.

4.3.2 Implicit clustering

Presupposing the existing product structure with Xj representing the set of possible
variants in variant family j, j = 1, . . . , n, we can write X = X1 × X2 × · · · × Xn

(cf. Section 2.1.2). We have that X = Xfeas ∪ Xinfeas, and Xfeas ∩ Xinfeas = ∅, where
Xfeas (Xinfeas) is the subset of X (not) fulfilling all of the restrictions. By restricting
the cardinality of ZD to be at most a number N , i.e., card(ZD) ≤ N , an explicit
clustering of f(P) ⊆ Z may lead to as many as N variants in each variant family,
since there is no control over the resulting structure of XD. To eliminate this prob-
lem we instead propose to cluster the whole objective space Z, and not just f(P),
under the constraint that the configurations chosen in the design space constitute a
“grid”, in which the size restriction is imposed separately on each variant family, i.e.,
card(Xj) ≤ mj , j = 1, . . . , n. The objective for the “implicit” clustering is now to
select limited sets Xj

D ⊆ Xj , j = 1, . . . , n, such that the “quality” of the product set
XD = X1

D × · · · × Xn
D is as high as possible. Mathematically, this is expressed as to

minimize the distance measure (4) between the sets P and P (XD, f) (i.e., the non-
dominated part of the set of the resulting configurations). The implicit clustering is
the focus of Paper II. Figure 16 illustrates a clustering where the available configura-
tions belong to the product set of the variants chosen. An arrow in the lower part of
the objective space in the picture illustrates the distance for one such vector x∗ (f(x∗)
is marked as a gray dot) to its nearest vector x ∈ P (XD, f).
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Figure 16: An illustration of an “implicit” clustering of the Pareto optimal set when
XD is required to be a product set. The white dots represent XD and ZD in the design
and objective space, respectively. The arrow between the gray dot and one of the
elements of ZD represents the distance from the corresponding Pareto optimal vector
to its nearest available solution.

Clearly, by using implicit clustering we do not require that XD ⊆ P , i.e., that the
objective values of the clustered decision points are Pareto optimal. Often, e.g., in
industrial applications, or when there are large uncertainties in the models, this is,
however, not a necessary requirement.

4.4 Optimization over categorical variables

Many optimization models contain only continuous decision variables, i.e., variables
whose values lie in intervals on the real line. Other models, e.g., for problems involv-
ing fixed costs or different routing problems, require the use of discrete or integer
variables, representing on/off decisions or indivisible quantities. However, many
real-world applications in, e.g., engineering design, involve decisions between dis-
crete options which cannot be naturally ordered. Such options can be modelled with
categorical variables, which are thus discrete variables without an intrinsic order.

In a number of recent papers (cf., e.g., [3]) mixed-variable programs (MVPs) contain-
ing continuous, numerically discrete, and categorical variables are studied. Pattern
search methods for problems containing a mixture of continuous and discrete vari-
ables are extended to also include (a few) variables of the categorical type.

In [1] the categorical variables of an MVP are removed using integer variables
which then allows for relaxation-based solution methods from the area of mixed-
integer nonlinear programming (MINLP) to be applied to the resulting model. For this
method to be reasonable it is, however, required, if not the categorical variables are
very few, that the functions involved are defined for fractional points, which is typi-
cally not the case if the functions are of a black-box type. In [17, 18] another method
is suggested. It is assumed that the categorical variables represent high-level choices
of options, each of which corresponding to a set of parameter values in a high-
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dimensional space (an example is that different engine variants might correspond
to a weight, a performance measure, and an environment measure). Further, it is
assumed that the transformation from the categorical variables, or integer choice vari-
ables, as they are denoted in this context, to the parameter space is known. Then, also
here Branch-and-Bound methods become available, in which the representation of
the integer choice variables in the higher-dimensional space is utilized in order to
branch on the categorical variables.

It is clear that the configuration problem contains decisions that can be repre-
sented by categorical variables. In the mode 1 problem introduced in Section 2.1.2, in
which an objective is to be optimized with respect to the current variants contained
in the current variant families, all decision variables can be viewed as categorical.

In Paper IV we introduce and explore what we call the pure categorical optimiza-
tion problem, in which all decision variables are categorical and the (single) objective
function may be of a black-box type. A natural question to pose is whether problems
in categorical variables are too hard to be solved using optimization techniques, and
furthermore, which assumptions that have to be posed in order for such methods to
be successful. In Paper IV steps towards answering these questions are taken.

4.5 The scientific area

A thesis like this, driven by a concrete industrial application, naturally has to make
use of theory from a variety of separate but interconnected scientific areas or do-
mains. In the prerequisites for the PhD project in which this thesis is written, it was
already presupposed that the product development problem should be approached
from a (multi-objective) optimization perspective. Therefore, the theoretical content
is highly biased towards optimization issues, and the assumptions made are possi-
bly not always obvious from a practical standpoint. Scientific areas that are impor-
tant to study to reach the ultimate goal of designing the best product structure with
the right technical solutions such that the company, in the long run, is as competi-
tive as possible, include many other subjects not considered in this thesis. Examples
are Decision theory (by which one wishes to better understand how customers make
trade-offs between costs and features), Behavioral sciences (analyzing driver behavior,
apprehension of qualities, perceived feature steps etc.), Mathematical statistics (in or-
der to analyze uncertainties in models and data) and Economics (with the intention of
creating a better understanding of how shared technical solutions affect the overall
costs and earnings).

5 The contributions of the thesis

In this section we summarize the contributions resulting from the research behind
this thesis and suggest suitable future work that would make the frameworks more
useful and the solution methods more applicable to real-world problems within the
product development process.
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5.1 Contributions

5.1.1 Academic contributions

The main contribution within academia from this thesis is the comprehensive view
of the product development problem in mathematical terms and in an optimiza-
tion framework. From the various subproblems considered in this thesis, it is clear
that there is an increased need for theory and methods combining different opti-
mization disciplines as well as including aspects from other academic disciplines (cf.
Section 4.5).

There are also more specific contributions. These are highlighted in Section 6
where the appended papers are summarized.

5.1.2 Business contributions

The business contributions resulting from this thesis are manifold and diverse.
The mathematical formulations of the main problem and the various subprob-

lems have indicated what has to be considered for an efficient product development
process focusing on platform efficiency and products with the right level of features.
Clarity is an important issue. If a quantitative approach is desired, then quantitative
functions describing objectives and constraints, exact descriptions or possessing a
well-defined structure of uncertainties, are essential to define.

The competence built within the organization during the years when this PhD
project has been performed is an important contribution. This competence will be
used when forming the product development process of the future.

The thesis work has contributed to a clear formalism to use within the company.
The organization has learned to distinguish between the individual qualities of sin-
gle truck configurations, and the quality of a population of trucks as whole. The
concept of viewing the product offer as a representation of a Pareto optimal set is
now used almost in the everyday business. Fundamental steps towards the vision
have been taken.

Specific business contributions, as outcomes of the appended papers are high-
lighted in the summary of the papers in Section 6.

5.1.3 A software for the automatic packaging of chassis components

As a spin-off to this project, the research centre Fraunhofer ITWM in Kaiserslautern
is now performing a software project in cooperation with Volvo 3P. The task is to
construct a tool for the automatic computation of the selection and positioning of
components in the wheelbase area of a truck provided some higher-level variants
and a certain transport mission and operating environment. In the language from
Section 3, Complexities in product development, one of the purposes of the software is
to reduce the combinatorial complexity, i.e., the complication. In addition, to compute
positions and components, instead of documenting feasible and allowed choices
given higher-level design options, enables an increased flexibility. The tool is based
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on optimization, and one of its use cases is to find an optimal set of technical solu-
tions, or variants, such that the resulting set of admissible configurations is suitably
spread in the feature space as defined by, e.g., fuel capacity, weight distribution, and
ground clearance.

The software works in two modes. One is operational, in order to automatize
work that currently is manually performed, e.g., to compute the largest possible fuel
tank for a partially completed specification, and to generate all restrictions resulting
from geometric violations of components in the wheel-base area. In a second mode,
the idea is to include quality measures for a set of packagings (cf. Section 4.1.1) and to
perform what-if studies on how this collective quality is changed if components are
added or removed, or if they are allowed to be positioned at new places. In Figure 17
a screenshot of the software is shown.

Figure 17: A screenshot of the ChassisPack software for automatic and optimization
driven packaging of components in the wheelbase area, developed in order to reduce
the combinatorial complexity of the configuration management.

5.2 Future work

To be able to use a Pareto optimality framework in order to guarantee that the right,
and the right number of, technical solutions are made available, more quantitative
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representations of objective functions that evaluate a truck specification defined by
its list of variants are needed. More and more such functions are being developed—
partly as a result of the research work behind this thesis—and it is important that
this development continues.

Furthermore, for a truly quantitative approach for optimizing the sets of tech-
nical solutions, it is required that a set of available configurations can be evaluated
as a collective. In order to evaluate a set of technical solutions and hence enable an
optimization, it must be possible to assign a number representing how well a set
of configurations is distributed, given the set of potential customers with their cor-
responding transport missions, desired feature levels and operating environments.
Future work should focus on the development and evaluation of different collective
quality functions. These should be analyzed in terms of sensitivity analysis with re-
spect to the different ingredients of the functions. The analyses should also include
the density of customers in different regions of the feature space and the earning
capacity for the company for trucks in different parts of the configuration space.

Problems containing categorical variables should be further analyzed. There is
clearly a need for solution methods for optimization problems involving categorical
variables and multiple objectives. In order to take the development of the core prob-
lem, described in Paper II—to decide on the right set of technical solutions resulting
in a good set of configurations—one step further, there is a need for approximate
evaluations of the collective quality for a set of solutions. Possibly, enhanced surro-
gate function modelling for multi-objective problems is the right way to go.

Future work should include complexity analyses of the problems considered for
the various aspects for the configuration problem in order to devise suitable solution
methods for different special cases. With the purpose of attracting more researchers
to the area of product configuration optimization, it would be useful to construct a
set of realistic test problems such that concurrent solution methods could be tested
and compared. A goal would be to create a subsection within some optimization
community focusing on the kind of optimization problems studied in this thesis.

6 Summary of the appended papers

6.1 Paper I — Approximating the Pareto Optimal Set using a Re-
duced Set of Objective Functions

In this paper, we describe a reduction procedure for multi-objective optimization
problems when the number of objective functions is large. Through this method,
one creates a new optimization problem with fewer objectives and with a Pareto
optimal set that is approximately equal to the Pareto optimal set of the original prob-
lem. The smaller number of objectives in the reduced problem makes it, in general,
computationally easier to solve.

We utilize the concept of ε-Pareto optimality, which relaxes the concept of Pareto
optimality, and introduce the concept of ρ-centrality, which leads to a focus on the
(probably most) interesting part of the Pareto optimal set. Our approximation goal
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is to minimize the distance between the ρ-central part of the original Pareto optimal
set and the ρ-central ε-Pareto optimal set of the reduced problem.

Utilizing a new characterization of Pareto optimality, which is valid for finite de-
cision spaces and which yields an explicit formulation of the definition of Pareto op-
timality, we derive a program whose solution represents an optimal reduction with
respect to the approximation objective. We also propose an approximate formulation,
which is computationally tractable as opposed to the ideal formulation, and which
utilizes correlations between the objectives and separates the derived program into
two parts. We demonstrate the method by applying it to a small industrial instance.

The motivation for the method developed is that industrial optimization prob-
lems often require computer intensive simulations and that they often possess a
large number of objective functions. These characteristics make them computation-
ally hard to solve. In addition, in practice it is not necessary to find the exact Pareto
optimal set; it might be well motivated to lose some precision if the problem to solve
becomes significantly smaller, and if the size of the error can be estimated.

A main contribution of this paper is the new explicit characterization of Pareto
optimality, which may be utilized also in other applications. Another contribution is
the actual method developed which can be used as a preprocess for large-scale multi-
objective optimization problems. Here, a subset of the decision space consisting of
a finite set of points (small enough to enable an exhaustive search for the Pareto
optimal set) must be selected. Using this finite subset, a reduced problem can be
constructed using the proposed method, and then the reduced problem formulation
can be applied to the original problem.

Throughout the product development process at Volvo, the analysts keep track
of different key reference signals in order to control that the features of the trucks are
not altered in unwanted directions. In this paper we have shown that it is possible
to reduce multi-objective optimization problems in terms of number of objectives,
and we present a procedure to accomplish this. As a result, it is concluded that it
should be possible reduce the number of necessary signals, and as a consequence,
the work load in the organization. Especially in early phases of a large development
project when different design concepts are decided upon, it is not that important to
consider all possible features of the design. Such a detailed level is not necessary
to describe since the level-of-detail of the designs that are to be evaluated in these
phases is not very high.

6.2 Paper II — Multi-Objective Design of a Combinatorial Struc-
ture

In this paper, we approach the problem of incorporating the combinatorial complex-
ity of product development (cf. Section 3) into a multi-objective optimization context
and study the “implicit clustering” concept defined in Section 4.3.2.

In the mode 2 configuration problem of Section 2.1.2, variants are to be selected
within variant families such that the resulting set of feasible configurations approx-
imates well the Pareto optimal set of the underlying multi-objective optimization
problem. In this paper, we consider a simplification of this configuration problem,
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in which the design variables are assumed to be continuous and subject to box con-
straints only.

A single-objective optimization problem, the Multi-Objective Combinatorial Design
Problem (MOCDP), is introduced. In MOCDP, an underlying multi-objective opti-
mization problem (MONP) is considered and for the MONP a population of solu-
tions, approximating its Pareto optimal set P , is searched (cf. Section 4.1.1 for a dis-
cussion on approximations of Pareto optimal sets). The real-world interpretation of
MOCDP is to decide on optimal sets of technical solutions such that the configura-
tions given by their combinations are good in a Pareto sense. The decision space is
assumed to be combinatorial, i.e., it is a product set for which a solution is composed
by one component in each dimension. Thereby, by letting mj denote the number
of variants (i.e., decision variables) in dimension j, j = 1, . . . , n,

∑n
j=1 mj decision

variables are used to characterize the (much larger) number
∏n

j=1 mj of possible
configurations (i.e., solutions).

The problem MOCDP is nonconvex and nondifferentiable even under strong as-
sumptions on the underlying MONP. A two-step solution method is proposed for
solving MOCDP. In the first step a representation of P is computed and in the sec-
ond step, global and local optimization algorithms are combined to find a good ap-
proximation of the representation from the first step. The method is demonstrated
on instances constructed from a standard test problem from the literature. Sugges-
tions are also made for how to adapt the methodology to problems with expensive
function evaluations.

The main contribution of the paper is the methodology of implicit clustering,
which yields desired outcomes both in the decision space (a certain structure) and in
the objective space (a population of solutions which approximates P).

Two main issues that have to be addressed for the current methodology to apply
to general practical configuration problems are how to incorporate other variable
types (i.e., integer and categorical), and how to handle more general constraints (or
restrictions).

Related to the product development process, Paper II follows naturally after Pa-
per I in a chronological order. From Paper I we know which objectives that should
be considered when searching for the right technical solutions; this yields a well-
defined problem to solve with the framework of Paper II. The problem considered in
Paper II is a simplified version of the core problem of the product development prob-
lem. However, the framework is possible to apply to some actual problems within
the product development, given that there are quantified objective functions and
continuous variables at hand. Especially in design optimization of components this
should often be the case.

6.3 Paper III — A New Robustness Index for Multi-Objective Op-
timization based on a User Perspective

The concept of optimality fundamentally differs between optimization problems
considering a single objective and multiple objective functions, respectively. While
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all (rational) decision makers (DMs) consider the same points as optimal in a single
objective context, in a multi-objective they might not. True is only that they all con-
sider some point(s) in the Pareto optimal set as the best one(s). For this reason, the
concept of robustness, considering the DM’s perspective, should be characterized
differently from that in the single objective case.

A natural definition of robustness in a multi-objective context is that a certain
Pareto optimal point is robust with respect to uncertainties if it stays (near-)Pareto
optimal for all realizations of the uncertain elements. Such a definition is reasonable
for many applications, partly depending on when the realizations of the uncertain
elements are revealed. Consider the problem of deciding which variants of a prod-
uct to make available. Suppose that the objective functions perfectly describe the
qualities of a product, but that there are uncertainties regarding the implementa-
tion of potential solutions, for example that machines for the manufacturing process
have to be constructed, and that there are uncertainties regarding the dimensions of
the resulting products manufactured by these machines. In this case the robustness
definition described is reasonable since a DM will make his/her choice after the un-
certainty is revealed, and what is important for the company is that the product offer
as a set is close to the Pareto optimal set no matter the realization of the uncertain
parameters.

However, if the uncertainty is not revealed until the DM has made his/her choice,
then the above robustness definition is questionable. The DM has chosen the specific
point for a certain reason, e.g., that the local trade-offs between the objectives are
perfect at this point, meaning that the price for improving one objective is too high
with respect to the change in the other objectives. Consider now that uncertainties
in the underlying problem contribute to changes in the objective values as compared
to the non-perturbed—or ideal—situation. Certainly, it is important how much the
objective changes, but the DM would argue that changes in the character, i.e., the
local trade-offs, are also important.

The above example serves as the motivation for this paper. We consider robust-
ness from the DM’s perspective by estimating utility functions corresponding to po-
tential solution points. Using the utility function as a single objective, we quantify
the robustness of solution points to multi-objective problems using traditional mea-
sures of robustness for single-objective problems.

In the configuration problem considered at Volvo, the quality measures are many
and quantifying these into objective functions cannot be made with certainty. There-
fore, the contents of this paper fit well into the actual problem framework. If a certain
configuration is assigned to a customer of a certain type, then we want the customer
to appreciate the configuration also if the data and/or objective functions used when
analyzing the problem and deciding on the actual configuration differ to some de-
gree from reality.

The main contribution of this paper is in the means of estimating and introducing
the utility function into the evaluation of robustness for multi-objective problems.
We also contribute with a new definition of so called proper Pareto optimal points,
which can be seen as reasonable choices of solution points for rational DMs. This
definition is shown to be more strict than the standard definition of proper Pareto
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optimal points given in [22].
The utility functions estimated can be used not only for robustness evaluations,

but also for evaluations of approximate Pareto optimal sets (cf. Section 4.1.1) by let-
ting the change in utility value between a pair of points represent the point measure.
The reason for a certain Pareto optimal point being selected will then be incorpo-
rated in the point measure, which therefore better reflects the perceived difference
between the pair of points. Similarly, when deciding on the feature levels for the BED
cells (cf. Section 2.2.1), estimations of utility functions can be utilized.

Chronologically in the development process, the use of Paper III follows natu-
rally after, or in parallel with, Paper II. In Paper II, technical solutions are found,
provided a subset of all features, as decided from the framework in Paper I. With
the framework of Paper III, we can now include all the features and evaluate the
robustness with respect to the increased set of features and to uncertainties in the
objectives used.

The ideas developed in this paper can be further developed in various ways.
Other definitions of robustness for the resulting single-objective problem could be
utilized, and other parameterized expressions for the utility functions may be as-
sumed. In order to find a good set of robust solutions included in the solution process
of the multi-objective problem, it would also be interesting to investigate whether
utility functions can be estimated in a meaningful way already before the ideal Pareto
front is resolved.

6.4 Paper IV — Pure Categorical Optimization – a Global Descent
Approach

In this paper, the mode 1 configuration problem described in Section 2.1.2 is ap-
proached. Here, the decision space is composed by the current variants and variant
families. A reasonable description of the decision variables is then made by utiliz-
ing the concept of categorical variables (cf. Section 4.4). The generalized version of
this problem is introduced as the pure categorical optimization problem. The develop-
ments in the paper are restricted to single-objective optimization problems. A prac-
tical problem which fits into the framework of this paper is the search for an optimal
truck configuration for a certain customer, given his/her utility function.

In the paper, mathematical properties of the pure categorical optimization prob-
lem are established and it is shown that the categorical problem is, in a sense, equiv-
alent to a family of nonlinear integer programming problems. A recent solution
method for such problems is then extended in order to be adapted to a categori-
cal problem making use of the family of equivalents. The method suggested is of a
heuristic nature; however, it is guaranteed to converge at least to a local categorical
minimum.

The main contribution of the paper is that we show that pure categorical prob-
lems can be approached using mathematical programming techniques by suggesting
a particular method as a proof of concept. We have not seen any such approaches
earlier in the literature, possibly because pure categorical problems might be seen
as too hard to be solved. In general they are too hard; but under some assumptions
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on the properties of the problems, which are reasonable to hold for many practical
problems, solution schemes can be developed.

In the paper, a penalty approach is used to remove infeasible points. In future ex-
tensions, more sophisticated constraint handling techniques should be explored. For
example, in our configuration problem an infeasible point is a point which violates
one or more restrictions (cf. Section 2.1.2). In addition, the restrictions are defined in
low-dimensional subspaces of the domain. This information can be exploited. The
infeasibility of a point can be graded by the number of restrictions violated, and
“resolving” techniques for an infeasible, but otherwise good, point can be defined;
points in the low-dimensional space defined by the restriction are then evaluated, in
order to resolve it and find a “close” but feasible point.

Another natural extension is to include more than one objective in the problem
formulation. If multi-objective pure categorical problems can be solved, then the vi-
sion of the project of reducing the assortment in a controlled and systematic way
can be approached. Solving the multi-objective pure categorical problem using the
current variants will provide the Pareto optimal configurations given the product
structure of today. By removing variants (possibly in the framework of Paper II, in
which good variants of the available ones are sought) and combine this with evalu-
ations of approximate Pareto sets (possibly by the use of utility function estimations
as described in Paper III) we can certify that, for a certain cost level, any potential
customer will always get a product which is as least as good as the product that
would be chosen from the assortment of today.

Chronologically in the development process, Paper IV comes last. The frame-
work can be used when finding the right truck for a certain customer given the al-
ready decided product offer. That is, the results of Paper IV can be applied within
the sales process.

6.5 Paper V — A Minimax Strategy for Global Optimization

When considering optimization problems in which the objective function values for
some reason are expensive to compute, such as in the case when they are outcomes of
time-consuming computer simulations, or involving some physical experiment, the
number of function evaluations performed during the optimization must be kept
low. After each evaluation of the objective function, one goal is that the best eval-
uated point so far is as good as possible. Another closely related goal is that the
optimality gap, i.e., the difference between the best point evaluated so far and the
best possible point in the domain, is minimized.

In this paper we consider the latter goal, which is to minimize the optimality gap;
this can be seen as a minimax strategy for global optimization. The objectives con-
sidered are of a black-box type, but for the optimality gap to be finite, assumptions
on the function class in which the objective function is contained are necessary. The
optimality gap, or the maximum loss as it is denoted in the paper, is then the maxi-
mum optimality gap over the class of functions assumed. We begin with letting the
function class be a general set of functions, but throughout the paper we frequently
consider the special case when the function class is the family of Lipschitz contin-
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uous functions bounded by some norm, when we can develop efficient solution al-
gorithms. Concepts from statistical decision theory is utilized so as to classify global
optimization algorithms, and as far as we know, the concept to which our proposed
method belongs has not been applied to global optimization before.

The method is not straightforward to implement. One difficulty is that the do-
main for the minimax problem must be reduced from the domain of the original
problem in order to guarantee uniqueness of the resulting minimax problem, and in
order to make sure that the optimal minimax solution corresponds to a desired eval-
uation point. In future work, both theory and algorithms for finding a good domain
should be developed further. Also, methods searching for approximate solutions to
the minimax problems should be analyzed. The complexity of the method does not
grow too fast with the dimension of the domain. Furthermore, the method has the
advantage that it avoids excessive sampling of points at the boundary of the domain,
which is a disadvantage of many global optimization strategies. The method may be
further developed into a strategy for finding good sample points with the purpose
of updating surrogate models used in simulation-based methods (cf. Section 4.2) for
problems in medium-dimensions.

Of the appended papers, Paper V is the one which may have the least evident
connection to the actual configuration problem at Volvo, and which is the hardest
to place in the chronological order. The method considered is however applicable
for any design problem in continuous variables; and new truck components are con-
stantly being developed, with or without the use of optimization. Since a typical
continuous design problem is nonconvex, global optimization is the correct tool to
use. Furthermore, the framework fits well into the project vision that a customer
should be guided towards a design solution that is at least as good as the one he/she
would have chosen without the procedure of systematic assortment reduction. Then,
guarantees on the near-optimality of design solutions are more important than the
hope for very good function values. In addition, the definition of maximum loss pro-
vided in the paper is general, and the framework can therefore be utilized for many
applications. For example, it is possible to replace the above function class with the
set of utility functions of potential customers, to define the domain as the set of all
possible trucks (the design space of Section 2.1.2), and to define the current evalu-
ated points as the trucks made available. Then the evaluation set should be chosen in
the domain such that the maximum loss is minimized, meaning that the maximum
difference in utility between a desired and an available configuration is minimized.
This also constitutes a clear connection to Paper II and to the project vision.
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