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Abstract

In this thesis, a brief introduction is given to the AdS/CFT correspondence
and its uses in condensed matter physics. To treat Galilean physics in a re-
lativistic setting, the introduction of a Galilean spacetime is motivated and
discussed. We discuss the Clifford algebra and its geometrical significance,
and introduce the Pin and Spin groups and the concept of spinors. Then we
proceed to find the Killing spinors with Galilean symmetry and the corres-
ponding Killing vectors.
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Chapter 1

Introduction

One fairly recent development in theoretical physics, is the so called AdS/CFT
correspondence, discussed in this thesis. The correspondence relates a dif-
ficult quantum theory and a simpler gravitational theory — in its original
formulation, Maldacena (1999), a very specific quantum theory, called super
Yang-Mills, in a certain limiting case. Naturally, people have been trying
to extend the correspondence to other quantum theories — including con-
densed matter systems such as high-temperature superconductors. Many
such systems (including the superconductors) are expected to have Galilean
symmetry, and it is those systems that we presently examine here.

In chapter two we treat the AdS/CFT correspondence, focusing on giving
a feeling for the concepts involved, without going into the technicalities too
much.

In chapter three we treat Galilean spacetime — Galilean physics is usually
described with space and time being separate, but if we hope to treat a
Galilean system using the AdS/CFT correspondence (or any other relativistic
method for that matter), we need a unified spacetime. Doing this is not
entirely trivial.

In chapter four we treat Clifford algebra and spinors. The goal is to
understand what the Spin(9, 1) group is, which is expressed in terms of the
Clifford algebra. We detail the geometric aspects of Clifford algebra, and
motivate the introduction of spinors.

In chapter five we take those generators of Spin(9, 1) that correspond to
the Galilean transformations (as discussed in the third chapter), and find a
space of spinors that transform into each other under Galilean transforma-
tions. We use gauge symmetry to bring them on a simple form, and declare
them to be Killing spinors. This enables us to write down the correspond-
ing Killing vectors, and thus gives us some restrictions on the geometry that
must be satisfied in order to have Galilean invariance.
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2 Chapter 1. Introduction

In chapter six we talk of the natural next steps: the Killing spinor equa-
tion and field strengths.



Chapter 2

The AdS/CFT correspondence

The AdS/CFT correspondence is the basis for this work. I will not attempt
to go into all the details of the AdS/CFT correspondence here, but I will try
to give you a rough idea of the concepts involved. AdS stands for anti-de
Sitter, and CFT for conformal field theory.

2.1 Anti-de Sitter space

Anti-de Sitter space is a maximally symmetric spacetime with negative cur-
vature, denoted AdSn for n spacetime dimensions.

To get some intuition for what this means, let us first consider the simpler
case of a two-dimensional space. If the space is to be maximally symmetric,
we have three alternatives: it can be a sphere, a plane, or a hyperbolic plane.
The sphere has positive curvature, and is frequently depicted embedded in a
three-dimensional Euclidean space. A hyperbolic space has constant negative
curvature, and cannot be embedded in three-dimensional Euclidean space.1

We can still, however, draw flat maps of a hyperbolic space, just as we draw
flat maps of the surface of a sphere, but we have to distort areas and distances
when we do it. One such map, called the Poincaré disk, is illustrated in
figure 2.1. The hyperbolic plane is infinitely big, so to make room for all of
it on a finite map, things very far from the reference point in the middle are
drawn very small. Infinity is mapped to the circumference of the Poincaré
disk. The Poincaré disk is a conformal map, which means that all the angles
are preserved by the mapping. Due to the negative curvature of the space, a
straight line in the hyperbolic plane looks like a circular arc in the map, and
the sum of angles in a triangle is always less than 180◦.

1This is Hilbert’s theorem from 1901, which is treated in e.g. Do Carmo (1976).

3



4 Chapter 2. The AdS/CFT correspondence

Figure 2.1: The Poincaré disk, a map of the hyperbolic plane. The boundary
is located infinitely far away from any given point in the interior. The black
shapes drawn in the Poincaré disk are all ideal triangles in the hyperbolic
plane, and the same thing holds for the areas left white. The triangles are
congruent, which means that they can be transformed into each other by
simple translations and rotations. They all have the same finite area, and
infinite perimeter.
(Image generated by Wikipedia user Saric and released into the public domain.)
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This is all illustrated in figure 2.1 by using ideal triangles, i.e. triply
asymptotic triangles. The sides of such triangles approach each other asymp-
totically — in effect, all three vertices of an ideal triangle lie on the circle at
infinity.

Anti-de Sitter space is the Lorentzian analogue of hyperbolic space, i.e.
a hyperbolic plane with a time dimension and possibly many spatial dimen-
sions. It is a solution to the Einstein equations with a negative cosmological
constant.

Another way of visualising anti-de Sitter space is to embed AdS in a
pseudo-Euclidean space with two time dimensions. (Pseudo-Euclidean space
with one time dimension is simply the familiar Minkowski space.) Embedded
in this pseudo-Euclidean space, anti-de Sitter space takes the form of a hy-
perboloid of one sheet, with time in the circular direction. This is illustrated
in figure 2.2. The embedding space comes with the metric

ds2 = −du2 − dv2 + d~x2 (2.1)

where u and v are time coordinates and ~x is a vector with all the spatial
coordinates. Confining these coordinates to the hyperboloid

−u2 − v2 + ~x2 = −b2 (2.2)

for some constant b gives us anti-de Sitter space. The constant b is sometimes
called the “radius” of the anti-de Sitter spacetime (cf. Maldacena, 1999). A
change of coordinates given by

u =
√
b2 + r2 cos

t

b
,

v =
√
b2 + r2 sin

t

b
,

~x = r~n where |~n| = 1,

(2.3)

gives us the intrinsic metric

ds2 = −b
2 + r2

b2
dt2 +

b2

b2 + r2
dr2 + r2 dΩ2, (2.4)

where Ω represents an angle or a solid angle of the appropriate dimension.
Note that the embedding of anti-de Sitter space as a one-sheet hyperboloid

can only express a limited period of time — as it stands, (2.3) gives us
closed timelike curves and a periodic time coordinate t. Equation (2.4) does
make sense even if t is not periodic, however, so we take the view that the
embedding only captures a limited time period. We want to avoid closed
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timespace

Figure 2.2: This hyperboloid can be used to represent AdS, if we interpret the
embedding space right. The hyperboloid is not embedded in Euclidean space,
but a Lorentzian spacetime with two time directions (forming the horizontal
plane in the picture) and one or more spatial directions (forming the vertical
direction). The coloured lines are time-like geodesics given by equation (2.9),
and represent the paths through space-time that an object that you throw
would travel. The harder you throw it, the further away it goes in the spatial
direction, but no matter how hard you throw it, it always comes back after
the same fixed time.
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time-like curves, since we hope to apply the theory to real physical systems
(such as condensed matter) where closed time-like curves are not possible.

Now, if we take a spatial slice of constant t in (2.4), we get a hyperbolic
space, just as the one illustrated in figure 2.1. The hyperbolic space captures
many interesting properties of anti-de Sitter space, but when we look at it as
a spacetime, as in figure 2.2, we will uncover an even more remarkable result
— that if you stand in an anti-de Sitter space and throw a stone in some
arbitrary direction away from you, it will always return to you in the same
finite time, no matter how hard you throw it.

To see this, we compute the time-like geodesics of anti-de Sitter space.
If there are no forces acting on an object, it will follow such a geodesic.
Computing the geodesics is perhaps easiest if we do it in the embedding
space, with variables Xµ =̂ (u, v, ~x), rather than using the intrinsic metric.2

The usual procedure for finding geodesics involves solving the Euler–Lagrange
equations corresponding to the Lagrangian L = 1

2
Ẋ2, where the dot denotes

derivatives with respect to proper time. Ẋ2 is taken to mean ẊµẊ
µ. In

this particular case, however, the Lagrangian L = 1
2
Ẋ2 would give us the

geodesics of the embedding space, rather than the anti-de Sitter space. We
need to add the constraint that we move on anti-de Sitter space, X2 = −b2,
and such constraints can be added using a Lagrange multiplier Λ. Thus we
take the Lagrangian to be

L(X, Ẋ) B 1
2
Ẋ2 + Λ(X2 + b2). (2.5)

The canonical momenta are

∂L

∂Ẋµ
=

∂

∂Ẋµ

(
1
2
ηνλẊ

νẊλ
)

= Ẋµ.

This Lagrangian has a manifest symmetry under rotations and boosts of the
embedding space, which means that the corresponding generator is conserved:

kµν = XµẊν −Xν Ẋµ . (2.6)

Taking the derivative of X2 = −b2 gives us XµẊµ = 0, which we use to
calculate kµνk

µν = −2b2Ẋ2. Thus, we find that Ẋ2 is a constant of motion,
because kµν is a constant of motion.

The Euler-Lagrange equations corresponding to (2.5) give us{
Ẍµ = 2ΛXµ,

X2 = −b2.

2We are roughly following Bengtsson (1998).
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The first step is always to solve for the Lagrangian multiplier Λ, which can
be done by multiplying the first equation by Xµ:

XµẌµ = 2ΛX2,

XµẌµ = −2Λb2.

Taking the derivative of XµẊµ = 0 gives us XµẌµ = −Ẋ2, so

Λ =
Ẋ2

2b2
.

Thus we get the differential equation for the geodesics:

Ẍµ =
Ẋ2

b2︸︷︷︸
const.

Xµ. (2.7)

If Ẋ2 > 0 it describes a space-like geodesic. If Ẋ2 = 0 it is light-like. For
time-like geodesics, Ẋ2 < 0, and the solution to the above equation (2.7) is
of the form

Xµ(τ) = mµ cos

(√
−Ẋ2

b
τ

)
+ nµ sin

(√
−Ẋ2

b
τ

)
, (2.8)

where m2 = n2 = −b2 and mµn
µ = 0. If τ is to be the proper time,

we also need Ẋ2 = −1, which can be seen directly from the metric equation
dτ 2 = −ηµνdXµdXν (divide by dτ 2). Thus the angular frequency is ω = 1/b.

Let us study what happens when you throw something away from you
in anti-de Sitter space. Without loss of generality (because the space is
maximally symmetric), assume that we start at Xµ =̂ (b, 0, ~0). Inserting this
into (2.8) gives us mµ =̂ (b, 0, ~0), and the conditions n2 = −b2 and mµn

µ = 0

give us nµ =̂ (0,±
√
b2 + ~n2, ~n). Inserting these mµ and nν into (2.8), this

class of solutions (related to any general solution by translation) becomes:
u(τ) = b cosωτ

v(τ) =
√
b2 + ~n2 sinωτ

~x(τ) = ~n sinωτ

(2.9)

A stationary observer would have ~n = ~0, and any object said observer throws
into space, would have a nonzero ~n, determining how far into space (and in
what direction) the object reaches before returning. Some trajectories of the
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form (2.9) are illustrated in figure 2.2 on page 6. Note that all objects return
to ~x = ~0 when ωτ = π: everything converges to Xµ = (−b, 0, ~0). No matter
how hard an object is thrown, it always returns after the same finite time,
both as measured by the observer and as measured by the proper time of the
object thrown into space.

For small τ , u(τ) ' b while v(τ) ∝ τ , meaning that v is the relevant time
coordinate when calculating the initial speed:

|~x|
v

=
|~n|√
b2 + ~n2

.

This is bounded from above by the speed of light, c = 1. In that limit
~n → ∞. Thus, in the limit where the initial velocity goes to the speed of
light, the object travels to infinity and back, returning in the same finite
time as any other object thrown. This is not merely a coordinate effect —
the boundary really is infinitely far away as measured along any spacelike
geodesic, and yet light can travel from any point to infinity and back in finite
time.

The points infinitely far away form the boundary of anti-de Sitter space.
To make this statement mathematically precise, consider pointsXµ =̂ (u, v, ~x)
in the embedding space very far away from the origin, while still on the anti-
de Sitter subspace. We define new coordinates X̃µ = RXµ, i.e. ũ = Ru, ṽ =
Rv, ~̃x = R~x, and consider the limit R→∞. Equation (2.2) becomes

−ũ2 − ṽ2 + ~̃x
2

= − b2

R2
→ 0.

In this calculation tR works just as well as R for any t ∈ R (except zero), so
we define the boundary as an equivalence class:{

−u2 − v2 + ~x2 = 0,

(u, v, ~x) ∼ (tu, tv, t~x).
(2.10)

We can also find coordinates on the boundary that do not involve an explicit
equivalence relation; for more details, see e.g. Petersen (1999).

This description allows us to define functions on the boundary, and do
e.g. conformal field theory on the boundary. And though the boundary is
infiniely far away from any point in AdS, it is connected to all the points (in
the sense that you can send signals back and forth between them).

Often, when using the AdS/CFT correspondence, we want something
more than simple anti-de Sitter space. We want something more general,
that is still anti-de Sitter space asymptotically (so that we get a boundary
as above). Typically, these more general geometries involve black holes in an
anti-de Sitter background.
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2.2 Correspondence to conformal field

theory

Field theory in this context means quantum field theory. Conformal field
theory means a quantum field theory that is invariant under the conformal
transformations: boosts, rotations, translations, dilatations (scaling trans-
formations), and the so called special conformal transformations. This is
essentially an extension of the Poincaré group to include the dilatations and
the special conformal transformations. The latter can be described as in-
version, followed by translation, followed by inversion again. The special
conformal transformations can map lines to circles and vice versa, always
preserving angles.

Many, but not all, scale-invariant theories are also conformal field theories,
while all conformal field theories are scale-invariant. Sometimes, when we ask
if a theory is conformally invariant, the property we are interested in is really
the scale invariance rather than e.g. the special conformal transformations.
Scale invariance means that there is no characteristic length scale in the
theory. When studying superconductors using AdS/CFT this means that
we have to look for a phase transition or critical point, because the defining
property of criticality is precisely that the correlation length becomes infinite
— the quantum fluctuations occur at all length scales.

There is a connection between anti-de Sitter space and conformal sym-
metry. More specifically, if we study how the isometry group of AdS acts on
the boundary, we find the conformal group.

Conversely, starting with a certain conformal field theory, Maldacena
(1999) found, in the Hilbert space, the states of type IIB supergravity on
AdS5×S5, leading him to the Maldacena conjecture: “type IIB string theory
on (AdS5 × S5)N plus some appropriate boundary conditions (and possibly
also some boundary degrees of freedom) is dual to N = 4, d = 3 + 1, U(N)
super-Yang–Mills.” AdS5 is five-dimensional anti-de Sitter space, S5 is the
five-dimensional sphere, and the subscript on (AdS5 × S5)N “indicates the
fact that the ‘radii’ in Planck units are proportional to N1/4.” In the limit
where quantum interactions are strong, string theory becomes classical su-
pergravity. Thus, we get a classical theory equivalent to a theory with so
strong quantum interactions that it becomes very difficult indeed to com-
pute anything.

This means that we can hope to do calculations in the classical the-
ory and apply the results to the otherwise intractable strongly interacting
quantum theory — the AdS/CFT correspondence would provide a new tool
for calculations in certain strongly interacting theories. Granted, the original
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Maldacena conjecture deals with a very specific quantum field theory, but
there are hopes for a more general gauge/gravity duality, with applications
to high-temperature superconductors, for example.

2.3 Applications to condensed matter

physics

Condensed matter physics aims to describe the condensed phases of matter
— the most familiar ones being solids and liquids, but the term also includes
more exotic condensed phases such as superconductors and Bose–Einstein
condensates. Under certain conditions, typically near a so called critical
point, some condensed matter theories can be described as conformal field
theories. If the theory is also strongly coupled, it becomes interesting from the
perspective of the AdS/CFT correpsondence, which, if applicable, would then
provide a new calculational tool for treating the theory. Strongly coupled
thoeries are difficult to handle, so such a tool could provide great additional
value. As has been discussed by Herzog (2009), there are superconductors
with high characteristic temperature that could be approximated by just such
a theory: strongly coupled, conformal field theory.

There is one problem, that we turn our attention to next. Condensed
matter physics is normally non-relativistic, Galilean physics. But the bound-
ary of anti-de Sitter space is a relativistic spacetime. In order to use the
AdS/CFT correspondence to study a strongly coupled theory, said theory
must somehow live on the boundary. For a system with Lorentz symmetry
that is easily done, because such systems are naturally described in terms of
a spacetime, but for a system with Galilean symmetry space and time are
normally considered separate entities. We need a Galilean spacetime.



12 Chapter 2. The AdS/CFT correspondence



Chapter 3

Galilean spacetime

3.1 On non-relativistic physics

Relativistic physics is used whenever the velocities involved in a system ap-
proaches the speed of light in vacuum, c. In other systems, we can usually get
a significant simplification of the problem by treating it using non-relativistic
physics. Superconductors operate at very low temperatures, where relativ-
istic effects are normally negligible. At the same time we would like to be
able to use some powerful theoretical tools from relativistic theories, such as
the AdS/CFT correspondence from string theory, to study them. Since these
tools have been developed in a relativistic setting, it seems difficult to apply
them to non-relativistic physics. The aim of this section is to show how this
can be done.

The difficulty is actually not quite as bad as the terminology above would
suggest. Non-relativistic physics might more accurately be called Galilean
physics (relativistic physics would be Lorentzian physics), because Galilean
physics is actually relativistic, in the sense that it obeys the special principle
of relativity:

“If a system of co-ordinates K is chosen so that, in relation to it,
physical laws hold good in their simplest form, the same laws hold
good in relation to any other system of co-ordinates K ′ moving
in uniform translation relatively to K. This postulate we call the
‘special principle of relativity.’ ”

— Einstein (1916): The Foundation of the General Theory of
Relativity, §1.

This was already explained in Galileo (1632, pages 165–166), though not
quite as succinctly, by considering how experiments in a cabin between the

13



14 Chapter 3. Galilean spacetime

decks of a large ship would be affected by the movements of the ship — “(so
long as the motion is uniforme, and not fluctuating this way and that way)
you shall not discern any the least alteration in all the forenamed effects”.

Both Galilean physics and Lorentzian physics obey the special principle
of relativity, which will make our work easier. The difference is that Ga-
lilean physics is invariant under Galilean transformation, whereas Lorentzian
physics is invariant under Lorentz transformations.

3.2 On space and time

Space has three dimensions, commonly denoted x, y, z. We want to be a bit
more general, though, so we say that space has d dimensions, and collect the
spatial coordinates in a vector ~x. This way we can treat two-dimensional
surfaces as well as higher-dimensional spaces using the same formalism. In
Lorentzian physics space and time come together and form a d+1 dimensional
spacetime, with (d+ 1)-vectors x = xµ∂µ =̂ (xt, ~x). In Galilean physics space
and time are normally seen as being completely separate entities, rather than
a unified spacetime. So how can you tell if you have a spacetime or just a
space and a time?

One might look at the Lorentz transformation and argue that we have a
spacetime since the transformation mixes space and time. Space and time
can be “rotated” into each other. But that is not really true, since time
remains a very special dimension, that cannot be fully rotated into space
the way the x direction can be rotated into the y direction. The Galilean
transformation, {

t→ t,

~x→ ~x− ~V t,
(3.1)

also mixes space and time, albeit only in the transformation of the spatial
coordinates, and time is special here too.

No, the real characteristic of a spacetime is the existence of an invariant
scalar product.

Vectors ~x in space have a scalar product, ~x · ~y, that is invariant under
rotations. This is the main reason why it is reasonable to look at space as
one d dimensional entity, rather than d different and disconnected entities.
A spacetime deserves to be called a spacetime if it manages to add time to
this scalar product, and form a new scalar product invariant not only under
rotations, but under boosts as well. If we have a Lorentzian spacetime and
the boosts are Lorentz boosts, we can form the invariant scalar product

x · y = −xtyt + ~x · ~y.
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This scalar product reduces to the ordinary scalar product of space if xt =
yt = 0, and it is invariant under Lorentz transformations; these are the two
crucial properties that we are looking for in a scalar product for a spacetime.
If the spacetime is flat we can think of a vector as the difference between two
points — a vector from A to B. Then the requirement xt = 0 means that
x is an equal-time vector, with no time difference between A and B. (If the
spacetime is not flat, think infinitesimally, dxµ instead of xµ, throughout this
discussion.) It is not unreasonable to identify an equal-time vector x with
the purely spatial vector ~x.

Now, how would we go about to create a scalar product invariant under
Galilean transformations? We would like it to reduce to the ordinary scalar
product of space, ~x ·~y, when there is no time difference, so we start by seeing
how ~x · ~y transforms under (3.1).

~x · ~y → (~x− ~V t) · (~y − ~V t) = ~x · ~y︸︷︷︸
good

−~x · ~V t− ~y · ~V t+ ~V
2
t2︸ ︷︷ ︸

bad

. (3.2)

We got back the original product ~x · ~y, which is good, but we got a lot of
undesirable extra terms as well, so ~x·~y is clearly not invariant under Galilean
transformations as it stands. The task is now to change the scalar product
using the time coordinate — perhaps multiply with a function of the time
coordinates, or add a function of the time coordinates — in such a way as
to remove the unwanted terms. But since the time coordinates transform as
t→ t, no function of t could possibly cancel a ~V .

It looks like there is no such thing as a Galilean spacetime, since there is no
invariant scalar product — not if we insist on the equal-time scalar product
being the ordinary spatial scalar product, anyway. The time coordinates
cannot save the spatial part from violating Galilean invariance, the way it
was possible in the Lorentzian case.

Naturally, I would not be writing a section on Galilean spacetime if it
were impossible to construct such a thing. But we need something to save
the invariance of the scalar product here, and the time coordinate is not going
to do the job. What we need is a new coordinate, an additional coordinate
that transforms in such a way that it can enter into the scalar product and
cancel all the bad terms in (3.2). While a Lorentzian spacetime (such as
Minkowski space) is a d + 1 dimensional spacetime, vectors in the Galilean
spacetime are actually d+ 2 dimensional.

To see how to proceed, let us take the low-velocity limit of a Lorentzian
theory.
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3.3 The low-velocity limit

In the special theory of relativity, a particle is described by its coordinates xµ

and its momentum pµ =̂ (pt, ~p), where E = cpt is the energy of the particle.
The mass m of the particle can be found from the four-momentum pµ by
pµp

µ = −m2c2. Inserting pµp
µ = −(pt)2 + (~p)2, we get E2 = m2c4 + (~p)2c2.

E = (m2c4 + (~p)2c2)
1
2 = mc2

(
1 +

(~p)2

m2c2

) 1
2

=

= mc2

(
1 +

1

2
· (~p)2

m2c2
+O

(
(~p)4

c4

))
E = mc2 +

(~p)2

2m
+ (~p)2 · O

(
(~p)2

c2

)
We take the low-velocity limit, v � c, by neglecting terms containing v/c or
higher powers thereof. In this limit ~p = m~v, and the surviving terms of E
are simply

E = mc2 +
(~p)2

2m
. (3.3)

Occasionally, people take the limit c→∞ instead of considering v � c. I
have not done so, since it is convenient to be able to put c = 1 when working
with spacetimes. Also, c → ∞ messes up the rest energy term, which we
would have to drop — and then the theory would not strictly be the limit of
the Lorentzian theory.

So, now taking c = 1, our Galilean theory of a particle is characterised
by t, ~x, E and ~p. They transform under a Galilean boost as

t→ t

~x→ ~x− ~V t

~p→ ~p− ~Vm

E → E − ~V · ~p+ 1
2
m(~V )2

Now, in the Lorentzian theory xµ and pµ, indeed all vectors, transform
linearly, as xµ → Λµνx

ν and pµ → Λµνp
ν . But the above is not of that

form. It is not a linear transformation, because the mass m appears in the
transformation. The mass m can be found from E and ~p and (3.3), but it is
not a linear function of E and ~p.

The solution, following Pinski (1968), is to simply add the mass to the
momentum vector pµ. Define the momentum (d+2)-vector pµ B (m,E, ~p) ≡



3.4. Scalar product and metric 17

(pt, ps, ~p). Naturally, these components are not entirely independent. We
have

E = m+
(~p)2

2m
or ps = pt +

(~p)2

2pt
.

This equation will be used to define all sorts of (d+ 2)-vectors, including xµ:
xs = t+ (~x)2/2t.

Now we can form a (d + 2)-vector pµ for the momentum and have it
transform linearly, and we get a (d + 2)-vector xµ for the coordinates. The
extra coordinate xs transforms in exactly the way it must in order to save
our scalar product (3.2). xs is a coordinate that transforms in a non-trivial
way under Galilean boosts, so that it can fix the transformation of the scalar
product of Galilean spacetime. It is not really a new physical coordinate
corresponding to a new physical dimension — it is merely a mathematical
tool to make the boosts linear. Its transformation is

xs → xs − ~V · ~x+ 1
2
V 2xt, (3.4)

and the Galilean boost of any vector ~u is
ut → ut,

us→ us − ~V · ~u+ 1
2
V 2ut,

~u → ~u− ~V ut.

(3.5)

For the special cases of the position (d + 2)-vector xµ and the momentum
(d+ 2)-vector pµ this takes the form:

t → t,

xs→ xs − ~V · ~x+ 1
2
V 2t,

~x → ~x− ~V t,


m→m,

E → E − ~V · ~p+ 1
2
V 2m,

~p → ~p− ~Vm.

3.4 Scalar product and metric

If we want the Galilean spacetime to be a Riemannian or pseudo-Riemannian
manifold, the scalar product has to take the following form:

x · y = gµνx
µyν

where gµν is the metric tensor; cf. e.g. Rindler (2006). The metric is a set of
constants, independent of the vectors x and y. (Though if we are studying
vector fields, both x, y and g may depend on the point on the manifold where
the scalar product is evaluated.)
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We want the scalar product x · y to reduce to the spatial scalar product
~x · ~y when xt = xs = yt = ys = 0, so we have

x · y = gttx
tyt + gtsx

tys + gtix
tyi

+ gstx
syt + gssx

sys + gsix
syi

+ gitx
iyt + gisx

iys + gijx
iyj︸ ︷︷ ︸

=~x·~y

.

The gij are assumed to be known, since they simply specify what the spatial
scalar product ~x · ~y looks like. We are using Cartesian coordinates, and
measure gij = diag(1, . . . , 1). The spatial metric is measurable, because we
have a physical, measurable interpretation both of ~x ·~y on the left hand side,
and of the Cartesian coordinates xi and yi of the right hand side gijx

iyj.
Once we have figured out what the other entries in the metric have to be,
it is naturally our hope that the full spacetime scalar product x · y can have
some physical interpretation allowing us to measure all the components of
the metric. That is relevant because of the Principle of Special (Galilean)
Relativity — if the metric is measurable, we will measure the same metric in
all coordinate systems related by Galilean transformations. The metric will
be form-invariant, and the Galilean transformations an isometry in the sense
of e.g. Weinberg (1972).

From this we wish to determine the other components of the metric g
such that x · y is invariant under Galilean boosts. Under (3.5) the product
x · y transforms as

x · y → gttx
tyt

+ gtsx
t(ys − ~V · ~y + 1

2
V 2yt)

+ gtix
t(yi − V iyt)

+ gst(x
s − ~V · ~x+ 1

2
V 2xt)yt

+ gss(x
s − ~V · ~x+ 1

2
V 2xt)(ys − ~V · ~y + 1

2
V 2yt)

+ gsi(x
s − ~V · ~x+ 1

2
V 2xt)(yi − V iyt)

+ git(x
i − V ixt)yt

+ gis(x
i − V ixt)(ys − ~V · ~y + 1

2
V 2yt)

+ gij (x
i − V ixt)(yj − V jyt).

Using the distributive law and collecting the first resulting terms from each
term above, we get x · y back. The rest of the terms must be made to cancel,
by choosing gµν for µ, ν ∈ {s, t} intelligently. We get one term quartic in V :

1
4
gssV

4xtyt = 0.
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If this is to hold for all v, x, y, we must have gss = 0. We get two terms cubic
in V :

gsi(
1
2
V 2xt)(−V iyt) + gis(−V ixt)(1

2
V 2yt) = −gsiV 2V ixtyt = 0.

Here we have used the index symmetry of the metric tensor. If this is to hold
for all V, x, y we must have gsi = gis = 0. We get three terms quadratic in
V :

1
2
gtsV

2xtyt + 1
2
gstV

2xtyt + gijV
iV j︸ ︷︷ ︸

=V 2

xtyt = (gts + 1)V 2xtyt = 0.

If this is to hold for all V , x, y we get gts = gst = −1. This is a highly
interesting result, that we will come back to in a moment. We get six terms
linear in V :

− gts︸︷︷︸
=−1

xt ~V ·~y−gtiV ixtyt− gst︸︷︷︸
=−1

yt ~V ·~x−gitV ixtyt−gijV ixtyj︸ ︷︷ ︸
=xt ~V ·~y

− gijV jxiyt︸ ︷︷ ︸
=yt ~V ·~x

=

= −2gtiV
ixtyt = 0.

If this is to hold for all V, x, y we get gti = 0.
The terms that do not depend upon V sum to x · y, so we now have

x · y → x · y, and that without any constraints on gtt.
Thus the scalar product takes the form

x · y ≡ xµy
µ = gttx

tyt − xtys − xsyt + ~x · ~y (3.6)

and the metric takes the form

gµν =̂



gtt −1
−1 0

0

0

1 0
1

. . .

1
0 1


(3.7)

or 

gtt = arbitrary,

gst = gts = −1,

git = gti = 0,

gss = gsi = 0,

gij = δij .
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This is what we find assuming only that the scalar product is invariant
under Galilean transformations and that the Galilean transformations are an
isometry in the sense of e.g. Weinberg (1972). We can, however, also try to
find the scalar product in an alternative way, by taking the Galilean limit of
the Lorentz scalar product:

−E1E2 + ~p1 · ~p2 → −m1E2 −m2E1 +m1m2 + ~p1 · ~p2 (3.8)

since

E1E2

∣∣∣
Lorentz

=

√
m2

1c
4 + ~p2

1c
2

√
m2

2c
4 + ~p2

2c
2 =

= m1m2c
4

(
1 +

~p2
1

m1c2
+

~p2
2

m2c2

) 1
2

=

= m1m2c
4

(
1 +

1

2

(
~p2

1

m2
1c

2
+

~p2
2

m2
2c

2

)
+O

(
1

c4

))
'

' m2c
2 ·

~p2
1

2m2
1

+m1c
2 ·

~p2
2

2m2
2

+m1m2c
4 =

(3.3)
= m2c

2
(
E1 −m1c

2
)

+m1c
2
(
E2 −m2c

2
)

+m1m2c
4
∣∣∣
Galilean

=

= m1c
2E2 +m2c

2E1 −m1m2c
4
∣∣∣
Galilean

The subscripts “Lorentz” and “Galilean” refer to the definition of energy used
— the Galilean energy is defined by (3.3) and is the Lorentz energy in the
Galilean limit (including the mass term). Taking c = 1 above, we get (3.8).
(We always keep c in our expressions when taking the Galilean limit.)

The right hand side of (3.8) can be interpreted as the scalar product of
the (d+ 2)-momenta pµ1 =̂ (m1, E1, ~p1) and pµ2 =̂ (m2, E2, ~p2),

gµνp
µ
1p

ν
2 = −m1E2 −m2E1 +m1m2 + ~p1 · ~p2,

which gives us the metric (3.7) with gtt = +1. Thus gtt = +1, while not
strictly necessary to make an invariant scalar product, can be considered
more natural than other choices.

For an overview of Galilean tensor calculus, see Pinski (1968).

3.5 The Galilean spacetime is Lorentzian

If we take gtt = 0 in (3.7), we obtain the metric of Minkowski space in so called
light-cone coordinates. If we take a vector x = xµ∂µ = x0∂0 +x1∂1 + · · ·+xd∂d
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in Minkowski space, we can define{
x+ = 1√

2
(x0 + x1) ,

x− = 1√
2

(x0 − x1) ,
⇔

{
x0 = 1√

2
(x+ + x−) ,

x1 = 1√
2

(x+ − x−) .
(3.9)

This is the sign convention used by e.g. Zwiebach (2009), but beware that
some authors prefer the opposite sign convention in the definition of x−, so
that x− = 1√

2
(x1 − x0) instead.

We can write the vector x in light-cone coordinates: x = x+∂+ + x−∂− +
x2∂2 + · · ·+ xd∂d. The metric becomes

ds2 = −(dx0)2 + (dx1)2 + · · · (dxd)2 = −2 dx+dx− + (dx2)2 + · · · (dxd)2

or

gµν
.
=



0 −1
−1 0

0

0

1 0
1

. . .

1
0 1


So, the Galilean spacetime can be thought of as a Lorentzian spacetime

in light-cone coordinates (provided that we take gtt = 0). They differ in
dimensionality, in that a D dimensional spacetime with the above metric
corresponds to either a Galilean space with spatial dimension d = D−2, or a
Lorentzian spacetime with spatial dimension d = D − 1. These two pictures
are actually mathematically equivalent. When we wish to think Galilean, we
take x+ to be the Galilean time coordinate xt, and x− to be the strange,
extra Galilean coordinate xs, and think of the rest as the spatial coordinates.
When we wish to think of the same spacetime in Lorentzian terms, we take
x0 = 1√

2
(x+ + x−) to be the Lorentzian time coordinate, and we get an extra

spatial coordinate x1 = 1√
2

(x+ − x−). When we wish to think Galilean, we

take p+ to be the mass m, and p− to be the Galilean energy, and think of the
rest of pµ as the Galilean spatial momentum. When we wish to think of the
same spacetime in Lorentzian terms, we take p0 to be the Lorentzian energy,
and get an extra Lorentzian component p1 of the spatial momentum.

The result of this is that we have managed to embed a system with
Galilean symmetry in a mathematical framework with Lorentzian symmetry.
The Galilean spacetime is Lorentzian. This enables us to use the entire
apparatus of relativistic models on systems with Galilean relativity, and raises
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the hope that we might be able to use the AdS/CFT correspondence to study
e.g. superconductors at so called “non-relativistic” temperatures.

We get the alternative sign convention by letting x− → −x− in the defin-
ition (3.9). In this sign convention, the metric is

ds2 = −(dx0)2 + (dx1)2 + · · · (dxd)2 = +2 dx+dx− + (dx2)2 + · · · (dxd)2

or

gµν
.
=



0 +1
+1 0

0

0

1 0
1

. . .

1
0 1


. (3.10)

Having only positive numbers in the metric tensor makes many calculations
somewhat easier, particularly when we need to raise and lower indices a
lot. Having a non-diagonal metric tensor is bad enough as it is, so unless
otherwise noted we will use this positive-metric convention for the light-
cone coordinates from now on. Letting x− → −x− does have the minor
disadvantage, however, that p− will no longer be the energy E. We will have
p− = −E in the positive-metric convention.



Chapter 4

Clifford Algebra and Spinors

4.1 Clifford algebra

This section builds heavily on Lounesto (2001).

4.1.1 Introducing the Clifford algebra

In superstring theory, we work in 10 dimensions. Rather than treating the
entire spacetime manifold, we concentrate on the tangent space. Let V =
R

(9,1) be this space. (That’s Minkowski space with nine spatial dimensions,
with positive eigenvalues in the metric, and one time dimension, with negative
eigenvalue in the metric.) We introduce an orthonormal basis e0, e1, . . . , e9,
where e0 is along the time direction. V = span

R
{e0, e1, . . . , e9}.

We want to define a product of vectors. The first thing that comes to
mind is the scalar product, but we want to be a bit more general, while still
retaining some of the key properties of the scalar product. We want to define
the Clifford product, sometimes called the geometric product. We want it to
obey the usual laws of multiplication: we want associativity, distributivity,
multiplication with a scalar, and that the square of a vector is the squared
length of that vector. Consider the following:

v2 = (αe1 + βe2)2 = α2e2
1 + αβe1e2 + αβe2e1 + β2e2

2

If we are using an orthonormal basis, we have e2
1 = e2

2 = 1, and we want
v2 = α2 + β2. Using the expression above, we must have e1e2 = −e2e1. If
we insist that our product be commutative, then e1e2 = 0 and we get the
ordinary scalar product. If we do not insist on commutativity, we get the
Clifford product. Now e1e2 = e12, an object we call a bivector. In three
dimensions, a bivector formed of two vectors is dual to the ordinary cross
product of the two vectors. You can think of a bivector as an oriented area.

23
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In general, for vectors u and v we have the Clifford product

uv = u · v + u ∧ v, (4.1)

where u · v is the ordinary scalar product, and u ∧ v is the exterior product
or wedge product. If we want to emphasise that the vectors u and v can be
multiplied using (4.1), we call them Clifford vectors. Equation (4.1) works
even when we include e0, which squares to −1. We have e12 = e1e2 = e1∧e2.
It is possible to define even higher order multivectors in the same manner, e.g.
e125 = e1e2e5 = e1∧e2∧e5. The wedge product is antisymmetric for Clifford
vectors. It is symmetric for even multivectors, i.e. multivectors composed of
an even number of Clifford vectors, since e.g. e12 ∧ e5 = e1 ∧ e2 ∧ e5 =
−e1 ∧ e5 ∧ e2 = e5 ∧ e1 ∧ e2 = e5 ∧ e12.

We can relate the Clifford product uv to the scalar product, by using the
fact that the scalar product is the symmetric part of the Clifford product
(4.1):

uv + vu = 2u · v. (4.2)

Written in terms of the base elements e0, e1, . . . , e9, where ei · ej = gij, we
get

eiej + ejei = 2gij. (4.3)

This relation defines the Clifford algebra, more or less. To be precise, “the
Clifford algebra is by definition the associative algebra that is freely generated
by a unit element 1 and the basis elements ei, i = 1, 2, . . . , n, modulo the
anti-commutation relations eiej+ejei = 2g(ei, ej)1.” (Fuchs and Schweigert,
2003, section 20.2). Freely generated simply means that the Clifford algebra is
spanned by all products of all the basis vectors, with real coefficients (when we
treat it as a real algebra). Taking it modulo the anti-commutation relations
means that we take the freely generated algebra and use the relation (4.3)
to identify e2e1 with −e1e2, and to identify e1e1 with the unit element of
the algebra, which we denote 1, and so on. We use the symbol C̀ p,q to
denote the Clifford algebra corresponding to a vector space with p spatial
dimensions and q time dimensions; we are primarily interested in p = 9
spatial dimensions and q = 1 time dimensions, but p = 3, q = 1 is also of
interest. (If q = 0 we normally omit it: C̀ p B C̀ p,0.) Also, we normally
consider both the vectors and the scalars to be a part of the Clifford algebra
(R(p,q) ⊂ C̀ p,q and R ⊂ C̀ p,q, respectively), so that there is no need to
distinguish between 1 ∈ R and 1 ∈ C̀ p,q. {1, e1, e2, e12} forms a basis for
C̀ 2, and {1, e1, e2, e3, e12, e13, e23, e123} forms a basis for C̀ 3. In general, we
choose a basis consisting of products of zero or more basis vectors ei, sorted in
ascending order using (4.3), which also ensures that each basis vector appears
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at most once in the basis elements of C̀ p,q. If the space is n dimensional, this
gives us 2n basis elements, so the dimension of C̀ p,q is 2p+q.

We will later discuss explicit representations of the Clifford algebra in
terms of matrices or operators (section 4.2), but before we do that it is
instructive to discuss some of the geometrical uses of the Clifford product
and get a feel for the geometrical significance of the Clifford algebra. But
first, I’d like to introduce some mathematical concepts that we will be using.

The degree of a multivector. The degree of a basis element (such as e234)
is simply the number of basis vectors it contains: e234 = e2e3e4 has degree
three (it is a trivector). An element x of the Clifford algebra is called pure
of degree k, if it can be written as a linear combination of basis elements
of degree k. x is called even if it can be written as a linear combination of
basis elements of even degree, and we write x ∈ C̀ +

p,q. Similarly C̀ −p,q are the
elements with odd degree. A general element x of the Clifford algebra can of
course be a sum of both even and odd parts.

The grade involution takes an element x and changes the sign of the
odd terms: x → x̂ = −x if x ∈ C̀ − and x → x̂ = x if x ∈ C̀ +, and
x → x̂ = xeven − xodd if x = xeven + xodd to begin with (xeven ∈ C̀ + and
xodd ∈ C̀ −). The word involution simply means that the operation is its own
inverse; if we apply the grade involution twice to the same element, we get
back the original element.

The reversion x→ xt simply reverses the order of the basis vectors: et12 =
e21, et123 = e321 and so on. This is useful when defining the norm |x| of an
element of the Clifford algebra.

xt = (−1)k(k−1)/2x, where x is pure with degree k.

The norm |x| of a Clifford vector x is defined by |x|2 = x2. Thus the
squared norm of x = αe1 +βe2 is α2 +β2 as expected. The norm of a vector
is the length of that vector. Analogously, we define the norm of a bivector to
be the area of that bivector — remember that a bivector can be thought of
as an oriented area. So we want the norm of a bivector to behave the same
way, e.g. |αe12|2 = α2, but

(αe12)2 = α2e12e12 = −α2e12e21 = −α2e1e2e2e1 = −α2.

The problem is that we have to reverse the order of the basis vectors in the
basis elements when computing x2, and that can introduce a minus sign. The
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solution is to define the norm with one of the factors already reversed, using
the reversal operator: |x|2 = xxt works for all elements x, pure of degree k.
For general x, xxt need not be a pure scalar, so we define the norm to be the
scalar part:

|x|2 = 〈xxt〉0, (4.4)

where 〈〉0 denotes the part of degree 0, i.e. the scalar part.
This means that the norm of

x = x0 + x1e1 + x2e2 + x12e12 + x13e13 + x123e123

is (the square root of)

|x|2 = x2
0 + x2

1 + x2
2 + x2

12 + x2
13 + x2

123.

The exterior algebra is closely related to the Clifford algebra. Indeed,
the Clifford algebra may be defined in terms of the exterior algebra. The
exterior algebra

∧
R
p,q is the unital associative algebra generated by the

exterior product of vectors in Rp,q. (That the algebra is unital, means that
1 ∈

∧
R
p,q.) We can write∧
R
p,q =

∧0
R
p,q︸ ︷︷ ︸

=R

⊕
∧1
R
p,q︸ ︷︷ ︸

=Rp,q={v}

⊕
∧2
R
p,q︸ ︷︷ ︸

={u∧v}

⊕
∧3
R
p,q︸ ︷︷ ︸

={u∧v∧w}

⊕ · · · ⊕
∧p+q

R
p,q.

You can see that we may use the same basis elements for
∧
R
p,q as we do for

C̀ p,q. All that is needed to define C̀ p,q in terms of
∧
R
p,q is a definition of the

Clifford product, in terms of the exterior algebra. To do this, we introduce
the interior product, or left contraction, u y v for u, v ∈

∧
R
p,q. We define

u y v in the following way:

x yy = x · y for x,y ∈ Rp,q, (4.5)

x y (u ∧ v) = (x yu) ∧ v + û ∧ (x y v), (4.6)

(u ∧ v) yw = u y (v yw). (4.7)

Now we can define the Clifford product of x ∈ Rp,q and u ∈
∧
R
p,q by

xu = x yu+ x ∧ u (4.8)

and extend this product by linearity and associativity to all of
∧
R
p,q (Loun-

esto, 2001, section 14.2). Provided with the Clifford product,
∧
R
p,q becomes

C̀ p,q. Using (4.8) gives the same result as (4.1) used in terms of the basis
vectors, as we did previously. Thinking in terms of basis vectors ei∧ would
be like a creation operator, adding ei to the operand (e2∧e13 = −e123), and
ei y would be like an annihilation operator, removing ei from the operand
(e2 y e123 = −e13).
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4.1.2 Rotations and reflections

We have already studied the Clifford product of two vectors, in (4.1). The
result is a scalar plus a bivector, where the scalar is the ordinary scalar
product of the vectors, and the bivector represents an oriented area (rather
like the cross product). The next step is to study the Clifford product of
three vectors. Depending on the vectors involved the product can signify
different things, so I want to draw your attention to a special case: the
Clifford product xyx−1. Here x−1 is a Clifford vector such that xx−1 = 1,
which can be constructed as

x−1 =
x

x2
. (4.9)

x2 is a scalar — the squared length of the vector x — so there is no problem
in dividing by x2.

You should be able to see that a product of three Clifford vectors is
a vector plus a trivector. As it turns out, xyx−1 is just a vector. Let
y = y‖ + y⊥, where y‖ is parallel to x and y⊥ is perpendicular to x:

xyx−1 =
1

x2
xyx =

1

x2
x
(
y‖ + y⊥

)
x =

1

x2

(
xy‖x+ xy⊥x

)
=

=
1

x2

(
x2y‖ − x2y⊥

)
= y‖ − y⊥. (4.10)

Thus y → xyx−1 is a reflection through a line along direction x. If we
instead wanted a reflection in a plane (or hyperplane) perpendicular to x, we
would make the transformation y → −xyx−1.

Reflection in plane ⊥x : y → −xyx−1. (4.11)

The reflection (4.11) lets us reflect a vector in any plane (or hyperplane) that
we want. It is, however, not unique. x and 2x give the same reflection, for
example. We therefore usually impose the normalisation condition x2 = 1 (or
x2 = ±1 in a Lorenzian spacetime). This removes most of the ambiguity, but
we can’t get around the fact that x and −x give rise to the same reflection.1

We can of course do more than one reflection as well. If we reflect in
a hyperplane perpendicular to a, and then in a hyperplane perpendicular
to b, we have the transformation y → baya−1b−1: More generally, we can

1Reflection through a line along a null direction is not possible. If x2 = 0, no inverse
exists. Also, a vector parallel to a null vector will also be orthogonal to it, so defining y‖
and y⊥ gets troublesome, making it difficult to define what we mean by reflection in a null
vector.
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study y → syŝ−1, where s can be any Clifford element such that syŝ−1 exists
and is a vector. We are considering elements s that have either odd or even
degree, so ŝ = ±s. This way, we respect the minus sign of (4.11). Note what
happens to the length of the vector y when we apply the transformation
y → syŝ−1 = ±sys−1:

y2 → sys−1sys−1 = sy2s−1 =

[
y2 ∈ R,

commutes

]
= y2ss−1 = y2.

The transformation y → syŝ−1 leaves the length of vectors intact. This is, in
other words, an orthogonal transformation. Given the normalisation require-
ment sst = ±1, which is the natural generalisation to our x2 = ±1 that we
had when we only did reflections in one hyperplane, these transformations
form the group Pin(p, q):

Pin(p, q) = {s ∈ C̀ +
p,q ∪ C̀ −p,q|sst = ±1 and ∀x ∈ Rp,q, sxŝ−1 ∈ Rp,q}.

(The s ∈ C̀ +
p,q∪C̀ −p,q means that we study either an even number of reflections,

or an odd number of reflections, not some strange combination of both.)
So we have a group Pin(p, q) of orthogonal transformations. Is it the

group of orthogonal transformations, O(p, q)? It turns out it is not. As you
will remember, s ∈ Pin(p, q) and −s ∈ Pin(p, q) both correspond to the same
transformation in O(p, q). Pin(p, q) is a double cover of O(p, q).

Rotations are also orthogonal transformations, and may be the first ones
that come to mind. Rotations can actually be constructed in terms of reflec-
tions: two reflections becomes a rotation. This is perhaps easiest to see in
two dimensions, explicitly in terms of the rotation and reflection matrices.
The same argument applies in more dimensions, since the two reflection vec-
tors (perpendicular to the hyperplanes we reflect in) will always span a plane
where the two-dimensional arguments apply. Two reflections means s ∈ C̀ +,
and we get the rotation group Spin(p, q):

Spin(p, q) = {s ∈ C̀ +
p,q|sst = ±1 and ∀x ∈ Rp,q, sxs−1 ∈ Rp,q}. (4.12)

This is a double cover of the special orthogonal group SO(p, q) (s and −s
correspond to the same rotation in SO(p, q)). For p = 3 and q = 0 we
get the group Spin(3), which is isomorphic to SU(2), the special unitary
group, which you may know from quantum mechanics. This is known as
an accidental isomorphism, which means that you can’t count on the Spin
group always being a special unitary group in higher dimensions (cf. Fuchs
and Schweigert, 2003, section 20.10).
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Relativity complicates matters. Two reflections does not necessarily be-
come a rotation if we are working in Minkowski-space. In Minkowski-space, a
reflection might actually be a time reversal. A time reversal followed by a spa-
tial reflection does not equal a rotation. The Lorentz group SO(p,q) breaks
up into four disconnected subsets, as discussed in e.g. Peskin and Schroeder
(1995, section 3.6): they can be proper (no spatial reflection) or improper
(spatial reflection), orthochronous (no time reversal) or nonorthochronous
(time reversal). Going from Pin(p, q) to Spin(p, q) removes the improper
orthochronous transformations and the proper nonorthochronous transform-
ations (i.e. reflections in one axis), but we are left both with the proper, or-
thochronous transformations (rotations and boosts), as well as the improper,
nonorthochronous transformations. The proper, orthochronous transforma-
tions are more physical2, so we define the group Spin+(p, q) which removes
the improper, nonorthochronous ones:

Spin+(p, q) = {s ∈ C̀ +
p,q|sst = 1 and ∀x ∈ Rp,q, sxs−1 ∈ Rp,q}.

The difference is that now sst = +1.

4.2 Spinors

The game of tangloids consists of two wooden blocks, connected by three
strings (top, bottom and middle).3 When one block is rotated by 2π with
respect to the other, the strings become entangled, so that nothing but a
rotation can bring them back to their original state. If we rotate the block
by 4π, however, it is possible to disentangle the strings, without resorting
to rotations. (The player who can untangle the strings the fastest is the
winner.) The fact that a 2π rotation does not bring us back to the original
position is known as orientation entanglement.

A vector always returns to its original position after a rotation of 2π.
Because of this, it cannot express things such as the tangloid or, for that
matter, the electron wave function. Vectors don’t work here, and neither does
the group SO(p, q). We know that s ∈ Spin(p, q) and −s ∈ Spin(p, q) have
the same effect on a vector, y → sys−1, but they are in principle different.
We can use this to construct objects that transform differently under s and
−s, and this will enable us to distinguish a +π rotation from a −π rotation,

2For instance, the weak interactions have time-reversal symmetry, but are not symmet-
ric under spatial reflections. Weak processes would not be expected to be invariant under
improper, nonorthochronous Lorentz transformations — unless we do a charge conjugation
at the same time. See e.g. Peskin and Schroeder (1995).

3The game was created by Piet Hein, and is described in Gardner (1966).
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or if you wish, a 2π rotation from a 4π rotation. We call this object a spinor,
and declare that a spinor transforms as χ→ sχ for s ∈ Spin(p, q).

Component spinors are defined as follows. First, we find a matrix rep-
resentation of the Clifford algebra — a set of (complex) matrices γµ that
respect the Clifford relation (4.3). Then we define spinor space as the (com-
plex) column vectors that the γµ matrices act on.

In three dimensions, we can use the Pauli sigma matrices for this. The
matrix representation is given by

e1 → σ1 =

(
0 1
1 0

)
, e2 → σ2 =

(
0 −i
i 0

)
, e3 → σ3 =

(
1 0
0 −1

)
.

Note that an ordinary vector becomes a matrix when we do this:

x = xiei → xiσi = x · σ.

A Clifford vector is rotated an angle α about an axis n (n2 = 1) by y →
sys−1 for s = exp(1

2
αne123) (cf. Lounesto, 2001, section 4.6). Since (ne123)2 =

−1 we have
s = exp(1

2
αne123) = cos

α

2
+ e123n sin

α

2
.

This is a scalar plus a bivector, and you should be able to verify that s ∈
Spin(3) rather easily. You can also verify that α→ α+ 2π makes s→ −s. A
spinor would transform as χ→ sχ. Using component spinors and the matrix
representation of the Clifford algebra (ei → σi) we get

e123 = σ1σ2σ3 = i

(
1 0
0 1

)
and n→ n · σ:

χ→ exp(1
2
iαn · σ)χ

which is what you find in Sakurai (1994, equation (3.2.46)).4

In 9 + 1 dimensions we could in principle do the same thing. We will
need bigger matrices to represent C̀ 9,1, though. Ten matrices with 1024
entries each (25 × 25) and 32-component spinors (25), actually. While this is
in principle doable, it does become somewhat tedious, when we need to do
things in terms of spinor components. I do not feel like writing down these
matrices.

4Actually, the sign differs, because Sakurai (1994) measures angles counterclockwise,
while Lounesto (2001) measures them clockwise, as seen when regarded from the arrowhead
of n.
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So we do something equivalent, following the spinorial gemometry meth-
ods presented in Gillard et al. (2005). We use operators Γµ, that can in
principle be written as matrices, but can also be written in terms of the
exterior product ∧ and the interior product y:

Γ0η = −e5 ∧ η + e5 y η, Γ5η = e5 ∧ η + e5 y η,

Γiη = ei ∧ η + ei y η, Γi+5η = iei ∧ η − iei y η, i ∈ {1, 2, 3, 4} (4.13)

(see e.g. Gran et al., 2005). It is straightforward to verify that these operat-
ors satisfy (4.3). These Γµ operators act on spinors η. If we declare that 1 is
a spinor, and that the operators give spinors when acting on spinors, we find
that the spinor space is ∆ =

∧
(UC), where UC = span

C
{ei|i = 1, . . . , 5}. We

can further divide ∆ into two parts: ∆+ =
∧even(UC) and ∆− =

∧odd(UC),
of even and odd degree, respectively. These are the complex Weyl represent-
ations. As discussed in e.g. Elvin (2009) the spinors appearing in type IIB
superstring theory are complex Weyl spinors of positive chirality, meaning
that the most general Killing spinor of type IIB supergravity can be written
as

ε = p1 + qe1234 + uiei5 + 1
2
vijeij + 1

6
wijkeijk5.

Complex basis. Introduce the basis ẽµ:

ẽα =
1√
2

(eα − ieα+5) represented by Γα =
1√
2

(Γα − iΓα+5) =
√

2 eα ∧ ,

ẽᾱ =
1√
2

(eα + ieα+5) represented by Γᾱ =
1√
2

(Γα + iΓα+5) =
√

2 eα y ,

ẽ+ =
1√
2

(e5 + e0) represented by Γ+ =
1√
2

(Γ5 + Γ0) =
√

2 e5 y ,

ẽ− =
1√
2

(e5 − e0) represented by Γ− =
1√
2

(Γ5 − Γ0) =
√

2 e5 ∧ ,

where α ∈ {1, 2, 3, 4}. (4.14)

The reason for these particular choices is of course the simple form of the
operator representation. Here, the Γµ behave like creation and annihilation
operators. The ẽµ (and Γµ) obey a variant of (4.3):

ẽµẽν + ẽν ẽµ = 2g̃µν , (4.15)

where g̃+− = g̃−+ = 1 and g̃αᾱ = g̃ᾱα = δαᾱ are the nonvanishing components
of g̃µν .

When we use the complex basis ẽµ, we need to use complex coordinates in
order to be able to express the same Clifford elements as in the real case, e.g.
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the element αe6 in the real basis equals 1√
2

iα(ẽ1 − ẽ1̄) in the complex basis.
This naturally leads us to the complex Clifford algebra rather than the real
one that we have used so far. But it is the real Clifford algebra C̀ p,q that we
use when we define the Spin groups and do geometry. Those elements of the
complex algebra that are not expressible in the real basis are unwanted. We
want to take the real Clifford algebra, and express it in the complex basis.
To do this, we take the complex algebra generated by the ẽµ, and add the
reality condition s∗ = s, where ∗ means complex conjugation. (Sometimes
we consider a complex conjugation operator ∗ that acts on everything to
the right of it, ∗st = s∗t∗∗, in which case the reality condition is ∗s = s∗.)
The conjugation in s∗ acts on the complex coefficients in the ordinary way,
and on the basis vectors (making up the basis elements) by ∗ẽα = ẽᾱ∗ and
∗ẽᾱ = ẽα∗, as can be seen in (4.14) — ẽ+ and ẽ− are real.

The reality condition s∗ = s does not translate directly to O∗ = O, when
when we go to the operator representation, s → O with O expressed in
terms of the Γµ operators. This is because we already used the imaginary
unit i when defining the operators Γµ corresponding to real Clifford vectors
eµ, cf. (4.13). In (4.14) we see that ∗Γα = Γα∗, even though ∗ẽα = ẽᾱ∗.
Complex conjugation on the Clifford algebra side, corresponds to a slightly
more complicated operator than complex conjugation in the representation.
That operator should still include complex conjugation, to deal with the
coefficients properly, but the complex conjugation operator does not give the
right result on the operator representation of the basis elements. Thus we
declare that ∗ corresponds to C∗, or equivalently, that s∗ corresponds to
CO∗, for some operator C whose job it is to correct the complex conjugation
of the basis elements, so that C∗Γα = ΓᾱC∗ just as ∗ẽα = ẽᾱ∗ on the Clifford
algebra side. Our next task is to find that operator C.

Since ∗eµ = eµ∗, we want C∗Γµ = ΓµC∗. We have

C∗Γµ =

{
CΓµ∗ if µ ∈ {0, 1, 2, 3, 4, 5},
−CΓµ∗ if µ ∈ {6, 7, 8, 9}.

Thus we need to find a C that commutes with Γ0 through Γ5, and anticom-
mutes with Γ6 through Γ9. Now, according to (4.3), each Γµ operator will
anticommute with all other Γν operators (and obviously commute with it-
self). A ΓµΓν pair, will commute with all Γρ operators if ρ 6= µ, ρ 6= ν, and
anticommute if ρ = µ 6= ν or ρ = ν 6= µ. Thus e.g. Γ6Γ7 commutes with Γ0

through Γ5, anticommute with Γ6 and Γ7, and then commute with Γ8 and Γ9.
This is close to what we want, but we want an operator that anticommutes
with Γ8 and Γ9 too. But we can obviously do that by using the pair Γ8Γ9 in
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addition to Γ6Γ7:
C = Γ6Γ7Γ8Γ9 (4.16)

does the job. Using (4.13) we can write it explicitly in terms of exterior and
interior products as

C =
4∏
i=1

(
(ei∧)− (ei y)

)
(4.17)

where it is understood that the factors are sorted in the order of ascending i
(i = 1 to the left). Using the C of (4.16) and (4.17) the complex conjugation
works out as it should:

∗eµ = eµ∗ → C∗Γµ = ΓµC∗
∗ẽα = ẽᾱ∗ → C∗Γα = ΓᾱC∗
∗ẽᾱ = ẽα∗ → C∗Γᾱ = ΓαC∗
∗ẽ± = ẽ±∗ → C∗Γ± = Γ±C∗ (4.18)

Now, the reality condition ∗s = s∗ that we need to impose on elements s
of the complex Clifford algebra when we construct the Spin group and do
geometry, takes the form C∗O = OC∗ in the operator representation. The
condition for a spinor η to be real is simply C∗η = η, though spinors will in
general be complex, even in the representation of the real Clifford algebra.
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Chapter 5

Finding the Killing spinors
with Galilean symmetry

5.1 Gauge fixing of the general Killing spinor

Type IIB string theory has a Spin(9, 1) symmetry, which we break up into a
Spin(3, 1) symmetry that corresponds to the macroscopic dimensions, and the
rest, corresponding to an internal Calabi–Yau space. We use local symmetry
transformations to transform a general spinor into a simpler representative
— this is the gauge fixing of the general Killing spinor.

5.1.1 The Galilean subgroup of Spin(3, 1)

The four-dimensional space with Spin(3, 1) symmetry will be our Galilean
spacetime. ẽ+ will be the Galilean time direction, ẽ− will be the direction cor-
responding to the Galilean extra coordinate, which we called xs in chapter 3
(or−xs, really, since we are using the positive-metric convention (3.10) for the
light-cone coordinates). There are now only two dimensions left for the Ga-
lilean space, but we are quite content with studying two-dimensional systems
— in fact, many interesting superconductors have superconducting planes
that one would hope could be described with the AdS/CFT correspondence.
The Galilean space will be spanned by e1 and e6 (with real coefficients), or
equivalently, in the complex basis, by ẽ1 and ẽ1̄ (with complex coefficients,
and a reality condition on the resulting vectors).

The Spin(3, 1) group is not entirely compatible with homogeneous Ga-
lilean transformations, however — all Galilean transformations must leave
the mass pt = m invariant. Thus we must restrict ourselves to a subgroup of
Spin(3, 1) that leaves the component of vectors that points in the ẽ+ direction

35
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invariant. The Galilean energy-momentum tensor is

p = mẽ+ − Eẽ− + p1e1 + p6e6

where E is the energy and pI are the components of the Galilean spatial
momentum. After a Galilean transformation we have

p→ p′ = mẽ+ − E ′ẽ− + p′1e1 + p′6e6.

The time component of vectors, in this case the mass m, is left invariant by
Galilean transformations. Note that

p · ẽ− = m (5.1)

and that
p′ · ẽ− = m. (5.2)

Doing a Galilean transformation on (5.1) we get p′ · ẽ′− = m, which together
with (5.2) yields p′ · (ẽ′− − ẽ−) = 0 for all p, so that ẽ′− = ẽ−.

The conclusion is that in order to leave the Galilean time component of
vectors invariant (x+ and p+ and so on), the basis vector ẽ− must be left
invariant by the transformation.

The Spin(3, 1) group forms a subset of C̀ +
3,1, according to (4.12). If the

basis vectors generating the C̀ 3,1 lie in directions e0, e1, e5 and e6, the most
general element of C̀ +

3,1 can be written as

s = α0156e0e1e5e6 + α01e0e1 + α05e0e5 + α06e0e6+

+ α15e1e5 + α16e1e6 + α56e5e6 + β (5.3)

for α... ∈ R and β ∈ R. If it is an element of the Spin(3, 1) group, s acts
on a vector v as svs−1. If we want it to leave ẽ− invariant, this means that
sẽ−s

−1 = ẽ−, or (multiplying by s on the right)

sẽ− = ẽ−s. (5.4)

Inserting (5.3) into (5.4) we get the most general s ∈ C̀ +
3,1 that leaves ẽ−

invariant:

s = Ae0e1 + Ae1e5︸ ︷︷ ︸
sA

+Be0e6 −Be5e6︸ ︷︷ ︸
sB

+Ce1e6︸ ︷︷ ︸
sC

+β (5.5)


sA = A(e0 − e5)e1 = −Aẽ−(ẽ1 + ẽ1̄),

sB = B(e0 − e5)e6 = −B iẽ−(ẽ1 − ẽ1̄),

sC = Ce1e6 = −C i 1
2

(ẽ1ẽ1̄ − ẽ1̄ẽ1)
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If we want s to be an element in Spin(3, 1) we need sst = 1. Calculating sst

in (5.5) we get

sst = C2 + β2 !
= 1. (5.6)

Thus sA, sB /∈ Spin(3, 1) by themselves — at least one of C and β has to be
nonzero. We can fulfill (5.6) by putting C = sin θ

2
and β = cos θ

2
— then

s = sC + β would be a rotation in the e1e6 plane by an angle θ.
So we associate sC +β with the rotations in the e1e6 plane. Similarly, we

associate sA + 1 (and sB + 1) with the Galilean boosts that leave e6 (and e1,
respectively) invariant. Do note, however, that a Galilean boost is not simply
a pure Lorentz boost in light-cone coordinates. It is a Lorentz transformation
all right, but not a pure boost. To take an example, consider how s = sA + 1
acts on a vector v written in the basis {e0, e1, e5, e6}:

(sA + 1)v(sA + 1)t =


1 2A 0 2A
−2A 1− 2A2 0 −2A2

0 0 1 0
2A 2A2 0 2A2 + 1

v.
A pure Lorentz boost would give a symmetric transformation matrix. The
sA + 1 transformation is still a Lorentz transformation, and it would not
be entirely wrong to call it a Lorentz boost, but it is not a pure one where
the coordinate system is simply boosted by some velocity V . Such a boost
should involve both ẽ− and ẽ+, whereas sA and sB are defined solely in terms
of ẽ−.

Going over to the spinor representation, we can write (5.5) in terms of

Γ11̄ =
1

2
(Γ1Γ1̄ − Γ1̄Γ1) = (e1 ∧ e1 y)− (e1 y e1∧), (5.7)

Γ−1 =
1

2
(Γ−Γ1 − Γ1Γ−) = (e5 ∧ e1∧)− (e1 ∧ e5∧) = 2 (e5 ∧ e1∧) , (5.8)

Γ−1̄ =
1

2
(Γ−Γ1̄ − Γ1̄Γ−) = (e5 ∧ e1 y)− (e1 y e5∧) = 2 (e5 ∧ e1 y) . (5.9)

The interesting generators of (homogeneous) Galilean transformations, can
thus be represented in spinor space as

sA → −A (Γ+1 + Γ+1̄) ≡ −a 1

2
(Γ+1 + Γ+1̄) ,

sB → −B i (Γ+1 − Γ+1̄) ≡ −b 1

2
i (Γ+1 − Γ+1̄) ,

sC → −C iΓ11̄,
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where we have rescaled A and B (to a and b) in order to introduce a factor of
1
2

that will later turn out to be expedient. A general element of the Galilean
subgroup of Spin(3, 1) is then given by

G(a, b, θ) B −a 1

2
(Γ−1 + Γ−1̄)− b 1

2
i (Γ−1 − Γ−1̄)− sin

θ

2
iΓ11̄ + cos

θ

2
(5.10)

in the spinor representation.

5.1.2 Spin(6) and the Calabi-Yau space

Spin(9, 1) is constructed from the Clifford algebra generated by e0 to e9, and
the corresponding spinor space can be represented by the exterior algebra of
e1 to e5. We single out e0, e1, e5 and e6 to make Spin(3, 1), containing the
homogeneous Galilean transformations — in spinor space this corresponds
to e1 and e5. Left, we have e2 to e4, and e7 to e9, which together generate
Spin(6). In the spinor representation these correspond to e2, e3 and e4.

A general Spin(9, 1) spinor can be written as a linear combination of terms
of the form η3,1 ∧ η6, where η3,1 is a Spin(3, 1) spinor (associated with the
exterior algebra of e1 and e5) and η6 is a Spin(6) spinor (associated with the
exterior algebra of e2, e3 and e4).

What we want in the end are spinors with Galilean symmetry, and if
that was all there is to it, we might ignore how things transform under
Spin(6) entirely. However, compactified string theory places some stringent
requirements on the compactified space — see e.g. Greene (1997). There
are more general ways of doing it, but one popular way is to say that the
compactified space is a generalised Calabi–Yau manifold. In our case, the
generalised Calabi–Yau manifold will encompass the real directions e2 to e4

and e7 to e9, corresponding to the complex directions ẽ2, ẽ3, ẽ4. With three
complex dimensions, we call the space a (generalised) Calabi–Yau three-fold,
and the interesting property of our generalised Calabi–Yau three-fold, for our
purposes, is that it is a space with SU(3) structure.1 SU(3) structure means
that we want our spinors to be invariant under SU(3).

Our next task, then, is to figure out how SU(3) and Spin(6) are related.
A Spin(6) spinor is in

span{1, e2,e3, e4, e34, e24, e23, e234} =

= span{1, e34, e24, e23}︸ ︷︷ ︸
=4even

⊕ span{e2, e3, e4, e234}︸ ︷︷ ︸
=4odd

.

1An ordinary Calabi–Yau three-fold has SU(3) holonomy, rather than SU(3) structure.
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It is interesting to note that a spinor in 4even remains in 4even when Spin(6)
acts on it; 4odd is likewise closed under Spin(6). (An element of Spin(6)
is represented by linear combinations of even Clifford elements, so in the
complex basis, where the Γ operators are creation and annihilation operators
acting on spinor space, we directly see that even (or odd) spinors go to even
(or odd) spinors, by an even number of creation/annihilation operations.)

It is known that Spin(6) is isomorphic to SU(4) (see e.g. Fuchs and Sch-
weigert, 2003; Lounesto, 2001). Thus, somehow, the action of Spin(6) on
4odd and 4even is equivalent to the action of an SU(4) matrix. We can of
course construct the group SU(3) by taking a subset of SU(4) matrices —
say block diagonal SU(4) matrices with an SU(3) matrix in the first block
and identity in the second. Thus a four-component object transforming under
SU(4) transforms as a three-component object and a one-component object
under SU(3): 4SU(4) = (3 + 1)SU(3). Looking at 4odd and 4even, there seems
to be a natural choice for a division into 3 + 1: we want span{e2, e3, e4} and
span{e34, e24, e23} to be closed under SU(3). We need to implement SU(3)
in terms of Spin(6) in a way that accomplishes this.

This can be done by using Γαβ̄ = 1
2

(
ΓαΓβ̄ − Γβ̄Γα

)
— these operators

contain one creation and one annihilation operator, so that span{e2, e3, e4}
is closed under their operation. There are nine such operators, but most
of them are not elements of Spin(6) as they stand — we need to impose
the reality condition C∗O = OC∗ on each operator O. The operators with
α = β are simple in this respect — we only need to multiply by i: iΓ22̄, iΓ33̄

and iΓ44̄. The others can be combined into pairs yielding the two operators
Γαβ̄ + Γᾱβ and iΓαβ̄ − iΓβ̄α. Now, having taken the reality condition into
account, we have nine operators that are in Spin(6) and map span{e2, e3, e4}
to span{e2, e3, e4}, and span{e34, e24, e23} to span{e34, e24, e23}. That is what
we mean by the 3SU(3) in our 4SU(4) = (3+1)SU(3) subdivision; the 1SU(3) means
that e234 and 1 are left invariant. Of the nine Spin(6) operators that respect
the 3SU(3), three do not respect the 1SU(3) as they stand: iΓ22̄, iΓ33̄ and iΓ44̄ do
not annihilate 1 and e234 (which the Lie algebra generators should do if the
corresponding Lie group leaves them invariant). Taking linear combinations
of these three, we get two operators that do annihilate 1 and e234. The hope,
then, is that the resulting eight generators can be identified with the eight
generators of SU(3) — then 1 and e234 would be the spinors left invariant by
SU(3). That the eight Spin(6) generators we have singled out can indeed be
identified with the SU(3) generators, can be seen explicitly by seeing how the
generators act on a spinor in span{e2, e3, e4} or a spinor in span{e34, e24, e23}.
Thus we would use 1 and e234 as the η6 part of the Spin(9, 1) Killing spinors.
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5.1.3 The interesting spinors

As noted above, a general Spin(9, 1) spinor is a linear combination of terms of
the form η3,1∧η6, where η3,1 is a Spin(3, 1) spinor (associated with the exterior
algebra of e1 and e5) and η6 is a Spin(6) spinor (associated with the exterior
algebra of e2, e3 and e4). The coefficients of such a linear combination will
be functions of spacetime. We have seen that if the SU(3) holonomy is to
be respected, we should use 1 and e234 as the η6 part of Killing vectors. The
spinors appearing in type IIB are complex Weyl spinors of positive chirality
— that means that we want Spin(9, 1) spinors of even degree: a (complex)
linear combination of 1, e15, e1234 and e2345. The η3,1 part is built from e1 and
e5, and the η6 part is built from 1 and e234.

It will be expedient to express a general Spin(9, 1) spinor in terms of a
basis of purely real spinors, in the sense that C∗η = η, and purely imaginary
spinors, in the sense that C∗η = −η:

η1 = 1 + e1234, η5 = iη1,

η2 = i (1− e1234) , η6 = iη2,

η3 = e15 + e2345, η7 = iη3,

η4 = i (e15 − e2345) , η8 = iη4,

where η1 through η4 are real (C∗ηi = ηi) and η5 through η8 are imaginary
(C∗ηi = −ηi).

The spinors written in a basis of η1 through η8 will automatically be
invariant under the SU(3) transformations associated with the generalised
Calabi–Yau space, and, given appropriate conditions on the coefficients, they
can be taken to be the Killing spinors corresponding to Galilean symmetry.
Finding the exact conditions on the coefficients, involves solving the Killing
spinor equation, but there are some things we can do before we do that.

For one thing, we can bring them to a canonical form using local Galilean
transformations. We also know that the space of the Killing spinors should
be closed under (global) Galilean transformations — taking a Galilean trans-
formation of a Killing spinor should give us a Killing spinor. We next turn
our attention to the canonical form of the Killing spinors.
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5.1.4 The action of the Galilean group

Let a real spinor η = αη1 + βη2 + γη3 + δη4 be represented by the column
vector

η
.
=


α
β
γ
δ

 .

Next, we study the action of a general homogeneous Galilean transformation
(5.10) on this spinor:

G(A,B, θ) B A
1

2
(Γ+1 + Γ+1̄)+B

1

2
i (Γ+1 − Γ+1̄)+sin

θ

2
iΓ11̄ +cos

θ

2
(5.10)

The first step is to find out how Γ+1, Γ+1̄ and Γ11̄ act on η using (5.7) to
(5.9):

η1 η2 η3 η4

Γ11̄ −1 + e1234 i (−1− e1234) e15 − e2345 i (e15 + e2345)
Γ−1 0− 2e15 i (0− 2e15) 0 0
Γ−1̄ 0− 2e2345 i (0 + 2e2345) 0 0

Then we go to the linear combinations that appear in (5.10), which are
real on the Clifford algebra side (though not real, strictly speaking, in the
representation):

η1 η2 η3 η4

−iΓ11̄ i (1− e1234) − (1 + e1234) −i (e15 − e2345) (e15 + e2345)

−1
2

(
Γ−1 + Γ−1̄

)
e15 + e2345 i (e15 − e2345) 0 0

−1
2 i
(
Γ−1 − Γ−1̄

)
i (e15 + e2345) − (e15 + e2345) 0 0

which simplifies to

η1 η2 η3 η4

−iΓ11̄ η2 −η1 −η4 η3

−1
2

(Γ+1 + Γ+1̄) η3 η4 0 0

−1
2

i (Γ+1 − Γ+1̄) η4 −η3 0 0

(5.11)

Now, knowing how these operators act on η1, η2, η3, η4, we can express them
as matrices multiplying the column vector (α, β, γ, δ)T representing η = αη1+
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βη2 + γη3 + δη4. Looking at (5.11) we see that

iΓ11̄η = αη2 − βη1 − γη4 + δη3 = −βη1 + αη2 + δη3 − γη4
.
=


−β
α
δ
−γ

 .

Thus

iΓ11̄
.
=


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 .

Similarly:

1

2
(Γ+1 + Γ+1̄)

.
=


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

 , and

1

2
i (Γ+1 − Γ+1̄)

.
=


0 0 0 0
0 0 0 0
0 −1 0 0
1 0 0 0

 .

Inserting everything we know into (5.10) we get a matrix representation of
how homogeneous Galilean transformations act on real spinors.

G(a, b, θ)
.
=


cos θ

2
− sin θ

2
0 0

sin θ
2

cos θ
2

0 0
a −b cos θ

2
sin θ

2

b a − sin θ
2

cos θ
2

 (5.12)

5.1.5 The orbits of the real spinors

Of course, a general spinor would be a linear combination of the real spinors
{ηi}4

i=1 and the purely imaginary spinors {ηi}8
i=5, but either set of spinors

transform among themselves, in exactly the same way. We study the real
spinor η = αη1 + βη2 + γη3 + δη4.

In group theory, the orbit of a point x in some set X is the set of points in
X that can be related to x by some element of the group. Thus, the orbit of a
spinor η is the set {G(a, b, θ)η : a, b, θ ∈ R}. Since the homogeneous Galilean
transformations are linear transformations, one orbit will be the trivial {0}
— if η = 0, then Gη = 0, for all a, b and θ.



5.1. Gauge fixing of the general Killing spinor 43

Thinking about (5.12) in terms of 2 × 2 blocks, we see two rotation
matrices on the diagonal, leading us to consider the quantities I1 B

√
α2 + β2

and I2 B
√
γ2 + δ2. Doing the analysis, we find infinitely many orbits, that

we can describe by I1 and I2 as follows:

The I1η1 orbit: {η = αη1 + βη2 + γη3 + δη4 :

I1 B
√
α2 + β2 6= 0 and I2 B

√
γ2 + δ2 arbitrary.}

The I2η3 orbit: {η = αη1 + βη2 + γη3 + δη4 :

I1 B
√
α2 + β2 = 0 and I2 B

√
γ2 + δ2 6= 0.}

All spinors in the I1η1 orbit, can be brought to I1η1 by Galilean transform-
ations — this is perhaps easiest to see if we use the group property to do
it in two steps: First use G(0, 0, θ) to rotate away the coefficient of η2, then
use G(a, b, 0) to get rid of the coefficients of η3 and η4. Since a and b would
be multiplying the η1 coefficient in this second step, it only works if the η1

coefficient is nonzero after the first step — if it is not, I1 = 0. In that case
we are in a I2η3 orbit, where the coefficients of η1 and η2 are already zero,
and the coefficient of η4 may be rotated away by G(0, 0, θ).

One I1η1 orbit for each positive I1, and one I2η3 orbit for each positive I2:
infinitely many orbits. (And one trivial orbit, η = 0.) It looks, however, as
though we have two types of orbits (three if you include the trivial one). To
distinguish them, we define the orbit-type as the orbits that have the same
stabiliser subgroup, which is the subgroup that leaves the spinor invariant. In
the trivial orbit, the stabiliser subgroup is the entire group of homogeneous
Galilean transformations: any G(a, b, θ) leaves the spinor invariant. In the
I2η3 orbit-type, any G(a, b, 0) leaves the spinor invariant; but in the I1η1

orbit-type, only the trivial subgroup consisting of the identity transformation
G(0, 0, 0) will leave the spinors invariant.

There are thus three orbit-types:

Representative Orbit
η = 0 {0}
η = I1η1 {αη1 + βη2 + γη3 + δη4 : I1 ≡

√
α2 + β2 6= 0}

η = I2η3 {γη3 + δη4 : I2 ≡
√
γ2 + δ2 6= 0}

5.1.6 The orbits of the complex spinors

Now we study the full spinors

η = αη1 + βη2 + γη3 + δη4 + α̃η5 + β̃η6 + γ̃η7 + δ̃η8



44 Chapter 5. Finding the Killing spinors with Galilean symmetry

where ηi+4 = iηi for i = 1, . . . , 4. One might represent η with an eight-
component vector, and represent G as an 8 × 8 matrix, but that would not
really help our intuition for things. Rather, we let G remain what it was, a
4× 4 matrix, and represent η as a 4× 2 matrix. The subgroup of Spin(3, 1)
acts as G(a, b, θ) multiplied from the left as usual. Now, apart from the
Spin(9, 1) group, there is also a U(1) symmetry group in the underlying type
IIB theory that we may use to find a canonical form for the spinors. We may
treat this group as a separate matrix. Given how we represent η, this matrix
is actually multiplied by η from the right. The full group action is:

η
.
=


α α̃

β β̃
γ γ̃

δ δ̃

 7→ G(A,B, θ)


α α̃

β β̃
γ γ̃

δ δ̃

( cosφ sinφ
− sinφ cosφ

)
. (5.13)

We start by considering the simpler case when a = b = 0 and G(a, b, θ)
is block diagonal — then we can do the analysis in terms of a 2×2 matrix M ,

signifying either

(
α α̃

β β̃

)
or

(
γ γ̃

δ δ̃

)
, being multiplied by orthogonal matrices

on either side: M 7→ O1MO2. Now, we don’t expect I1 B
√
α2 + β2, or

I2 B
√
γ2 + δ2 to be invariant anymore, because the φ matrix on the right

rotates α into α̃ and β into β̃, γ into γ̃ and δ into δ̃. However, we would
expect

I1 B

√
α2 + β2 + α̃2 + β̃2 and I2 B

√
γ2 + δ2 + γ̃2 + δ̃2 (5.14)

to be invariant. This may be guessed from the rotation matrices, but we can
also see it directly, since I1 and I2 are simply the square root of tr(MMT )
for the respective M :

tr(MMT ) 7→ tr(O1MO2(O1MO2)T ) = tr(O1MO2O
T
2 M

TOT
1 ) =

= tr(O1MMTOT
1 ) = tr(MMTOT

1 O1) = tr(MMT ).

We also get an invariant from the determinant:

detM 7→ det(O1MO2) = (detO1)(detM)(detO2) = detM

This gives us
I3 B αβ̃ − βα̃ and I4 B γδ̃ − δγ̃. (5.15)

We want to find the orbits of the complex spinors, and a canonical repres-
entative in each orbit. We are starting with the simpler problem of doing the
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same for a 2×2 matrix multiplied by (potentially different) rotation matrices
on either side. We have, I claim, one orbit for each value of I1 and I3 (or
I2 and I4 if we think of M as the lower 2 × 2 matrix). To see that this
is so, we can find a canonical representative — show that for an arbitrary
2× 2 matrix M , the transformation can bring it to diagonal form expressed
in terms of I1 and I3.

Perform the matrix multiplication and call the resulting matrix M ′. We
want M ′

12 = M ′
21 = 0, to place the nonzero entries on the diagonal. M ′

12 =
0 and M ′

21 = 0 are not very nice equations by themselves, so we study
M ′

12 +M ′
21 = 0 and M ′

12 −M ′
21 = 0 instead:{

(α− β̃) sin
(
φ+ θ

2

)
+ (α̃ + β) cos

(
φ+ θ

2

)
= 0 (sum)

(α + β̃) sin
(
φ− θ

2

)
+ (α̃− β) cos

(
φ− θ

2

)
= 0 (difference).

(5.16)

The solution is φ+ θ
2

= − tan−1
(
α̃+β

α−β̃

)
+ nπ, n ∈ Z,

φ− θ
2

= − tan−1
(
α̃−β
α+β̃

)
+mπ, m ∈ Z.

(5.17)

This can safely be interpreted in a sloppy way, so that e.g. tan−1(1/0) =
tan−1(±∞) = ±π

2
. When the above generates an indeterminate angle sum or

angle difference, that means that the corresponding angle is truly arbitrary
— in certain cases only one angle is needed to rotate the 2 × 2 matrix to
diagonal form. The important thing is that we can always make (5.16) work,
by choosing the angles as in (5.17). So we can always do(

α α̃

β β̃

)
→
(
α′ 0

0 β̃′

)
.

The diagonal form is, however, not unique. We can do(
α′ 0

0 β̃′

)
→
(
−α′ 0

0 −β̃′
)

using θ = 0, φ = π, and we can do(
α′ 0

0 β̃′

)
→
(
β̃′ 0
0 α′

)
using θ

2
= φ = π

2
. If we want a unique representative of the orbit, we can

use the transformations just mentioned to make sure that |α′| ≥ |β̃′| and
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α′ ≥ 0. Then, we can even give an explicit form for α′ and β̃′ in terms of the
invariants I1 and I3:

α′ =

√
I 2

1

2
+

√
I 4

1

4
−I 2

3 ,

β̃′ = sgn(I3)

√
I 2

1

2
−
√

I 4
1

4
−I 2

3 .

(5.18)

Analogously we have
γ′ =

√
I 2

2

2
+

√
I 4

2

4
−I 2

4 ,

δ̃′ = sgn(I4)

√
I 2

2

2
−
√

I 4
2

4
−I 2

4 .

(5.19)

The general case with 4 × 2 matrices representing our spinors, is given
by the above analysis not only when a = b = 0 in G(a, b, θ), but also when
I1 = 0, which implies that the spinor is of the form

0 0
0 0
γ γ̃

δ δ̃

 .

For such spinors, a and b do not matter — only θ in G(a, b, θ) has the power
to change the spinor. The conclusion is that all spinors with I1 = 0 are in
the same orbit as the representative

0 0
0 0
γ′ 0

0 δ̃′

 ,

where γ′ and δ̃′ are given by (5.19) in terms of I2 and I4, which in turn are
defined by (5.14) and (5.15).

If I1 > 0, we may use θ and φ to transform the spinor to something of
the form 

α′ 0

0 β̃′

γ γ̃

δ δ̃


where α′ and β̃′ are given by (5.18) in terms of I1 and I3, which in turn are
defined by (5.14) and (5.15). One might argue that I should put a prime on
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γ, γ̃, δ and δ̃ too, since they will in general also change when we transform
the upper part to diagonal form, but I have left them without prime so as
not to confuse them with the γ′ and δ̃′ in (5.19) — here γ, γ̃, δ and δ̃ are
transformed, but still pretty arbitrary. This transformed spinor we want to
transform again to make it even simpler, but this time using the a and b of
G(a, b, θ) and not using θ and φ at all — that would mess up the diagonal
form of the upper part of the spinor. Thus, we study G(a, b, 0) on the spinor:

1 0 0 0
0 1 0 0
a −b 1 0
b a 0 1



α′ 0

0 β̃′

γ γ̃

δ δ̃

 =


α′ 0

0 β̃′

aα′ + γ −bβ̃′ + γ̃

bα′ + δ aβ̃′ + δ̃

 =

(Choose a = −γ/α′ and b = −δ/α′. Since I1 > 0, we know that α′ must be
positive too and we can divide by it. β̃′ on the other hand, may be zero —
will be zero if I3 = 0.)

=


α′ 0

0 β̃′

0 δ
α′ β̃
′ + γ̃

0 − γ
α′ β̃
′ + δ̃

 .

We are left with one guaranteed nonzero component, and three potentially
non-zero components. Of those β̃′ can be expressed as I3/α

′. Could the
other two possibly be expressed as I5/α

′ and I6/α
′ for invariants I5 and

I6? What would I5 and I6 be, in general? In this particular case, when
we started with a spinor whose upper 2×2 component was already diagonal,
we would have I5 = δβ̃ + γ̃α and I6 = −γβ̃ + δ̃α (now dropping the
primes, as we try to find general expressions for completely arbitrary spinors).
These definitions would not, however, be invariant, as can be seen from the
transformation 

α α̃

β β̃
γ γ̃

δ δ̃

 φ=π
2−−→


−α̃ α

−β̃ β
−γ̃ γ

−δ̃ δ


since δβ̃ + γ̃α → −δ̃β − γα̃ and −γβ̃ + δ̃α → γ̃β − δα̃. This would lead us
to guess that perhaps I5 = αγ̃− γα̃+ δβ̃− βδ̃ and I6 = βγ̃− γβ̃ +αδ̃− δα̃
would be invariant — in the case β = α̃ = 0 they yield the same expression
as above, and they are invariant under a transformation with φ = π

2
. To see

that I5 and I6 are invariant under a general transformation, involving both
G(a, b, θ) and φ, it is perhaps easiest to turn to a computer algebra system.
They are indeed invariants.
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So, collecting the expressions for invariants that allow us to take an ar-
bitrary spinor and directly write down a canonical representative, we get:

I1 B
√
α2 + β2 + α̃2 + β̃2,

I2 B
√
γ2 + δ2 + γ̃2 + δ̃2 (invariant if I1 = 0),

I3 B αβ̃ − βα̃,
I4 B γδ̃ − δγ̃ (invariant if I1 = 0),

I5 B αγ̃ − γα̃ + δβ̃ − βδ̃,
I6 B βγ̃ − γβ̃ + αδ̃ − δα̃,

α′ =

√
I 2

1

2
+

√
I 4

1

4
−I 2

3 ,

γ′ =

√
I 2

2

2
+

√
I 4

2

4
−I 2

4 .

In terms of these, we can write down the orbits directly as:

The 0 orbit: {η = 0 : I1 = 0 and I2 = 0}

The γ′η3 +
I4

γ′
η8 orbit:

{η = γη3 + δη4 + γ̃η7 + δ̃η8 : I1 = 0 and I2 > 0}

The α′η1 +
I3

α′
η6 +

I5

α′
η7 +

I6

α′
η8 orbit:

{η = αη1 + βη2 + γη3 + δη4 + α̃η5 + β̃η6 + γ̃η7 + δ̃η8 :

I1 > 0 and I2 irrelevant}.

So this is how we do it if we get a completely general spinor and wish
to find the canonical representative spinor of the corresponding orbit — we
just calculate some Ii’s. That is not, however, what we want to do. We
don’t want to start with a completely general spinor; we don’t much care
about the general spinors. We care about the orbits of spinors, and what we
need is one spinor that can represent each orbit. Ignoring η = 0, we wish
to study the spinors η = γη3 + δ̃η8 and η = αη1 + β̃η6 + γ̃η7 + δ̃η8. If we
know what happens to them, we know everything we wish to know about
the completely general spinor, since it can be obtained by transforming these
representatives. We thus study two cases: one with two functions and one
with four.
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5.2 Local and global

We have used local symmetries (Galilean and U(1)) to get a general spinor
into one of the forms η = αη1 + β̃η6 + γ̃η7 + δ̃η8 or η = γη3 + δ̃η8, where the
Greek coefficients are functions of spacetime. This means that we in general
have four (or two) functions.

The local symmetries we used are the symmetries of the underlying theory
that are compatible with choosing the +, 1, 1̄ directions to be the Galilean
directions. Other symmetries of the underlying theory would mix the direc-
tions. We have not yet, however, made sure that the solution has Galilean
symmetry.

We want the solution to have a global Galilean symmetry. So we take our
two representative spinors, and act on them with a global Galilean symmetry
transformation — global meaning that this time around, the a, b and θ are
not functions, but some real values. Doing Galilean transformations on the
set of Killing spinors should give us back the set of Killing spinors, to make
the Galilean transformation a symmetry. Thus all spinors resulting from the
Galilean transformations are Killing spinors. The Galilean transformation of
the spinors is given in (5.12).

cos θ
2
− sin θ

2
0 0

sin θ
2

cos θ
2

0 0
a −b cos θ

2
sin θ

2

b a − sin θ
2

cos θ
2



α 0

0 β̃
0 γ̃

0 δ̃

 =

= cos
θ

2


α 0

0 β̃
0 γ̃

0 δ̃

+ sin
θ

2


0 −β̃
α 0

0 δ̃
0 −γ̃

+ a


0 0
0 0
α 0

0 β̃

+ b


0 0
0 0

0 −β̃
α 0

 .

Thus acting with a global Galilean transformation on η = αη1+β̃η6+γ̃η7+δ̃η8

gives us a linear combination of

• αη1 + β̃η6 + γ̃η7 + δ̃η8,

• αη2 − β̃η5 + δ̃η7 − γ̃η8,

• αη3 + β̃η8, and

• αη4 − β̃η7.

In this case, we have N = 4 Killing spinors.
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The orbits described by η = γη3 + δ̃η8 under global Galilean transforma-
tions: 

cos θ
2
− sin θ

2
0 0

sin θ
2

cos θ
2

0 0
a −b cos θ

2
sin θ

2

b a − sin θ
2

cos θ
2




0 0
0 0
γ 0

0 δ̃

 =

= cos
θ

2


0 0
0 0
γ 0

0 δ̃

+ sin
θ

2


0 0
0 0

0 δ̃
−γ 0

 .

Thus acting with a global Galilean transformation on η = γη3 + δ̃η8 gives us
a linear combination of

• γη3 + δ̃η8, and

• −γη4 + δ̃η7.

In this case we have N = 2 Killing spinors.

5.3 Killing spinors and Killing vectors

The Killing vectors are the vectors associated with (κIJ+ )Be
B. Elvin (2009,

eq. 4.23) gives the expression for the Killing vector coordinates as:(
κIJ+
)
B

= B(ηI , C∗ΓBηJ) +B(C∗ηI ,ΓBηJ). (5.20)

Here, B(·, ·) is a Spin(9, 1) invariant Majorana inner product, given by Elvin
(2009, eq. 4.4):

B(η, θ) = 〈Γ0C∗η, θ〉. (5.21)

Combining (5.20) and (5.21) we get

(κIJ+ )B = 〈Γ0C∗ηI , C∗ΓBηJ〉+ 〈C∗Γ0C∗ηI ,ΓBηJ〉 =

= 〈Γ0C∗ηI , C∗ΓBηJ〉+ 〈Γ0η
I ,ΓBη

J〉. (5.22)

Note that these coordinates are real, so we should be using the real basis for
the Killing vectors. Going over to the complex basis using (4.14), we would
get complex coordinates, if we want to express the same Killing vectors, but
(κIJ+ )B is entirely real.
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For the first set of orbits we have

η1
A B α η1 + β̃ η6 + γ̃ η7 + δ̃ η8, C∗η1

A = α η1 − β̃ η6 − γ̃ η7 − δ̃ η8,

η2
A B α η2 − β̃ η5 + δ̃ η7 − γ̃ η8, C∗η2

A = α η2 + β̃ η5 − δ̃ η7 + γ̃ η8,

η3
A B α η3 + β̃ η8, C∗η3

A = α η3 − β̃ η8,

η4
A B α η4 − β̃ η7, C∗η4

A = α η4 + β̃ η7,

η1
A =

(
α + β̃

)
e1234 +

(
−δ̃ + i γ̃

)
e15 +

(
δ̃ + i γ̃

)
e2345 −

(
−α + β̃

)
1,

η2
A = −i

(
α + β̃

)
e1234 +

(
i δ̃ + γ̃

)
e15 −

(
−i δ̃ + γ̃

)
e2345 − i

(
−α + β̃

)
1,

η3
A = −

(
−α + β̃

)
e15 +

(
α + β̃

)
e2345,

η4
A = −i

(
−α + β̃

)
e15 − i

(
α + β̃

)
e2345,

C∗η1
A = −

(
−α + β̃

)
e1234 −

(
−δ̃ + i γ̃

)
e15 −

(
δ̃ + i γ̃

)
e2345 +

(
α + β̃

)
1,

C∗η2
A = i

(
−α + β̃

)
e1234 −

(
i δ̃ + γ̃

)
e15 +

(
−i δ̃ + γ̃

)
e2345 + i

(
α + β̃

)
1,

C∗η3
A =

(
α + β̃

)
e15 −

(
−α + β̃

)
e2345,

C∗η4
A = i

(
α + β̃

)
e15 + i

(
−α + β̃

)
e2345.

Equation (5.22) can be reduced to coefficients times 〈e1,ΓBe15〉, 〈e1,ΓBe2345〉,
〈e234,ΓBe15〉 and 〈e234,ΓBe2345〉, and we get

κ11
+ = 4(α2 + β̃2 + γ̃2 + δ̃2)e0 − 8β̃δ̃e1 + 4(−α2 − β̃2 + γ̃2 + δ̃2)e5 + 8β̃γ̃e6

κ12
+ = 8β̃γ̃e1 + 8β̃δ̃e6

κ13
+ = 4β̃δ̃e0 + (−4α2 − 4β̃2)e1 + 4β̃δ̃e5

κ14
+ = −4β̃γ̃e0 − 4β̃γ̃e5 + (−4α2 − 4β̃2)e6

κ22
+ = 4(α2 + β̃2 + γ̃2 + δ̃2)e0 + 8β̃δ̃e1 + 4(−α2 − β̃2 + γ̃2 + δ̃2)e5 − 8β̃γ̃e6

κ23
+ = −4β̃γ̃e0 − 4β̃γ̃e5 + (4α2 + 4β̃2)e6

κ24
+ = −4β̃δ̃e0 + (−4α2 − 4β̃2)e1 − 4β̃δ̃e5

κ33
+ = (4α2 + 4β̃2)e0 + (4α2 + 4β̃2)e5

κ34
+ = 0

κ44
+ = (4α2 + 4β̃2)e0 + (4α2 + 4β̃2)e5

κIJ+ = κJI+
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For the second set of orbits we have

η1
B B γ η3 + δ̃ η8, C∗η1

B = γ η3 − δ̃ η8,

η2
B B γ η4 − δ̃ η7, C∗η2

B = γ η4 + δ̃ η7,

η1
B =

(
−δ̃ + γ

)
e1,5 +

(
δ̃ + γ

)
e2,3,4,5,

η2
B = i

(
−δ̃ + γ

)
e1,5 − i

(
δ̃ + γ

)
e2,3,4,5,

C∗η1
B =

(
δ̃ + γ

)
e1,5 +

(
−δ̃ + γ

)
e2,3,4,5,

C∗η2
B = i

(
δ̃ + γ

)
e1,5 − i

(
−δ̃ + γ

)
e2,3,4,5.

Equation (5.22) can be reduced to coefficients times 〈e1,ΓBe15〉, 〈e1,ΓBe2345〉,
〈e234,ΓBe15〉 and 〈e234,ΓBe2345〉, and we get

κ11
+ =

(
4 δ̃2 + 4 γ2

)
e0 +

(
4 δ̃2 + 4 γ2

)
e5

κ12
+ = 0

κ22
+ =

(
4 δ̃2 + 4 γ2

)
e0 +

(
4 δ̃2 + 4 γ2

)
e5

κIJ+ = κJI+

We have many more Killing vectors in the N = 4 case compared to N = 2
here. More Killing vectors means more symmetry and makes it easier to solve
the equations; theN = 2 case with only two Killing vectors is correspondingly
much harder.
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Outlook and future work

The next step is to insert the spinors found in the previous chapter into the
Killing spinor equation. Remember that the coefficients of the Killing spinors
found there are functions of spacetime, but if they are to be true Killing
spinors those functions cannot be truly arbitrary. The Killing spinor equation
is a first order differential equation given by the supersymmetry variation of
the gravitino — I won’t go in to the details here; you can read about it in
e.g. Elvin (2009). The upshot of it all, is that you get an equation of the
form DMε = 0, where D is a supercovariant derivative. Linear differential
equations are in principle easy to solve, though you would want to write a
computer program to do this explicitly.

That the Killing spinors respect Galilean symmetry is ensured by the
ansatz in chapter 5, but the supercovariant derivative also involve some other
fields, such as the five-form field strength F and the three-form field strength
G, which are also a part of the solution. We may therefore need to impose
Galilean symmetry on those as well.

When we have found the functions in the spinor, we insert them into the
corresponding equation for the Killing vectors. The expected final result is a
list of all possible ansätze for geometries in this theory, that respect Galilean
symmetry. Some of them will describe superconductors. Some of them might
not have been examined before.
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