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DYNAMIC EQUATIONS FOR A FULLY ANISOTROPIC ELASTIC

PLATE

KARL MAURITSSON, PETER D. FOLKOW, ANDERS BOSTRÖM

Abstract. A hierarchy of dynamic plate equations is derived for a fully anisotropic elas-
tic plate. Using power series expansions in the thickness coordinate for the displacement
components, recursion relations are obtained among the expansion functions. Adopting
these in the boundary conditions on the plate surfaces and along the edges, a set of dy-
namic equations with pertinent edge boundary conditions are derived on implicit form.
These can be truncated to any order and are believed to be asymptotically correct. As
a special case, explicit equations for an orthotropic plate are presented. Analytical and
numerical comparisons are made with other approximate theories given in the literature.
These results show that the present theory capture the plate behavior accurately concern-
ing dispersion curves, eigenfrequencies as well as stress and displacement distributions.

1. Introduction

Vibrations of anisotropic plates have been studied extensively by many authors. As the
3D equations of motion result in solutions that generally are of a considerably higher com-
plexity than in the isotropic case [1, 2], the main interest has concerned approximate plate
theories. Here the bulk of work deals with the special case of orthotropic plates. This
is partly due to the fact that the involved constitutive relations in a general anisotropic
material results in quite complicated plate equations even for an approximate theory. More-
over, in many engineering applications using composites the material configuration is or-
thotropic.

Among the approximate plate equations, the most used theory is the classic bending equa-
tion based on the Kirchhoff assumptions [3]. It is well known that this theory models the
lowest flexural mode that leads to good results in the long wave region. The more accurate
theory due to Mindlin [4] includes effects of rotatory inertia and shear. Other more refined
theories has been developed ever since [5, 6, 7, 8, 9, 10, 11]. Recently, a Timoshenko like
plate theory has been developed by Shimpi and Patel [12].

Power series expansion techniques truncated to arbitrary order have been used by several
authors, both for isotropic plates [13, 14, 15, 16, 17, 18, 19, 20] and anisotropic plates
[21, 22]. Among these, the important concept of developing recursion relations appears in
[13, 15, 17, 19, 20], from which it is possible to reduce the number of displacement fields in a
consistent manner. The lateral boundary conditions are in addition exactly fulfilled in these
latter works since the surface boundary conditions actually constitute the plate equations
of motion. However, there are also several differences in the derivation procedure among
the papers using recursion relations, such as in the series expansion formulation or in the
truncation process. Considering the cited works on anisotropic plates, Mindlin [21] and Yu
[22] have developed sets of higher order equations without adopting recursion relations. In
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the truncation process described in [21], certain displacement terms are simply omitted to
reduce the number of unknowns. Moreover, the lateral boundary conditions are not fulfilled
exactly. The present paper is based on the method used for isotropic plates by Boström
et al. [20]. This particular method has previously been adopted to other plate structures
such as piezoelectric plates [23, 24] and porous plates [25] (the latter work is influenced by
Losin’s method [19]). Moreover, several papers on different structural elements have also
been addressed in the same fashion: isotropic rods [26, 27], anisotropic rods [28, 29] and
shells [30].

Here, dynamic plate equations for a homogenous, fully anisotropic, elastic plate are de-
rived by adopting a systematic power series expansion approach. Assuming power series
expansions in the thickness coordinate for the displacement components, the governing
three-dimensional equations of motion results in recursion relations among the expansion
functions. These can be used to eliminate all but the six lowest order expansion func-
tions. Next, the power series expansions in conjunction with the recursion relations are
used in the surface boundary conditions at the top and the bottom of the plate; either
expressed in terms of prescribed displacements or prescribed stresses. The resulting set
of six scalar equations constitutes the dynamic plate equations of motion. By adopting
variational calculus, the pertinent edge boundary conditions are stated in terms of the six
lowest order fields. These final plate equations can be truncated to arbitrary order in the
thickness, resulting in a hierarchy of plate theories that are believed to be asymptotically
correct.

One advantage with the consideration of a material without any symmetry classes is that
all other cases can be obtained as special cases. However, as the stiffness matrix for a fully
anisotropic material includes 21 independent stiffness constants resulting in very compli-
cated explicit expressions for the plate equations, these equations are here expressed on
implicit form in terms of recursively defined differential operators. Due to these involved
expressions, it is natural to study a simpler material configuration more in detail, so as to
obtain explicit sets of plate equations. Hence, the special case of an orthotropic material
with standard surface boundary conditions is considered. Here the six plate equations
can be added and subtracted in pairs to obtain two uncoupled systems of equations, each
of them including three equations and three unknowns. The two uncoupled systems cor-
respond to the symmetric and antisymmetric part of the motion, respectively. These
equations, including the edge boundary conditions, are explicitly given to cubic order in
the thickness, which thus accounts for the bending stiffness. For the antisymmetric case,
analytical comparisons are performed with approximate theories appearing in the litera-
ture. To validate the antisymmetric plate equations, dispersion curves, eigenfrequencies as
well as displacement and stress distribution curves are presented. These are compared to
other approximate theories as well as the exact three-dimensional theory.

2. Governing equations

Consider a plate of thickness 2h according to Fig. 1. The plate is homogenous, fully
anisotropic and linearly elastic with density ρ. Introducing the notation used by Auld [31],
the governing equations of motion are written

∇iJTJ = ρ ∂2
t ui. (2.1)
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Figure 1. The geometry.

Here, the stress and displacement column matrices are defined through

[TI ] = ( Txx Tyy Tzz Tyz Txz Txy )T , [ui] = ( u v w )T , (2.2)

respectively, where the displacement components are in the x, y and z directions. Note
that vector subscripts are expressed through lower case letters i = x, y, z, while abbreviated
subscripts are expressed through upper case letters I = 1, 2, 3, 4, 5, 6. The stresses are
related to the displacements through

TI = cIJ∇Jk uk, (2.3)

where the symmetric stiffness matrix, denoted by cIJ , includes the 21 independent stiffness
constants. The divergence of stress operator ∇iJ and the symmetric gradient operator ∇Ij

are defined by the matrix representations

[∇iJ ] =





∂x 0 0 0 ∂z ∂y

0 ∂y 0 ∂z 0 ∂x

0 0 ∂z ∂y ∂x 0



 , [∇Ij ] = [∇iJ ]T . (2.4)

Here, the partial derivatives are expressed as ∂x = ∂/∂x and so on. Using Eq. (2.3) in Eq.
(2.1) the equations of motion are written

∇iJ cJK∇Kl ul = ρ ∂2
t ui. (2.5)

3. Series expansions

In order to derive approximate plate equations for the anisotropic plate, the displacement
components are now expanded in power series in the thickness coordinate according to

ui(x, y, z, t) =
∞
∑

n=0

znu
(n)
i (x, y, t), (3.1)

where [u
(n)
i ] = ( un vn wn )T are expansion functions independent of z. Note that these

expansions involve both even and odd powers of z as symmetric and antisymmetric motions
with respect to z do not decouple in the general case. Inserting the series expansions Eq.
(3.1) into the equations of motion Eq. (2.5) and collecting equal powers of z, the solution
of the equation system for each power yields the recursion formulas

u
(n+2)
i =

1

(n + 1)(n + 2)
Mij

[

ρü
(n)
j −∇jK cKL∇Lmu(n)

m

− (n + 1)(LjK cKL∇Lm + ∇jK cKLLLm)u(n+1)
m

]

.

(3.2)
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Here, [Mij ] = [Cij]
−1 and [LIj] = [LiJ ]T where

[Cij] =





c55 c45 c35

c45 c44 c34

c35 c34 c33



 , [LiJ ]=





0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0



 . (3.3)

The matrix operators with an overline (∇iJ and ∇Ij) are introduced for convenience
through

∇iJ = ∇iJ + ∂zLiJ , ∇Ij = ∇Ij + ∂zLIj . (3.4)

Hence, they are the same as ∇iJ and ∇Ij in Eq. (2.4) but with all derivatives with respect
to z put to zero, i.e. ∂z = 0.

The recursion relations can be used to express all expansion functions u
(n)
i with n =

{2, 3, . . .} in terms of the lowest-order ones with n = 0, 1. This turns the recursion relations
Eq. (3.2) into

u
(n)
i =

1

n!

[

A
(n−2)
ij u

(0)
j + B

(n−2)
ij u

(1)
j

]

, n = 0, 1, 2, . . . . (3.5)

Here the differential operators A
(n)
ij and B

(n)
ij are defined recursively as

A
(n)
ik = B

(0)
ij A

(n−1)
jk + A

(0)
ij A

(n−2)
jk , n = 0, 1, 2, . . . ,

B
(n)
ik = B

(0)
ij B

(n−1)
jk + A

(0)
ij B

(n−2)
jk , n = 0, 1, 2, . . . ,

(3.6)

where

A
(−2)
ij = δij, A

(−1)
ij = 0, A

(0)
im = Mij(δjmρ∂2

t −∇jK cKL∇Lm),

B
(−2)
ij = 0, B

(−1)
ij = δij , B

(0)
im = −Mij(LjK cKL∇Lm + ∇jK cKLLLm),

(3.7)

using [δij] as the identity matrix. Note that these recursion formulas involve no approxi-
mations since they stem from the definition of the series expansions (3.1) and are as such
exact. Moreover, no truncations of the displacement terms have so far been performed,
which is of crucial importance for the present method.

Using the expansion ansatz Eq. (3.1) in the stresses Eq. (2.3) results in

TI =

∞
∑

n=0

znT
(n)
I , (3.8)

where

T
(n)
I = cIJ

[

∇Jku
(n)
k + (n + 1)LJku

(n+1)
k

]

. (3.9)

Hereby the stresses may be expressed in the lowest-order terms adopting Eq. (3.5)

T
(n)
I =

cIJ

n!

[(

∇JkA
(n−2)
kl + LJkA

(n−1)
kl

)

u
(0)
l +

(

∇JkB
(n−2)
kl + LJkB

(n−1)
kl

)

u
(1)
l

]

. (3.10)
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4. Plate equations

At each point on the surfaces z = ±h, either the traction or the displacement is to be
prescribed in each coordinate direction. These given fields are denoted by {T+

I , u+
i } and

{T−
I , u−

i } at the upper and lower surfaces, respectively, where I = 5, 4, 3 and i = x, y, z.
Hence, one of the fields for each of the six pairs {T±

xz, u
±}, {T±

yz, v
±}, {T±

zz, w
±} is to be

given, resulting in three boundary conditions at each point on the upper and lower surfaces,
respectively. For prescribed tractions, the boundary conditions adopting Eq. (3.8) to order
N become

N
∑

n=0

hnT
(n)
I (x, y, t) = T+

I (x, y, t),

N
∑

n=0

(−h)nT
(n)
I (x, y, t) = T−

I (x, y, t), (4.1)

for I = 5, 4, 3. Similarly, the boundary conditions for prescribed displacements adopting
Eq. (3.1) to order N + 1 become

N+1
∑

n=0

hnu
(n)
i (x, y, t) = u+

i (x, y, t),
N+1
∑

n=0

(−h)nu
(n)
i (x, y, t) = u−

i (x, y, t), (4.2)

for i = x, y, z. The difference in number of terms used for Eq. (4.1) and Eq. (4.2) is

due to the differences in the differential orders. Since the stress terms T
(n)
I include spatial

derivatives of one order higher than the corresponding displacements u
(n)
i , an extra term

is to be included in the latter sums to obtain a consistent set of plate equations.

The surface boundary conditions obtained from Eqs. (4.1)–(4.2) constitute the hyperbolic
set of six scalar plate equations. Using Eqs. (3.5) and (3.10), these plate equations may be

expressed in terms of the six lowest-order displacement fields u
(n)
i for n = 0, 1. Depending

on whether traction or displacement based boundary conditions are adopted on a surface
region, the governing set of differential equations are in the general case fundamentally
different for various parts of the plate. It could be noted here that these boundary con-
ditions are in all cases fulfilled exactly for the expansion order in question. Each of the

six boundary conditions involves spatial derivatives of order N + 1 on u
(0)
i (except when

N = 0 for prescribed displacements) and spatial derivatives of order N on u
(1)
i . However,

the resulting system of six plate equations turns out to be of differential order 2(3N − 1)
in the xy coordinates due to cancelation effects. This is readily seen by eliminating all but
one of the fields, say w0, resulting in one equation of spatial order 2(3N−1). Consequently,
there are to be stated 3N − 1 boundary conditions along the edge of the plate.

5. Edge boundary conditions

Consider a rectangular plate where −a ≤ x ≤ a and −b ≤ y ≤ b. As for the surfaces
z = ±h, either the traction or the displacement is to be prescribed in each coordinate
direction. At x = ±a these fields are denoted {T±a

I , u±a
i } where I = 1, 6, 5 and i = x, y, z.

Consequently, one of the quantities for each of the pairs {T±a
xx , u±a}, {T±a

xy , v±a}, {T±a
xz , w±a}

is to be given at each edge point for x = ±a. Analogously, the prescribed fields at y = ±b
are denoted {T±b

I , u±b
i } where I = 6, 2, 4 and i = x, y, z. Hereby one of the quantities for

each of the six pairs {T±b
xy , u±b}, {T±b

yy , v±b}, {T±b
yz , w±b} is given at each edge point for

y = ±b.
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The edge boundary conditions may be obtained by adopting variational techniques. Here
a generalized Hamilton’s principle is used where displacements and stresses are varied
simultaneously and independently [27]. This has the effect that both displacement and
traction based boundary conditions are treated in the same rigorous fashion. Assume from
now on that either a displacement component or the corresponding traction component is
prescribed over the entire thickness interval −h ≤ z ≤ h for each {x, y} at the boundaries.
This is generally the case when studying problems addressed by approximate plate theories.
For the more involved situation where this restriction is lifted, such problems must probably
be solved using plate theories of quite high order to give reliable results [27].

Since all boundary fields are derived in the same manner, the procedure is presented for
a given normal traction at x = a. Assume the prescribed stress T+a

xx (y, z, t). Following
the results from variational calculus presented in [27], the edge boundary conditions are
obtained from

∫ h

−h

(

T+a
xx (y, z, t) −

M
∑

n=0

znT (n)
xx (a, y, t)

)

zkdz = 0, k = 0, 1, . . . , M, (5.1)

adopting Eq. (3.8) to order M . It is thus straightforward to derive the M + 1 unknowns

T
(n)
xx from the system of M + 1 equations. It is readily seen that the hereby obtained

representation of the boundary stress function Txx in power series is actually identical to
the expansion of the given function T+a

xx in terms of Legendre polynomials Pk (z/h) of order

M . Note that the standard case T+a
xx = 0 results in T

(n)
xx = 0 for all n.

In line with the derivative order of the system discussed above for the boundary conditions
at the upper and lower surfaces, the number of edge boundary conditions at each edge is
3N − 1. For each point y at x = ±a, these are distributed among the fields as N terms

for {T
(n)
xx , un}, N terms for {T

(n)
xy , vn}, and N − 1 terms for {T

(n)
xz , wn}. Here either the

stress or the displacement field is to be used for each pair, depending on the formulation
of the prescribed boundary conditions. Note that the first terms are for n = 0. Similarly,

edge boundary conditions at y = ±b are according to N terms for {T
(n)
xy , un}, N terms

for {T
(n)
yy , vn}, and N − 1 terms for {T

(n)
yz , wn} in each case. Consequently, the boundary

conditions for stresses involve one order higher spatial derivative than the corresponding
boundary conditions for displacements. The lower number of terms for the fields directed
in the z direction is in line with the corresponding results from [27]. In the present fully
anisotropic case this feature may not be explained in an equally straightforward manner.
However, this behavior becomes clearer when studying an orthotropic plate, see Section
6.2

5.1. Coupling conditions. When homogeneous rectangular plates with different prop-
erties (geometrical, material, surface boundary conditions) are joined together, there are
2(3N − 1) coupling conditions to be fulfilled along a common edge. For coupling along
the boundaries x = ±a, there should be N conditions on u, v, Txx, Txy as well as N − 1
conditions on w and Txz at each edge for every point y. Naturally, similar conditions hold
for coupling along the boundaries y = ±b for every point x. Consider first the normal
displacement and stress fields for coupling at x = ±a, using the series expansion approach
Eqs. (3.1) and (3.8). Following the procedure in [27], the displacement conditions result
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in termwise equality ul
n = ur

n. Here the superscript ”l” is for the left-hand fields and ”r”
is for the right-hand fields. For the normal stress, Eq. (5.1) is extended to

∫

hl

N−1
∑

n=0

znT (n)
xx (al, y, t)zkdz =

∫

hr

N−1
∑

n=0

znT (n)
xx (ar, y, t)zkdz, k = 0, 1, . . . , N − 1, (5.2)

where the integrals are taken over each plate thickness, respectively. This stress condition
is a generalized force continuity requirement. In the special case hl = hr each stress term
is equal on both sides. The same procedure holds for the other fields, as well as at the
boundaries y = ±b.

When calculating displacements and stresses anywhere in a plate, the number of terms
used in the series representations could be chosen in several ways. One possibility is to
consistently adopt the same number of terms as in the edge conditions, that is N terms for
the fields u, v, Txx, Tyy, Tzz, Txy and N−1 terms for the fields w, Txz, Tyz. Another possibility
is to use the same number of fields as in the surface boundary conditions Eqs. (4.1)– (4.2),
that is N + 2 terms for the displacements and N + 1 terms for the stresses. Based on
experiences from [27], the latter approach is used here. This causes the upper and lower
surface boundary conditions to be fulfilled exactly, but corrupts the edge conditions.

6. Orthotropic plate

The plate equations described above for fully anisotropic plates may be used to derive
explicit equations for the special case of orthotropic plates. Such material configurations
are of special importance in many engineering applications. For crystal axes along the
coordinate axes, the stiffness matrix reduces to

[cIJ ] =















c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66















, (6.1)

involving nine independent stiffness constants. From Eq. (3.2) the recursion formulas
become

un+2 =
1

(n + 1)(n + 2)c55

[ρ∂2
t un − c11∂

2
xun − c66∂

2
yun

−c126∂x∂yvn − (n + 1)c135∂xwn+1],
(6.2)

vn+2 =
1

(n + 1)(n + 2)c44
[ρ∂2

t vn − c66∂
2
xvn − c22∂

2
yvn

−c126∂x∂yun − (n + 1)c234∂ywn+1],
(6.3)

wn+2 =
1

(n + 1)(n + 2)c33
[ρ∂2

t wn − c55∂
2
xwn − c44∂

2
ywn

−(n + 1)c135∂xun+1 − (n + 1)c234∂yvn+1],
(6.4)
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where n = 0, 1, 2, . . .. Here the new stiffness constants are defined as (no summation
convention) cijk = cij + ckk. Similarly, the expanded stresses according to Eq. (3.9) are
written

T (n)
xx = c11∂xun + c12∂yvn + (n + 1)c13wn+1,

T (n)
yy = c12∂xun + c22∂yvn + (n + 1)c23wn+1,

T (n)
zz = c13∂xun + c23∂yvn + (n + 1)c33wn+1,

T (n)
xz = c55[(n + 1)un+1 + ∂xwn],

T (n)
yz = c44[(n + 1)vn+1 + ∂ywn],

T (n)
xy = c66(∂yun + ∂xvn),

(6.5)

for n = 0, 1, 2, . . .. By adopting the recursion formulas repeatedly, the expanded displace-

ment and stress fields are expressed in terms of the lowest-order fields u
(n)
i for n = 0, 1 as in

Eqs. (3.5) and (3.10). By inserting these expressions into the equations presented in Sec-
tions 4–5, six coupled orthotropic plate equations with pertinent edge boundary conditions

are hereby obtained written in terms of the lowest-order fields u
(n)
i for n = 0, 1.

6.1. Plate equations. Consider for simplicity the case when either the traction or the
displacement is prescribed on both the upper and lower surfaces for a specific direction. By
adding and subtracting the boundary conditions in Eqs. (4.1)–(4.2), equations containing
only even or odd expansions in h are obtained according to

⌊N/2⌋
∑

n=0

h2nT
(2n)
I =

1

2
(T+

I + T−
I ),

⌊(N−1)/2⌋
∑

n=0

h2n+1T
(2n+1)
I =

1

2
(T+

I − T−
I ), (6.6)

⌊(N+1)/2⌋
∑

n=0

h2nu
(2n)
i =

1

2
(u+

i + u−
i ),

⌊N/2⌋
∑

n=0

h2n+1u
(2n+1)
i =

1

2
(u+

i − u−
i ), (6.7)

where I = 5, 4, 3 and i = x, y, z. Here, the stress and displacement expansion functions

T
(n)
I and u

(n)
i are given by Eqs. (3.10) and (3.5), while ⌊n⌋ denotes the floor of n, i.e.

the nearest lower integer to n. These equations constitute decoupled sets corresponding
to symmetrical and antisymmetrical motions. Considering the three stress components
in Eq. (6.6), symmetric motion is obtained by taking I = 3 in the first relation and
I = 5, 4 in the second relation. Similarly, a symmetric set is obtained for the three
displacement components in Eq. (6.7) by taking i = x, y in the first relation and i = z in
the second relation. For all possible combinations of such symmetric boundary conditions,
the equations involve only the fields u0, v0, w1. Naturally the complementary combinations
correspond to antisymmetrical sets involving u1, v1, w0. It should be noted that odd order
N are mainly of interest here. This is readily seen by eliminating the fields to one equation,
involving every second power in h. Hereby, the time and spatial derivatives in the resulting
equation are asymptotically correct up to and including order N + 1 . For N even, only
the derivatives of order N are correctly represented.

For the sake of clarity, the plate equations of order N = 3 are presented explicitly below in
the traditional case when the traction is prescribed on both surfaces. The main reason to
use this order is that flexural effects are hereby correctly accounted for through the anti-
symmetric h3 terms. For the antisymmetric motion the three plate equations become
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c55(u1 + ∂xw0) +
h2

2

[

ρ∂2
t u1 + (β133c135 − c11)∂

2
xu1 − c66∂

2
yu1

(β133c234 − c126)∂x∂yv1 − β133ρ∂2
t ∂xw0 + β133c55∂

3
xw0 + β133c44∂x∂

2
yw0

]

=
1

2
(T+

xz + T−
xz),

(6.8)

c44(v1 + ∂yw0) +
h2

2

[

ρ∂2
t v1 + (β233c234 − c22)∂

2
yv1 − c66∂

2
xv1

+ (β233c135 − c126)∂x∂yu1 − β233ρ∂2
t ∂yw0 + β233c44∂

3
yw0 + β233c55∂

2
x∂yw0

]

=
1

2
(T+

yz + T−
yz),

(6.9)

h[ρ∂2
t w0 − c55(∂xu1 + ∂2

xw0) − c44(∂yv1 + ∂2
yw0)]

+
h3

6c33

[

ρ2∂4
t w0 − c13c55∂

4
xw0 − c23c44∂

4
yw0 − (c55 − c13)ρ∂2

t ∂
2
xw0

− (c44 − c23)ρ∂2
t ∂

2
yw0 − (c13c44 + c23c55)∂

2
x∂

2
yw0

− (c33 + c135)ρ∂2
t ∂xu1 − (c33 + c234)ρ∂2

t ∂yv1 + (c11c33 − c13c135)∂
3
xu1 + (c22c33 − c23c234)∂

3
yv1

+ [c33(c126 + c66) − c23c135]∂x∂
2
yu1 + [c33(c126 + c66) − c13c234]∂

2
x∂yv1

]

=
1

2
(T+

zz − T−
zz).

(6.10)

Here the new constants are defined as (no summation convention) βijk = cij/ckk. Note that
the specialized case of an isotropic plate renders identical equations to those presented by
Boström et al. [20].

Similarly, the three plate equations for the symmetric motion are

h(ρ∂2
t u0 − c11∂

2
xu0 − c66∂

2
yu0 − c126∂x∂yv0 − c13∂xw1)

+
h3

6c55

[

ρ2∂4
t u0 + c11c55α11∂

4
xu0 + c2

66∂
4
yu0 − c55(α11 + β115)ρ∂2

t ∂
2
xu0

− 2c66ρ∂2
t ∂

2
yu0 + c55[c12α12 + c66(α11 + α12 + α4 + β115)]∂

2
x∂

2
yu0

− c55(α12 + α5 + β664)ρ∂2
t ∂x∂yv0 + c55[c12α11 + c66(α11 + α12 + β664)]∂

3
x∂yv0

+ c55[c22α12 + c66(α5 + β224)]∂x∂
3
yv0 − c55α1ρ∂2

t ∂xw1 + c55[c11 + c13(α11 − β133)]∂
3
xw1

+ c55[c12 + c23(α12 − β133) + c66α3]∂x∂
2
yw1

]

=
1

2
(T+

xz − T−
xz),

(6.11)
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h(ρ∂2
t v0 − c22∂

2
yv0 − c66∂

2
xv0 − c126∂x∂yu0 − c23∂yw1)

+
h3

6c44

[

ρ2∂4
t v0 + c22c44α22∂

4
yv0 + c2

66∂
4
xv0 − c44(α22 + β224)ρ∂2

t ∂
2
yv0

− 2c66ρ∂2
t ∂

2
xv0 + c44[c12α21 + c66(α22 + α21 + α5 + β224)]∂

2
x∂

2
yv0

− c44(α21 + α4 + β665)ρ∂2
t ∂x∂yu0 + c44[c12α22 + c66(α22 + α21 + β665)]∂x∂

3
yu0

+ c44[c11α21 + c66(α4 + β115)]∂
3
x∂yu0 − c44α2ρ∂2

t ∂yw1 + c44[c22 + c23(α22 − β233)]∂
3
yw1

+ c44[c12 + c13(α21 − β233) + c66α3]∂
2
x∂yw1

]

=
1

2
(T+

yz − T−
yz),

(6.12)

c33w1 + c13∂xu0 + c23∂yv0 +
h2

2

[

ρ∂2
t w1 + c13∂

2
xw1 + c23∂

2
yw1

− ρ∂2
t ∂xu0 + c11∂

3
xu0 + (c12 + 2c66)∂x∂

2
yu0

− ρ∂2
t ∂yv0 + c22∂

3
yv0 + (c12 + 2c66)∂

2
x∂yv0

]

=
1

2
(T+

zz + T−
zz).

(6.13)

Here some additional constants are introduced according to

α11 = β115 − β133 − β133β135, α12 = β124 − β133 − β133β234,

α22 = β224 − β233 − β233β234, α21 = β125 − β233 − β233β135,

α1 = 1 + β133 + β135, α2 = 1 + β233 + β234, α3 = 2 + β234 + β135

α4 = β124 + β664, α5 = β125 + β665,

(6.14)

Specializing to an isotropic plate, the equations given in Johansson et al. [32] may be
retrieved. Note that when deleting the h3 and h2 terms (N = 1) this set corresponds to
the generalized plane stress case.

Using these six equations, P/SV and SH waves couple in the general orthotropic case.
However, for a transversely isotropic material (five independent stiffness constants) with
xy as the plane of isotropy, the P/SV and the SH waves decouple. Naturally, the same holds
for an isotropic material (two independent stiffness constants). These coupling effects have
to be taken into consideration when specializing from orthotropic to transversely isotropic
materials, especially if fields are to be eliminated. As an example, it is possible to eliminate
u1 and v1 in the antisymmetric case, Eqs. (6.8)–(6.10), to get one single equation in only w0.
This equation includes h7 terms that may be truncated to order h3. However, this truncated
equation can not properly deal with the simpler specialized case of transverse isotropy. The
explanation is the coupling between the P/SV and the SH wave in an orthotropic material,
that does not appear in a transversely isotropic material. In the latter case, the original
equation of order h7 can be factorized into two equations describing the P/SV wave and SH
wave, respectively. Hence, if truncations are made before the specialization to transverse
isotropy, the factorization is not possible and the single equation truncated to order h3 (with
contributions from both P/SV and SH) is of course something different from the correctly
truncated equation of order h3 (with contributions from only P/SV). Consequently, the
set of six plate equations are generally to be maintained without elimination of the fields
within. This is especially the case when edge boundary conditions are considered as these
are expressed in terms of the six fields, see below.
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6.2. Edge boundary conditions. Consider the standard situation when the plate is

either fixed u
±{a,b}
i = 0, or free T

±{a,b}
I = 0 in each coordinate direction, respectively.

Consequently, either u
(n)
i = 0 or T

(n)
I = 0 at each edge for the orders n in question. Among

the total number of 3N − 1 edge boundary conditions at each edge, 3⌊N/2⌋ conditions are
for the antisymmetric motion. These conditions are shared equally among the fields in the
three directions, which in the clamped case results in u2k+1 = 0, v2k+1 = 0 and w2k = 0
for k = 0, 1 . . . ⌊(N − 2)/2⌋. Similarly, the remaining symmetric boundary conditions are
u2k = 0, v2k = 0 and w2k−1 = 0 for k = 0, 1 . . . ⌊(N − 1)/2⌋. Consequently, there are one
term less in the z direction than in the x and y directions for the symmetric motion, which
is in line with the general discussion in Section 5.

These boundary conditions are given explicitly below for N = 3. For the antisymmetric

case, there are three boundary conditions to be fulfilled at each edge. At the edges x = ±a
these conditions read

u1 = 0 or T (1)
xx = (c11 − β133c135)∂xu1 + (c12 − β133c234)∂yv1

+ β133ρ∂2
t w0 − β133c55∂

2
xw0 − β133c44∂

2
yw0 = 0,

(6.15)

v1 = 0 or T (1)
xy = c66(∂yu1 + ∂xv1) = 0, (6.16)

w0 = 0 or T (0)
xz = c55(u1 + ∂xw0) = 0. (6.17)

The physical interpretation of these boundary conditions is that either the angle or the
bending moment Mx is zero, either the rotation or the torsion Mxy is zero, and either the
vertical displacement or the shear force Tz is zero, respectively.

Similar results are obtained at the edges y = ±b according to

v1 = 0 or T (1)
yy = (c22 − β233c234)∂yv1 + (c12 − β233c135)∂xu1

+ β233ρ∂2
t w0 − β233c55∂

2
xw0 − β233c44∂

2
yw0 = 0.

(6.18)

u1 = 0 or T (1)
xy = c66(∂yu1 + ∂xv1) = 0, (6.19)

w0 = 0 or T (0)
yz = c44(v1 + ∂yw0) = 0, (6.20)

with analogous interpretations as above.

For the symmetric case, there are five boundary conditions to be fulfilled at each edge. At
the edges x = ±a these conditions become

u0 = 0, u2 = 0 or

T (0)
xx = c11∂xu0 + c12∂yv0 + c13w1 = 0, T (2)

xx = 0,
(6.21)

v0 = 0, v2 = 0 or

T (0)
xy = c66(∂yu0 + ∂xv0) = 0, T (2)

xy = 0,
(6.22)

w1 = 0 or

T (1)
xz = ρ∂2

t u0 − c11∂
2
xu0 − c66∂

2
yu0 − (c12 + c66)∂x∂yv0 − c13∂xw1 = 0.

(6.23)

Here and below the fields u
(2)
i = 0 and T

(2)
I = 0 are not given explicitly for brevity.

Using Eq. (6.5) together with the recursion formulas Eq. (6.2)–(6.4) these fields are
readily expressed in terms of {u0, v0, w1}. The physical interpretation of these boundary
conditions is that either the normal horizontal displacement or the normal force Nx is zero,
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either the tangential horizontal displacement or the shear force Ty is zero, and either the
vertical stretching or the stretch force is zero.

The results at the edges y = ±b are

v0 = 0, v2 = 0 or

T (0)
yy = c22∂yv0 + c12∂xu0 + c23w1 = 0, T (2)

yy = 0,
(6.24)

u0 = 0, u2 = 0 or

T (0)
xy = c66(∂yu0 + ∂xv0) = 0, T (2)

xy = 0,
(6.25)

w1 = 0 or

T (1)
yz = ρ∂2

t v0 − c22∂
2
yv0 − c66∂

2
xv0 − (c12 + c66)∂x∂yu0 − c23∂yw1 = 0.

(6.26)

Note that in many engineering applications, the antisymmetric bending effects are much
more important than the symmetric effects. Due to this statement, there are prospects to
handle the symmetrical motion using a simpler set of equations. Hence, one such simpli-
fication is to involve symmetrical equations of order N = 1 together with antisymmetrical
equations of order N = 3.

7. Analytical comparison to other approximate theories

This section aims at comparing the present theory of order N = 3 to other approximate
theories in the case of antisymmetric motion of an orthotropic plate. The comparisons
are made with respect to both the equations of motion and the standard edge boundary
conditions. The plate equations in question are the Kirchhoff theory [33], the Mindlin
theory [4], and the Shimpi-Patel theory [12]. These theories assume that the applied
surface stresses at z = ±h only have a normal component. Naturally, the orthotropic
Kirchhoff and Mindlin theories simplify to the corresponding well known plate theories in
the special case of an isotropic material. Consider first the Kirchhoff equation

hρ∂2
t w0 +

h3

3

[

− (β133c13 − c11)∂
4
xw0 − (β233c23 − c22)∂

4
yw0

− 2[β133c23 − (c126 + c66)]∂
2
x∂

2
yw0

]

=
1

2
(T+

zz − T−
zz).

(7.1)

This equation has some resemblance to the corresponding terms in Eq. (6.10), which
becomes even clearer if adopting the Kirchhoff hypothesis that ∂xw0 = −u1 and ∂yw0 = −v1

in Eq. (6.10). A more detailed comparison to the present asymptotic theory requires
that the three equations (6.8)–(6.10) are combined to one single equation in terms of w0.
However, due to the coupling between P/SV and SH waves as discussed in Section 6.1, this
procedure must be pursued carefully and is not presented here.
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Next, consider the Mindlin equations

κ2c55(u1 + ∂xw0) +
h2

3

[

ρ∂2
t u1 + (β133c13 − c11)∂

2
xu1 − c66∂

2
yu1

+ (β133c23 − c126)∂x∂yv1

]

= 0,

κ2c44(v1 + ∂yw0) +
h2

3

[

ρ∂2
t v1 + (β233c23 − c22)∂

2
yv1 − c66∂

2
xv1

+ (β233c13 − c126)∂x∂yu1

]

= 0,

h
[

ρ∂2
t w0 − κ2c55(∂xu1 + ∂2

xw0) − κ2c44(∂yv1 + ∂2
yw0)

]

=
1

2
(T+

zz − T−
zz).

(7.2)

These equations clearly resemble the Eqs. (6.8)–(6.10), albeit there are several differences
worth discussing. Firstly, the Mindlin equations omit some terms such as the last three w0

terms in each of Eqs. (6.8)–(6.9), as well as the whole h3 expression in Eq. (6.10). Hence,
the Mindlin equations are similar to the asymptotic equations of order N = 2. Secondly,
Eq. (7.2) involves the correction factor κ that usually is chosen so that the thickness-shear
cut-off frequency coincides with the result from exact theory, that is κ2 = π2/12. Clearly,
the choice of κ2 = 2/3 in the first two equations and κ2 = 1 in the last equation would
result in similar coefficients of the common terms in Eq. (7.2) and Eqs. (6.8)–(6.10). It
could be noted that the Kirchhoff equation can be obtained from the Mindlin equations by
omitting rotatory inertia and eliminating shear deformation terms. Moreover, in the long
wave and low frequency limit, both the present asymptotic and the Mindlin theory result
in the Kirchhoff equation.

The Shimpi-Patel theory is a Timoshenko-like theory that involves two independent dis-
placement fields in the vertical direction. The displacement components in the plate plane
are expressed through these two vertical fields, and involve cubic terms in the z coordi-
nate. This results in a set of two plate equations, that may be combined and rewritten in
terms of the variables used in the present paper. Hence, the Shimpi-Patel plate equations
become

c55(∂xu1 + ∂2
xw0) + c44(∂yv1 + ∂2

yw0)

+
h2

42

[

17ρ∂2
t ∂xu1 + 17ρ∂2

t ∂yv1 + 17(β133c13 − c11)∂
3
xu1 + 17(β233c23 − c22)∂

3
yv1

+ (17(β233c13 − c12) − 34c66)∂x∂
2
yu1 + (17(β133c23 − c12) − 34c66)∂

2
x∂yv1

− 4ρ∂2
t ∂

2
xw0 − 4ρ∂2

t ∂
2
yw0 − 4(β133c13 − c11)∂

4
xw0 − 4(β233c23 − c22)∂

4
yw0

+ (16c66 + 8c12 − 8β133c23)∂
2
x∂

2
yw0

]

= 0,

(7.3)

h[ρ∂2
t w0 − 2/3 c55(∂xu1 + ∂2

xw0) − 2/3 c44(∂yv1 + ∂2
yw0)]

+
h3

315

[

− (β133c13 − c11)∂
4
xw0 − (β233c23 − c22)∂

4
yw0 − ρ∂2

t ∂
2
xw0 − ρ∂2

t ∂
2
yw0

+ (4c66 + 2c12 − 2β133c23)∂
2
x∂

2
yw0 − ρ∂2

t ∂xu1 − ρ∂2
t ∂yv1

− (β133c13 − c11)∂
3
xu1 − (β233c23 − c22)∂

3
yv1

+ (2c66 + c12 − β133c23)∂x∂
2
yu1 + (2c66 + c12 − β133c23)∂

2
x∂yv1

]

=
1

2
(T+

zz − T−
zz).

(7.4)
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Here, the fields in the plate plane are related through ∂yu1 = ∂xv1. Equation (7.3) corre-
sponds to the sum of Eq. (6.8) differentiated with respect to x and Eq. (6.9) differentiated
with respect to y. Hereby, these two equations involve the same sort of derivative orders,
although the coefficients in the h2 term differ. Equation (7.4) corresponds to Eq. (6.10),
but there are several differences in the coefficients as well as the omission of the ∂4

t w0 term
in Eq. (7.4).

Concerning the standard edge conditions, the Kirchhoff equation states that two conditions
should be prescribed at each edge. At the edges x = ±a

w0 = 0 or c11∂
3
xw0 + (c12 + 4c66)∂x∂

2
yw0 = 0

∂xw0 = 0 or c11∂
2
xw0 + c12∂

2
yw0 = 0,

(7.5)

and at the edges y = ±b

w0 = 0 or c22∂
3
yw0 + (c12 + 4c66)∂

2
x∂yw0 = 0,

∂yw0 = 0 or c22∂
2
yw0 + c12∂

2
xw0 = 0.

(7.6)

Naturally, these may be interpreted as homogeneous boundary conditions for the displace-
ment, bending moment, angle and effective shear force, respectively. For the Mindlin
equations, the three boundary conditions at each edge x = ±a read

u1 = 0 or (c11 − β133c13)∂xu1 + (c12 − β133c23)∂yv1 = 0,

v1 = 0 or c66(∂yu1 + ∂xv1) = 0,

w0 = 0 or c55(u1 + ∂xw0) = 0.

(7.7)

and at the edges y = ±b

v1 = 0 or (c22 − β233c23)∂yv1 + (c12 − β233c13)∂xu1 = 0,

u1 = 0 or c66(∂yu1 + ∂xv1) = 0,

w0 = 0 or c44(v1 + ∂yw0) = 0.

(7.8)

These conditions are seen to be very similar to the asymptotic ones given in Eqs. (6.15)–
(6.20). In the case of the Shimpi-Patel theory, the four boundary conditions at each edge
presented in [12] can not directly be rewritten in terms of the displacement terms used in
the present paper. This could possibly be resolved by rearranging terms when adopting
the Hamilton’s principle [12], but this is not pursued here.

8. Numerical results

The orthotropic plate equations are validated for the antisymmetric motion by investigating
dispersion relations for time harmonic waves in an infinite plate, together with displacement
and stress distribution plots. Moreover, eigenfrequencies are calculated for a finite square
plate that is simply supported. The comparisons are in all cases made with exact three-
dimensional theory and the approximate theories discussed above due to Kirchhoff, Mindlin
and Shimpi-Patel. The studied plate material is a graphite-epoxy (AS/3501) studied in
[3], where c11 = 141.1 GPa, c12 = c13 = 5.4 GPa, c22 = c33 = 12.0 GPa, c23 = 6.0 GPa,

c44 = 6.2 GPa, c55 = c66 = 7.1 GPa. Introduce the dimensionless frequency Ω = ωh
√

ρ/c33,
adopting the time factor e−iωt.
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Figure 2. Dispersion curves:
—— Exact, −−− h3, · · · Mindlin, − · − Kirchhoff, − · · − Shimpi-Patel.

Consider free waves propagating in a direction 45◦ to the x axis, where the wave number
in the direction of propagation is denoted by k. This case is chosen as the P/SV and the
SH modes hereby couple, contrary to the situation for waves propagating along the crystal
axes. Figure 2 presents dispersion curves for the asymptotic plate equations of order N = 3
from Eqs. (6.8)–(6.10) (in the figure texts called h3) together with the solutions due to
exact, Kirchhoff, Mindlin and Shimpi-Patel theories. There are three sets of curves in
the figure where the first one corresponds to the lowest bending mode. All approximate
theories model this mode quite well for low wave numbers, albeit the Kirchhoff theory
clearly deviates for higher wave numbers. The second mode may be denoted a pseudo SH
mode even though there is coupling between the P/SV and the SH modes in this direction
of propagation. This mode is not modeled by the Kirchhoff or the Shimpi-Patel theory. It
could be seen that the two lowest modes are best captured by the Mindlin theory. However,
this does not necessarily mean that the displacements and stresses are accurately predicted,
which will be seen below. For the second mode, the accurate behavior using the Mindlin
theory is mainly due to the choice of the correction factor, which here results in the correct
cut-off frequency. The third mode displayed corresponds to the second bending mode.
Here it is seen that the asymptotic h3 theory correctly follows the change in slope contrary
to the other approximate theories. It is noted that by using higher order asymptotic plate
equations such as N = 7, the resulting plots are indistinguishable from the exact curves in
the presented domain.

Next consider displacement and stress distribution plots for the specific frequency Ω =
0.5. According to the dispersion curves in Fig. 2 there exists only one real solution
(kh ≈ 0.96 according to exact theory), corresponding to the first bending mode. Here, the
displacements and stresses are either real or imaginary. The results are plotted as functions
of the dimensionless thickness coordinate z/h, where only the upper half z ≥ 0 is shown due
to symmetry. The fields are normalized so that the vertical displacement in the middle of
the plate equals unity, w(z = 0) = 1. Figures 3–4 show the three displacement components,
where the present asymptotic h3 theory renders results that are generally equally or more
accurate than the other approximate theories. Note the cubic behavior for the present
and the Shimpi-Patel theories in Fig. 3, compared to the linear variation using Kirchhoff
and Mindlin. Due to the definitions used for obtaining the horizontal displacements in the
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(a) Horizontal displacement in the x direction.
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(b) Horizontal displacement in the y direction.

Figure 3. Horizontal displacements for the first mode when Ω = 0.5:
—— Exact, −−− h3, · · · Mindlin, − · − Kirchhoff, − · · − Shimpi-Patel.
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Figure 4. Vertical displacement for the first mode when Ω = 0.5:
—— Exact, −−− h3, · · · Mindlin, − · − Kirchhoff, − · · − Shimpi-Patel.

Kirchhoff and the Shimpi-Patel theories, the two curves in Figs. 3(a)–3(b) are identical for
each theory. All three approximate theories used for comparison assume constant vertical
displacements, lying on top of the horizontal axis in Fig. 4.

The stress distributions are presented in Figs. 5–7. Note that for the Kirchhoff, Mindlin
and Shimpi-Patel theories, an indirect method is used to calculate the stresses Txz, Tyz, Tzz

[3, 12]. This is obtained by first calculating Txx, Tyy, Txy using the constitutive relations
Eq. (2.3) (the direct method). These results are then substituted into the equations of
motion Eq. (2.1), where the stresses Txz, Tyz, Tzz are obtained adopting integration over
the plate thickness (the indirect method). For Txz, Tyz the constants of integration are
chosen so as to fulfil shear stress free surfaces. For Tzz the constant of integration for each
theory can not be chosen so as to give normal stress free surfaces on both sides. Instead,
the constant is chosen so as to give zero normal stress in the middle of the plate, resulting
in an antisymmetric stress distribution. The described indirect method hereby results
in significantly improved stress distribution curves for Txz, Tyz, Tzz when compared to the
direct method. This is especially the case for the Kirchhoff and Mindlin theories, where the
direct method would result in constant shear stresses Txz, Tyz and linear normal stresses
Tzz over the plate thickness. The indirect method is here not applied to the asymptotic h3

theory, as the resulting additional higher order terms would not be in full accordance with
the adopted systematic truncation process.
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(a) Normal stress in the x direction.
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(b) Normal stress in the y direction.

Figure 5. Stresses for the first mode when Ω = 0.5:
—— Exact, −−− h3, · · · Mindlin, − · − Kirchhoff, − · · − Shimpi-Patel.
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(a) Shear stress Txy.
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(b) Normal stress in the z direction.

Figure 6. Stresses for the first mode when Ω = 0.5:
—— Exact, −−− h3, · · · Mindlin, − · − Kirchhoff, − · · − Shimpi-Patel.
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(a) Shear stress Txz.
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(b) Shear stress Tyz.

Figure 7. Stresses for the first mode when Ω = 0.5:
—— Exact, −−− h3, · · · Mindlin, − · − Kirchhoff, − · · − Shimpi-Patel.

Note that if the indirect method is adopted using the asymptotic theory and such addi-
tional higher order terms are ignored, the same expressions are obtained as for the direct
method. The corresponding situation does not occur for the other approximate theories,
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where the truncated stresses using the indirect method is different from the stresses using
the direct method. The figures for Txx, Tyy, Txy show that no specific theory is the most
accurate for all these cases, albeit the overall behavior is best captured by the asymptotic
h3 theory. Considering Txz, Tyz, Tzz, these stresses are in all cases best modeled through the
asymptotic h3 theory. Note that the normal stress boundary condition is only fulfilled by
the asymptotic theory. As have been mentioned before, the surface boundary conditions
are always automatically fulfilled using the asymptotic theory.

Consider next the displacement and stress distribution plots for the second and third modes.
The chosen frequencies are Ω = 1.5, which for exact theory corresponds to kh ≈ 1.20 for
the second mode, and Ω = 2, which for exact theory corresponds to kh ≈ 0.65 for the third
mode. Plots are presented for the dominating horizontal displacement, the dominating
shear stress, the vertical displacement and the normal stress. The fields are normalized
such that the corresponding dominating horizontal displacement equals unity at the top
surface. For the second mode, presented in Figs. 8–9, it is clear that the asymptotic h3

theory is superior to the Mindlin theory.
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(a) Horizontal displacement in the y direction.
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(b) Vertical displacement.

Figure 8. Displacements for the second mode when Ω = 1.5:
—— Exact, −−− h3, · · · Mindlin.
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(a) Normal stress in the z direction.
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(b) Shear stress Tyz.

Figure 9. Stresses for the second mode when Ω = 1.5:
—— Exact, −−− h3, · · · Mindlin.
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(a) Horizontal displacement in the x direction.
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Figure 10. Displacements for the third mode when Ω = 2:
—— Exact, −−− h3, · · · Mindlin, − · · − Shimpi-Patel.
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(b) Shear stress Txz.

Figure 11. Stresses for the second mode when Ω = 2:
—— Exact, −−− h3, · · · Mindlin, − · · − Shimpi-Patel.

A similar behavior appears for the third mode in Figs. 10–11, which also includes the
Shimpi-Patel theory. This latter theory behaves very well for the u displacement in Fig.
10(a). However, it is worth mentioning that the result for the v displacement (not shown
here) is much less favorable for the Shimpi-Patel theory. In fact, the exact result gives that
the magnitude of the v displacement is less than one tenth of the u displacement, while the
Shimpi-Patel theory assumes identical displacements in both horizontal directions. The
peculiar behavior of the shear force Txz in Fig. 11(b) for the Shimpi-Patel theory stems
from using the indirect method. In this particular case, the direct method renders more
accurate results. As expected, the overall behavior using the approximate theories for these
two higher modes in Figs. 8–11 is less accurate than for the lowest mode in Figs. 3–7.

As a final illustration of the different approximate theories, the eigenfrequencies for a qua-
dratic simply supported plate are calculated. Table 1 presents the three lowest frequencies
Ωm,n in the case of h/a = 0.1 where h is half the plate thickness and a is half the plate
width. Here m and n refer to the mode numbers in the x and y directions, respectively.
It is clear that the asymptotic h3 theory is superior to the Kirchhoff and Shimpi-Patel
theories, but less accurate than the Mindlin theory. The table also illustrates how the
accuracy is improved for higher order asymptotic theories
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m n Exact Kirchhoff Mindlin S-P h3 h5 h7

1 1 0.0506 0.0554 0.0504 0.0517 0.0497 0.0505 0.0506

1 2 0.0765 0.0841 0.0761 0.0779 0.0755 0.0765 0.0765

2 1 0.1497 0.1999 0.1487 0.1536 0.1425 0.1493 0.1497

Table 1. Simply supported plate: The dimensionless eigenfrequencies Ωm,n

for exact theory and the approximate theories: Kirchhoff, Mindlin, Shimpi-
Patel (S-P), h3, h5 and h7.

9. Concluding remarks

This paper considers plate equations for a fully anisotropic plate using a systematic power
series expansion approach. In the general case, the plate equations with pertinent edge
conditions become very complicated. Consequently these results are given implicitly on
a compact matrix form using recursively defined differential operators. More tractable
equations are given for an orthotropic material, where explicit plate equations are presented
for both antisymmetric and symmetric motions when h3 terms are included.

Analytical comparisons are made with the two classical theories of Kirchhoff and Mindlin
type. A more recent plate equation developed by Shimpi-Patel is also included. The nu-
merical results display dispersion curves, displacement and stress distributions over the
plate thickness as well as eigenfrequencies for a simply supported plate. These compar-
isons involve the asymptotic plate equation of order h3, the exact theory and the theories
mentioned above. The results from the dispersion curves and the eigenfrequencies show
that the Kirchhoff theory is clearly inferior to the other more refined theories as expected.
Here the results due to the Mindlin theory are especially accurate. For the displacement
and stress distributions, the asymptotic plate theory best captures the main behavior,
including the exact surface stress boundary conditions.

The present plate theory may be used in a finite element environment. Such a refined
theory yields more accurate results than simpler traditional equations and at the same
time the number of elements in a finite element code can be heavily reduced compared to
using three-dimensional elements. There are also prospects to extend the present work to
other geometries, e.g. anisotropic shells. Another related topic is to study fully anisotropic
piezoelectric plates; a work which is in progress.
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