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Abstract

This thesis will treat Markov chains on the symmetric group Sn, i.e. the set of permutations
of n distinct objects. Markov chains with the state space Sn are often referred to as card shuffling
chains. The state space is thus the reorderings of a deck of n cards. A certain type of card shuf-
fling chains is considered here; neighbour transpositions on graphs. This is a generalization of
ordinary random transpositions shuffle. Each step of the ordinary random transpositions shuffle
consists of randomly selecting any pair of cards in the deck and then switch their places. Neigh-
bour transpositions on a graph means that the n cards is placed on the vertices of a n-vertex
graph. At each step a neighbour pair of cards in the graph (i.e. two cards at positions connected
with an edge) is selected and transposed.

If the graph is connected, the deck will eventually be well mixed. In other words, the distri-
bution of the chain converges to uniformity on Sn. This thesis deals with the rate of convergence
to uniformity for card shuffling on two families of graphs, lollipop graphs and random graphs,
G(n, p). More precisely, bounds on the mixing time of these shuffles is determined. The mixing
time is the number of steps of the Markov chain until it is close to its stationary uniform dis-
tribution. As usual when dealing with convergence rate problems we let |Sn| → ∞, yielding
asymptotic results in n. Lower and upper bounds, both of order n4 log n, on the mixing time for
neighbour transpositions on lollipop graphs is derived. Further, lower bounds of order n log n, on
the mixing time for neighbour transpositions on connected random graphs is established. Upper
bounds of the same order is proved for random graphs with bounded diameter.

Keywords: card shuffling, mixing time, neighbour transpositions, convergence rate of Markov
chains, lollipop graphs, random graphs.
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Chapter 1

Introduction

1.1 Background
This thesis will treat Markov chains on the symmetric group Sn, i.e. the set of permutations
of n distinct objects. Markov chains with the state space Sn are often referred to as card shuf-
fling chains. More specifically we are interested in the mixing time for a certain type of such
card shuffling chains; neighbour transpositions on graphs. Any finite state irreducible aperiodic
Markov chain approaches a unique stationary distribution (also called steady state, equilibrium
or invariant distribution) as the number of steps increases. The mixing time of a Markov chain
is the time until it is ”close” to its steady state. There are several variants of definitions of the
mixing time. The most common variant, and the one we will use, is the variation distance mixing
time, where the closeness to stationarity is expressed in terms of the total variation distance. The
total variation distance measures the distance between the distribution of the Markov chain and
its stationary distribution. The formal definition of the total variation distance and the mixing
time will be done in chapter 2.

An interesting fact is that for many classes of Markov chains there is a threshold time for the
mixing process, where in a short time interval the distance to the stationary distribution drops
quickly. Diaconis [9] has written a survey on this cutoff phenomenon. Card shuffling is one of
the cases where this sharp cutoff in the convergence to stationarity often can be proved. When
dealing with convergence rate problems, one usually lets the size of the state space tend to infinity
in some way. In the determination of bounds on the mixing time of a Markov chain on Sn, one
lets n→∞, implying that also |Sn| = n!→∞, see Definition 4 in chapter 2.

A multitude of different types of card shuffling chains, together with their mixing times, has
been studied over the last decades. Important achievement in the searching for mixing times
was made already in the 1980’s. Worth to mention is the finding of the 3

2
log2 n cutoff for the

riffle shuffle (also known as the dovetail shuffle or the Gilbert-Shannon-Reeds shuffle) in 1983,
by Aldous [1]. Aldous’ result was later sharpened by Bayer and Diaconis, [2]. Since the riffle
shuffle is a model for the most frequently used method to shuffle an ordinary deck of cards, an
interesting result in Bayer and Diaconis paper is that they point out that one needs about seven
shuffles to mix a 52 card deck. Another practically usable shuffle is the overhand shuffle, where
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1.1. BACKGROUND 3

you successively take small packets of cards from the top of the deck, piling them together in
reverse order. This was first analyzed by Pemantle [18], and the correct order of the mixing time,
n2 log n, was established by Jonasson [16].

However, the type of shuffle we will focus on is so called random transpositions. Each step
of the ordinary random transposition shuffle consists of randomly selecting a pair of cards and
then switch their places. If we allow for the possibility that the two selected cards are the same,
we have a probability of 1/n for the identity shuffle, i.e. nothing happens. This also prevents
periodicity. The random transpositions shuffle was treated by Diaconis and Shahshahani in [8].
They observed that most of the action in terms of the total variation distance to stationarity
occurs around 1

2
n log n. That 1

2
n log n really is a sharp threshold was proved by Matthews, via

the method of strong stationary times, in [17].
In the ordinary random transpositions shuffle, any pair of cards can be chosen at each step.

But we could also limit ourselves, and only allow for certain transpositions. One example of this
is the transposing neighbours shuffle. At each step a pair of cards that sits next to each other in the
deck is selected and swapped. An upper bound of correct order for the transposing neighbours
shuffle was derived by Aldous [1]. Later Wilson [21] proved that n3 log n is the right threshold
value. In this paper, and the previous [20], Wilson developed the first systematic technique that
gives tight lower bounds on the mixing time. Wilson’s method uses the fact that a lower bound
on the mixing time of a single card is also a lower bound for the whole chain. If we are able
to find an eigenvalue close to 1, and corresponding eigenvector, to the transition matrix of the
motion of a single card, we can use this eigenvector to construct a test function that provides a
good lower bound on the mixing time of the whole Markov chain.

Shuffling by random transpositions can be thought of as a kind of random walk on a graph.
Suppose we have a deck of n distinct cards. Place n cards on the vertices of a graph G = (V,E)
with |V | = n vertices, one card on each vertex. Consider the process where we at each step
with some positive probability do nothing (this is to avoid periodicity), and otherwise randomly
choose one edge (i, j) of the graph and switch places of the objects on the vertex i and j, i.e.
do the neighbour transposition (i j). This process will induce the same Markov chain on the
symmetric group Sn as the random transposition shuffle where the allowed transpositions are the
ones that correspond to an open edge in the graph. We denote the set of transpositions generating
the random neighbour transposition shuffle on the graph G = (V,E) by E(G) = {(i j)|(i, j) ∈
E}.

In terms of shuffling on graphs, the ordinary random transposition shuffle thus corresponds
to neighbour transpositions on the complete graph Gn = (VGn , EGn), where |VGn| = n and
EGn = {(i, j)|i, j ∈ VGn , i 6= j}, so that all vertex pairs are connected by open edges. Aldous’
original neighbour transpositions described above will correspond to shuffling on a simple path
with n vertices. Note that if the graph is connected, the Markov chain induced by neighbour
transpositions will be irreducible. Moreover, shuffling chains on a connected graph will have a
uniform stationary distribution, i.e. at stationarity we will have uniform distribution on all the
|Sn| = n! permutations in the symmetric group, denoted by πn. We will consider neighbour
transpositions on two families of graphs; lollipop graphs, in chapter 3 and random graphs, in
chapter 4.

A lollipop graph is obtained by appending a complete graph, the ”clique”, to an end vertex of
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a simple path. The graph will then, as the name reveal, look like a lollipop. The structure of the
lollipop graph, with an edge dense part and an edge sparse part, leads to some interesting proper-
ties of the graph. This constitution will make mixing process of the card shuffling chain unusually
slow. The slowness properties of lollipop graphs has been observed earlier. Brightwell and Win-
kler [3] analyzed hitting times for simple random walks on n-vertex graphs, maxi,j h(i, j), where
h(i, j) is the expected number of steps in a random walk to reach vertex i starting from vertex
j. They proved that the lollipop graph with

⌈
2n+1

3

⌉
vertices in the clique actually is optimal in

terms of hitting times for random walks on n-vertex graphs, i.e. no other graph can have a higher
hitting time. Feige [12] made similar conclusions regarding the cover time for random walks, i.e.
the expected number of steps it takes to visit all vertices. Furthermore, Jonasson [15] showed that
lollipop graphs are extremal also for commute times, maxi,j[h(i, j) + h(j, i)], of simple random
walks on n-vertex graphs.

When studying processes on graphs, random graph models are interesting in the sense of
being a more appropriate models for ”real” graphs and networks than the deterministic models.
In general, a random graph is a graph that is generated by some random process. It could either be
that the number of graph vertices, graph edges, or the connections between them are determined
in some random way. Different models produce different probability distributions on graphs.
One of the most common is the Erdős-Rényi model denoted, G(n,M), proposed by the two name
givers in 1959, [10]. In this model a graph is chosen uniformly at random from the collection of
all graphs which have n nodes and M edges.

A closely related model is the one suggested by Gilbert [13] in the same year, denoted by
G(n, p). In Gilbert’s model we have a fixed number of vertices, n, and between each pair of
vertices an open edge occurs independently with probability p. Thus the number of edges is not
fixed, like in the Erdős-Rényi model, but instead Bin(

(
n
2

)
, p)-distributed. Since Gilbert’s model

is the most commonly used today, we will use this one in this thesis. As long as p is relatively
large, the properties of the transposing neighbours chain on a realization Gn,p of G(n, p) is very
similar to transposing neighbours on the complete graph. A very small edge probability p makes
it more interesting to analyze neighbour transpositions on Gn,p.

Since we are dealing with shuffling on random graphs, the best we can achieve is results that
are correct with probability 1, or in other words, almost sure results. And when determining the
mixing time of neighbour transpositions on Gn,p we are dealing with asymptotic analysis of a
random process. Then, one says that a property holds asymptotically almost surely (a.a.s.) if,
over a sequence of sets, the probability converges to 1. Thus, our goal is to derive asymptotically
almost sure bounds on the mixing time.

In a second paper on random graphs by Erdős and Rényi, [11], they establish results equiva-
lent to the following. If p < (1−ε) logn

n
, a graph in G(n, p) will a.a.s. contain isolated vertices, and

thus be disconnected. In contrast, if p > (1+ε) logn
n

, the random graph is a.a.s. connected. Thus
p = logn

n
is a sharp threshold for connectedness of G(n, p). Now, as mentioned before, a card

shuffling chain on a graph will eventually be well mixed, i.e. converge to uniformity, if and only
if the graph is connected. We will stick to connected graphs, that is graph with edge probability
p > logn

n
, in this thesis. For the case p < logn

n
, an idea for the future is to analyze card shuffling

on the largest connected component of the graph.
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Upper bounds on mixing times of card shuffling chains can be obtained in many different
ways. The two basic techniques are strong stationary times and coupling times, these are however
often hard to determine. There are other, more advanced techniques based on L2-theory. One
example of this is, and the one we will use here, is the so called comparison technique. It was
developed by Diaconis and Saloff-Coste in [6], and later generalized to any reversible Markov
chain in [7], by the same authors. The idea of the comparison technique is to bound the mixing
time of a difficult Markov chain by comparing it with another Markov chain, with a known
mixing time. This is done (at least in the theory behind the technique) with comparison of the
eigenvalues of the two Markov chains and, and this comparison is in turn made via comparison
of the Dirichlet forms corresponding to the two processes.

1.2 Summary
Here is a short summary of the contents and results of this thesis. Next chapter contains def-
initions of the total variation distance between two measures, and the L2-norm of a measure.
Furthermore we will define the mixing time of a Markov chain, and bounds of the mixing time
in terms of total variation distance. Finally, the chapter contains the theorem of Wilson that is
the key to his technique for lower bounds on the mixing time, together with a proof.

In chapter 3 the neighbour transposition shuffle on lollipop graphs is treated. We will consider
the lollipop graph with n vertices, where the number of vertices in the linear part is n

a
, for some

a > 1. For simplicity suppose that n
a

is an integer. We call this the
((

1− 1
a

)
n, n

a

)
-lollipop graph,

and denote it by Ln,a = (VLn,a , ELn,a).
At each step of the process do nothing with probability 1

|ELn,a |+1
, and otherwise do a random

neighbour transposition. The following theorem will be proved.

Theorem (Lollipop graphs). The mixing time τmix for random neighbour transpositions on the((
1− 1

a

)
n, n

a

)
-lollipop graph, a > 1 such that n

a
is an integer, has the lower bound

τmix ≥ (1 + o(1))
(a− 1)2

4a4x0

n4 log n,

where x0 is the smallest positive number that satisfies (a− 1)x0 + tanx0 = 0.
Moreover τmix has the upper bound

τmix ≤ (1 + o(1))
(a− 1)2(2a− 1)2

2a6
n4 log n.

Thus, neighbour transpositions on the lollipop graph is an extremely slow shuffle, the mixing
time is of order n4 log n. The lower bound on the mixing time is derived using the technique of
Wilson, mentioned in the previous section. In section 3.3, the upper bound will be established via
the comparison technique of Diaconis and Saloff-Coste. We will use card shuffling on the com-
plete graph, ordinary random transpositions, as reference shuffle. The theoretical background for
this technique will be treated in section 3.2.
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Chapter 4 is devoted to neighbour transpositions on random graphs, G(n, p). Consider a
realization of the random graph model, Gn,p = (VGn,p , EGn,p). The updating procedure for
neighbour transpositions is as follows. At each step do nothing with probability n

|EGn,p |+n
, and

otherwise do a random neighbour transposition. The following result will be proved.

Theorem (Random graphs). For random neighbour transpositions on a realizationGn,p of G(n, p),
the mixing time τmix asymptotically almost surely has the following lower bound for the given
ranges of p < 1.

For p = ω
(

logn
n

)
,

τmix ≥
1− o(1)

2
n log n.

For p = c logn
n

, c > 1,

τmix ≥
1− o(1)

2
(

1 +
√

2
c

)n log n.

Moreover, τmix a.a.s. has the following upper bound for p such that 1 > p > nδ−1, for some
δ > 0,

τmix ≤ Cn log n,

for some large enough constant C.

To reach the lower bounds on τmix, we first consider the event

A = An = {at least log n cards are in their starting positions}.

Let {Xn
t }∞t=0 be the Markov chain on Sn induced by neighbour transpositions on Gn,p. Then

it is easy to prove that t = t(n) such that P(Xn
t(n) ∈ An) → 1, is an a.a.s. lower bound on the

mixing time. In section 4.1, lower bounds on the mixing time is established in this way for the
two ranges of the edge probability p.

In section 4.2, the upper bound is derived, again via comparison with the shuffling chain on
the complete graph. Note that the upper bound is limited to the case p > nδ−1, for some δ > 0.
This is equivalent to random graphs with bounded diameter, see for example [5].

Before we begin our searching for mixing times, we need some mathematical and notational
preliminaries.



Chapter 2

Preliminaries

2.1 Definitions
To determine the mixing time of a Markov chain we need a measure of how close the chain to its
stationary distribution. To measure the distance between two probability measures µ1 and µ2 on
a finite state space S we will use the following two measures.

Definition 1 (Total variation distance). Let µ1 and µ2 be two probability measures on a finite
state space S. Then the total variation distance between µ1 and µ2 is given by

‖µ1 − µ2‖TV =
1

2

∑
s∈S

|µ1(s)− µ2(s)| = max
A⊆S

(µ1(A)− µ2(A)).

Definition 2 (L2-norm). Let µ1 and µ2 be two finite measures on a finite state space S. Then the
L2-norm of µ1 with respect to µ2 is

‖µ1‖2 = ‖µ1‖L2(µ2) =

(∑
s∈S

|µ1(s)|2

µ2(s)

)1/2

.

Using the Cauchy-Schwarz inequality we can prove that

‖µ1 − µ2‖2 ≥ 2‖µ1 − µ2‖TV . (2.1)

As a result, convergence in L2 is stronger than convergence in total variation. Let {Xt}∞t=0

be an irreducible aperiodic Markov chain with state space S. As mentioned in the Introduction,
a fundamental fact about an irreducible aperiodic Markov chain, is that regardless of the initial
state, the time-t distribution of the chain, P(Xt ∈ ·), converges to a unique steady state distri-
bution π as t tends to infinity. The mixing time of a Markov chain may refer to any of several
variant formalizations of the idea: how large must t be until P(Xt ∈ ·) is approximately π? In
this thesis we will use the following definition of the mixing time.

7



2.2. WILSON’S THEOREM 8

Definition 3 (Mixing time). The mixing time τmix of a Markov chain {Xt} with stationary distri-
bution π is defined by

τmix = inf{t : ‖P(Xt ∈ ·)− π‖TV ≤ 1/4}. (2.2)

Note that if we have ‖P(Xτ ∈ ·)− π‖2 ≤ 1/2, then by (2.1) τ ≥ τmix. In particular we have

τmix ≤ τ̂ := inf{t : ‖P(Xt ∈ ·)− π‖2
2 ≤ 1/4}. (2.3)

We will deal with mixing times of Markov chains induced by card shuffling on graphs, where
the number of cards, n, tends to infinity. Our goal is to derive lower and upper bounds on the
mixing time of this sequence of Markov chains. The bounds on the mixing time are defined as
follows.

Definition 4 (Bounds on mixing time). Let {Xn
t }∞t=0, n = 1, 2, . . . , be a sequence of irreducible

aperiodic Markov chains with state spaces Sn and stationary distributions πn. Suppose |Sn| →
∞ as n → ∞. A sequence {t(n)}∞n=1 is said to be a lower bound on the mixing time of the
sequence of Markov chains if

lim inf
n→∞

‖P(Xn
t(n) ∈ ·)− πn‖TV ≥ 1/4,

and an upper bound if

lim sup
n→∞

‖P(Xn
t(n) ∈ ·)− πn‖TV ≤ 1/4.

2.2 Wilson’s theorem
To our aid when deriving lower bounds on mixing time we have a technique introduced by Wilson
in [20] and [21]. The first step is to find an eigenvector to the transition matrix of the motion a
single card, with eigenvalue close to 1. This eigenvector can then be used to build an eigenvector
for the whole Markov chain, which in turn can be used to lower bound the mixing time. Below
follows the theorem that is the key to Wilson’s technique.

Let 1−γ be an eigenvalue of the transition matrix for a Markov chain {Xt}, and Φ be a right
eigenvector, i.e. a function on S s.t. almost surely

E[Φ(Xt+1)|Xt] = (1− γ)Φ(Xt).

When {Xt} is reversible, it can be proved that the eigenvector Φ and the eigenvalue 1−γ are
real-valued. Assume that γ ∈ (0, 1/2). Define R by

R := max
s∈S

E[(Φ(Xt+1)− Φ(Xt))
2|Xt = s].



2.2. WILSON’S THEOREM 9

Theorem 1 (Wilson). For a fixed ε > 0 let

T =
log Φ(X0)− 1

2
log 4R

γε

− log(1− γ)
. (2.4)

Then ‖P(Xt ∈ ·)− π‖TV ≥ 1− ε for all t ≤ T .

Proof. We have

E[Φ(Xt)] = E[E[Φ(Xt)|Xt−1]] = (1− γ)E[Φ(Xt−1)].

Applying this inductively yields

E[Φ(Xt)] = (1− γ)tE[Φ(X0)]. (2.5)

Thus E[Φ(Xt)|X0] = (1 − γ)tΦ(X0). Let X = limt→∞Xt, so that X has the stationary
distribution π. From (2.5) we get E[Φ(X)] = 0.

With the notation4Φt := Φ(Xt+1)−Φ(Xt), we have Φ(Xt+1)2 = Φ(Xt)
2 + 2Φ(Xt)4Φt +

(4Φt)
2. Using that E[4Φt|Xt] = −γΦ(Xt), and E[(4Φt)

2|Xt] ≤ R, we get

E[Φ(Xt+1)2|Xt] ≤ (1− 2γ)Φ(Xt)
2 +R.

Hence

E[Φ(Xt)
2] = E[E[Φ(Xt)

2|Xt−1]]

≤ (1− 2γ)E[Φ(Xt−1)2] +R,

and by induction

E[Φ(Xt)
2] ≤ (1− 2γ)tE[Φ(X0)2] +R

t−1∑
i=0

(1− 2γ)i

≤ (1− 2γ)tE[Φ(X0)2] +
R

2γ
. (2.6)

In the last inequality we use the geometric sum and the assumption that γ ∈ (0, 1/2). For a
given starting value X0, (2.5) and (2.6) implies

Var(Φ(Xt)) = E[Φ(Xt)
2]− E[Φ(Xt)]

2

≤
(
(1− 2γ)t − (1− γ)2t

)
Φ(X0)2 +

R

2γ

≤ R

2γ
.
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The last inequality follows from (1−γ)2 = 1−2γ+γ2 ≥ 1−2γ, and thus, since 1−2γ > 0,
(1− 2γ)t − (1− γ)2t ≤ 0. By Chebyshev’s inequality

P

(
|Φ(Xt)− E[Φ(Xt)]| ≥

√
R

γε

)
≤ ε

2
. (2.7)

Let A =
{
s ∈ S|Φ(s) ≥

√
R
γε

}
. Then we have

π(A) = P

(
Φ(X) ≥

√
R

γε

)

≤ P

(
|Φ(X)| ≥

√
R

γε

)
≤ ε

2
,

where the last inequality comes from letting t tend to infinity in (2.7), and the fact that at
stationarity we have E[Φ(X)] = 0.

Now, let t be such that E[Φ(Xt)] ≥
√

4R
γε

. Then we have

P(Xt ∈ A) = P

(
Φ(Xt) ≥

√
R

γε

)

≥ P

(
Φ(Xt)− E[Φ(Xt)] ≥

√
R

γε
−

√
4R

γε

)

= 1− P

(
Φ(Xt)− E[Φ(Xt)] < −

√
R

γε

)

≥ 1− P

(
|Φ(Xt)− E[Φ(Xt)]| >

√
R

ε

)
≥

(2.7)
1− ε

2
.

Thus, for such t such that E[Φ(Xt)] ≥
√

4R
γε

, we have

‖P(Xt ∈ ·)− π‖TV = max
A⊆S

(P(Xt ∈ A)− π(A)) ≥ 1− ε

2
− ε

2
= 1− ε.

Finally, observe that for all t ≤ T =
log Φ(X0)− 1

2
log 4R

γε

− log(1−γ)
,
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E[Φ(Xt)] = (1− γ)tΦ(X0) ≥ (1− γ)TΦ(X0)

= (1− γ)
− 1

log(1−γ) log

(
Φ(X0)

/√
4R
γε

)
Φ(X0)

= e
− log

(
Φ(X0)

/√
4R
γε

)
Φ(X0) =

√
4R

γε
,

and we have proved that ‖P(Xt ∈ ·)− π‖TV ≥ 1− ε for all t ≤ T .

Now, taking for example ε = 1
2

in Theorem 1 we get ‖P(XT ∈ ·) − π‖TV ≥ 1
2
. From

Definition 4 we see that

τmix ≥ T =
log Φ(X0)− 1

2
log 8R

γ

− log(1− γ)
, (2.8)

thus we have a lower bound on the mixing time for the Markov chain {Xt}.



Chapter 3

Neighbour transpositions on lollipop
graphs

In this chapter we treat random neighbour transpositions on the lollipop graph. The lollipop
graph consists of a ”clique” of vertices where all vertex pairs are connected with edges, i.e. a
complete subgraph, and to this clique attached a simple path. We will consider the lollipop graph
with n vertices, where the number of vertices in the linear part is n

a
, including the vertex that

connects the path and the complete graph, for some a > 1 s.t. n
a

is an integer. We call this the((
1− 1

a

)
n, n

a

)
-lollipop graph, and denote it by Ln,a = (VLn,a , ELn,a).

We will se that the partition of the graph into an edge dense part and an edge sparse part,
makes the convergence of the card shuffling chain on the graph extremely slow, the mixing time
is of order n4 log n. In the schematic picture below, note that in the clique on the left, all vertices
are connected to each other. Number the vertices so that vertex 1 to n

a
is in the linear part, with

n
a

as connection to the complete part, which in turn consists of vertices n
a

+ 1 to n.

n
a

n
a
− 1 2 1

Figure 3.1: The
((
1− 1

a

)
n, na

)
-lollipop graph.

Let m = |ELn,a|+ 1 (the +1 is for convenient computations later on). It is not hard to derive
the following expression for m = m(a).

m =
1

2

(
1− 1

a

)2

n2 +
a+ 1

2a
n (3.1)

At each step of the card shuffling process, do nothing with probability 1/m, and otherwise

12
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do a random neighbour transposition. Let {Xn
t }∞t=0 be the Markov chain on the symmetric group

Sn, induced by this random process. In section 3.1 to 3.3 we will prove the following theorem.

Theorem 2. Let a > 1 be a constant such that n
a

is an integer. The mixing time τmix for random
neighbour transpositions on the

((
1− 1

a

)
n, n

a

)
-lollipop graph has the following bounds

(1 + o(1))
(a− 1)2

4a4x0

n4 log n ≤ τmix ≤ (1 + o(1))
(a− 1)2(2a− 1)2

2a6
n4 log n,

where x0 is the smallest positive number that satisfies (a− 1)x0 + tanx0 = 0.

3.1 Lower bound on the mixing time on lollipop graphs
Lemma 1. For random neighbour transpositions on the

((
1− 1

a

)
n, n

a

)
-lollipop graph, a > 1,

we have

τmix ≥ (1 + o(1))
(a− 1)2

4a4x0

n4 log n,

where x0 is the smallest positive number that satisfies (a− 1)x0 + tanx0 = 0.

Proof. First, consider the motion of a single card. This is in itself a Markov chain. Denote the
transition matrix for this chain by P = [pij]n×n. Put 1 − γ for an eigenvalue of this chain, and
v = (v1, v2, . . . , vn) for corresponding eigenvector. We have (1 − γ)vk =

∑n
i=1 pkivi, yielding

the following system of equations for (1− γ,v).



(1− γ)v1 =
(
1− 1

m

)
v1 + 1

m
v2

(1− γ)vk =
(
1− 2

m

)
vk + 1

m
vk−1 + 1

m
vk+1, 2 ≤ k ≤ n

a
− 1

(1− γ)vn
a

=

(
1− 1+(1− 1

a)n
m

)
vn
a

+ 1
m
vn
a
−1 + 1

m

n∑
i=n

a
+1

vi

(1− γ)vk =

(
1− (1− 1

a)n
m

)
vk + 1

m

n∑
i=n

a
i 6=k

vi,
n
a

+ 1 ≤ k ≤ n

(3.2)

Since by symmetry vn = vn−1 = . . . = vn
a

+1 the two last equations reduce to


(1− γ)vn

a
=

(
1− 1+(1− 1

a)n
m

)
vn
a

+ 1
m
vn
a
−1 +

(1− 1
a)n
m

vn

(1− γ)vk =

(
1− (1− 1

a)n
m

)
vk + 1

m
vn
a

+
(1− 1

a)n−1

m
vn,

n
a

+ 1 ≤ k ≤ n.
(3.3)

First we focus on the equations for the linear part of the graph, the first two equations of
system (3.2). The second equation is a recurrence relation with characteristic equation
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(1− γ)r =

(
1− 2

m

)
r +

1

m
+

1

m
r2. (3.4)

This yields the solutions

r1,2 = 1− mγ

2
±
√
mγ

(mγ
4
− 1
)
.

Assuming that mγ → 0 as n → ∞ we get complex solutions r1,2 = %e±ωi, where % :=

|r1| = 1 and ω := arctan

(√
mγ(1−mγ

4 )
1−mγ

2

)
.

Re

Im

r2

%
r1

ω

Figure 3.2: Solutions r1 and r2 to the characteristic equation (3.4), in the complex plane.

Note that cosω = 1− mγ
2

and sinω =
√
mγ

(
1− mγ

4

)
. The recurrence relation for vk in the

linear part has the following general solution.

vk = %k (C1 cos(kω) + C2 sin(kω)) = C1 cos(kω) + C2 sin(kω), 1 ≤ k ≤ n

a

Scale the eigenvector so that v1 = 1. From the first equality in (3.2) we then get v2 = 1−mγ.
Thus

v1 = C1 cos(ω) + C2 sin(ω) = 1, (3.5)
v2 = C1 cos(2ω) + C2 sin(2ω) = 1−mγ. (3.6)

With these two boundary conditions we can compute the constants C1 and C2. Inserting
C2 = 1−C1 cosω

sinω
into (3.6) yields

C1 cos(2ω) +
1− C1 cosω

sinω
sin(2ω) = 1−mγ ⇔

C1(2 cos2 ω − 1) + (1− C1 cosω)2 cosω = 1−mγ ⇔
−C1 + 2 cosω = 1−mγ ⇔
C1 = 1,



3.1. LOWER BOUND ON THE MIXING TIME ON LOLLIPOP GRAPHS 15

where in the last step we use that cosω = 1 − mγ
2

. Furthermore, inserting C1 = 1 into (3.5)
gives

C2 =
1− cosω

sinω
=

mγ/2√
mγ

(
1− mγ

4

) =

√
mγ

4−mγ
.

Thus, we have

vk = cos(kω) +

√
mγ

4−mγ
sin(kω), 1 ≤ k ≤ n

a
. (3.7)

We will obtain an eigenvalue 1 − γ via two different expressions for vn, derived from (3.3).
Rewriting the first equation, and taking k = n in the second equation we get vn =

(
1 + 1−mγ

(1− 1
a)n

)
vn
a
− 1

(1− 1
a)n

vn
a
−1

vn = 1
1−mγvna

Putting equality between the two expressions for vn gives(
1 +

1−mγ(
1− 1

a

)
n
− 1

1−mγ

)
vn
a
− 1(

1− 1
a

)
n
vn
a
−1 = 0.

Multiply the above equality by 1−mγ. We want to find the root of the following function of
γ.

f(γ) =

(
(1−mγ)2(

1− 1
a

)
n
−mγ

)
vn
a
− 1−mγ(

1− 1
a

)
n
vn
a
−1

With the expressions for vn
a
−1 and vn

a
from (3.7) we get

f(γ) =

(
(1−mγ)2(

1− 1
a

)
n
−mγ

)(
cos
(n
a
ω
)

+

√
mγ

4−mγ
sin
(n
a
ω
))
−

− 1−mγ(
1− 1

a

)
n

(
cos
((n

a
− 1
)
ω
)

+

√
mγ

4−mγ
sin
((n

a
− 1
)
ω
))

.

Assume that f(γ) has a root γ = a2x2

mn2 , for some constant x > 0, leaving us with the task to

derive the value of x. With this γ we get ω = arctan

(√
mγ(1−mγ

4 )
1−mγ

2

)
= ax

n
+ O(n−3), from the

power series expansion of arctan(·). Thus
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f(γ) =

(
1(

1− 1
a

)
n
− a2x2

n2
+O(n−3)

)(
cos
(
x+O(n−2)

)
+

+

√
a2x2/n2

4− a2x2/n2
sin
(
x+O(n−2)

))
−

(
1(

1− 1
a

)
n

+O(n−3)

)
·

·

(
cos
(
x− ax

n
+O(n−2)

)
+

√
a2x2/n2

4− a2x2/n2
sin
(
x− ax

n
+O(n−2)

))
=

=

(
1(

1− 1
a

)
n
− a2x2

n2
+O(n−3)

)(
cosx+

ax

2n
sinx+O(n−2)

)
−

−

(
1(

1− 1
a

)
n

+O(n−3)

)(
cosx+

ax

n
sinx+

ax

2n
sinx+O(n−2)

)
=

=

(
− ax

1− 1
a

sinx− a2x2 cosx

)
n−2 +O(n−3).

Some algebra shows that f(γ) = 0 is equivalent to

(a− 1)x+ tanx+O(n−1) = 0. (3.8)

Suppose x0 is a solution to (a − 1)x + tanx = 0. Then it is not hard to prove that equation
(3.8) must have a solution between x0

(
1− 1

logn

)
and x0

(
1 + 1

logn

)
. Thus we have a root to

f(γ)

γ = (1 + o(1))
a2x2

0

mn2
. (3.9)

Since we are looking for γ as small as possible we take the smallest positive solution to
(a− 1)x+ tanx = 0. The table below gives this solution for some different values of a.

Smallest root to
a (a− 1)x+ tanx

↓ 1 ↑ π
1.001 3.13845 . . .
1.01 3.11049 . . .

2 2.02875 . . .
3 1.83659 . . .
4 1.75816 . . .
5 1.71550 . . .
10 1.63850 . . .
100 1.57720 . . .
1000 1.57143 . . .
↑ ∞ ↓ π

2
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This means that the Markov chain induced by the motion of a single card has an eigenvalue
1− γ = 1− a2x20

mn2 (1 + o(1)), where x0 is the smallest positive solution to (a− 1)x+ tan x = 0,
and an eigenvector v = (v1, v2, . . . , vn) where

vk =

 cos(kω) +
√

mγ
4−mγ sin(kω) 1 ≤ k ≤ n

a

1
1−mγ

(
cos(n

a
ω) +

√
mγ

4−mγ sin(n
a
ω)
)

n
a

+ 1 ≤ k ≤ n,
(3.10)

with

ω = arctan


√
mγ

(
1− mγ

4

)
1− mγ

4

 .

Now let Zj
t denote the position of card j at time t, and put Φj(Xt) = vZjt

. Then

E[Φj(Xt+1)|Xt] = (1− γ)Φj(Xt). (3.11)

Put

Φ(Xt) =

bn/2c∑
j=1

Φj(Xt).

By linearity of expectation,

E[Φ(Xt+1)|Xt] = (1− γ)Φ(Xt).

Hence, we can use Φ(Xt) as test function in Theorem 1. To get a good lower bound T =
log Φ(X0)− 1

2
log 4R

γε

− log(1−γ)
, we want to start with the cards in an order that maximizes Φ(X0). Choosing

positions for the bn/2c first cards carefully we can certainly reach Φ(X0) ≥ Can for some
constant Ca > 0. Just place the bn/2c first cards on the positions with the largest entries in the
eigenvector v. Next we want to bound R = maxs∈S E[(Φ(Xt+1) − Φ(Xt))

2|Xt = s]. Note
that Φ(Xt+1) and Φ(Xt) differs only if step t consists of a transposition of one of the cards
1, 2, . . . , bn/2c and one of the other cards. The transposition also have to occur in the linear part
of the graph, or involve vertex n

a
. The probability for this condition is n−1

m
.

Consider all such transpositions, and look the expressions in (3.10). Since the change of rate
for the dominating cosine function is greatest for argument around π

2
, we see that (Φ(Xt+1) −

Φ(Xt))
2 is maximized if the transposition involves the card at position k such that kω ≈ π

2
. Thus
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R ≤ n− 1

m

(
vb π

2ω
c − vb π

2ω
c+1

)2

=
(1 + o(1))n

m

((
cos

π

2
+

√
mγ

4−mγ
sin

π

2

)
−

−
(

cos
(π

2
+ ω

)
+

√
mγ

4−mγ
sin
(π

2
+ ω

)))2

=
(1 + o(1))n

m

(√
mγ

4−mγ
+ sinω −

√
mγ

4−mγ
cosω

)2

=
(1 + o(1))n

m

(√
mγ

4−mγ
+

√
mγ

(
1− mγ

4

)
−
√

mγ

4−mγ

(
1− mγ

2

))2

= (1 + o(1))
n

m
mγ

= (1 + o(1))
a2x2

0

mn
. (3.12)

From (3.1) we have that m = 1+o(1)
2

(
1− 1

a

)2
n2. Inserting this into (3.9) gives

γ = (1 + o(1))
a2x2

0

mn2
= (1 + o(1))

2a4x0

(a− 1)2n4
,

which in turn, together with (3.12), entails

R

γ
≤ (1 + o(1))

a2x2
0/mn

a2x2
0/mn

2
= (1 + o(1))n.

We are ready to sum up our calculations of a lower bound on the mixing time. From (2.8) we
get

τmix ≥ T =
log Φ(X0)− 1

2
log 4R

γε

− log(1− γ)

≥
logCan− 1

2
log ((1 + o(1))8n)

− log(1− (1 + o(1)) 2a4x0
(a−1)2n4 )

= (1 + o(1))
(a− 1)2n4

2a4x0

(
log n− 1

2
log n

)
= (1 + o(1))

(a− 1)2

4a4x0

n4 log n.

Where we have used that 1
− log(1−γ)

= 1+o(1)
γ

as γ → 0. Thus we have a lower bound on the
mixing time of neighbour transpositions on lollipop graphs of order n4 log n.
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3.2 The comparison lemma
We will use comparison with shuffling on the complete graph Gn to establish an upper bound on
the mixing time, τmix, for random neighbour transpositions on lollipop graphs. The same method
will be used also to bound the mixing time on random graphs from above, in section 4.2. To this
end we will need following definitions and lemmas, which are valid for random walks on any
finite group. Lemma 2 and 3 were stated by Diaconis and Saloff-Coste, [6]. First we define the
Dirichlet form.

Definition 5 (Dirichlet form). The Dirichlet form, E(ϕ, ϕ), associated with a measure ν on the
state space S, of a function ϕ on S is in discrete time given by

E(ϕ, ϕ) =
∑
x∈S

∑
y∈S

ν(y)(ϕ(x)− ϕ(xy))2.

In Chapter 2 we defined the L2-norm of measures on a finite state space S. For a function ϕ
on S, we define the L2-norm as follows.

Definition 6 (L2-norm of function). Let ϕ be a function on the state space S of the measure π.
Then the L2-norm of ϕ with respect to π is

‖ϕ‖2 =

(∑
s∈S

|ϕ(s)|2π(s)

)1/2

.

(Note that then the L2-norm of the measure ν with respect to π can equivalently to Definition
2 be defined as the L2-norm of the function ϕ(s) = ν(s)/π(s).)

Consider two symmetric probability measures on a group S, µ and µb, with Dirichlet forms E
and Eb. Let n := |S|. Furthermore, let {Xt}∞t=0 and {Xb

t }∞t=0 be the random walks generated by
these, with uniform stationary distribution π. Let 1 = κ1 ≥ κ2 ≥ . . . ≥ κn ≥ −1 be the ordered
eigenvalues of the discrete time transition matrix P = [pxy]x,y∈S for µ. Furthermore, let 0 =
λ1 ≤ λ2 ≤ . . ., be the eigenvalues of −Q = −[qxy]x,y∈S , where qxy, x 6= y, is the intensity for a
jump from x to y in the corresponding continuous time random walk. In the continuous version
one lets the time between the steps be exponential with intensity 1, and qxx = −

∑
y 6=x qxy. Note

that since qxy = pxy for x 6= y, we have λi = 1− κi.
The measure µb will work as a benchmark measure to compare with. The eigenvalues for the

corresponding discrete and continuous random walks are denoted κbi and λbi .
The Dirichlet form can be used for the so called extremal characterization of the eigenvalues

λi,

λi = max
{W :dimW=n−i+1}

min
ϕ∈W

E(ϕ, ϕ)

‖ϕ‖2
2

, (3.13)

see for example Horn and Johnson [14], page 176.
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Lemma 2 (Comparison Lemma). Suppose that A > 0 is a constant such that Eb ≤ AE , then

‖P(Xt ∈ ·)− π‖2
2 ≤ nκ2t

n + ne−t/A + ‖P(Xb
bt/2Ac ∈ ·)− π‖2

2. (3.14)

Proof. Since the stationary distribution for {Xt} is uniform, the transition matrix P is symmet-
ric. Thus P has the eigendecomposition

P = UKU−1,

where U is the matrix with the orthonormal left eigenvectors φ1, φ2, . . . , φn as columns, and
K is the diagonal matrix with the eigenvalues κ1, κ2, . . . , κn on the diagonal, in the same order
as the eigenvectors in U . Note also that since U is orthonormal, so that U−1 = U ′. Thus we
can write powers of P like

P t = UKtU ′,

where Kt is the diagonal matrix with κti, i = 1, 2, . . . n as diagonal elements. Note also that
the eigenvector corresponding to the first eigenvalue, κ1 = 1, is the uniform vector φ1 =

√
nπ =(

1√
n
. . . 1√

n

)
. The starting distribution P(X0 ∈ ·) is a vector with 1 at some position j, and 0’s

elsewhere. If we place φ1 in column j of the eigenvector matrix U , we get

P(Xt ∈ ·) = P(X0 ∈ ·)P t = P(X0 ∈ ·)UKtU ′ = φ1K
tU ′.

Also, φ1K
t is the row vector with entries 1√

n
κti, i = 1, 2, . . . , n, ordered in the same way as

the corresponding eigenvectors on the rows of U ′. Thus

P(Xt ∈ ·) = φ1K
tU ′ =

n∑
i=1

1√
n
κtiφi = π +

n∑
i=2

1√
n
κtiφi.

We get the following for the left hand side of (3.14)

‖P(Xt ∈ ·)− π‖2
2 = ‖

n∑
i=2

1√
n
κtiφi‖2

2 =
n∑
i=2

κ2t
i . (3.15)

Next step is to split the last sum in two:

‖P(Xt ∈ ·)− π‖2
2 =

∑
i≥2:κi≤0

κ2t
i +

∑
i≥2:κi>0

κ2t
i .

We can bound the first sum of the right hand side by nκ2t
n . Since by assumption Eb ≤ AE ,

the extremal characterization of the eigenvalues, (3.13), yields that λi ≥ λbi/A. Hence

κi = 1− λi ≤ 1− λbi
A
≤ e−λ

b
i/A,

where the last inequality follows from 1− x ≤ e−x, ∀x. Consequently,
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‖P(Xt ∈ ·)− π‖2
2 ≤ nκ2t

n +
∑

i≥2:κi>0

κ2t
i

≤ nκ2t
n +

∑
i≥2:κi>0

e−2λbi t/A

≤ nκ2t
n +

∑
i≥2:λbi≥1/2

e−2λbi t/A +
∑

i≥2:λbi<1/2

e−2λbi/A

≤ nκ2t
n + ne−t/A +

∑
i≥2:λbi<1/2

(κbi)
t/A.

The last inequality is subject to the fact that e−2x ≤ 1− x, for x ≤ 1/2. Finally, observe that

∑
i≥2:λbi<1/2

(κbi)
t/A ≤

n∑
i=2

(κbi)
2bt/2Ac = ‖P(Xb

bt/2Ac ∈ ·)− π‖2
2.

The last equality in analogy with (3.15).

Before the next lemma we have to introduce some notation. Let E be a symmetric set of gen-
erators contained in the support of µ. For each y ∈ S, choose a representation y = x1x2 · · ·xk,
where xj ∈ E, j = 1, 2, . . . , k. Write |y| := k. Further, denote by N(x, y) the number of times
that x appears in the chosen representation of y.

Lemma 3. Let µb and µ be symmetric measures on S. Moreover, let E be a symmetric set of
generators contained in the support of µ. If

A = max
x∈E

1

µ(x)

∑
y∈S

|y|N(x, y)µb(y).

Then Eb ≤ AE .

Proof. Let ϕ be an arbitrary function on S, and y, z ∈ S. Choose the representation y =
x1x2 · · ·x|y| of y, where xj ∈ E, j = 1, 2, . . . |y|. Then we can write ϕ(z) − ϕ(zy) as the
following telescoping sum

ϕ(z)− ϕ(zy) = (ϕ(z)− ϕ(zx1)) + (ϕ(zx1)− ϕ(zx1x2)) + (ϕ(zx1x2)− ϕ(zx1x2x3))

+ . . .+ (ϕ(zx1 . . . x|y|−1)− ϕ(zx1 . . . x|y|)).

Since by Cauchy-Schwarz inequality
(∑|y|

i=1 ai

)2

≤ |y|
∑|y|

i=1 a
2
i , squaring the expression

above gives
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(ϕ(z)− ϕ(zy))2 ≤ |y|
|y|∑
i=1

(ϕ(zx1 . . . xi−1)− ϕ(zx1 . . . xi))
2.

Note that the terms in the right sum are on the form (ϕ(z′) − ϕ(z′xi))
2, where z′ ∈ S.

Summing both sides over all generators in S, each term appears at most N(xi, y) times on the
right hand side. Thus

∑
z∈S

(ϕ(z)− ϕ(zy))2 ≤ |y|
∑
z∈S

|y|∑
i=1

(ϕ(zx1 . . . xi−1)− ϕ(zx1 . . . xi))
2

≤ |y|
∑
z∈S

|y|∑
i=1

(ϕ(z)− ϕ(zxi))
2N(xi, y)

≤ |y|
∑
z∈S

∑
x∈E

(ϕ(z)− ϕ(zx))2N(x, y). (3.16)

Multiply the left hand side of (3.16) with µb(y) and sum over all y ∈ S. This gives∑
y∈S

∑
z∈S

µb(y)(ϕ(z)− ϕ(zy))2 = Eb(ϕ, ϕ).

The same operation on the right hand side of (3.16) yields

∑
z∈S

∑
x∈E

(ϕ(z)− ϕ(zx))2
∑
y∈S

|y|N(x, y)µb(y) ≤∑
z∈S

∑
x∈E

(ϕ(z)− ϕ(zx))2µ(x)A ≤
E⊆S

E(ϕ, ϕ)A.

Consequently Eb(ϕ, ϕ) ≤ AE(ϕ, ϕ) for any function ϕ on S.

The following lemma will also be useful, when bounding the term nκ2t
n in Lemma 2.

Lemma 4. For a discrete time random walk on S generated by µ, we have the following inequal-
ity for the smallest eigenvalue of the transition matrix

κ|S| ≥ 2µ(id)− 1. (3.17)

Proof. The result is true if µ(id) = 0. If µ(id) > 0, let µ′ = µ(x)−µ(id)δid
1−µ(id)

, where δ is the Dirac
delta function. Some algebra shows that the transition matrix of the random walk generated by
µ′ has eigenvalues
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κ′i =
κi − µ(id)

1− µ(id)
.

Since κ′|S| ≥ −1, (3.17) follows from rearranging the expression above with i = |S|.

3.3 Upper bound on the mixing time on lollipop graphs
Lemma 5. For random neighbour transpositions on the

((
1− 1

a

)
n, n

a

)
-lollipop graph, a > 1,

we have

τmix ≤ (1 + o(1))
(a− 1)2(2a− 1)2

2a6
n4 log n.

Proof. We will use Lemma 2 and 3. Let µ and µb be the measures that generate the random neigh-
bour transposition process on the lollipop graph Ln,a = (VLn,a , ELn,a) and the complete graph
Gn = (VGn , EGn) respectively. Further, let {Xt} and {Xb

t } be the random walks on the symmet-
ric group generated by these measures. The benchmark shuffle, ordinary random transpositions,
corresponding to shuffling on the complete graph Gn, is defined by µb(i j) = 2/n2, for i, j =
1, 2, . . . , n, i 6= j and µb(id) = 1/n. For this shuffle, we know that ‖P(Xb

b(1/2+Cb/ logn)n lognc ∈
·)− π‖2

2 ≤ 1/4, for some large enough constant Cb. This was proved by Diaconis and Shahsha-
hani [8], see also [17]. First we will derive an upper bound on A in Lemma 3, and then use this
bound on A to find t = t(n) such that the right hand side of (3.14) converges to something less
than 1/4. This t will by (2.3) be an upper bound on the mixing time τmix for {Xt}.

We use the notation E(Gn) = {(i j)|(i, j) ∈ EGn} and E(Ln,a) = {(i j)|(i, j) ∈ ELn,a}.
We know that µ(x) = 1

m
for all x ∈ E(Ln,a), and µb(y) = 2

n2 for all y ∈ Gn. Thus

A =
2m

n2
max

x∈E(Ln,a)

∑
y∈E(Gn)

|y|N(x, y).

This leaves us with the task to maximize

g(x) :=
∑

y∈E(Gn)

|y|N(x, y)

over all x ∈ E(Ln,a).
For x ∈ E(Ln,a) we can choose x itself as representation. Look at a vertex i in the linear part

and vertex j in the complete part of the graph. Choose this representation of (i j):

y = (i j) = (i i+ 1)(i+ 1 i+ 2) · · · (n
a
− 1

n

a
)(
n

a
j)(

n

a
− 1

n

a
) · · · (i i+ 1).

Consider the transposition x = (n
a
j) in the clique. We have N(x, y) = 1 and |y| =

2
(
n
a
− i
)

+ 1.
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j

n
a i

Figure 3.3: The representation of (i j) involves x = (na j).

Thus, summing over all vertices i in the linear part (including i = n
a

, where |y| = 1 and
N(x, y) = 1), we get for any transposition x = (n

a
j) in the clique

g(x) =
∑

y∈E(Gn)

|y|N(x, y) =

n
a∑
i=1

(
2
(n
a
− i
)

+ 1
)
· 1 =

n2

a2
. (3.18)

Furthermore, for vertices i and j both in the linear part, i.e. i < j ≤ n
a

, choose the following
representation for the transposition (i j)

y = (i j) = (i i+ 1)(i+ 1 i+ 2) · · · (j − 1 j)(j − 2 j − 1) · · · (i i+ 1),

so that |y| = 2(j − i)− 1.
Suppose b ∈ [a, n] and that n

b
is an integer. Let x be the transposition

(
n
b

n
b

+ 1
)
. Then x

occurs in three types of representations, see Figure 3.4 below.
Type I is representations of y = (i j), where vertex i is in the linear part to the right of vertex

n
b
, and vertex j is in the clique. For each i there are

(
1− 1

a

)
n such representations. Moreover,

with to our choice of representations above, |y| = 2
(
n
a
− i
)

+ 1 and N(x, y) = 2.
Type II is representations of y = (i k), where vertex k is in the linear part, but to the left of

vertex n
b

+ 1. Here |y| = 2(k − i)− 1 and N(x, y) = 2.
Type III is representations of y =

(
i n

b
+ 1
)
. Here |y| = 2

(
n
b

+ 1− i
)
−1 and N(x, y) = 1.
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j

n
a k

n
b

+ 1 n
b i

Type I

Type III

Type II

Figure 3.4: The transposition x =
(
n
b

n
b + 1

)
occurs in the representations of (i j), (i k) and(

i n
b + 1

)
.

Summing over all vertices i to the right of vertex n
b

we get for x =
(
n
b

n
b

+ 1
)

g(x) =
∑

y∈E(Gn)

|y|N(x, y) =

n
b∑
i=1

((
1− 1

a

)
n ·
(

2
(n
a
− i
)

+ 1
)
· 2 +

+

n
a∑

k=n
b

+2

((2(k − i)− 1) · 2) +
(

2
(n
b

+ 1− i
)
− 1
)
· 1

)
=

n
b∑
i=1

(
4

(
1− 1

a

)
n
(n
a
− i
)

+

(
2n2

a2
− 4n

a
i− 2n2

b2
+

4n

b
i

)
+O(n)

)
=(

4

ab
− 2

a2b
− 2

b2

)
n3 +O(n2), (3.19)

where in the first equality the first term is for the representation of transpositions of Type
I. The second sum is for representations of Type II, and the last term is for the representation
of Type III. Furthermore, 4

ab
− 2

a2b
− 2

b2
reaches its maximum, (2a−1)2

2a4
, when 1

b
= 1

a
− 1

2a2
.

From (3.18) and (3.19) we can conclude that g(x) =
∑

y∈E(Gn) |y|N(x, y) takes its maximum
for x = xa =

(
n
⌊

1
a
− 1

2a2

⌋
n
⌊

1
a
− 1

2a2

⌋
+ 1
)
. Note that for a close to 1, yielding a lollipop

with just a small clique, xa will be about half way into the linear part, similar to the path-graph.
Whereas for large a corresponding to a lollipop with a short ”stick”, xa will correspond to one of
the edges closest to the complete part, just as our intuition might tell us. From (3.19) we obtain
the following bound on the maximum of g(x);
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max
x∈E(Ln,a)

g(x) = max
x

∑
y∈E(Gn)

|y|N(x, y) ≤ (1 +O(n−1))
(2a− 1)2

2a4
n3.

Altogether, using that m = (1 +O(n−1))1
2

(
1− 1

a

)2
n2, we have

A ≤ (1 +O(n−1))
2m

n2

(2a− 1)2

2a4
n3

= (1 +O(n−1))
(a− 1)2(2a− 1)2

2a6
n3.

According to Lemma 3 we have that

Eb ≤ (1 +O(n−1))
(a− 1)2(2a− 1)2

2a6
n3E ,

where Eb and E are the Dirichlet forms associated with the measures generating the neighbour
transposition shuffle on the complete graph Gn and the lollipop graph Ln,a respectively.

Suppose κn is the smallest eigenvalue of the measure µ. Then Lemma 4 yields |κn| ≤ 1− 2
m

=

1−Θ(n−2). Inserting t =
⌈(

1 + 4Cb
logn

)
(a−1)2(2a−1)2

2a6
n4 log n

⌉
into (3.14) we get

‖P(X⌈(
1+

4Cb
logn

)
(a−1)2(2a−1)2

2a6
n4 logn

⌉ ∈ ·)− π‖2
2 ≤

n
(
1−Θ(n−2)

)Θ(n4 logn)︸ ︷︷ ︸
→0

+ne−Θ(n logn)︸ ︷︷ ︸
→0

+ ‖P(Xb⌊(
1
2

+
2Cb+o(1)

logn

)
n logn

⌋ ∈ ·)− π‖2
2︸ ︷︷ ︸

<1/4 as n→∞

.

From (2.3) we see that for random neighbour transpositions on the
((

1− 1
a

)
n, n

a

)
-lollipop

graph t = (1 + o(1)) (a−1)2(2a−1)2

2a6
n4 log n ≥ τ̂ ≥ τmix, thus we have found an lower upper bound

on the mixing time τmix.

We have proved Lemma 1 and Lemma 5, and consequently Theorem 2. Note that the ratio
between the upper and lower bound,2x0(2a−1)2

a2
, will always be in the range (2π, 4π), approaching

2π as a approaches 1 and close to 4π for large a.



Chapter 4

Neighbour transpositions on random
graphs

Consider a realization Gn,p = (VGn,p , EGn,p) of G(n, p), Gilbert’s random graph model on n ver-
tices, where each pair of vertices are connected by an open edge with probability p independently.
If there is no edge present, we say that the edge is closed.

Figure 4.1: Realization of Gilbert’s random graph model with n = 12 vertices, and edge probability
p = 0.3.

Write m := |EGn,p|, for the total number of open edges, and di for the degree of vertex i,
i.e. the number of incident edges. The set of generators of the neighbour transposition shuffle
on Gn,p is denoted by E(Gn,p) = {(i j)|(i, j) ∈ EGn,p or i = j}. The updating measure for the
card shuffling chain is given by µ(x) = 1

m+n
, x ∈ E(Gn,p). Note that the transpositions (i i),

i = 1, 2, . . . , n, are allowed, yielding µ(id) = n
m+n

. Let {Xn
t }∞t=0 be the Markov chain on Sn

induced by this random process. Note that m ∼ Bin(
(
n
2

)
, p) and di ∼ Bin(n− 1, p).

Since we are dealing with irreducible Markov chains, the graph has to be connected. Erdős
and Rényi [11] proved that edge probability logn

n
is a sharp threshold for a.a.s. connectedness of

27
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Gn,p, thus we will restrict ourselves to the case p > logn
n

.
In section 4.1 and section 4.2 we will prove the following theorem on random graphs.

Theorem 3. For random neighbour transpositions on a realization Gn,p of G(n, p), the mixing
time τmix asymptotically almost surely has the following lower bound for the given ranges of
p < 1.

For p = ω
(

logn
n

)
,

τmix ≥
1− o(1)

2
n log n.

For p = c logn
n

, c > 1,

τmix ≥
1− o(1)

2
(

1 +
√

2
c

)n log n.

Moreover, the mixing time a.a.s. has the following upper bound for p such that 1 > p > nδ−1,
for some δ > 0,

τmix ≤ Cn log n,

for some large enough constant C.

4.1 Lower bound on the mixing time on random graphs
We will need Chernoff’s inequality for binomial random variables.

Lemma 6 (Chernoff’s inequality). Let Y be a binomially distributed random variable with pa-
rameters n and p, and let ε > 0 be a constant which may depend on n or p. Then it holds
that

P
(
Y

n
≥ p+ ε

)
≤ exp (−nψp(p+ ε)) , (4.1)

P
(
Y

n
≤ p− ε

)
≤ exp (−nψp(p− ε)) , (4.2)

where

ψp(x) = x log
x

p
+ (1− x) log

1− x
1− p

.

Note that, if ε
p
→ 0 and ε

1−p → 0, we get using the power series for log(·)
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ψp(p+ ε) = ε2
(

1

2p
+

1

2(1− p)

)
(1 + o(1)), (4.3)

ψp(p− ε) = ε2
(

1

2p
+

1

2(1− p)

)
(1 + o(1)). (4.4)

The classical way to calculate lower bounds on the mixing time τmix, for the Markov chains
{Xn

t }∞t=0 with stationary distributions πn is to find events A = An and times t = t(n), such that
πn(An) → 0 and P(Xn

t(n) ∈ An) → 1 as n → ∞. Then, from the definition of mixing time,
(2.2), we know that τmix ≥ t(n). We will divide the range of p for which Gn,p a.a.s. is connected,
i.e. p > logn

n
, into two cases. We treat p = ω

(
logn
n

)
and p = c logn

n
, c > 1, separately.

Lemma 7. Suppose 1 > p = ω
(

logn
n

)
. Then, for random neighbour transpositions on a realiza-

tion Gn,p of G(n, p), we have the following a.a.s. lower bound on the mixing time.

τmix
a.a.s.
≥ 1− o(1)

2
n log n

Proof. Consider the event, A = An, that at least log n cards are in their starting positions. Note
that the expected number of such cards at stationarity is 1. Markov’s inequality thus yields that

πn(An) ≤ 1

log n
→ 0.

We want to find t(n), as large as possible, such that P(Xn
t(n) ∈ An) → 1. Use the following

simple checking procedure. A card is checked when it is transposed with another card or itself
for the first time. Let T0 = 0 and let Ti be the time when the ith cards is checked. Note that
Tbn−lognc ≥ t implies Xn

t ∈ An. Thus, if we can find t = t(n) such that P(Tbn−lognc ≥ t(n))→
1, then τmix

a.a.s.
≥ t(n). When i cards are checked, let Di be the sum of the degrees of the vertices

with yet unchecked cards. Then, no matter what time this has taken, the probability that another
card is checked is at most Di+n−i

m+n
, and at least Di/2+n−i

m+n
, it depends on whether the checked cards

are neighbours or not. The term n− i comes from the possibility of transposing a card with itself.
Since at most two cards are checked at each shuffle the time between check i−2 and i, Ti−Ti−2,
stochastically dominates Vi ∼ Geo

(
pi = Di−2+n−i+2

m+n

)
. Choose the Vi’s sequentially so that they

are independent of each other, and such that for all j ≤ bn/2c

j∑
i=1

T2i − T2i−2 �
j∑
i=1

V2i.

Then we have

Tbn−lognc ≥
bn−logn

2 c∑
i=1

T2i − T2i−2 �
bn−logn

2 c∑
i=1

V2i︸ ︷︷ ︸
=:V

.
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To bound the sum V , we first derive an upper bound on the pi’s. Put dmax = maxj∈[1,n] dj , then

P

(
dmax ≥ np

(
1 + 2

√
log n

np

))
=

P

(
n⋃
j=1

{
dj ≥ np

(
1 + 2

√
log n

np

)})
≤

n∑
j=1

P

(
dj

n− 1
≥ p+ 2p

√
log n

np
(1 + o(1))

)
≤

(4.1), (4.3)

n exp

(
−(n− 1)4p2 log n

np

(
1

2p
+

1

2(1− p)

)
(1 + o(1))

)
≤

n exp (−(2 + o(1)) log n) −−−→
n→∞

0. (4.5)

Using Chebyshev’s inequality, and the fact that Var(m) =
(
n
2

)
p(1 − p), we can also bound

m from below.

P
(
|m−

(
n

2

)
p| ≤ √pn log log n

)
Chebyshev
≤

(
n
2

)
p(1− p)

pn2 log log2 n
−−−→
n→∞

0 (4.6)

Thus dmax

a.a.s.
≤ np

(
1 + 2

√
logn
np

)
and m

a.a.s.
≥
(
n
2

)
p − √pn log log n. Now, since Di−2 ≤

(n− i+ 2)dmax we get, uniformly for all i,

pi ≤ (n− i+ 2)(dmax + 1)

m+ n

a.a.s.
≤

(n− i+ 2)
(
np+ 2np

√
logn
np

+ 1
)

(
n
2

)
p−√pn log log n

=
(n− i+ 2)np

(
1 + 2

√
logn
np

(1 + o(1))
)

n2p
2

(
1− log logn√

n2p
(1 + o(1))

)
=

2(n− i+ 2)

n

(
1 + 2

√
log n

np
(1 + o(1))

)
.

Since V2i ∼ Geo (p2i) we get the following lower bound on E[V ].
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E[V ] = E

b
n−logn

2 c∑
i=1

V2i


=

bn−logn
2 c∑
i=1

1

p2i

≥

(
1 + 2

√
log n

np
(1 + o(1))

)−1

·
bn−logn

2 c∑
i=1

n

2(n− 2i+ 2)

≥

(
1− 2

√
log n

np
(1 + o(1))

)
n

2

(
log n− (1 + o(1)) log log n

)

=
n log n

2

1−

(
2

√
log n

np
+

log log n

log n

)
(1 + o(1))︸ ︷︷ ︸

:=h1(n)


=

n log n

2
(1− h1(n))

Next step is to bound the variance of V . The independence of the V2i’s yields

Var(V ) = Var

d
n−logn

2 e∑
i=1

V2i

 =

dn−logn
2 e∑
i=1

Var(V2i)

≤
bn−logn

2 c∑
i=1

1

(p2i)2
.

Put dmin = minj∈[1,n] dj . Analogously to (4.5) we can prove that dmin

a.a.s.
≥ np

(
1− 2

√
logn
np

)
=

np(1− o(1)) and from (4.6) we have that m
a.a.s.
≤
(
n
2

)
p +
√
pn log log n =

(
n
2

)
p(1 + o(1)). Con-

sequently, uniformly for all i we have

pi ≥ (n− i+ 2)(dmin + 1)

m+ n
a.a.s.
≥ (n− i+ 2)np(

n
2

)
p

(1− o(1))

=
2(n− i+ 2)

n
(1− o(1)).
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Thus, since
∑

i
1
i2

converges

Var(V ) ≤
dn−logn

2 e∑
i=1

1

(p2i)2
≤
dn−logn

2 e∑
i=1

n2

(n− 2i)2
(1 + o(1)) = B0n

2,

for some constant B0. To sum up we have E[V ] ≥ 1−h1(n)
2

n log n and
Var(V ) ≤ B0n

2. Using that h1(n)→ 0, but h1(n) log n→∞, we get

P

(
V <

1−
√
h1(n)

2
n log n

)
≤

P

(
V − E[V ] ≤

1−
√
h1(n)

2
n log n− 1− h1(n)

2
n log n

)
≤

P

(
|V − E[V ]| ≥ (1− o(1))

√
h1(n)

2
n log n

)
≤

Chebyshev

B0n
2(

(1− o(1))

√
h1(n)

2
n log n

)2 =
4B0(1 + o(1))

h1(n) log2 n
−−−→
n→∞

0.

Since Tbn−lognc � V , the above expression yields that P
(
Tbn−lognc ≥

1−
√
h1(n)

2
n log n

)
→

1. Thus, we have an a.a.s. lower bound on Tbn−lognc, which in turn also bounds τmix from below.
Hence

τmix
a.a.s.
≥

1−
√
h1(n)

2
n log n =

1− o(1)

2
n log n.

Next we deal with the case p = c logn
n

. Note that for c > 1 the random graphs Gn,p is a.a.s.
connected.

Lemma 8. Suppose p = c logn
n

, for some constant c > 1. Then, for random neighbour transpo-
sitions on a realization Gn,p of G(n, p), we have the following a.a.s. lower bound on the mixing
time.

τmix
a.a.s.
≥ 1− o(1)

2
(

1 +
√

2
c

)n log n.

Proof. Again we consider the event An, that at least log n cards are in their starting positions.
Remember that πn(An) −−−→

n→∞
0. We use the same notation as in the proof of Lemma 7, and will
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establish an asymptotically almost sure lower bound on Tbn−lognc, and at the same time bound
the mixing time from below. For this range of p we have

P

(
dmax ≥ np

(
1 +

√
2

c
+

1

log log n

))
=

P

(
n⋃
j=1

{
dj ≥ np

(
1 +

√
2

c
+

1

log log n

)})
≤

n∑
j=1

P

(
dj

n− 1
≥ p+ p

(√
2

c
+

1

log log n

)
(1 + o(1))

)
≤

(4.1), (4.3)

n exp

−(n− 1)p2

(√
2

c
+

1

log log n

)2(
1

2p
+

1

2(1− p)

)
(1 + o(1))

 =
np=c logn

n exp

(
−c log n

2

(
2

c
+

2

log log n

√
2

c

)
(1 + o(1))

)
=

exp

(
−
√

2c
log n

log log n
(1 + o(1))

)
−−−→
n→∞

0.

Thus dmax

a.a.s.
≤ np

(
1 +

√
2
c

+ 1
log logn

)
and since (4.6) is still valid,

m
a.a.s.
≥
(
n
2

)
p − √pn log log n. Mimicking the proof of Lemma 7 we get, with the same notation

as before

pi
a.a.s.
≤ 2(n− i+ 2)

n

(
1 +

√
2

c
+

1 + o(1)

log log n

)
,

uniformly for all i. Since V2i ∼ Geo (p2i) we get the following lower bound on E[V ].
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E[V ] = E

b
n−logn

2 c∑
i=1

V2i


≥
bn−logn

2 c∑
i=1

1

p2i

≥ n

2
(

1 +
√

2
c

+ 1+o(1)
log logn

) bn−logn
2 c∑
i=1

1

(n− 2i+ 2)

≥ n

2
(

1 +
√

2
c

)
1− 1 + o(1)

2
(

1 +
√

2
c

)
log log n

( log n− (1 + o(1)) log log n

)

=
n log n

2
(

1 +
√

2
c

)
1− 1 + o(1)

2
(

1 +
√

2
c

)
log log n︸ ︷︷ ︸

:=h2(n)

.

 =
n log n

2
(

1 +
√

2
c

) (1− h2(n)) ,

And in analogy with the previous lemma

Var(V ) = Var

d
n−logn

2 e∑
i=1

V2i

 ≤ b
n−logn

2 c∑
i=1

1

(p2i)2

≤ B1n
2,

for some constant B1. Thus E[V ] ≥ 1−h2(n)

2
(

1+
√

2
c

)n log n and Var(V ) ≤ B1n
2. Finally, Cheby-

shev’s inequality, together with the fact that h2(n)→ 0 and
√
h2(n) log n→∞, implies
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P

V <
1−

√
h2(n)

2
(

1 +
√

2
c

)n log n

 ≤
P

|V − E[V ]| ≥ (1− o(1))

√
h2(n)

2
(

1 +
√

2
c

)n log n

 ≤
B1n

2(
(1− o(1))

√
h2(n)

2
(

1+
√

2
c

)n log n

)2 −−−→n→∞
0.

This entails τmix
a.a.s.
≥ 1−

√
h2(n)

2
(

1+
√

2
c

)n log n = 1−o(1)

2
(

1+
√

2
c

)n log n.

4.2 Upper bound on the mixing time on random graphs
In this section we will derive an upper bound of order n log n on the mixing time for neighbour
transpositions on random graphs with bounded diameter. Note that Gn,p a.a.s. has bounded
diameter if p > nδ−1 for some δ > 0. Besides, the diameter will then be bounded by 1 + 1/δ,
see for example [5].

We will reach the upper bound via comparison with ordinary random transpositions, using
Lemma 2. The reasoning will also rely upon a paper by Broder et al. about edge-disjoint paths
in random graphs, [4].

Lemma 9. Suppose we have p such that 1 > p > nδ−1 for some δ > 0. Then the mixing time
of the random neighbour transposition shuffle on a realization Gn,p of G(n, p) a.a.s. has the
following upper bound

τmix
a.a.s.
≤ Cn log n,

for some large enough constant C.

Proof. We will use Lemma 2 and 3. Let µ and µb be the measures that generate the transposing
neighbours shuffle onGn,p = (VGn,p , EGn,p) andGn = (VGn , EGn) respectively, and let {Xt} and
{Xb

t } be the random walks on the symmetric group generated by these measures. The benchmark
shuffle, ordinary random transpositions, corresponds to neighbour transpositions on the complete
graph Gn. For this shuffle, we know that ‖P(Xb

(1/2+Cb/ logn)n logn ∈ ·) − π‖2
2 ≤ 1/4, for some

constant Cb, see [8]. First we will establish an upper bound on A, and then find t = t(n) such
that the right hand side of (3.14) converges to something less than 1/4. This t will be an upper
bound on the mixing time τmix, according to expression (2.3).
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Remember that for the neighbour transposition shuffle on Gn,p we have µ(i j) = 1/(m+n)
for i 6= j and µ(id) = n/(m+n), where m = |EGn,p| is the number of open edges in Gn,p. From
the expression for A in Lemma 3 we see that

A = max
x∈E(Gn,p)

1

µ(x)

∑
y∈E(Gn)

|y|N(x, y)µb(y)

≤ (m+ n)
2

n2
max

x∈E(Gn,p)

∑
y∈E(Gn)

|y|N(x, y). (4.7)

Using that m ∼ Bin(
(
n
2

)
, p), we can also bound m+ n.

P
(
m+ n >

(
1 +

1

log n

)
p

(
n

2

))
= P

(
m >

(
1 +

1 + o(1)

log n

)
p

(
n

2

))
=

P

(
m(
n
2

) > p+
1 + o(1)

log n
p

)
≤

(4.1), (4.3)
exp

(
−
(
n

2

)
(1 + o(1))p2

log2 n

(
1

2p
+

1

2(1− p)

))
=

exp

(
−(1 + o(1))n2p

4 log2 n

)
−−−→
n→∞

0 (4.8)

Together with (4.7) this yields

A
a.a.s.
≤

(
1 +

1

log n

)
p

(
n

2

)
2

n2
max

x∈E(Gn,p)

∑
y∈E(Gn)

|y|N(x, y)

= (1 + o(1))p · max
x∈E(Gn,p)

∑
y∈E(Gn)

|y|N(x, y). (4.9)

Next step is to bound N = max
x∈E(Gn,p)

∑
y∈E(Gn) |y|N(x, y), where N(x, y) is the number of

times x is utilized in the chosen representation of y, and |y| is the length of the representation.
Consider a transposition y = (a b) ∈ E(Gn). If y ∈ E(Gn,p), we can use y itself as representa-
tion in E(Gn,p). If y /∈ E(Gn,p), i.e. the edge between vertex a and b is closed, then the idea is
to find an open path between va and vb and use this to form a representation of y in E(Gn,p). To
bound N tightly we would like these paths to be short, and that no edge is used too many times.
To this end we are interested in finding edge-disjoint paths joining as many of the vertex pairs in
Gn,p as possible. Broder et al. [4] proved the following theorem.

Theorem 4. The graph Gn,p, has with probability 1 − o(1) the following property as n → ∞:
there exist positive constants α and β s.t. for all sets of pairs of vertices {(aj, bj)|j = 1, 2, . . . , η}
satisfying:

(i) η =
⌈
αn2p lognp

2 logn

⌉
,
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(ii) for each vertex v, |{j|aj = v}|+ |{j|bj = v}| ≤ min{dv, βnp},

there exist edge-disjoint paths in Gn,p, joining aj to bj , for each j = 1, 2, . . . , η.

For the range of p we consider, β will be small enough to ensure that min{dv, βnp} = βnp.
We also have α < β < 1.

We can use Theorem 4 to form paths that we can use in the representations of all transposi-
tions y /∈ E(Gn,p). Consider a pair of vertices va and vb. Suppose we have an open path between
va and vb of length l: (a, v1, v2, v3, . . . , vl−2, vl−1, b). We can use the following representation of
the transposition (a b):

(a b) = y = (a v1)(v1 v2) · · · (vl−2 vl−1)(vl−1 b)(vl−2 vl−1) · · · (a v1) (4.10)

Broder et al. create edge-disjoint paths between the vertex pairs (aj, bj) in the multiset U :=
[a1, b1, a2, b2, . . . , aη, bη] in the following way. First Gn,p = (VGn,p , EGn,p) is partitioned into five
edge-disjoint graphs Gk = (Vk, Ek), k = 1, . . . 5. What is relevant here is that V1 = VGn,p and
V2 ⊆ VGn,p such that |V2| = n − o(n). Moreover, this splitting algorithm places each edge of
EGn,p independently with probability at least 5

6
in E1.

Next, a multiset W , of 2η vertices is chosen from V2 uniformly at random with replacement.
Broder et al. then show that the 2η vertices in U can be connected to those in W , in a one-to-one
correspondence, via edge-disjoint paths in E1. This is done to spread out the endpoint of the
vertex pairs over G2. The vertices in W connected to ai and bi are denoted ãi and b̃i respectively,
so that W = [ã1, b̃1, ã2, b̃2, . . . , ãη, b̃η].

After that the authors prove that any set of η vertex pairs from W , {(ãj, b̃j)|j = 1, 2, . . . , η},
can be connected with edge-disjoint paths of lengths O

(
logn
lognp

)
= O(1) in EGn,p \ E1. Thus,

there are edge-disjoint paths (aj, ãj, b̃j, bj) in Gn,p connecting the vertex pairs {(aj, bj)|j =
1, 2, . . . , η}.

From (4.10) we see that |y| = 2l− 1, where l is the length of the path between a and b. Thus,
to bound N = max

x∈E(Gn,p)

∑
y∈E(Gn) |y|N(x, y) it is essential to find an upper bound for the path

length l. We denote this upper bound by lmax. Broder et al. does not give any upper bound on
the length of the paths from aj to ãj and from b̃j to bj . So this is our next task.

There are
(
n
2

)
separate vertex pairs in VGn,p . Our aim is to connect all of them with short paths

that use the same edge as few times as possible. First, to get shorter paths, reduce the number
of vertex pairs to connect with edge-disjoint paths from η to dη

4
e. Partition the

(
n
2

)
vertex pairs

in VGn,p into sets of at most dη
4
e pairs. We denote the number of such sets by Q :=

⌈(
n
2

)/
dη

4
e
⌉

.

This yields multisets U i
r = [ai1, b

i
1, a

i
2, b

i
2, . . . , a

i
d η
4
e, b

i
d η
4
e] , i = 1, 2, . . . , Q, of endpoints of the

vertex pairs. (For some theory on multisets, see [19].)
An upper bound on Q will be 4+o(1)

αδp
, since

Q =

⌈(
n
2

)
dη

4
e

⌉
≤

8
(
n
2

)
αn2p lognδ

logn

=
4 + o(1)

αδp
. (4.11)
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For each U i
r select a multiset W i of 2η vertices in V2 as described above. Denote the multi-

plicity of a member u in U i
r by riu. Likewise, denote the multiplicity of a member v in W i by siv.

We will show that there exist edge-disjoint paths from U i
r to a sub-multiset

W i
r := [ãi1, b̃

i
1, ã

i
2, b̃

i
2, . . . , ã

i
d η
4
e, b̃

i
d η
4
e] ⊆ W i, such that all of them has length 1, or 0 (then the path

consists of a single vertex), for i = 1, 2, . . . , Q.
Further, we use the following notation, U i

r1 := [u ∈ U i
r|u ∈ V \ V2] and U i

r2 := [u ∈ U i
r|u ∈

V2]. We will deal with the paths from U i
r1 to W i and from U i

r2 to W i separately. First, consider
the members of U i

r2. We will see that a.a.s. the multiplicity in W i of such a member u, that is siu,
is greater than its multiplicity riu in U i

r2, provided that the U i
r’s are properly chosen. This means

that U i
r2 is a sub-multiset of W i. In other words, U i

r2 can be connected directly, via ”zero-edge
paths”, to W i.

The number riu will on average take the value 2
n
dη

4
e. We can partition the edge pairs in VGn,p

so that maxv∈V,i∈[1,Q] r
i
v ≤

η
n

. Note that since η
n

=
dαn2p lognp

2 logne
n

≤
⌈

1
2
αnp lognp

logn

⌉
< βnp, condition

(ii) of Theorem 4 will then be satisfied.
Since W i is chosen uniformly from V2, siu will be Bin(2η, 1

|V2|)-distributed for each u ∈ V2.
Using that |V2| = n − o(n) we can derive an a.a.s. lower bound on minu∈V2 s

i
u over all Q

multisets.

P

(
Q⋃
i=1

{
min
u∈V2

siu ≤
2η

|V2|

(
1− 1

log n

)})
≤

4 + o(1)

αδp
P
(

min
u∈V2

s1
u ≤

2η

|V2|

(
1− 1

log n

))
≤

p>nδ−1

(4 + o(1))n2−δ

αδ
P
(
s1

1 ≤
2η

|V2|

(
1− 1

log n

))
≤

(4.2), (4.4)

(4 + o(1))n2−δ

αδ
exp

(
− η

|V2| log2 n
(1− o(1))

)
=

(4 + o(1))n2−δ

αδ
exp

(
−αnp log np

2 log3 n
(1− o(1))

)
≤

p>nδ−1

(4 + o(1))n2−δ

αδ
exp

(
− αδnδ

2 log2 n
(1− o(1))

)
−−−→
n→∞

0 (4.12)

Thus, a.a.s. all members in W i has multiplicity at least 2η
|V2|

(
1− 1

logn

)
= 2η

n
(1− o(1)), for

i = 1, 2, . . . , Q. For a member u of U i
r2 we have

riu ≤
η

n
<

2η

n
(1− o(1)) ≤

a.a.s
siu, i = 1, 2, . . . , Q.

Hence, for all i = 1, 2, . . . , Q, we can connect the multiset U i
r2 directly to the same multiset

in W i via single vertex paths.



4.2. UPPER BOUND ON THE MIXING TIME ON RANDOM GRAPHS 39

It remains to connect U i
r1 to W i

1 := W i \ U i
r2. We will show that there are such connections

in G1 consisting of only one-edge paths.
Since each edge in EGn,p independently with probability at least 5

6
is in E1, each member of

U i
r1 is a.a.s. neighbour in G1 to at least 5np

6
(1− o(1)) members of W i

1. This can be proved with
Chernoff’s inequality, similar to (4.12).

Remember that the multiplicity of a member u in U i
r1 is riu. If we evenly spread out the one-

edge connections from u on the neighbour members of W i
1, no member will receive more than 1

connection, since

riu
5np
6

(1− o(1))
≤ η/n

5np
6

(1− o(1))
≤ 3αδ

5
(1 + o(1)) < 1.

In the last inequality we use the fact that α < 1. Furthermore, a member v inW i is neighbour
to at most |V \V2|p(1+o(1)) = o(np) members in U i

r1. Thus, a member ofW i get at most o(np)
connections from U i

r1. Consequently, the total number of connections to a member v in W i from
U i
r1 and U i

r2 will be less than rv + o(np). Since

rv + o(np) ≤ η

n
+ o(np) <

a.a.s
sv,

we can form edge-disjoint paths in E1 of maximum length 1 from U i
r to a sub-multiset W i

r of
W i. To sum up, we have proved that there are paths in E1 of maximum length 1 connecting the
vertex pairs {(aij, ãij)|aij ∈ U i

r, ã
i
j ∈ W i, j = 1, 2, . . . dη

4
e} and {(bij, b̃ij)|bij ∈ U i

r, b̃
i
j ∈ W i, j =

1, 2, . . . dη
4
e}, for i = 1, 2, . . . Q. In addition, according to the results of Broder et al. there are

edge-disjoint paths of length O(1) in EGn,p \E1 connecting any set of {(ãij, b̃ij)|j = 1, 2, . . . dη
4
e}

of vertex pairs in W i. This means that for i = 1, 2, . . . , Q there are edge-disjoint paths in EGn,p
of length O(1) connecting the vertex pairs {(aij, bij)|j = 1, 2, . . . dη

4
e}. Thus lmax = O(1).

From (4.10) we can see that a transposition x is used at most twice in each representation,
that is

max
x∈E(Gn,p)

N(x, (a b)) = 2.

In addition, since the paths within each of the Q sets of vertex pairs are edge-disjoint, x can
occur in at most Q different representations. Thus, since |y| ≤ 2lmax − 1 for all y ∈ E(Gn),

N = max
x∈E(Gn,p)

∑
y∈E(Gn)

|y|N(x, y) ≤ (2lmax − 1)2Q.

Moreover, from (4.9) and (4.11), and fact that lmax = O(1), we get the following upper bound
on A.

A ≤ (1 + o(1))p ·N ≤ (1 + o(1))p · (2lmax − 1)2Q ≤ CA,

for some large enough constant CA.
Finally, Lemma 3 now yields that
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Eb ≤ AE ≤ CAE ,

where Eb and E are the Dirichlet forms associated with the measures generating the neighbour
transposition shuffle on the complete graph Gn and the random graph Gn,p respectively.

Since µ(id) = n
m+n

, Lemma 4 implies the following inequality for smallest eigenvalue κn of
the transition matrix for µ.

|κn| ≤ 1− 2
n

m+ n

a.a.s.
≤ 1− n

p
(
n
2

)
With t = d2CAn log ne, Lemma 2, then entails

‖P(Xd2CAn logne ∈ ·)− π‖2
2 ≤

nκ2d2CAn logne
n + ne−d2CAn logne/A + ‖P(Xb

bd2CAn logne/2Ac ∈ ·)− π‖2
2

a.a.s.
≤

n

(
1− n

p
(
n
2

))4CAn logn

︸ ︷︷ ︸
→0

+ne−2n logn︸ ︷︷ ︸
→0

+ ‖P(Xb
bn lognc ∈ ·)− π‖2

2︸ ︷︷ ︸
<1/4 as n→∞

.

In conclusion, together with (2.3), this inequality implies that the random walk {Xt}, corre-
sponding to the neighbour transposition shuffle on Gn,p, for p s.t. 1 > p > nδ−1, for some δ > 0,

has mixing time τmix
a.a.s.
≤ d2CAn log ne < Cn log n, for C = 2CA + 1.

Finally, we observe that Lemma 7, Lemma 8, and Lemma 9 together proves Theorem 3.
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de Probabilités XVII. Lecture Notes in Math., 986 (1983), 243-297.

[2] D. BAYER AND P. DIACONIS. Trailing the dovetail shuffle to its lair. Ann. Appl. Probab., 2
(1992), 294-313.

[3] G. BRIGHTWELL AND P. WINKLER. Maximum hitting times for random walks on graphs.
Random Structures and Algorithms , 1 (1990), 263-276.

[4] A. Z. BRODER, A. M. FRIEZE, S. SUEN, AND E. UPFAL. Optimal construction of edge-
disjoint paths in Random graphs. Siam J. Comput., 28 (1998), 541-573.

[5] F. CHUNG AND L. LU. The diameter of sparse random graphs. Adv. in Appl. Math., 26
(2001), 257-279.

[6] P. DIACONIS AND L. SALOFF-COSTE . Comparison techniques for random walk on finite
groups. Ann. Probab., 21 (1993), 2131-2156.

[7] P. DIACONIS AND L. SALOFF-COSTE . Comparison theorems for reversible Markov chains.
Ann. Appl. Probab., 3 (1993), 696-730.

[8] P. DIACONIS AND M. SHAHSHAHANI. Generating a random permutation with random
transpositions. Z. Wahrsch. Verw. Gebiete, 57 (1981), 159-179.

[9] P. DIACONIS. The cutoff phenomenon in finite Markov chains. Proceedings of the National
Academy of Sciences, 93 (1996), 1659-1664.
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