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Göteborg, Sweden, 2010



Scene interpretation and object recognition for mobile robots equipped with

cameras

JAKOB ANDERSSON, CAROLINE EBBESSON

c© JAKOB ANDERSSON, CAROLINE EBBESSON

Department of Applied Physics
Chalmers University of Technology
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Abstract

A method consisting of separate steps for object detection and object recognition has been
developed for use with digital camera images. The detection step uses double-opponent
maps and the Hough transform to find likely object candidates without having to search the
entire image. The recognition step is built around a modular neural network (MNN) trained
using backpropagation into which colour histograms and eigenimage projection coefficients
are fed as main cues along with simple region information. The detection approach was
found to be 45 times faster than an equivalent brute force approach and the resulting
algorithm is found to be fast enough in order to allow use in real-time robot landmark-
navigation. Substantial differences in recognition ability between different types of objects
were found when applied on images from a typical office environment. The performance
of the algorithm indicates that visual object recognition can be achieved in real-time with
only off-the-shelf equipment.
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Chapter 1

Introduction

For a robot to operate in and interact with a changing and complex environment it has
to be able to perceive and interpret its surroundings. Humans heavily rely on vision to
achieve this. As cameras are becoming more affordable, the use of visual systems for scene
interpretation in robots becomes more common. Scene interpretation is a complex task; the
variation in the environment, the variation of objects, and the variation in form, colour,
and texture of each object makes it hard to construct a general implementation. In order
for robots to be used in everyday tasks, robust scene interpretation is necessary. However,
many implementations today use expensive equipment such as laser range finders. Using
a visual system built with off-the-shelf equipment such as cameras thus makes the robot
more applicable in cost sensitive tasks.

The aim of this thesis is to take some initial steps towards a more general scene in-
terpretation using cameras. Specifically, a robot operating in an office environment can
navigate by using visually detected and identified objects as landmarks. In order to design
an algorithm capable of solving this detection and recognition task, a literature study was
conducted; a summary is presented in the following two chapters. One important design
criterion is that detection and recognition can be done in real-time, in order for the robot
to navigate while still moving. Another criterion is that it can detect a variety of objects.
The implemented method has been selected to try to satisfy these criteria. This thesis
attempts to accomplish this task and indicate if visual scene interpretation is suitable for
use in navigation.
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Chapter 2

Basic image processing and machine

learning

In order to understand the concepts discussed in this thesis it is important to have some
basic background knowledge of image processing and of machine learning. In this
chapter different methods for information extraction from images will be introduced along
with a brief introduction to machine learning in section 2.4. Both image processing and
machine learning are huge topics and the aim of this introduction is to comprise the
background knowledge needed to understand the rest of this thesis.

2.1 Basic methods for image information extraction

This section will introduce how object information can be retrieved from an image. The
focus is on methods working on a local scale, i.e. only using information from close-by
pixels, and in the image domain.

2.1.1 Feature detection

Feature detection is used to extract information, called features, from an image. The
concept of features is very broad. In image analysis, it is used to describe properties,
also called feature descriptors or cues, of a point in an image and its surrounding pixels.
Common feature descriptors are intensity, orientation, colour, and texture. In cases where
several feature descriptors are required, they are organised as elements in a feature vector.
Features are used to reduce the amount of data prior to further image processing. It is
important that features are robust, i.e. that they are, at least partly, invariant to scale,
rotation, translation and illumination changes and thus easily detectable under different
conditions regarding illumination, viewing angle, etc. The most basic feature detectors
are edge and interest point detectors; they locate sharp variations of intensity, which
correspond to depth discontinuities, surfaces discontinuities, and shadows.

2



Chapter 2. Basic image processing and machine learning

The original image The Roberts edge detector The Sobel edge detector

The Canny edge detector The DoG edge detector The LoG edge detector

Figure 2.1: A comparison of five different edge detectors: the Roberts edge detector, the So-
bel edge detector, the Canny edge detector, the Difference of Gaussian edge detector, and the
Laplacian of Gaussian edge detector. Image by the authors.

Basic edge detectors, e.g. the Sobel edge detector [62] and Roberts edge detec-

tor [49], measure the intensity gradient near a pixel by applying a set of convolution masks.
Some examples of slightly more complex edge detectors are the Canny edge detector [6]
and detectors searching for zero crossings of the second order derivative over a set of image
pixels, like the Laplacian of a Gaussian (LoG) method [39] and the difference of Gaus-

sians (DoG) method; the latter is an approximation of the LoG method. A comparison of
these five edge detectors can be found in figure 2.1.

Most edge detectors output fragmented edges due to noise and variations in illumina-
tion. For most applications, it is of interest to complete and link these fragmented edges
to object boundaries. This can be done (i) locally, by examining properties like intensity
and edge orientation for neighbouring pixels and filling gaps between pixels that have the
same properties, (ii) regionally where edge pixels are linked according to their regional
membership or (iii) globally using the Hough transform; see section 2.2.2.

Interest point detectors, often called corner detectors, localise points at which the
intensity varies sharply in several directions. Some examples are the Harris–Plessey cor-
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ner detector [18] and the Smallest Univalue Segment Assimilating Nucleus corner

detector (SUSAN) [61]. With modifications, both the Harris–Plessey detector and the SU-
SAN detector can be used as edge detectors. Edge and corner detectors can be used directly
as feature detectors, but are also used as a first step to localise interesting areas in more
complex detectors such as the SIFT detector [36] described below.

2.1.2 Scale-invariant feature transform

The Scale-invariant feature transform (SIFT) is a feature detector developed by Lowe
in 1999 [36]. It transforms an image to a large set of local feature vectors or SIFT-keys
that are invariant to scale, rotation, and translation and partly invariant to illumination
changes and viewpoint. SIFT uses interest points, called key points. Scale-invariant key
point candidates are obtained by examining the image at different resolutions using the
difference of Gaussians method. For a more detailed description of how this is done, see
Lowe’s article [36]. In order to keep only the points that are robust against noise, points with
low contrast and points only corresponding to an edge are discarded. The key points left
are assigned orientations based on the local image gradient to obtain rotational invariance.
For each key point, the local feature vector is computed from the neighbourhood of the
key point.

2.1.3 Stereo vision and depth estimation

The human brain uses binocular vision for depth perception. This has inspired the devel-
opment of stereo vision, i.e. the use of two calibrated cameras, separated by a known
distance, for depth estimation. The two cameras will have a slightly different view of the
scene and objects will thus be projected at slightly different image positions. The difference
is called disparity and is obtained by a process called stereo matching. By knowing the
distance between the two cameras, the distance to the object can be calculated from the
disparity. An object near the cameras will have a larger disparity than an object farther
away. Since disparity depends on distance, depth estimation using stereo vision only works
to a specific distance, beyond which the disparity becomes smaller than one pixel.

However, the human brain does not only depend on binocular vision for depth per-
ception. It also uses monocular cues such as texture gradients, familiarity with detected
objects, perspective, haze, etc. These can be used in addition to stereo vision to obtain a
better distance estimate or to obtain a depth estimate from a monocular system [54, 56].
Depth estimation is an important part in object recognition, since it provides information
about occlusion and size and since it can be used to create a three-dimensional model of
the scene that can be matched to three-dimensional object models.

2.1.4 Template matching

A template is a representation of an object, such as a set of features, extracted from
an image or from a three-dimensional model of the object. When using features, feature
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detection is performed on the search image before matching.
In template matching [14], an object is considered recognised when correlation be-

tween the template and a part of the search image exceeds a certain threshold. The template
is shifted over the search image, one pixel at a time. For each position, the correlation is
calculated and a correlation map is generated. If the correlation is too small, the object is
not present in the image. If, on the other hand, there are multiple positions exceeding the
correlation threshold, several matches are found.

This method is easy to implement but computationally expensive, especially, if the
method should be able to recognise several objects at different angles and resolution, some-
thing that requires a large set of templates. Speed can be improved by the use of an image

pyramid [5], which consists of a set of images of different resolutions. The pyramid is
created by down sampling a high-resolution image creating a set of reduced resolution im-
ages. The low-resolution images are used with a down sampled template to obtain areas
likely to contain the object. Only these areas are then scanned with the template in the
high-resolution image.

2.2 Image processing using transform methods

The previous section introduced information extraction in the image domain; this section
will show additional methods for extracting information in a transform domain. There
exist, of course, many other transform methods that can be used which are not presented
here, such as the Fourier transform.

2.2.1 Using wavelets for feature extraction

Frequency analysis of an image can generate information that is not easily obtained in
the image domain. A common way to obtain frequency information is to use the Fourier
transform; however, it only returns the frequencies in the image and not any spatial infor-
mation. The wavelet transform [38, 42] is designed to return both frequencies and their
location.

First, consider a wavelet transform, X(s, τ), of a one-dimensional time signal, x(t).
The wavelet transformation multiplies the signal with window functions, the wavelets, to
transform the signal into the frequency domain. A wavelet is a short oscillatory function,
hence the name wavelet – small wave. The continuous wavelet transformation can be seen
in equation (2.1). Each wavelet is derived by scaling and translating a function called the
mother wavelet, ϕ(t). The translation factor, τ , shifts the wavelet over the signal and
the scale factor, s, dilates or compresses the wavelet, changing the width of the window.
With a low scale-factor, the wavelet is compressed, giving a higher resolution in time. With
a high scale-factor, the signal is dilated, giving less resolution in time. Since the scale factor
is proportional to time, it is inversely proportional to frequency.

Xω(s, τ) =
1√
s

∫
∞

−∞

x(t)ϕ(
t − τ

s
)dt (2.1)
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Time

Frequency

Figure 2.2: The time frequency resolution for the wavelet transform. As can be seen high time
resolution gives low frequency resolution, and low time resolution, high frequency resolution. The
boxes have the same area and the minimum size is restricted by the type of wavelets used.

It is impossible to know the exact frequency at a specific time, cf. Heisenberg’s un-
certainty principle, and hence full frequency resolution can only be obtained if the signal
stretch out to infinity, but then the resolution in time is lost, as for the Fourier transform.
The wavelet transform acts only on small windows of the signal, due to the finite length
of the wavelet functions, reducing the frequency resolution and increasing the time reso-
lution. The wavelet transform gives high time resolution for low frequencies and low time
resolution for high frequencies, see figure 2.2. The product of the size of the time intervals
and the size of the frequency intervals is always the same and is restricted by the type of
mother wavelet.

The discrete version of the wavelet transform passes the signal through a series of high
and low pass filters. The signal is first split into a high frequency part and a low frequency
part. Then one of the parts, usually the low frequency part, in order to get better time
details, is split again and the process is repeated a predefined number of times.

In image processing, the two-dimensional spatial domain is used instead of the
time domain but the approach is the same, i.e. giving a series of images with different
details. An example of a wavelet transformation, or wavelet decomposition, of an image
can be seen in figure 2.3. As for the Fourier transform, the wavelet transform, gives the
coefficients for a series expansion in wavelets of a signal or image, called wavelet series.
These coefficients can be used as scale invariant features for an object [45]. A commonly
used family of wavelets in image processing are the Haar wavelets [17], mostly used for
their simplicity.

2.2.2 Shape extraction using the Hough transform

In the beginning of the 1960, Hough developed the Hough transform to identify particle
trails in bubble chamber images [25]. It identifies lines by calculating the likelihood that
a specific line is present in the image. A line, y = kx + m, is normally described by
two parameters, the slope, k, and the y-intercept, m. The parameters k and m are then
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Figure 2.3: An example of a wavelet transform. The left panel shows the original image. The
middle panel shows the first level of wavelet decomposition: the upper left is the approximation
coefficient, the upper right the horizontal coefficient, the lower left the vertical coefficient and the
lower right the diagonal coefficient. The right panel shows two levels of decomposition, with the
approximation transformed in the second step. Photo by the authors.

unbounded for vertical lines. In the Hough transform, a line is instead described by equation
(2.2) with the parameters r and θ, which are bounded for all lines. The definition of r and
θ can be seen in figure 2.4. The value of r is the length of the normal vector from the origin
to the line and θ is the angle from the x-axis to the normal vector and has positive values
in the clockwise direction.

y = −cos θ

sin θ
x +

r

sin θ
or r = x cos θ + y sin θ (2.2)

In parameter space, a line in image space is represented by a point in the (r, θ)-plane.
Every line going through a point in image space will belong to the same sinusoidal curve
in parameter space; see figure 2.5 and equation (2.2). If two points in image space belong
to the same line, their respective sinusoidal in parameter space will cross and the point
where they cross gives the parameters for that line.

The Hough transform creates a map of the likelihood for a line to be present in an image.
The map is a matrix where the rows correspond to the r -parameters and the columns
correspond to the θ-parameters. The value of an element represents the likelihood of the
line described by the parameter pair, (r, θ), corresponding to the element. If a pixel in the
image corresponds to an edge point, the parameters for all lines that go through that point
are calculated. Then the value of the elements representing the parameters for those lines
is increased by one. The most likely lines that are present in the image are then given by
local maxima in the likelihood matrix, see figure 2.5.

The Hough transform has been generalised to identify arbitrary shapes using the same
approach but other parameters [1]. It can be used for object recognition by finding the

7
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x

r

y

θ

Figure 2.4: Here the Hough parameters r and θ are shown. The value of r is the length of the
normal vector from the origin to the line and θ is the angle from the x-axis to the normal vector,
counted positively in the clockwise direction.
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Figure 2.5: The upper right panel show the Hough transform of the two points in the upper
left panel, which is sinusoidal. The lower right panel show the Hough transform of the two cross-
ing lines in the lower left panel. It is easy to distinguish the two maxima corresponding to the
parameters for the two lines.

parameters that maps an object model into the image and using them to determine the
objects position in the image.

2.2.3 Feature detection with eigenimages

Images of any instance of an object class can be considered a combination of eigenimages.
A set of eigenimages consists of eigenvectors selected by performing principal component

analysis – see section 2.4.5 – on eigenvectors extracted from a large set of images of
different instances of the object class. [34, 43]

Eigenimages are mostly used in face recognition under the name eigenfaces. Even a
small set of eigenfaces gives a fair approximation of a face. However, for the recognition
method to work well the face images need to be taken with the faces in the same position
and with similar lighting.
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Figure 2.6: The left panel show an example on a typical difficult segmentation task. The clothing
with their distinctive colours will be recognised as different segments by almost any segmentation
algorithm. The right panel shows an example of such a segmentation. Photo by the authors.

2.3 Global image features

Hitherto, local image information cues have been described, but much information remains
to be extracted on a global image scale. Such global image features will be introduced in
this section.

2.3.1 Segmenting the image

Global image features are often helpful in determining the real world origin of each pixel.
Dividing the image into several segments for separate classification is also an alternative
approach to labelling the image pixels individually. The concept of image segmentation is
intuitive in its purpose and benefit, but after a closer inspection, the task of segmenting
an image turns out to be far from straightforward. What at first is an obvious segmenta-
tion often is both ambiguous and unstable to changes in image data and in the choice of
segmentation algorithm. For example, the persons in figure 2.6 are made up from different
homogeneous regions, which are hard for an algorithm to cluster. The segmentation is at
the same time ambiguous since grouping the regions into one region is correct in some
situations and not in other. Ambiguities as these make training of a classifier much more
complex since no ground truth segmentation exist. These difficulties can be circumvented
by use of multiple segmentation algorithms to form a probability distribution or by limit-
ing the segmentations to basic segment types, e.g. ground, sky, etc. Both these approaches
have been applied in object detection tasks in the past. Segmentation is many times used
instead of searching the entire image with a moving window. Cleverly chosen, image seg-
ments are often easier to analyse than an arbitrary window of pixels and they can aid in
object detection by setting features in context.

9
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2.3.2 Colour as a cue for segmentation and object recognition

Using colour as a cue for object recognition can be very powerful. Many human-designed
objects have distinctive colours, e.g. signs, fire extinguishers, etc., and are thus easily
located by such cues. It is also powerful in characterising different scenes or image parts
such as vegetation, sky, or water. Colour alone is, however, not enough except in very
limited applications since many common objects are not characterised by it, e.g. cars,
clothing, and furniture.

Colours can be represented in many different ways, not only by the commonly used
RGB colour space. In fact many other representations such as HSV, L*u*v*, and YCbCr
exist with their own strengths and weaknesses. Colour information is usually quantified as
a histogram for a part of the image. Histograms contain no spatial information and are
thus invariant to rotational, translational, or elastic transformations. Colour statistics is,
however, sensitive to changes in illumination. The illumination sensitivity can be reduced
by utilising different techniques, e.g. energy normalisation [57] or weighted histograms [19].

2.3.3 Information from texture

Some objects, e.g. spotted cats and brick walls, are almost perfectly described from their
texture alone. Other objects are on the other hand not characterised by texture at all,
e.g. cars and human clothing. This ambiguity makes the decision on whether to use texture
information or not in a classifier dependent on the context in which the classifier is applied,
i.e. even if the algorithm can be made good enough for all cases it may not be worth the
extra computational cost. In using texture information, one has to account for information
at different scales dynamically, since textures at different distances will be represented at
different scales. One also has to avoid misclassification at true image boundaries. Textural
information can be characterised by colour histogram or by a filter response. This char-
acterisation is usually applied on small patches, either from a segmentation algorithm or
from a moving search window.

2.3.4 Improving detection by contextual information

Image context is a powerful cue for object identification. Context information can be of
different types; it can be inter-object relation where a computer screen indicates a high
probability for a keyboard close by, or it can relate object candidates to their position
within the scene, e.g. that cars are not found on rooftops. Context can also communicate
information of the entire scene, i.e. the information on where the image is taken, e.g. in
an office or at a tennis court. Regardless, the detection algorithm receives knowledge of
probabilities for object occurrence and thus improves both detection scores and algorithm
speed. The relationship between objects can be found from analysing a large set of pictures,
and thus be well tuned for a specified environment, or from some other source such as
semantic relationships.

10
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Figure 2.7: In the left panel, a view of New York from 2009 is shown. For a human it is not
difficult to see that the pixels on the streets represent cars, but when the pixels is enlarged and
removed from their context the resemblance is less clear. In the right panel, it is equally easy for
a human to identify the ball, but without context, that task would be next to impossible. The left
photo by the authors and the right photo by M. Ahlberg. Reproduced with permission.

Using contextual information is important in object-detection software aiming at han-
dling many different object types in versatile environments. For a human, it is easy to see
that the pixels in the streets in figure 2.7 represent cars or that the pink pixels in a picture
from a bandy game are a ball and not a fruit, but for a computer with no contextual
information that task is almost impossible. It should be noted that context information
has the drawback of requiring true objects in unusual locations to be more salient than
what would otherwise be necessary for detection. This however agrees with psychophysical
results in humans, e.g. both humans and algorithms using contextual information will have
more difficulties detecting a person standing on a rooftop than on a sidewalk. [24]

2.4 Machine learning and related techniques

In this section, some main concepts in machine learning and related techniques important
for understanding the notions of this thesis are briefly introduced. It should, however, be
noted that this selection is limited and that many more concepts exist which will not be
considered in this text. A review of common techniques in pattern recognition is given by
Jain et al. [28].

11
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Figure 2.8: Two different data classes (the dots and the circles in the image) separated by a
hyperplane. In both the left and the right view, the two classes are divided by the hyperplane. How-
ever, in the left view the margin between the two data classes is maximised, i.e. the generalisation
error is minimised.

2.4.1 Probably approximately correct

Probably approximately correct (PAC) is a framework for theoretical analysis of ma-
chine learning theory introduced by Valiant [64] in 1984. If a learner is able to learn a
concept approximately, i.e. with a low generalisation error, with a high probability from
an arbitrary distribution of examples, then the concept is said to be PAC learnable. The
PAC framework gives an upper bound on the number of samples needed for learning the
concept with an error smaller than ε and a probability of at least 1 − δ.

2.4.2 Support vector machines

Support vector machines (SVM) introduced by Vapnik are methods for supervised
learning in high dimensional space popular in machine learning and classification tasks.
The concept of SVM will only briefly be introduced here and a more thorough introduction
can be found in Vapnik’s own book on the subject [65].

Consider a set of data points belonging to two classes, a hyperplane that maximises
the margin between the two classes is then constructed; see figure 2.8. By maximising the
margin, the generalisation error is minimised. Most of the data points will be redundant and
thus not contribute to the solution. The points, which do contribute, are called support

vectors. However, many real life problems cannot be solved by a linear classifier and
the original SVM is therefore extended to use any positive definite, symmetric kernel

function. Depending on the choice of kernel, other learning algorithms such as radial
basis functions and two layer neural networks can be constructed.

2.4.3 Neural networks

The human brain consists of a large complex network of neurons. The artificial neural
network or neural network emulates its biological counterpart with artificial neurons.
Neural networks are a huge topic and will only be introduced briefly here, for a more
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thorough introduction see a textbook on the subject [21]. A neural network consists of
one or more layers of neurons linked to each other by weighted connections. The weights

are adaptively assigned during training and they determine how data propagate through
the network. Each neuron takes several weighted inputs, either from direct input or from
another neuron, and passes their sum through a, usually, non-linear activation function
to form an output. In simple neural networks, information only propagates forward, but
in incarnations that are more complex, neurons are allowed to connect in loops. Many
different forms of neural networks exist, e.g. Hopfield and Kohonen networks, each with
different strength and weaknesses.

2.4.4 Boosting techniques

Boosting is a set of techniques for supervised learning in the PAC framework. The de-
velopment of boosting algorithms originated from the work by Kearns [29]. He questioned
whether a set of weak learners, each only slightly better than random guessing, could
be combined to form a single strong learner. The concept, which gives a positive answer
to the question of Kearns, is to build an array of weak learners that each carve off some
of the candidates not belonging to the class. Such weak learners need to have a very high
detection rate, but can afford a high false positive rate since both the detection rate and
false positive rate multiply, see equations in 2.3.

Pdetection =
N∏

n=1

P n
detection , Pfalse =

N∏
n=1

P n
false (2.3)

Boosting comes in many forms, on which extensive literature can be found [13, 66]. The
most used boosting method today is AdaBoost introduced by Freund [12]. The difference
between various boosting techniques is most commonly their way of weighting training
data. Analysis made by Brubaker et al. [3] show that different boosting techniques gener-
ally give comparable detection rates, but have, depending on the weak learners applied,
significantly varying running speed.

2.4.5 Principal component analysis

Principal Component Analysis (PCA) is a mathematical technique for dimensionality
reduction with minimal loss of information. In PCA, the data is decomposed according
to the eigenvectors corresponding to the eigenvalues of the data covariance matrix. These
eigenvectors are orthogonal to each other and are called principal components; the vector
corresponding to the largest eigenvalue, i.e. the first principal component, accounts for most
of the variation in the data. Each successive component then accounts for less information.
Thus, dimensionality can be reduced with minimal loss of information by throwing away
all but the first few components. For a more detailed explanation on PCA, see a textbook
on linear algebra [31].
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2.4.6 Methods inspired by human visual cortex

Even after recent advances in image understanding techniques and increase in computa-
tional power, humans and primates outperform the state-of-the-art detection systems in
almost every measure. Building a system mimicking the features of the visual cortex is
thus an attractive idea. Serre et al. [60] aimed at imitating higher complexity processes in
the visual cortex in combination with more established techniques inspired from the first
stages of the visual cortex, i.e. Gabor filters. Their results showed both that such features
could perform comparably with state-of-the-art systems and that they could be used in
conjunction with standard image processing techniques.
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Related work

A great deal of work has been carried out on scene interpretation in the past. Research has
been done in classification algorithms, cue extraction, and cue combination to name a few
topics. Today one has many well-explored techniques to choose from when constructing a
scene interpretation system. However, the literature does not show any signs of convergence;
there are no signs indicating any best method or any most-important cue. The systems
built in the past use many combinations of cues and learning algorithms; to synthesise
what has been done, as is the aim for this chapter, is therefore not trivial. The first section
will describe the different aspects of work done on scene interpretation generally. Specific
approaches in indoor scene interpretation for robots, i.e. the focus of this thesis, will be
discussed in the second section.

3.1 Different aspects on scene interpretation

Scene interpretation is a broad topic and it has been approached in many ways in the
past. A large part of the literature focuses on developing techniques [10,11,66], rather than
applications. Of the part that focuses on identifying objects in real-life applications some
main areas can be recognised. Image understanding has made an important contribution
in automotive applications [16, 33, 44, 46] and in surveillance [3, 8, 35, 50, 58] where enough
demand and applicability have spurred development. Much work has also been done with
image understanding techniques in robotics. Applications range from grasping objects [48]
and opening doors [30] to human-robot interaction (HRI) [51] and navigation [7,54,68].
Scene interpretation can be applied in many more areas, such as image compression where
important objects can be preserved in better quality than unimportant objects [47]; the
description of those topics is however beyond the scope of this text.

3.1.1 Automotive applications

The extent of the work done with support from the automotive industry or with the aim of
detecting pedestrians and vehicles is natural since the demand for innovations improving
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safety is high. Understanding of the scene in front of a vehicle is important in several
aspects; detecting moving objects to aid the driver avoid collisions is maybe the most
important of them. Leibe et al. [33] approached the problem by combing several different
cues, e.g. interest points in Hough space, colour, and edges, to identify objects in images
taken from a moving vehicle and to track the objects in order to predict and prevent
collisions.

3.1.2 Applications in surveillance

In addition to automotive applications, building systems able to detect persons and vehicles
in images is common. However, most work [3, 8, 58] describing such an approach do not
make any connection to surveillance applications, instead, they use the approach to test
algorithms. However, some work aim directly for surveillance applications; Roth et al. [50]
designed a system able to detect people in a video stream and Levin et al. [35] designed
a system able to count vehicles in road surveillance videos. Regardless of the aim, the
requirements are the same.

3.1.3 Other aspects on scene interpretations

The largest part of the literature in object recognition and scene interpretation focuses on
developing the techniques rather than on building serviceable systems. Pre-existing image
sets are commonly used for simplicity, but mostly because of comparability. Such image
sets usually consist of a broad range of motives; the systems using them can therefore not
be labelled as some specific application. In addition, the broad range of features and classi-
fication algorithms available results in almost as many possible combinations as attempts.

The focus of this thesis is, however, in robotics and in particular in indoor scene inter-
pretation. Object recognition is, of course, important in such applications and there have
been many implementations. The next section will give a review of the work done in that
domain.

3.2 Indoor scene interpretation for robots

In indoor robotics, there are three main applications where scene interpretation and object
recognition are essential: human–robot interaction (HRI), robot–object interaction,
and navigation. These different applications have different approaches to object recogni-
tion as the information is used for different purposes.

3.2.1 Human–robot interaction

Interaction between humans and machines is becoming increasingly important, since robots
today operate closer to humans and are able to perform tasks that are more complex. Many
such HRI applications build on robots, or other machines, being able to detect, track and
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recognise human faces. For face detection, most methods use skin detection, segmentation
and facial features; two examples are Hsu et al. [26] and Sandeep and Rajagopalan [53].
Of course, there are other methods; surveys can be found in, Yang et al. [70] or Hjelm̊as
and Low [23]. Hsu et al. [26] found that using eye and mouth maps together with skin
detection and segmentation drastically lowered the number of false detections, though it
also decreased the detection rate. Sandeep and Rajagopalan [53] used edge information to
group skin pixels into regions and used a width and height ratio to determine which regions
were faces. They concluded that using edge information increased the detection rate while
not heavily affecting the computation speed.

In face recognition, the aim is to identify to whom a detected face belongs. Two
common approaches for face recognition are to use eigenfaces [63] – see section 2.2.3 – or
to use facial feature positions [69]. Turk and Pentland [63] proposed an algorithm where
eigenfaces were used for real-time face recognition. Wiskott et al. [69] represent faces as
grids with facial features at the nodes and the distances between the nodes on the edges.
Both methods have shown high recognition rates on frontal views; the latter was also tested
on profile views, but with large decrease in the recognition rate compared with the frontal
views. For a survey of facial recognition methods, see Lu [37] or Zhao et al. [71]. These
methods are however not only used in robotics. For example, Rowley et al. [51] built a
system using neural networks to identify faces and concluded that such a system could be
used in media applications, e.g. search engines, to find faces automatically.

3.2.2 Robot–object interaction

In order to operate in many indoor environments and in order to accomplish many tasks, a
robot needs to be able to grasp and manipulate objects. For robot–object interaction, it is
not only necessary to identify an object, but also to identify its pose and position. Saxena
et al. [55] and Rusu et al. [52] have proposed methods to determine object orientation; the
latter was able to identify and orient common tableware with high accuracy. Their robot
was equipped with a stereo camera and used clouds of point-features to create a three-
dimensional model of the objects from which the object orientation could be determined.
Saxena et al., on the other hand, used symmetries to determine object orientation. While
they found the problem difficult to solve completely, they identified the orientation correctly
enough to let a robotic arm grasp several different types of objects.

An important task for a robot supposed to navigate an office or a hospital, is to identify
and open doors. Ng and colleagues [30, 48] constructed a robot able to open doors by
manipulating the handles. Their robot used a laser scanner to find the doors and a visual
detection system to detect and recognise the handles. The robot used SVM and PCA – see
section 2.4.2 and 2.4.5 – to locate and classify the object features; it also used contextual
information by taking into account that most door handles are located in waist height.
When a handle was found, the robot determined the action based on a classification of the
handle type. They tested the robot in a new environment with previously unknown doors
and it managed to open most of the doors. However, it had difficulties with glass doors,
doors with number pads and dim lighting conditions.
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3.2.3 Visual robot navigation

In robot navigation and localisation and in object avoidance it is common to use laser
range finders, sonars, or infrared sensors to determine the robot’s position and plan a
route. However, since digital cameras have become very cheap, more research is being
done in usage of visual cues. For localisation, such a visual approach is to use landmarks,
found either by object recognition [7,20,40] or by matching features directly [59,68]. When
using objects as landmarks, generating landmarks is a more supervised process than using
features directly, i.e. when using object recognition, the possible object types are chosen a
priori.

Making robots localise themselves can be approached in several different ways; Werner
et al. [68] used a robot with a panoramic camera to obtain colour histograms and Se et
al. [59] used a trinocular camera system to find SIFT features. Werner et al. had their robot
determine its position by finding a match among colour histograms connected to positions
from a previous mapping; similarly, Se et al. had their robot matching SIFT features. Both
groups achieved good results on local localisation, i.e. they improved odometry, but Se et
al. also achieved good results in global localisation, i.e. their robot could find its position
from just a map without any other previous knowledge.

Mata et al. [40], Celaya et al. [7] and Hayet et al. [20] taught robots to recognise both
artificial landmarks, specially made to aid in robot navigation, and natural landmarks,
such as office signs. Mata et al. used a pattern recognition method that segmented the
image into regions of interest and then used a set of genetic algorithms to determine if the
regions were real landmarks or not. Similarly, Hayet et al. [20] used natural quadrangular
landmarks, e.g. posters, found using edge detection. To aid landmark recognition, Hayet
et al. used the Harris interest point detector to extract features within the landmark and
then compared – by Hausdorff distance – detected landmarks to landmarks in a database.
Both these methods managed to detect landmarks accurately, even at large viewing angles.

These were just a few examples of approaches in visual landmark detection. Robot
navigation is a large topic and visual landmark navigation is just a part of it. For a more
detailed survey on visual robotic navigation, see DeSouza and Kak [9].
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Method

A computer program for scene interpretation has to find objects in cluttered environments
as well as determine the type of each object. This section will describe the algorithm
implemented in this project along with some background theory regarding the employed
methods. The selected structure revolves around two main parts: one part that finds regions
of interest and one part that decides if the regions contain any object or not. However,
before the method can be described in more detail, the environment in which the program
should be applied and the tasks it is intended to solve has to be discussed in more detail.

4.1 Selection of landmarks

The kind of object that should be located is a key factor in the method design. Different
objects are distinguishable by different kinds of features. In this project, the objects recog-
nised are intended for indoor landmark navigation, which limits the set of available objects.
For an object to suit as a landmark, it has to have a fix position and be easy to distinguish
from the background. In indoor environments, emergency equipment is one such group of
objects, since they are designed with distinct colours made to stand out. Except for their
colour and usually fixed position, they also have the advantage of being homogeneous in
colour and texture, which makes them easy to segment.

There are also objects that do not stand out in colour, that still are interesting to
use as landmarks. In this project two such groups of objects has been chosen, doors and
objects that stand out in intensity with a homogeneous texture. Doors are of great interest
in navigation; there exists doors that are distinguishable in colour and intensity, but they
are almost as often made to blend in with the background and doors are thus treated as a
separate group. A list of the chosen landmarks and the feature used to locate them can be
found in table 4.1.

19



Chapter 4. Method

Table 4.1: A list of the chosen objects and the features used to locate them.

Objects Feature
Emergency exit signs Colour
Fire alarm buttons Colour
Red signs Colour
Card readers Intensity
Doors Vertical lines

4.2 Locating regions of interest

The camera takes an image of a large part of the room and it is therefore necessary to
locate interesting parts of the image in order to isolate regions with a potential object that
can be used as input to the object recognition algorithm. The simplest way to do this is
to go through the image from top to bottom and around each pixel extract a rectangular
region as an image segment, for different region sizes. This method is guaranteed to find
image segments containing each object completely. The problem with this approach is
that it results in a great amount of image segments, most of which does not contain any
object. An image with n2 pixels and a region size of m2 can result in n2 − 2mn image
segments for one region size. For example, an image with 10,000 pixels, a region size of
100 pixels will give 8,100 image segments. Even if only every hundredth position is used
and if only ten different region sizes are used, the image will result in approximately 800
image segments for this small image. This will of course severely damage performance.
It is therefore interesting to locate regions where the probability for an object to exist is
large, i.e. regions of interest. By only extracting image segments from these regions, the
number of image segments are reduced and thus also the computation time. It should be
noted that there is a possibility that an object will not be included in the regions; however,
the performance advantages outweigh the disadvantages and the navigation task can still
succeed without finding every landmark.

4.2.1 Generating saliency maps

There are several ways to locate regions of interests; Mata et al. [40] use a segmentation
algorithm based on thresholding in the HLS colour space as well as space morphological
transformations1, where regions of interest are found as blobs with previously defined
geometries. Both the thresholds and predefined geometries are optimised by training the
segmentation algorithm. Gould et al. [15] create a visual attention map by calculating the
probability that a pixel belongs to an unknown object in any of the known object classes.

1Morphological transformations are a part of morphological image processing which in essence is built on
set theory. It is mostly used for binary images. Some examples are erosion, dilation, hole filling and border
extraction. For more information, see a book on image processing, for example Digital Image Processing
by Gonzalez and Woods [14].
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In this project, regions of interest are found by using saliency maps, inspired by the
work of Itti et al. [27] on visual attention. They use feature maps, which are combined
to a single saliency map. Their method is inspired by double opponent cells in the
primary visual cortex; they detect colour and intensity contrast, thus areas that stand out
in colour or intensity. There are three types of double opponent cells: two for colour, viz.
red–green and blue–yellow, and one for intensity. The colour double opponent cells compare
the relative amount of each colour in the centre of their receptive field with the amount of
the opponent colour in the outer rim of the receptive field, generating the largest response
for local colour contrast, e.g. green adjacent to red. The intensity double opponent cells
work essentially the same way, but measure the intensity instead.

To generate the colour double opponent maps, Itti et al. use four colour channels,
corresponding to red (R), green (G), blue (B) and yellow (Y ), calculated from the RGB
channels (r,g,b), pixel by pixel according to:

R = r − (g + b)/2 (4.1)

G = g − (r + b)/2 (4.2)

B = b − (r + g)/2 (4.3)

Y = (|r + g| − |r − g|)/2− b (4.4)

Negative values are set to zero. To generate the double opponent colour maps Itti et al.
use Gaussian image pyramids – see section 2.1.4 – made from the colour channels, by
comparing the colour channel values in the same area at different levels of the pyramid.

In the implementation in this project, contrary to Itti et al., the two feature maps are
used separately as saliency maps, one for finding red and green contrasts and one for blue
and yellow. A simpler method is also used to generate the colour double opponent maps, by
taking different sized regions around each pixel instead of using Gaussian pyramids. The
algorithm is described below using the red and green double opponent map as an example;
the blue and yellow map is calculated in the same way. Two different square region-sizes
are used, one small with side s and one large with side s + p, where s and p take several
different values. For each region, the colour difference is calculated according to:

∆RGregion(pixel) =
∑

region pixels, q

R(q) − G(q) (4.5)

The difference between the colour differences in the small region and in the large region is
then calculated according to equation (4.6). To get the double opponent value a summation
over s and p is done.

RGsp(pixel) = ∆RGs(pixel) − ∆RGs+p(pixel) (4.6)

RG(pixel) =
∑
s

∑
p

RGsp(pixel) (4.7)

To create a saliency map for the intensity contrast, the same method is used, but the
double opponent values are then calculated with the intensity mean in each region instead
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Figure 4.1: An example of the saliency maps generated with the double opponent method and
their performance under different lighting conditions. In the left column are the original images,
in the second the red and green double opponent maps, in the third the blue and yellow double
opponent maps and in last the intensity double opponent maps. Photo by authors.

of the colour difference, ∆RGs. An example of the saliency maps and their performance
under different lighting conditions can be seen in figure 4.1.

In order to limit the performance impact only a rough position of the regions with high
double opponent values is needed, the double opponent values are therefore only calculated
for every nth pixel, where n is small relative to the image size.

4.2.2 Extracting salient regions

From the saliency maps the regions of interests are found near saliency maxima; to de-
termine the size of the region so that it contains the entire potential object, some more
processing is however needed. This can be done by segmenting the image – see section 2.3.1
– and letting the location and extension of the segment to which the maxima belongs to
determine the size and location of the regions. There are many methods for image segmen-
tation, some that are more complex than others are, and each with different result. Here
region growth is used as it is easy to implement and gives a reliable result. In the region
growth algorithm, pixels, called seed pixels, are used as starting points for the regions.
The eight nearest neighbours of the seed pixel are examined, if they are similar to the seed
pixel, they are added to the region. Then the nearest eight neighbours of each of the new
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region pixels are examined and if they too are similar to the seed pixel, they are added to
the region, and so on.

In this case, the pixels corresponding to the maxima in the saliency maps are used as
seed pixels and the maxima will therefore be sure to belong to the regions. As similarity
measure, the Euclidian distance in the RGB colour space, between the potential region
pixel and the seed pixel, is used.

This method is unable to handle objects with a lot of texture or objects built from
several parts of different colours. To solve that task, a more complex segmenting algorithm
is needed. For the purpose of this project, where the objects chosen are homogeneous in
colour and texture, this method has a good balance between computation time and result.

4.2.3 Locating non-salient regions

The method described above is able to find objects that stand out in colour or in inten-
sity. However, as mention in section 4.1, doors are sometimes made to blend in with the
background; an extra method is thus needed to find the image regions that may contain
doors. The method used in this project and the method used by Lee et al. [32] and Hensler
et al. [22], is to locate long vertical lines in the image using the Hough transform; see sec-
tion 2.2.2. As doors usually are smooth, door candidates are located in the region between
a line and its closets neighbour. Very thin regions usually do not correspond to doors; a
minimum distance between the lines is thus used. If the distance between the line and its
closest neighbour is smaller than the minimum distance, the region between the line and
its second-closest neighbour is used instead, if that distance is large enough, and so on.

4.3 Object recognition

To identify an object automatically, some type of object recognition algorithm is required.
Such a computer program will typically contain one part for extracting the cues and one
part consisting of a learner that draws conclusions; see section 2.4. The selection of the
type of learner to implement is far from trivial. Different learners, such as neural net-
works (section 2.4.3) or SVM (section 2.4.2), will manage the task differently and the true
performance of each learner is not apparently visible a priori. If implementation and com-
parison of these, with respect to the implementation, fundamentally different approaches
are impossible, as in this case due to time limits, then the choice has to be done somewhat
arbitrary. In this case, neural networks were chosen based on the knowledge of their suc-
cessful utilization in other classification tasks and based on the subjective preferences of
the project group.

4.3.1 Cue selection

In chapter 2, different cues were introduced. In designing the neural network, the cues were
divided into two groups: (i) main cues and (ii) minor cues. The main cues are the most
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Table 4.2: The cues used in this project, both main cues and minor cues.

Main cues Colour
Eigenimages

Minor cues Horizontal position
Vertical position
Object width
Object height
Object proportion

important cues, but also the cues with most data. The minor cues are, on the other hand,
cues that by themselves do not give enough information to make a prediction, but still
can help the network make its decision. These minor cues normally consist of only a few
data points each. The selection of cues and the division of them can be seen in table 4.2.
The collection of cues is intended to capture different salient variations between the object
types. Each cue is briefly described in the following sections.

The colour cue

As mentioned previously, colour is an essential feature when humans design objects and
it is thus a natural cue to use in trying to identify salient objects, e.g. warning signs, in
office environments. Different aspects on using colour as a cue was briefly discussed in
section 2.3.2. In this project, the chosen implementation is to describe the colour by three
histograms, one per colour channel. These histograms are then used as one single main
cue. Each histogram consists of only a few bins in order to capture the basic appearance
of the object while being, at least somewhat, robust to different lightning conditions.

Eigenimages as a cue

In addition to colour, the perhaps most important cue for humans to differentiate an object
from another object is the shape of the object. Eigenimages, introduced in section 2.2.3, is
one possible choice of cue describing the shape of objects. In this project, eigenimages were
chosen because of their straightforward implementation. The input data for the eigenim-
age cue is generated by projecting a rescaled greyscale candidate-image onto the limited

eigenimage space. The eigenimage space is spanned by the eigenimages calculated from
the set of all non-background training images. The projection of the image gives a factor
in each eigenimage. The number of eigenimages is large if the training set is large and to
limit the amount of data, PCA – see section 2.4.5 – is used to select only the first few
major eigenimages, i.e. the limited eigenimage space.
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The minor cues

Many object properties are not discriminative, i.e. they cannot be used on their own to,
even vaguely, guess the object type. However, these properties are still important in limiting
the set of possible object types between which the object recogniser algorithm has to
decide. The size of an object is such a cue; it can be used in object recognition to make a
conclusion less probable or even exclude it completely, i.e. a two meter high object is not
a cup. However, to estimate the size of the object, it is necessary to know the distance to
the object; if the distance is not known, then the object’s proportions can be used. The
size can also be used as a vaguer cue, i.e. a cue where an object that takes up a large part
of the image probably is a large object or, possibly less probably, a close-by object. Object
size is in this project implemented as a vague minor cue.

Likewise, the position of the object is a quick aid in object recognition used by the
human brain, i.e. an object in an unfamiliar position is at first harder to identify [24].
Position estimation suffers from the same problem as above and the position has to be
implemented in such a vague way when no three-dimensional information is known.

4.3.2 Designing the neural network

Neural networks can be structured in many ways, ranging from simple feedforward networks
to arbitrary recurrent neural networks. The simple feedforward neural network is straight-
forward in its implementation, but suffer from two main problems; (i) local minima can
attract the learning algorithm very differently based on the random starting weights and
(ii) the number of weights can get very large since the number of connections typically grow
as O(n2) with the number of input neurons. The second problem is especially significant
in this project since the input stem from images and thus naturally can be numerous in
order to represent the variations in the images, each image possibly consisting of tens of
thousands of data points. It is essential to avoid building networks with too many weights
since more weights will result in a larger computational effort required for both training
and utilisation, as well as require more training data to learn all weights correctly.

One solution to the above problem, and the solution used in this project, is to build a
modular neural network (MNN). An MNN can schematically be described as a simple
feedforward neural network where each neuron is replaced by a network of neurons. Gener-
ally, of course, the MNN can be designed in any way that neural networks can be designed.
The particular design chosen in this project is based on a first layer of networks with one
network per object type and per main cue. In the second layer, a network per object type
takes the output from the networks specialised on finding that object type from different
cues. The third and final layer consists of one network that weighs together the output
from the different object-specialist networks as well as the minor cues. An illustration of
the design is given in figure 4.2. The modular network-design makes it simple to add or
remove cues, both main cues and minor cues, to the network and it is thus well suited for
experimentation and extension.

25



Chapter 4. Method

OutputInput
Layer 1 Layer 2 Layer 3

Minor cue n

P(A)

P(N)

Minor cue 1

P(N, cue 1)

P(N, cue 2)

P(A, cue 2)

P(A, cue 1)

...

...

Figure 4.2: An illustration of the modular neural network deployed in this project. In the first
layer, a simple feedforward neural network is specialised on each combination of object type and
main cue. The networks in the second layer weigh together the output from the networks in the first
layer to form specialists on each object type. In the third and final layer, the conclusions from
the object specialists are combined with the minor cues to form the input to the final decision
network, which draws the conclusion on what object is present in the image, if any.

4.3.3 Training the network

In order to decide between different object types correctly, the neural network needs to
learn the differences from a training set. There exist different types of learning algorithms,
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but the details thereupon are out of the scope of this text. In this project, the backprop-

agation algorithm – first introduced by Bryson and Ho [4] – were selected. The choice of
training algorithm and the tuning of the selected algorithm to best suit the problem at
hand have great effect on the result. An accessible introduction to backpropagation was
given by Wahde [67], here it will only be described briefly in order to give a background
to the specific choices made in this project.

In the beginning of the learning process, the network is assigned small random weights.
These weights describe a surface in weight space and to minimise the error in the net-
work output the weights needs to be optimised. The network output error is propagated
backwards in the network, hence the name backpropagation, to find the local error in the
output from each neuron. Each weight is then updated according to the local gradient.
This process is repeated over the training set in a random order and one pass through
the set is called a training epoch. After each epoch, the root mean square error (RMS
error) is computed on a separate, but similar, set called the validation set to determine if
the result has improved on unknown data. Training is aborted when the minimum error on
the validation set has been found, i.e. when further training will increase the error because
the network will be to specifically fitted to the training data and thus lose the ability to
generalise. The true performance is then measured on a third, completely unknown, data
set, i.e. the test set.

One common addition to the learning algorithm used in this project is weight decay.
By letting the weights decay, if not reinforced by the training, the impact of unimportant
input neurons will diminish with time. Weight decay will also penalise large weights and
thus lead to an overall smaller L1-norm2 for the weights. The latter is important since large
weights will lead to rough changes in the network output on small variations in the output
data and thus hurt the network’s ability to generalise [2].

Local minima are a difficulty in most optimisation problem and backpropagation is
no exception. In order to address the problem with local minima in this project, a small
random term was stochastically added to the weight changes.

A related problem faced, is the ratio between positive and negative examples, i.e.
the ratio between examples of object and non-objects in the training set. The negative
examples are typically much more numerous, and needs to be so in order to comprehend
the much larger variations between non-objects. The difficulties lie with the fact that if the
negative examples are allowed to dominate the learning process then the network is inclined
to become very pessimistic, i.e. give the correct answers to the numerous negative examples
by always determining that no object is present. To counter this tendency, a compensation
factor that makes the negative and positive examples equally important even while the
negative examples are typically ten times more common were introduced in the project.

2The L1-norm is the sum of the absolute values of all the elements.
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Results

In order to evaluate the algorithm, its ability to detect objects as well as its ability to
recognise objects and reject non-objects has to be measured. Another important factor,
since the robot is meant to recognise objects in real-time, is the image processing speed,
i.e. how many images it can process per second. It is also of interest to compare the speed
of the algorithm with the speed of an algorithm using the brute force method described in
section 4.2. In this chapter, the result of these measurements will be presented, but first a
description of the image data set used to generate these results is in order.

5.1 A description of the data set

The data set, on which the algorithm is evaluated, is decisive in what results can be
achieved. The set used in this project consists of 400 images taken in similar office corridors
at Chalmers University of Technology; figure 5.1 show an example image. Each image can,
and often does, contain several different objects, all of which are manually labelled. These
ground truth object regions are complemented with dynamically found salient regions that
pose as negative examples. The negative examples, or background examples, are selected
by the same algorithm that selects the regions of interest, thus giving specifically relevant
examples of the same kind as the non-object regions found when running the program.
The background regions are filtered to avoid fuzzy training examples that overlap the true
object regions. All in all the data set consists of about 7,700 image regions. These image
regions are equally divided into the training, validation and test sets. Different types of
objects are however diversely common; table 5.1 shows the exact distribution.

5.2 Object detection ability

The ability to detect an object, i.e. the detection rate, is measured by comparing the
ground truth object regions in the data set with the regions found by the object detection
algorithm. If all regions given in the data set are detected, the detection rate will be one. To
evaluate how well the regions match, an overlap threshold is used. The overlap threshold
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Table 5.1: The different object types and the number of image regions in the data set of each
type.

Object type Examples count
Background 6,595
Card readers 54
Doors 495
Emergency exit signs 147
Fire alarm buttons 69
Red signs 351

Figure 5.1: An example of a typical image in the training set. This particular image contains
several red signs on the left wall, a fire alarm button to the right and some hardly recognisable
doors. Photo by the authors.

sets the minimum region overlap, i.e. the area percentage that the larger region has in
common with the smaller region, required for the regions to be considered a match. A
small minimum overlap results in a higher detection rate, but then the algorithm consider
a region detected even if the regions hardly overlap or are of very different size. A large
minimum overlap gives a lower detection rate, but better matches. Since the recognition
algorithm can handle objects that do not match perfectly, the minimum overlap has been
chosen to 0.70.

As two separate detection algorithms are used to find regions of interest, the double
opponent method (section 4.2.1) and the Hough transform method (section 4.2.3), the
methods were first tested separately. The most interesting parameter to study is the num-
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Figure 5.2: The detection rate for the different object types using only the double opponent
method with the number of double opponent maxima, mdo = 0, 1, ..., 50.

ber of regions extracted as it affects the detection rate and the speed of the recognition
algorithm. The maximum number of regions extracted by the double opponent method is
the number of maxima extracted from each double opponent map, mdo, times three, since
there are three double opponent maps. For the Hough transform method, the maximum
number of regions extracted will be the number of Hough maxima, mht, extracted plus
one.

Figure 5.2 shows the detection rate using the double opponent method only. The de-
tection rate for each object type is plotted against the number of maxima for each double
opponent map, mdo = 0, 1, ..., 50. As can be seen, the detection rate is increasing with the
number of maxima, but the curve levels out. This is due to that the most easily detected
regions are detected first. Another problem is that objects might have been detected but
the segmentation is not good enough to pass the overlap threshold. The object types red
signs, fire alarm buttons and card readers are easiest to detect, while doors and emergency
exit signs are harder.

In figure 5.3, the detection rate of the Hough transform method is shown for the number
of Hough maxima, mht = 0, 1, ..., 60. Only door regions were detected and thus only the
door detection rate is shown. Figure 5.4 shows the detection rate for the different object
types using both methods with the number of double opponent maxima as mdo = 0, 1, ..., 50
and the number Hough maxima, mht = 25. As can be seen the detection rate for the
doors increased, compared to when using only the double opponent method. The detection
rate seem low, but to get a total detection rate of 0.22, which the algorithm achieves by
extracting 56 regions per image, a brute force method – see section 4.2 – need approximately
27,500 regions. The brute force method then uses 25 different template regions that are
shifted 10 pixels each step. A comparison of the object detection rate between the methods
for the different object types with the total detection rate being 0.22 can be seen in table 5.2.
The brute force method is good at detecting doors but less successful with the other object
types.
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Figure 5.3: The detection rate of the Hough transform method, used to find non-salient large
rectangular regions, plotted against the number of Hough maxima, mht = 0, 1, ..., 60.
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Figure 5.4: The detection rate for the different object types using both methods with the number
of double opponent maxima as mdo = 0, 1, ..., 30 and the number Hough maxima as mht = 25.

5.3 Object recognition ability

To measure the recognition ability, i.e. the algorithm’s capability to recognise the objects
in the detected image regions as well as the ability to discard regions without objects,
sensitivity and specificity are two common statistical measures. However, as the fol-
lowing section will show, neither of the two measures can alone give a correct picture of
the algorithm’s ability. Together they however give information on the recognition ability
of the algorithm. Common techniques, such as the ROC curve, will be introduced in the
following section together with an introduction to the sensitivity and specificity measures
before applying them on the algorithm.
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Table 5.2: A comparison between the algorithm and the brute force approach. The detection rate
is shown for the different object types and the total detection rate is set to 0.22.

Object type Double opponent method &
Hough transform method

Brute force

Card readers 0.2281 0.0526
Doors 0.2072 0.4427
Emergency exit signs 0.1296 0
Fire alarm buttons 0.2208 0.0390
Red signs 0.2730 0.0919
Total 0.2197 0.2223

5.3.1 Sensitivity and specificity measures

Sensitivity and specificity are statistical measures that describe an algorithms achievement
in a binary classification task. Sensitivity is a measure for an algorithm’s ability to identify
an object correctly. The sensitivity is defined as:

Sensitivity =
Number of true positives

Number of ground truth positives
(5.1)

A high sensitivity can, however, always be achieved by lowering the discrimination

threshold of the recogniser, i.e. the threshold the neuron response has to surpass be-
fore considered positive. For example, a classifier presented with the task of distinguishing
an object from the background can easily achieve a high sensitivity by simply classifying
everything as objects; such a classifier would however be pointless.

Specificity, on the other hand, measures an algorithm’s ability to avoid classifying a
non-object as an object; it is defined as:

Specificity =
Number of true negatives

Number of ground truth negatives
(5.2)

Similar to sensitivity, a high specificity can be gained by altering the discrimination thresh-
old. In the above example: a classifier that never finds an object would not make any false
calls, but it would be equally pointless as the classifiers that find objects everywhere. How-
ever, there is a relationship between the sensitivity and the specificity; e.g., a threshold
that forces the classifier to be extra certain before making the call would at the same time
force the classifier to miss correct classifications because it not is sufficiently certain about
them. An example of the relationship between the sensitivity and the specificity can be
seen in figure 5.5. In binary classification tasks, these two measures are easily understood;
however, in a multi-class classification task1, the specificity definition becomes unclear. In
that case, a true negative both can be a correctly identified negative of another class and be

1A multi-class classification task is a classification task with more than two options.
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Figure 5.5: The sensitivity and specificity for the background object class plotted together. For
the background class, a high discrimination threshold gives many detection and vice versa. The
data is generated on the test set.

a negative correctly identified as a negative but incorrectly classified among the remaining
classes. One definition – the definition used in this text – is to ignore such misclassifications
between the remaining objects when calculating the specificity.

Because of the dependency of the discrimination threshold, sensitivity and specificity
are not commonly used directly to describe the ability of a classifier. For that purpose,
an ROC curve is better suited. In an ROC curve, the true positive rate, i.e. the sensi-
tivity, is plotted against the false positive rate, i.e. one minus the specificity. The ROC
curve weighs together the sensitivity and the specificity where the area under the curve
describes the classifiers ability to make correct assessments. A numerical measure of the
algorithms ability is Matthews’s correlation coefficient (MCC), which was introduced
by Matthews [41]. The MCC is closely related to the correlation between correct and pre-
dicted classifications. However, the individual measures are still of interest, especially in
order to optimise the applied discrimination threshold.

5.3.2 The ability to separate objects from the background

Even if this algorithm is tasked with identifying multiple object types, the task of separat-
ing objects from background is distinct. The sheer number of background regions in the
images make that task crucial in order to maintain an overall low rate of false detections.
Fortunately, the task can be considered binary, thus allowing simpler analysis.

An ROC curve, describing the characteristics of this object recogniser’s ability to discard
background image regions correctly can be seen in figure 5.6. The explicit sensitivity and
specificity can also be seen in figure 5.5. In order to give a numerical score on the ability
the MCC is computed to 0.68. Another common numerical measure is the area under

the ROC curve (AUC), which in fact is equal to the probability that the classifier rates
a random positive higher than a random negative, and it is calculated to 0.96.
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Figure 5.6: This ROC curve describes the object recognition algorithm’s ability to difference
between background, i.e. examples that not belong to any object class, and objects. The diagonal
line is the line of no-discrimination, i.e. the score of completely random guesses. The data is
generated on the test set.
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Figure 5.7: The sensitivities of the recogniser computed on sets of positives for the different
object types. The sensitivities are computed on previously unseen examples only, i.e. the test set.

5.3.3 The ability to recognise different object types

The task of differencing between the multiple object types is non-binary and measures
intended for binary problems are thus no longer suited. The sensitivity can still be mea-
sured since it is computed only on the set of positives and thus on a binary problem; the
sensitivities for the different object types can be seen in figure 5.7. The sensitivities vary
greatly between the different object types. It can be noted that the curves for the different
object types meet the sensitivity axis at different positions. The position on the axis where
the meet occur give the percentage of the positive examples for each class that the classifier
incorrectly assign to other object types.

The specificity, however, cannot be computed for this multi-class task. The set of all
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Figure 5.8: The ROC curves for the approximate sensitivities and specificities of the recogniser
computed for the different object types when ignoring misclassifications among the object types.
The data is generated on the test set.

Table 5.3: The confusion matrix of the object recognition algorithm. The columns represent the
actual objects and the rows represent the classified results, thus the diagonal entries are the true
positives and the off-diagonal entries are the misclassifications. Data is generated on the test set.

Background Card
readers

Door Emergency
exit signs

Fire alarm
buttons

Red
signs

Background 2,110 12 44 8 6 5
Card readers 2 1 0 0 3 0
Doors 105 0 100 0 0 0
Emergency exit signs 20 0 0 45 0 0
Fire alarm buttons 8 1 0 0 12 0
Red signs 8 0 0 0 2 118

negatives contain correct answers on the same side of the discrimination threshold as the
examined class, thus the answer will not only depend on the threshold but also on the
network response for each object type. An approximated specificity can be computed by
ignoring the misclassification between the object classes. However, that misclassification is
important – as can be seen in figure 5.7; such an approximate specificity, however, permits
a comparison between the ROC curves for the different object types. The approximated
ROC curves can be compared in figure 5.8.

The true ability of the algorithm is only encompassed by the confusion matrix, see
table 5.3. However, the information is not easily grasped on that form.
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Table 5.4: The execution times for the selected algorithm and the reference brute force approach.

Method Average execution time per image Images per second
Brute force detection 75,997 ms 0.013
The algorithm 1,676 ms 0.60

5.4 Performance

One major assumption in this project has been that a brute force approach to object
detection would be too slow for a real-time application. To test that assumption and to
evaluate the speed of the algorithm a simple test were run. As seen in section 5.2, 27,500
equally spaced regions of varying size gives a roughly equal object detection rate as the
implemented algorithm with its selected parameters. The average time it takes the program
to analyse each image in a small set when using each method were sampled; each test
were repeated several times in order to average out noise in the background load on the
computer2. The resulting figures are displayed in table 5.4 and as can be seen the difference
is truly significant.

2The test system used ran Windows 7 64-bit on an Intel Core 2 Duo E6600 processor at 2.6 GHz with
4 GB of RAM.
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Discussion and conclusion

6.1 Discussion

6.1.1 Evaluation of the algorithm

The object detection algorithm does not give a very high detection rate. It should however
be noted that it is highly dependent of the manually labelled data set. However, a higher
detection rate would have been an improvement. One reason for the low detection rate
is that the camera has difficulties with lighting differences, making shadows darker and
illuminated areas lighter, thus spoiling the contrast of the image. In many cases, this
results in objects not being detected. Even if the objects are salient enough, this may
still cause incorrect segmentations. Another challenge is the environment where the robot
operates in which the objects often are small. However, these challenges are solvable and
the essential concept, to locate regions of interest and thus minimise the number of regions
analysed by the recognition process, succeeds. The number of processed regions needed for
the same detection rate is much lower compared to the brute force method. The algorithm
also shows a consistent detection rate over the different types of objects, as can be seen in
table 5.2.

That the applied object recognition algorithm is capable of correctly distinguishing ob-
jects from background with high probability can be seen from the ROC curve in figure 5.6.
However, the algorithm has more difficulties separating the different object types; see fig-
ure 5.7. A comparison between the results for different object types in figure 5.7 and the
available amount of training data, shown in table 5.1, makes it probable that shortage of
training data is the key to these difficulties. Tests with more object types have shown that
the algorithm is scalable with the capacity to learn more than these five object types.

The current setting, i.e. office corridors, is not ideal in object recognition aspect. Objects
are typically viewed at a small angle, thus limiting the image detail in the data. The
navigation task at the same time imposes a wide viewing angle to encapsulate several
objects simultaneously and thus allows each object to seize a smaller part of the image.
The human visual system has the ability to focus its attention to one object of interest at
a given time and thus gain high resolution and accurate data about that object in order
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to identify it. In fact, many of the examples in the training set are hard for a human to
recognise from the images only; often the brain needs to use more information, such as
wall and floor position and heavy contextual information, than what is available for the
algorithm from the implemented cues.

6.1.2 Suggested improvements

There are several ways to improve both detection and recognition. A change to a more
modern and high-end web camera with faster auto focus and better light handling is
maybe the most obvious way. A major problem in recognition is that many objects are
viewed at a wide angle and at a large distance. By loosening the constraint that several
landmarks should be detected at the same time, a more beneficial and easily recognised
image of the object can be gained. One way of accomplishing this is to use a combination
of a high-resolution view of the object with a low-resolution view of the scene, similar to a
method introduced by Gould et al. [15].

The algorithm has been implemented with the idea that it should be easy to add
new feature detectors for the detection algorithm as well as more cues for the recognition
algorithm. By adding the Hough transform method, the detection of doors was greatly
improved and other such extensions will make similar improvements. One such possible
addition is to use more context information, e.g. detecting walls, floor and ceiling, or use
a stereo camera to retrieve depth information. Any additions will of course result in a loss
of speed and any extension of the network will require more training examples.

With improvements of frameworks such as CUDA and OpenCL, graphic cards have
been made available for easier utilisation in parallel computations. By enabling faster par-
allel calculations for the image processing by using such frameworks, the speed of the
algorithm would be vastly improved thus allowing for extensions to algorithm. The speed
could also be improved by using multi-thread computations, easily accomplished by utilis-
ing improvements in the .NET 4 framework or by reworking the code.

6.2 Conclusion

In this thesis, cameras have been used for detection of objects to be used in landmark
navigation. The algorithm describe above locates and recognises objects in real-time. The
question is, however, if full object recognition is needed for landmark navigation. There
are probably more efficient ways to use cameras to navigate without recognising objects
first, such as using SIFT features directly.

However, a few steps have been taken to a more general scene interpretation, by achiev-
ing real-time object detection and recognition in office environments. Even though the al-
gorithm in this thesis has been trained on emergency equipment and doors, it can easily
be retrained to detect and recognise other object types. It has been shown that object
recognition using cameras are possible to achieve in real-time and that it in the future
should be possible to achieve a more general scene interpretation.
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