
Traffic Control with Standard Genetic Algorithm
A simulated optimization control of a Traffic Intersection

Master of Science Thesis/ Thesis work in Intelligent Systems Design

GUSTAF JANSSON

Department of Applied Information Technology
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden, 2010
Report No. 2010:127
ISSN: 1651-4769

REPORT NO. 2010/127

Traffic Control with Standard Genetic Algorithm
A simulated optimization control of a Traffic Intersection

GUSTAF JANSSON

Department of Applied Information Technology
CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2010

Genetic Algorithm controlled Traffic Intersection
A practical use of Standard Genetic Algorithm for Traffic Intersection control
GUSTAF JANSSON

© GUSTAF JANSSON, 2010

Master's Thesis report no 2010:127
ISSN: 1651-4769
Department of Applied Information Technology
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Cover: Figure of the traffic intersection, also found on page 12

Reproservice / Department of Applied Information Technology
Göteborg, Sweden 2010

Genetic Algorithm controlled Traffic Intersection
A practical use of Standard Genetic Algorithm for Traffic Intersection control
GUSTAF JANSSON
Department of Applied Information Technology
Chalmers University of Technology

Abstract

In this master’s thesis, the possibility to use genetic algorithms to solve real world
problem is tested and evaluated. The type of genetic algorithm considered in this thesis
is the standard genetic algorithm, and the chosen problem involves traffic control of an
intersection with road vehicle, tram and pedestrian traffic. Genetic algorithms are
stochastic and biology inspired search techniques mostly used in science related work to
find optimal solutions. They are usually very resource taking in terms of CPU time and
memory size. A hardware issue, relating to how to implement the genetic algorithms
into an embedded system, is also covered.

The major part in this work is concerned with applying genetic algorithms to find
optimized scheduling solutions for efficient traffic flow. The traffic intersection is used
to illustrate problems where optimal scheduling for drive order is needed, thus the
results produced by the genetic algorithm depend on the present situation in the
intersection. An additional search method called Depth First Search (DFS) is used to
verify the results from the genetic algorithm. The problems with constraint rules
affecting this work are also covered.

FPGA and microcontroller are both suitable hardware for genetic algorithm
implementation, this work will only cover implementation of the microcontroller. The
control of the intersection is assumed to be directly from this hardware implementation,
and being totally independent from any outside control system. The traffic intersection,
which is not a real existing intersection, is independent from adjacent intersections. All
simulation programs acts as controller programs for the intersection. There are three
different simulation programs in total, all coded in programming language C.

This work will not present a complete final result, for example a hardware
implementation ready to use. It stays on simulation programs only.

Keywords: Standard Genetic Algorithm, Traffic Intersection, Embedded Systems,
FPGA, Microcontroller, Depth First Search, Constraint Rules.

iii

iv

Content
Abstract..iii
Acknowledgement...vii
1 Introduction...1
2 Description of Standard GA..3

2.1 Standard GA description..3
2.1.1 Initialization...4
2.1.2 Decoding..5
2.1.3 Evaluation..5
2.1.4 Fitness function..6
2.1.5 Elitism..6
2.1.6 Tournament selection...7
2.1.7 Crossover..7
2.1.8 Mutation...7

2.2 Program details for Standard GA...8
2.3 Search space...9

3 Traffic intersection...11
3.1 Description of the intersection...11
3.2 General functionality...12
3.3 Easy working example...13
3.4 Details and modifications..16

4 Programs..17
4.1 Standard GA versions..17
4.2 DFS version...18

5 Rule problems..19
5.1 Example of rule problems..19
5.2 Solutions for this problem..20

6 Embedded solutions...21
6.1 FPGA...21
6.2 Microcontroller..22

7 Simulations..25
7.1 About the simulations..25
7.2 Performed simulations...27

7.2.1 Computed Standard GA simulations..27
7.2.2 Microcontrolled Standard GA simulations...28
7.2.3 DFS version simulations..29

7.3 Simulation results...31
8 Conclusion...35

8.1 Simulation conclusion..35
8.2 Future improvements...35
8.3 Summary..36

9 References...37
9.1 Books...37
9.2 Documents...37
9.3 Internet...38

10 Appendix..39
Appendix A Traffic intersection drive orders chart..41
Appendix B Mathematical fitness functions..43
Appendix C Propositional logic for outputs..45

v

Appendix D Propositional logic for drive order sequence...47
Appendix E Program windows of Standard GA..49
Appendix F Program windows of DFS version...51
Appendix G Program code of Standard GA..53
Appendix H Program code of DFS version...61

vi

Acknowledgement

This master's thesis is carried out in Chalmers and IT University in Gothenburg during
2010.

From my point of view it has been very inspiring to do this work. Several new ideas and
perspectives have coming up along this work. More than a dozen millions artificial
individuals have passing by on developments and simulations.

Special thanks to my examiner and supervisor to this work Claes Strannegård. I would
also thank class and family members for additional supports.

vii

viii

1 Introduction

The aim of this master's thesis work is twofold. The first is to find a way to implement a
genetic algorithm (GA), into an embedded system. The second and the major part, is to
solve a real world problem with this GA. This problem is to find good traffic flow in the
traffic intersection crossed with road vehicles, trams and pedestrians.

The specific GA used in this work is a Standard GA. GAs is an adaptive and efficient
heuristics that are able to solve optimization problems. This is a stochastic search
technique to look for optimal solution. Most GA is used in research and science related
work to look for optimal solutions. They usually run on powerful computers as GAs
generally are resources taking in term of CPU time and memory size. Some methods
GA uses are selection, crossover and mutation inspired from evolution in the real nature.
A GA produced solutions comes out from one of many artificial individuals that contain
the highest fitness value. Out from this individual a hopefully good to perfect answer of
the specified problem can be found.

The main purpose of this work is to test if a GA can be used out in the field. To do this,
it will be applied and tested on a reasonably simple problem. This work also includes
finding simpler hardware for implementation. This traffic intersection comes into
illustrate a real world problem to work with. Optimal scheduling will be the work
method to produce drive order sequence depending up on the present situation.

There are three simulation programs in total; computed Standard GA, microcontrolled
Standard GA and a computed DFS version. The last one use depth first search (DFS)
algorithm. The DFS will be used to find the real answer in the search space. This answer
will then be compared with the results from both the other Standard GAs simulations.
All simulation programs are coded in programming language C. The embedded system
used during this work is a microcontroller that must use C language.

In terms of controlling the intersection with GA, only independent control from
hardware implementation will be considered in this work. No other outside control
system will be considered. The intersection will also be assessed in isolation, meaning,
not considering adjacent intersections.

1

2

2 Description of Standard GA

The specific kind of GA used throughout this work is a Standard GA [Wahde, 2008]. A
Standard GA is one type of different GAs. In a big view GAs is one under group to the
term of evolutionary algorithms. In general GAs is a search algorithm based on the
natural selection and genetics [Goldberg, 1989]. It uses a number of artificial
individuals looking through a complex search space by using functions of selection,
crossover and mutation. The purpose to use GA is searching and finding optimal or
good enough solution. This solution will hide in a big search space to look through. Is
no guaranty to find any exact solutions when using a GA. Some result can even be far
from optimal when GA gets stuck in so called local optimum in the search space.

2.1 Standard GA description

This general description includes how GA works and special the Standard GA. Some
detailed functionality for the simulation programs is also included. The Standard GA
starts by initial a population with certain number of individuals to work on. Each
individual consist a number of chromosomes depending on the problem to solve. Each
chromosome consists of certain number of genes (see Figure 2.1). The genes are binary
represented in the chromosome and they are decoded to get out a special parameter
value to working on.

Figure 2.1: One individual with 24 genes and three chromosomes

When entire individuals are decoded, all results from each chromosome are evaluated
for fitness calculation. After decoding and evaluating all individuals from entire
population, the best individual is compared to the best one so far. If this new individual
is better than the previous best individual, it will be saved to the next generation and
entitled as the new best one so far. What is considered the fittest one depends on the
problem defined by user. One example can be a two variable function when the best
result is the minimum value of the function. In this case the best result is the smallest
and (the result need to be inverted by fitness=1/y). In this work, only maximum values
are considered. Before the next generation is produced, three procedures will take place

3

to create a new population including selection, crossover and mutation. These are
described in more detail further down and Figure 2.2 shows the Standard GA work flow.
If a best or good enough individual is found, the Standard GA can terminate. In case of
when the maximum number of a generation run out without finding a best or good
enough solution, the best individual that is found will be presented as the solution.

Figure 2.2: Work flow over Standard GA

The program starts with initialization and then beginning the first generation in a loop
by decoding, evaluation and fitness measure. After that loop is finish a new population
are created by first do elitism and there after selection by tournament. Last following
two procedures is crossover and mutation before next generation begins. The following
descriptions for used Standard GA have source code in Appendix G.

2.1.1 Initialization

Initialization involves settings the parameters for the algorithm, set up input values for
the simulation, and creating population of individuals to the first generation. The most
basic set up are the number of genes and chromosomes, the number of generations as
well as the number of individuals per population. The number of individuals is
preferably even numbered. Other adjustable settings for any GA are the probabilities of
crossover, mutation and tournament. These floating variable values need smaller
changes when improving the performance of the GA. Other variables are to be
described in each part where they belong. Array population is given random values 0
and 1 to each gene and that makes binary values to each chromosome. A gene can for an
example have other values for example natural number representing something as cities

4

in the Travelling Salesman Problem (TSP) [Stuart & Norvig, 2003].

A special vector in this program called inputValue containing “real world sensor inputs”
from the intersection to simulate on. Array inputValues have up to eight stored inputs for
eight future time periods for simulations. All simulations do ten time periods, where the
last two time periods are input free.

2.1.2 Decoding

After initialization, the program enters the main loop of Standard GA, commencing the
decoding of the chromosomes. The decoding is user definable. For example, one
chromosome can represent many different values, as demonstrated in Figure 2.3.

Figure 2.3: Three different ways to decode one binary chromosome

In this program each chromosome have four binary genes representing binary number
from 0 to 15, providing 16 separate solutions representing drive orders for the
intersection (see Appendix A). The arguments population and i, identifies certain
individuals to read from. The number of genes and chromosomes, and actual
chromosome order, tells where to read on the actual individual. The first gene on the
chromosome is the Least Significant Bit (LSB) and the resulting number is returned and
stored in variable called parameterValue(chromosome number).

2.1.3 Evaluation

The purpose of evaluation is to determine the fitness of each individual in a generation.
The evaluation function applies a mathematical function to calculate the fitness values
(see example in Figure 2.4). Each calculated fitness value will be returned from the
function called EvaluateIndividual. The arguments to the function contain chromosome
values, input vector and the previous drive order.

Figure 2.4: Fitness calculation example from individual with three chromosomes

5

The fitness calculation process is the same for all programs, and uses three calculation
stages. Evaluation of present situation at the intersection are calculated according to
inputs sensors from the site, older inputs with added priority and the previous drive
order that occurred.

The first calculation stage, are summary points cnInputs from new and old inputs by
mathematical functions (see Appendix B). These values are retrieved from inputValue
containing input values from the intersection. The values range from 0 to 6, where 0 is
non-requesting sensor, 1 is new input and other values are older remaining requests. The
input is set to zero in the main code when the equal output, of that input, is known to be
executed. In simulation view will be a road vehicle that have driven away and then left
the sensor. Also in main code is the priority boost for non-executed requests, is done by
adding value one until next time period.

The second calculation stage is dependent on the previous drive order, variable
previousExcecution and a set of rules, listed in Appendix D. The propositional rules
only tell what previous drive orders that will give extra credits of two points or not by
sn. The purpose is to favour certain sequence of drive orders that are good for the traffic
flow. On every simulation start are previousExcecution equal to value 16 that is a non-
valid zero credit drive order. In case of same drive order repeats itself, a penalty
calculation will be used by subtract minus five points to avoid repetition.

The last calculation stage summarise all chromosome points by following equation:

f =
6
∑
n=1

7−ncnInputssn

This function is the actual fitness calculation returned by the evaluation function. Each
chromosome cn is a summary from the previous two stage calculations. Example of
chromosome two is c2 = 5(c2Inputs+s2). The aim for the solution is to execute many
requests earliest as possible. So each chromosome is multiplied by a number from six
and down, to favour higher points on the early time periods rather the last ones.

2.1.4 Fitness function

After an individual has been decoded and evaluated it has been given a fitness value. If
this value is more (not equal) than the present maximum fitness value, this fitness value
will become the new maximum fitness value. In addition to updating the maximum
fitness value in variable maxFitness, each parameter value from this individual is also
stored under the six variables bestParametervalue(chromosome number).

2.1.5 Elitism

When all individuals have been evaluated, the one with the highest fitness value is
stored unchanged in the first row in the next population array. This is done because the
following procedures for the other individuals are going through tournament selection,

6

crossover and mutation. The last two will destroy or hopefully improve current
individuals in the next generation.

2.1.6 Tournament selection

At the beginning of generating the next population, all individuals are taken through a
selection procedure called tournament selection. In this procedure, individuals are
compared against each other in a tournament where individuals with the highest fitness
value have a higher probability to be selected. The tournament probability is a fixed
value in variable tournamentProbability. In this program 30 individuals are taken
through the selection, two individuals per tournament, resulting in 15 tournaments
between randomly selected individuals.

2.1.7 Crossover

Crossover and mutation are the two procedures that bring new evolutionary material for
the GA to work on. In the crossover procedure two individuals are chosen from the
population to create new offspring. This is achieved by choosing one or two randomly
chosen crossover point (one in this program) along the bit strings. The crossover points
indicate where exchange of values between the individual are to occur to create the new
individuals. In this case, the first section (before the crossover point) of the bit string of
a new offspring of an individual remains unchanged while the end section (after the
crossover point) exchanges values with the other individual. When a second crossover
point is used the remaining third part is from same individual again (see Figure 2.5).
The probability to do crossovers is defined by variable crossoverProbability which let
most of all individuals to undertake the crossover procedure.

Figure 2.5: Example of crossover by two crossover points

2.1.8 Mutation

The mutation operation makes small changes to an individual and is used to maintain
genetic diversity from one generation to next. In this work, the mutation operation
involves generating a random variable for each bit in a sequence. This random variable
mutationProbability tells whether or not a particular bit will be modified. Therefore,
mutations might or might not have an effect on an individual (as shown in Figure 2.6).
When a very low mutation probability is used, then this operation becomes rare. In the
long-run, mutation brings new and more different individuals that hopefully give better
fitness value.

7

Figure 2.6: Mutation on first individual and no mutation on the other one

2.2 Program details for Standard GA

This section will outline a general description how this Standard GA works in the
simulation program. The settings are the same in all Standard GA simulations except for
the microcontroller (see Chapter 6.2).

Number of genes in one individual are 24 divided on six chromosomes gives binary
value to decoding on each from 0 to 15.

Each population have 30 individuals and new population is created to every generation
that is maximum 100 for one time period simulation. So every generation do 30
evaluations multiplied with 100 generations will be 3000 evaluated individuals. But
because of elitism is used approx 29 unique individuals are expected per population.
Settings for crossover probability are 85%, mutation probability 4% and tournament
probability 90%.

The Standard GA is a main part inside the loop that re-run every time period. Before the
loop starts, an initiation will take place and the inputValue, for the present time period to
be simulated, brought in. Following this, the actual Standard GA loop will start running,
working according to the description in Chapter 2.1. When finished, the best individual
is to be stored in a specific array called goodIndividuals for future use. This is a kind of
elitism, when saving individuals unchanged after each complete Standard GA run. In
order to store an individual to goodIndividuals array, the best individual's maxFitness
needs to be higher than totalMaxFitness from the entire ongoing simulation. This array
will then contain some of the best previous individuals which are copied to array
population in every new Standard GA loop. Reusing previously identified good solution
for future needs allows for faster and improved results. In that way the simulation
program is self-learning.

In the simulations there are up to eight sets of inputs and the program runs the Standard
GA ten times in total. After some tests of worst case scenarios, it was concluded that at
least six chromosomes are needed per individual to easily read enough predicted drive
orders. Predicted drive orders can be represented as a forecast over possible upcoming
drive orders. This forecast is based upon the present situation. When the actual time

8

period has been executed, the Standard GA will start searching for a solution for the
following time period. Depending on the inputs to the new time period, this new
solution may or may not be equal to the previous predicted one for this actual time
period. The result is presented in a symbolic way by printout on the screen only (see
Appendix E and Appendix F). The final code for this description, and belonging
simulation inputs of Worst case one, are included in Appendix G.

2.3 Search space

Both the Standard GA and the DFS version (described in Chapter 4.2) are working on a
search space containing large numbers of possible solutions. Due to rule problems
(Chapter 5), a limited search space is use in this work. This search space is the same for
all simulations. The number of possible solutions for this search space, when looking at
a six time period into the future, is up to 1.7∙107 solutions. This equals the number of
bottom nodes on the search tree (see Figure 2.7) resembling an upside down tree, where
each node grooving with 16 branches. This figure illustrates one simulation by DFS
with previous executed drive order 12. Because the previous executed drive order needs
to be included in the evaluation calculation, the total search space is actually 16 times
bigger, giving 2.7∙108 solutions. Only one of these 16 is used for each time period
simulation, depending on the previous executed one.

Note that all simulations starts from non-valid drive order 16. This simulated search
space O is calculated by six levels deep d and each of all nodes have 16 branches b.
That makes a six levels search tree on following equation:

O(bd), b = 16, d = 6, 166 ≈ 1.7∙107

This concludes to 17 millions of possible solutions to look through. The Standard GA
will only conduct up to 3000 evaluations out of this search space.

Figure 2.7: Search space for all simulations

9

10

3 Traffic intersection

The purpose of this work is to assess the potential of applying GA to solve a real world
problem. In this work, it is represented by a traffic intersection. This choice is based on
the basis the function and purpose of an intersection is easily understood and still
provides an advanced enough problem to work on. Typically intersections equal to this,
with limited space and tramways, are found in large cities.

The purpose is to find an optimal schedule for optimal drive order sequence. The time
duration of the traffic lights is supposed to be fixed. The assumption maid in this work,
is the use of a controller unit with implemented hardware in form of an embedded
system, contains the Standard GA program controlling the intersection in the reality.
Inputs to the controller are all sensors and push button around the intersection and the
output is the actual light poles. The actual traffic lights are not printed on Figure 3.1 but
the output variables are mentioned in Appendix A and listed in Appendix C. The
location of the input sensors are, for pedestrians the push buttons (black dots), for road
vehicles the sensors under the road lane edge where they stops for red lights (under the
arrows), and for trams just before the turn out on tram line where they usually stop for
there red lights.

There are several works that have provided inspiration to this work with GA and traffic
controlling. One example is [Guan, et al., 2008], a paper discussing signal time
optimization tested on 30 intersections in Changchun city. Dynamic signal control is
also used in [Yang, et al., 2006], a paper about one isolated intersections only. A
different but inspiriting paper is traffic flow for lane closures to minimize travel delay
[Ma, et al., 2004]. In another paper with dynamic traffic lights time control for
pedestrian and passing road vehicles on one intersection [Turky, et al., 2009]. But
almost all of these are outside the intention to do scheduling by drive orders. Additional
inspiration for scheduling has been drawn from paper [Fissgus].

3.1 Description of the intersection

The structure of the intersection is based on general intersection that can be found in
any city around the world. In general this is a four-way intersection from north to south
and west to east (see Figure 3.1).

Some traffic rules applied on this intersection are as follow. Road vehicles can turn in
any direction except back to where they come from, so U-turns are not allowed in this
test. Road vehicles turning left or right have to give way for pedestrians at pedestrian
crossings. Both road vehicles and pedestrians are to go northbound and southbound at
the same time, or in the same manner, westbound and eastbound traffic at the same time.
The tram-way travels in all directions except turning between west and south, assuming
this curve is not required in the intersection. The north and south going street is
considered to be the main road, carrying the majority of the traffic load. The street to the
west has moderate traffic and slightly more tram traffic. Finally, the small street to the
east, has a low traffic load but trams are more frequent. All four streets have pedestrian
crossings, linking the pedestrian paths between the pavements on either side of each

11

street. Due to heavy traffic and the width of the streets, three of the crossings are
divided up into three separate sections (road vehicle lane, tram lane, road vehicle lane).
Two push buttons are provided for each section.

The intersection will not be dependent on other adjacent intersections nearby. This
scenario could be assessed in a potential extension of this work. The Standard GA is
only to solve optimal drive order sequences for this intersection.

Figure 3.1: Image over the intersection

3.2 General functionality

The source code contains all the inputs and outputs variables represented by the
intersection. The inputs are retrieved from inputValues arrays and the outputs are printed
on the screen. All drive orders allow certain pedestrian, trams and road vehicles to go
safely. Most importantly, to avoid accidents, 16 prepared drive orders have been
assigned as safe output solutions (see Appendix A).

Each sensor input can be seen as a request from the activator that gives a numerical
value one. A request needs to be executed, by its equal output, through an appropriate
drive order. Outputs have only a symbolic function in the code, although it can be seen
as Boolean representations true for execute otherwise false. Note that red and green
lights are dependent on the executing drive order.

12

Sets of mathematical functions and logic rules evaluate each drive order to know how
valuable they are to be executed. Drive order that executing many requests is better than
less executing ones. Executed requests get there input value set to zero. For each new
time period, outputs for executing the requests are always coming from chromosome
number one c1. Non-executed requests will get their value added by one to get higher
priority. This process provides a better chance to get higher fitness value in the next
time period. The mathematical functions are listed in Appendix B, additional logic rules
in Appendix D and outputs according to certain drive order in Appendix C. Further
down is a list of letters that form the variable names of inputs requests and their equal
outputs. An example, abbreviations meaning road vehicles going from south to north
and east would be called RSNE. Output variable name of this will then be ORSNE, and
corresponding input request variable IRSNE.

First letter: I for input
O for output

Second letter: P for pedestrians
T for trams
R for road vehicles

Third letter: N from northbound direction
S from southbound direction
W from westbound direction
E from eastbound direction

Forth letter: N to northbound direction
S to southbound direction
W to westbound direction
E to eastbound direction

Fifth letter: W also to westbound direction
E also to eastbound direction

3.3 Easy working example

The following example scenario has been created to further describe the functionality.
This case has one of each pedestrian, tram and road vehicle request. Entire simulation
takes three time periods to complete.

The pedestrian request is PW1 on the north-west pavement. A push button acts as sensor
input and inputValue IPW1 equals true. By then is this pedestrian lane requested. This
pedestrian lane will cause interference to the tram eventually. Pedestrian lane PW2
might be activated there after.

Assume a tram standing from east activating sensor ITEW, tempting to go west. Also
assuming that the tram driver somehow can give a direction order, depending on where
the tram route going. Only one direction is possible to request.

On road lane RSNE, a car coming to stop for red light and sensor IRSNE is activated. How
many other road vehicles standing behind on this lane doesn't matter. There is nothing
that tells where this road vehicles going north, east or both, they are allowed for both.
Although the RSNE requests do interfering the trams request anyway.

13

This beginning situation is shown on Figure 3.2. The car and the pedestrian do not
interfering each others, the tram do. Only the tram or both pedestrian and the car can go
on first time period. Two solutions are possible by resulting sequences 8-10-15 and 10-
8-15. Most fitness do 8-10-15 have where the tram go first on drive order 8. Output
variable OTEW sets to true, equals to execute the tram request. The second predicted drive
order 10 will be next executable, where both OPW1 and ORSNE are set to true. In theory the
pedestrian needs to activate IPW2 although is not necessary. The logical sequence rule
R15 in Appendix D giving credits when drive order 15 comes after 10. No request for
PW2 is needed due this becomes executed by drive order 15 anyway.

The second solution 10-8-15 is an example of a result not as good as what could be
expected. The tram needs to wait and there are no extra credits for previous drive order.
For this simple example it doesn't matter who goes first. Otherwise, it's more crucial in
heavier traffic situations. The real simulation result of this Example case is shown in
Chapter 7.2.

Figure 3.2: Beginning of Example case

14

Table 3.3: Two different fitness calculations on each drive order sequence

A close look in Table 3.3 and a calculation example following. This table show the
second solution sequence 10-8-15. Why it's second best is simple proven by verifying
the fitness results 28 against 54. Note that, in both solutions, drive order 10 have higher
value than 8. This does not matter when the total fitness value counts for the final result.

In the tables, on T1 is executable E drive order 10. Chromosome one c1 have a total
value 48, this value is calculated further down. Note the previously drive order on T0 is
8. First calculation is to summarise inputs belonging drive order 10, in following
equation (see Appendix B):

c1Inputs = IPN2 + IPW1 + IPW2 + IPW3 + IPS2 + IPE + IRNW + IRNS + 2IRSNE

Note that the RSNE is weighted with multiplication by two. Both PW1 and RSNE have
value one from previous time period. Until this time period their input values are added
by priority with one more point as follow:

c1Inputs = 0 + 2 + 0 + 0 + 0 + 0 + 0 + 0 + 2·2 = 6

Second calculation may give a credit of two points. Is depends on logic rules for drive
order sequence from Appendix D. The drive order 10 has following sequence rule:

R10 P10 ˄ (EP8 ˅ EP9) → ATwoPoints

This give in Boolean representation due is true that previously drive order was 8:

R10 true ˄ (true ˅ false) → true

As the result is Boolean ATwoPoints = true, that is equal to s1 = 2 in the evaluation function.
This give the first chromosome c1 = 6(c1Inputs+s1) = 6(6+2) = 48. The final fitness
functions summarise all values by equation:

f =
6
∑
n=1

7−ncnInputssn

The second chromosome have no more requests left and c2Inputs = 0, previous drive order
was 10 gives s2 = 2. Total chromosome value is c2 = 5(c2Inputs+s2) = 10. Then the total

15

E P1 P2
T0 8 10 15

f=c1+c2+c3 6 40 8 54
T1 10 15 8

f=c1+c2+c3 48 10 0 58

E P1 P2
T0 10 8 15

f=c1+c2+c3 18 10 0 28

Tram first fitness

P & R first fitness

fitness value for T1 is f = 48+10 = 58.

The outputs for drive order 10 when it executes are:

E10 → OPN2 ˄ OPW1 ˄ OPW2 ˄ OPW3 ˄ OPS2 ˄ OPE ˄ ORNW ˄ ORNS ˄ ORSNE

As all of these output variables are set to true, the pedestrian from PW1 can continue
walking directly on to PW2 as this too, has green light.

3.4 Details and modifications

Throughout the testing process, a few adjustments have been made to improve the
program. These adjustments involve weighting of inputs variables in the evaluation
function. The reason for the weighting is to favour some of the rarely used drive orders.
The most used drive orders include 7, 8, 12 and 13, who are often presented by the
Standard GA, and therefore the most strategic drive order used. One reason for this is
due to the fact that some trams and road vehicles requests are harder to execute. For
example, tram OTEW (two cases possible) and road vehicles ORSW (only one case
possible). Another reason is the amount of pedestrian inputs, as these accumulate many
points by being superior in numbers.

To adjust for these rarely used drive orders, some variables get weighted by multiplying
with a certain number. They get higher probability to be used as smarter options in low
traffic situations. Further down is an example of more heavy multiplied inputs values to
get a chance to be selected. Note that tram ITEN and ITNE are multiplied with four which is
the highest multiplied value used. Following equation is an example for drive order 6:

cnInputs = 4ITNE + 4ITEN + IPN3 + IPW1 + IPW2 + IPW3 + IPS2 + IPS3 + IRNW + IRNS + IRNE

16

4 Programs

The programs that simulate the intersection (computed and microcontroller
implemented), both uses Standard GA to find the optimal drive order to execute. In this
work, an additional program with another search algorithm, Depth First Search (DFS)
[Stewart & Norvig, 2003], is used to verify the performance of both Standard GAs. The
specific simulation program used is called “DFS version”. The results from the DFS
version will be compared to the results derived from each Standard GA program.

The DFS only looks for one solution at the time and goes down all levels in the search
tree. The DFS can be programmed to terminate the search if a good solution is found. In
this work, the DFS version will search trough the entire search space to find the best
answer (a complete path to bottom level six). This path, representing the drive order
sequence, is illustrated in Figure 2.7.

In summary the main characteristics of each search method are:

• The Standard GA (computed and microcontroller implemented) is fast, although
cannot guarantee a best solution is identified. Otherwise, a good enough solution
can be found.

• The DFS version will find the best solution to the cost of extensive use of time
and computation.

In addition to these three simulation programs there are four more versions of
simulations to evaluate. All simulations are explained in Chapter 7 and they are called
Example case (from Chapter 3.3), Normal case, Worst case one and Worst case two.
Listed source codes are Standard GA version of Worst case one on Appendix G and
DFS version of Normal case on Appendix H. All programs are coded in program
language C.

4.1 Standard GA versions

The following description of the Standard GA version is for both computed and
microcontrolled one. Functions used in the program include DecodeChromosome,
EvaluateIndividual, ReturnResult, TournamentSelect and RandFunktion.

• DecodeChromosome returning the numerical value of a chromosome.

• EvaluateIndividual calculates fitness value for incoming parameters values.

• ReturnResult is called after each completed GA loop to list the best parameters
value results. As this is a simulation program, the outputs are only represented in
a symbolic expression.

• TournamentSelect doing the tournaments.

17

• RandFunktion is called from several places in the main code whenever a random
value is needed. A good random function is essential for all GAs to work
properly.

In main, the initializations are done in the beginning. For simulation reasons, up to eight
sets of input values for each time period are used. The main loop runs ten times, starting
with reading and updating present input values for that time period. Then the Standard
GA loop goes through all generations up to the numbered value of maxGeneration.
Inside the Standard GA loop is the traditional work flow with decoding, evaluation,
fitness measuring, elitism, tournament select, crossover and mutation. In the end is a
special array list goodIndividuals that store the best individual for future time periods.
The next new population will get the content from this list. In the long run, this list will
contain better and more improved individuals. This list is a part of the self-learning
process in this program. When the loop is completed, all best parameter values are send
to function ReturnResult for print out.

In the simulations, the program is run through ten time periods in a so called “for loop”.
In reality, where the program is supposed to run continuously a “while loop” will be
used.

4.2 DFS version

This DFS version is smaller than the Standard GA version as many of the GA
procedures are then not required. The code is listed in Appendix H. The only functions
used are EvaluateIndividual and ReturnResult equal to the same functions in the
Standard GA version. In main the usual initialization, input values and main loop are
almost the same as for the Standard GA version. Instead of a GA loop there is a DFS
search with “nested for loops” running through the entire search space. This program
goes through search down seven levels in the search space, where the last six represent
the solution. The first level only contains one start node, that value is the previous drive
order. The second level will hold the executable drive order. Finally the third and lower
levels are predicted drive orders (see Figure 2.7). The size of the search space is
calculated in Chapter 2.3.

When the first search is completed the result is printed through ReturnResult. Following
this, the second simulation loop commences to search for second executable drive
orders until the next time period. There is no guarantee that the previous predicted drive
order will be the next executable one. The program is finished when all ten time periods
are simulated. This program will find the optimal solution with cost of time. And time
consumption is a major drawback in certain application.

18

5 Rule problems

This chapter discuss experiences encountered during this work related to rules and how
they can work against the GA. The rules considered in this work are ”fitness measuring
rules” and “constraint rules”. They are represented with propositional logic. Both are
supposed to be applied in the evaluation function to grade individuals according to these
rules. This chapter explains the constraint rules and the problem they cause.

Constraint rules are strict and must be fulfilled. Situation may occur where individuals
break constrained rules. When this happens these individuals may not be allowed to
survive and, to discard them, their fitness values are simply set to zero.

To exclude or forbid individuals and their solutions could be considered wasted, both of
computing time and other system resources, as these solutions are not needed.
Constrained relations are mentioned in [Goldberg, 1989] where it is explained that
constrains can be fine, although finding a feasible solution can be almost as difficult as
finding the best one. More reading and details in this area is found on [Yoon]. In science
research constrains are generally not causing any major problems. They generally have
sufficient computation as the importance of finding good results are essential.

Although constraint rules do not appear to be a big issue, they do cause a certain
problem in this work. Significant time loss and memory usage are to be expected on the
small, computerised system used in this work. Theoretically constraint rules may not be
needed in a well-defined problem. More often than not they cannot be avoided.
Although a few constraint rules will have little effect, they may cause a real problem in
finding decent solutions if they become more in numbers.

5.1 Example of rule problems

Imagine an individual with one chromosome c containing three binary represented
genes. That gives a search space of eight possible solutions. The binary genes are called
g1, g2 and g3. Assume that if the combination of g2 and g3 is true and the g1 value doesn't
matter, then (x11) will result in high fitness value. Also assume a constraint rule
declaring that if g1 is true (1xx) then that individual must be forbidden. The outcome
will be a half population being forbidden. If GA finds an individual with content (111),
then that produced result will be wasted. Otherwise content (011) is not and can be used.

Assume the change of the constrained rule to only forbid when g1 is true and g2 is false
(10x). By this rule two solutions are gained back from the search space (110) and (111).
Left is (100) and (101) which represent 25% of the search space. The loss of possible
solutions caused by constrained rules depends on their amount and formulation.

A Standard GA, working with both fitness rules and constrained rules, was used in early
attempt in this work. Fitness and constrained rules were both propositional logic,
representing true or false values. They also shared and worked with the same input
variables. These variables were representing all inputs from the intersection and
represented by one single chromosome containing 29 genes. The search space had about

19

229 ≈ 5.4∙107 different solutions as a maximum. The outcome from this attempt resulted
in a serious loss of solutions even were only one set of constrained rules is used.
Following example demonstrates how rule R1 forbid a solution when it becomes
satisfied by true value:

R1 = IPN1 ˄ (IRNW ˅ IRNE ˅ IRNS)

To pass a non forbidden solution the rule R1 must be unsatisfied by false. This rule is
satisfied when gene one IPN1 is true and at least one of the other genes 20 (IRNW), 21 (IRNE)
and 22 (IRNS) are true. All of the three last genes must be false to ensure a safe traffic
situation. The rule R1 is likely to be satisfied when IPN1 is true and at least one or more
of the other genes are true (or holding value 1) in the following calculation:

Ook=
I PW1

2 ⋅
I RNW

2 
I RNS

4 
I RNE

8 =

1
2
⋅7

8 ≈0.44

Approximately 44% of the search space O will be satisfied and therefore forbidden. If
the last three genes are not included in this rule, the chance will be just 50%. The last
genes actually give back 6% of the search space, increasing possible solution to 56%.
To have in mind is that this example contains the first rule of 29 in total. Together they
drop the chances by finding any descent solution to almost nothing.

The following work will use another strategy to avoid all forms of constrained rules,
with the one exception of a single “if statement” that acts as constrained rule. This
statement avoids chromosome c1 to get value zero. If that happens, the first drive order
will not execute any requests and that would be a pointless solution.

5.2 Solutions for this problem

A preferable method to avoid problems is to ensure that all the possible solutions that
the GA brings up are without any conflict, or at least keep the amount of constrained
rules to a minimum. The only rules that should exist are fitness measuring rules that
increase the fitness value. A drawback with removing constrained rules is less optimal
formulation of the problem to solve. That is, the freedom to really get into the problem
might be limited and the optimal solution may become unreachable. Although a good
enough solution can still be found. In this work constraints are removed with 16
prepared solutions. This appear not so many to work with, otherwise in a sequence of
six they instead become vast in number of combinations.

20

6 Embedded solutions

One part of this work involves working out how GA can be implemented into an
embedded system. Two main types of embedded systems, FPGA and microcontrollers,
have been considered. This hardware implementation is one fundamental part of this
work. In reality it would be unrealistic for a control unit or relay box, used to control the
traffic intersection, to contain an ordinary computer. It would be more reasonable to
have an electronic circuit board with one of the two mentioned embedded systems. The
two main reasons for this include component costs and more secure functionality.

The aim in this work is to test the potential to use GA in this type of alternative
application. Though the ambition is to make it work, it might not be achievable due to
CPU and memory limitations of the GA. Due to time constraints and necessary
resources not being available, FPGAs will not be tested in this work, instead some
earlier work will be presented. On other hand, a microcontroller and belonging develop
kit [Atmel STK500] is available. A drawback with the microcontroller is that its
memory size potentially is too small for what is required for this application. Otherwise,
with a few modifications, it can still achieve some success. The microcontroller uses
programming language C, thus all simulation programs will be coded in C from the
beginning.

6.1 FPGA

FPGA (Field Programmable Gate Array) is a versatile integrated circuit that can be
designed for specific functionalities. The most commonly used program language is
VHDL (Very high speed integrated circuit Hardware Description Language), for more
readings see [VHDL].

Some earlier work has been done to implement GA into FPGA [Aporntewan &
Chongstitvatana, 2001] and [Shackleford, et al., 2001]. In [Aporntewan &
Chongstitvatana, 2001] a speed comparison was done using Compact GA running as
software on 200 MHz computer and the 20 MHz FPGA hardware. The result in this
study was that the hardware version was 1000 times faster than software version. A
similar comparison [Shackleford, et al., 2001] used 1 MHz FPGA and 100 MHz
computer. The FPGA was more than 2200 times faster. Both studies show faster and
more effective results by the hardware. A drawback is when reconfiguration of the
fitness function is required, as that can take hours to do.

Though the resulting effectiveness appears promising, it is a different story when comes
to computers. The work stations used in these studies, around 2000, was up to 200 MHz
and this work is done in 2010 using a computer with 2 GHz. Although the clock speed
on FPGAs has also improved during the years. For more reading about FPGA see
manufactures [Xilinx] and [Altera].

21

6.2 Microcontroller

A microcontroller can be explained as a small computer inside one single integrated
circuit. The main components include processor, memory and programmable input and
output peripherals. The microcontroller used in this work is an ATmega16 [Atmel
Atmega16], programmed through a starter development kit system, called STK500
[Atmel STK500] from Atmel [Atmel]. With a program memory of 16 Kbytes it
becomes difficult to fit in a reasonable simulation program. The simulation program
DFS version (described in Chapter 4) will not be implemented in a microcontroller, as it
is not needed. It would be possible to do so, although the result would be the same as
the computed one. In Figure 6.1 is a picture of the entire set up for the simulations.
Figure 6.2 illustrates a close up picture of the presented results.

The Standard GA for the microcontroller will require some smaller program changes in
order to work properly. Small modifications are made in random and print out functions.
Especially in the print out function as there is no computer screen to show the results
on, only a LCD display. The population is reduced from 30 to four individuals as a
direct consequence of the smaller memory size. Both the computed and the
microcontrolled Standard GA will perform 3000 individuals per simulated time period.
The microcontroller will compensate with 750 generations rather than 100. One
drawback is the number of performed elitism in each simulation. There is one elitism
performed in each generation, now 750 rather that only 100, in the microcontrolled
Standard GA. Elitism itself does not contribute with new material in the evolutionary
process, with the consequence of potential limitation in performance.

22

Figure 6.1: Entire simulation set up

Figure 6.2: Result print out on display

23

24

7 Simulations

It is important to remember that a complete or final result is not expected. The aim is to
test how well the GA can perform and further improvements will still be required.

This work will compare and assess the simulations of the three programs; computed
Standard GA, microcontrolled Standard GA and DFS version. Each program has four
prepared simulation cases that will give 12 different results. All results and their
behaviours will be explained briefly.

The simulation outputs actually looks in two different ways as follow. The first and last
simulation programs are computed ones, doing their printout windows on a computer
screen. The second simulation program is implemented inside a microcontroller,
performing printouts on a LCD-display. These microcontrolled printouts look rather
different and only have two printed lines (see Figure 6.2). Example of result from
printout windows from the computed Standard GA and the DFS version can be found in
Appendix E and Appendix F.

7.1 About the simulations

The four simulation cases are:

• Example case Easy case with only three requests to handle.

• Normal case An expected daily life situation or normal condition.

• Worst case one All inputs requesting including easier tram requests.

• Worst case two All inputs requesting including harder tram requests.

The results from the simulations are listed in pairs, in the result tables further down. The
first table contains the Example case and the Normal case. The second table contains
both Worst case one and Worst case two.

The Example case, with one of each pedestrian, tram and road vehicle request, has some
interference, which is further described in Chapter 3.3. In the program code there are
three sets of input variables, which is enough for the entire simulation. The results are
listed in Table 7.2, Table 7.4 and Table 7.6.

The Normal case is supposed to illustrate a real simulation from the daily life. Normally
the sensor inputs are in a moderate amount most of the time (see table 7.1). Some lanes
have more traffic and other less. A consistent and continuous pedestrian traffic is
assumed, with an even distribution over the corners of the intersection. Trams tend to
come and go from northbound direction. The set of input values are chosen in a way so
no duplicated tram requests can occur in any simulations, that is, a tram can only
request one direction. The input values for time periods 8 and 9 all have inputs set to
zero. The reason for this is to verify the ending of the simulation without any new inputs

25

affecting the result. The results are listed in Table 7.2, Table 7.4 and Table 7.6.

Table 7.1: Input values for Normal case empty cells have value 0

26

iPN1 iPN2 iPN3 iPW1 iPW2 iPW3 iPS1 iPS2 iPS3
T0 1 1 1 1
T1 1 1 1 1 1 1
T2 1 1 1 1 1
T3 1 1 1 1
T4 1 1
T5 1 1
T6 1 1
T7 1 1 1 1
T8
T9

Inputs from trams

T0 1 1 1
T1
T2 1 1
T3
T4 1 1
T5 1
T6
T7 1 1
T8
T9

Inputs from road sensors

T0 1 1 1 1
T1 1 1 1 1
T2 1 1 1 1
T3 1 1 1 1 1
T4 1 1 1
T5 1 1
T6 1 1 1 1
T7 1 1
T8
T9

Inputs from pedestrians
iPE

iTNW iTNE iTNS iTWN iTWE iTEN iTEW iTES iTSN iTSE

iRNW iRNE iRNS iRWN iRWSE iRENW iRES iRSW iRSNE

The following two simulations are less authentic the real world, they can occur although
not often. What Worst case one and Worst case two have in common is that they both
only have input values in the first time period. The following time periods are free from
any requests to avoid simulation interference. Ten time periods are used to get a
complete view of the solved problem. Both cases have all pedestrian and road vehicle
requests set in the beginning. The difference between the cases is the type of requests
coming from the trams. In Worst case one there is one tram on either side of the
intersection waiting to go straight. These are TNS, TWE, TEW and TSN. In Worst case
two, there are trams that intend to turn, resulting in more traffic being blocked. These
trams are TNE, TWN, TES and TSE. The best predicted drive order from Worst case
one would be 7, 8, 12 and 13. This is for the first four time periods, followed by two
random drive orders. Worst case two requires six time periods with drive orders of 5, 6,
7 or 10, 8 or 11, 12 and 13. Note that some drive orders can complement each other to
some extend. The results are listed in Table 7.3, Table 7.5 and Table 7.7.

Note that all simulations for each time period are dependent on the previous executed
drive order. Present inputs with new and older prioritised request values will change the
outcome in every new time period. Also unpredictable results can occur along longer
simulation time.

7.2 Performed simulations

All tables contain two simulations each, and there are 12 simulations in total. Each
completed time period from both the Standard GA and the DFS version, results in a
solution with six drive orders. The first drive order becomes the executable one. The
following one is the first predicted drive order, out of five in total. Notes for table labels
is the first time period called T0 and counting upwards. The first executing drive order
is denoted E and the following first predicted drive order is P1 and counting upwards.
Resulting fitness value is each time periods maximum fitness value denoted Mf.
Underlined numbers simply tells that drive orders do execute on or more requests. Time
periods without any waiting requests can hold any random drive order as a result.

7.2.1 Computed Standard GA simulations

The following is a summary of the results from the computed Standard GA simulations.
The results of the Example Case and Normal case are outlined in Table 7.2 and the
results from Worst case one and Worst case two in Table 7.3.

The resulting drive order sequence in the Example case is 8-10-15, the rest are non-
valid outputs. In the Normal case there is a long sequence where 5 and 13 are repeated.
These two drive orders are repeatedly predicted and so is 7, 8 and 12. Compared to the
Example case, the Normal case has higher fitness values as a result of the higher
number of request involved. Time taken to run the simulation with 2 GHz was about
one second.

27

Tables 7.2: Standard GA on computer for Example case and Normal case

Worst case one is almost as predictable, resulting in sequence 7-8-12 and 13. In Worst
case two it was predicted in the first time period T0 that four more drive orders were
needed to solve the problem. A closer look in Table 7.3 reveals that the problem only
becomes solved in time period T5, rather than T4. In other words, one additional time
period was needed to complete the simulation. Notice that drive order 13 is first
predicted in P1 for several time periods. The reason for this is that the condition in each
time period is affected by previous drive orders and new incoming requests.

Tables 7.3: Standard GA on computer for both worst cases

7.2.2 Microcontrolled Standard GA simulations

Due to the limitations of the Standard GA in this microcontroller implementation, some
differences in the results are to be expected. The clock speed for the microcontroller is 8
MHz. The time taken to complete the simulation was approximately 24 seconds. There
are no underlined drive orders to indicate if that drive order will execute a request, in
Table 7.4 and Table 7.5. Only the most essential numbers, drive order sequence and
maximum fitness value are presented.

28

 Standard GA Worst case 1 Standard GA Worst case 2
E P1 P2 P3 P4 P5 Mf E P1 P2 P3 P4 P5 Mf

T0 7 8 12 14 9 1 187 T0 5 13 7 11 6 11 180
T1 8 12 13 7 11 6 274 T1 12 13 6 11 10 15 240
T2 12 13 5 12 8 0 162 T2 11 13 6 10 15 8 240
T3 13 5 12 5 13 3 126 T3 10 13 6 8 12 8 230
T4 13 5 12 5 13 3 0 T4 6 13 7 11 0 8 238
T5 13 5 12 5 13 3 0 T5 13 0 5 13 5 12 166
T6 13 5 12 5 13 3 0 T6 13 0 5 13 5 12 0
T7 13 5 12 5 13 3 0 T7 13 0 5 13 5 12 0
T8 13 5 12 5 13 3 0 T8 13 0 5 13 5 12 0
T9 13 5 12 5 13 3 0 T9 13 0 5 13 5 12 0

 Standard GA Example case Standard GA Normal case
E P1 P2 P3 P4 P5 Mf E P1 P2 P3 P4 P5 Mf

T0 8 12 8 7 11 0 56 T0 5 12 7 8 12 8 103
T1 10 4 5 12 14 9 70 T1 13 12 7 8 12 8 159
T2 15 7 13 7 11 0 38 T2 7 12 5 13 7 8 236
T3 15 7 13 7 13 15 0 T3 8 12 5 13 3 8 228
T4 15 7 13 7 13 15 0 T4 12 13 5 13 7 8 216
T5 15 7 13 7 13 15 0 T5 5 13 6 10 9 10 188
T6 15 7 13 7 13 15 0 T6 13 6 9 10 15 11 202
T7 15 7 13 7 13 15 0 T7 6 10 5 11 3 6 240
T8 15 7 13 7 13 15 0 T8 11 10 5 11 0 4 156
T9 15 7 13 7 13 15 0 T9 10 15 5 12 8 7 136

Tables 7.4: Standard GA on microcontroller for Example case and Normal case

Tables 7.5: Standard GA on microcontroller for both worst cases

The general impression is that the microcontrolled Standard GA have slightly lower
performance than the computed one. This is expected as it is affected by many more
elitisms. The drive order sequences for the microcontrolled Standard GA are different to
both computed Standard GA and DFS version. The fitness values are also lower than in
the other versions, but not far behind the computed ones.

7.2.3 DFS version simulations

The advantage with the DFS version is that it always searches through the entire search
space to find the best results. For that reason all resulting solutions from each separate
time period, can be considered as the right answer. On the other hand, it is less certain it
will get the best outcome in long term simulations with several time periods. The DFS
version program performs the DFS process in all the ten time periods, until it is
completely finished. Time taken to complete the simulation with 2 GHz from start to

29

 Standard GA Worst case 1 Standard GA Worst case 2
E P1 P2 P3 P4 P5 Mf E P1 P2 P3 P4 P5 Mf

T0 8 12 7 13 7 8 186 T0 12 5 13 6 8 2 180
T1 12 13 7 8 10 9 224 T1 13 5 6 11 10 0 234
T2 7 13 7 11 2 13 214 T2 6 13 11 3 13 2 242
T3 13 7 8 7 8 1 136 T3 13 11 8 10 9 15 234
T4 16 0 0 0 0 0 0 T4 11 10 9 10 1 9 184
T5 16 0 0 0 0 0 0 T5 10 9 8 10 4 13 92
T6 16 0 0 0 0 0 0 T6 16 0 0 0 0 0 0
T7 16 0 0 0 0 0 0 T7 16 0 0 0 0 0 0
T8 16 0 0 0 0 0 0 T8 16 0 0 0 0 0 0
T9 16 0 0 0 0 0 0 T9 16 0 0 0 0 0 0

 Standard GA Example case Standard GA Normal case
E P1 P2 P3 P4 P5 Mf E P1 P2 P3 P4 P5 Mf

T0 10 8 7 13 1 3 51 T0 12 5 7 8 10 9 102
T1 15 8 12 8 12 14 53 T1 5 10 9 14 11 3 139
T2 8 12 14 9 10 5 46 T2 8 10 9 7 13 2 199
T3 16 0 0 0 0 0 0 T3 7 13 12 5 11 4 274
T4 16 0 0 0 0 0 0 T4 11 5 13 3 12 9 203
T5 16 0 0 0 0 0 0 T5 5 12 13 6 4 13 230
T6 16 0 0 0 0 0 0 T6 12 13 6 1 13 14 266
T7 16 0 0 0 0 0 0 T7 13 6 11 10 9 5 304
T8 16 0 0 0 0 0 0 T8 6 11 10 5 12 5 330
T9 16 0 0 0 0 0 0 T9 5 11 10 9 1 3 192

finish was about 1 minute and 50 seconds, or about 11 seconds per time period.

Table 7.6: DFS version for Example case and Normal case

In the Example case outlined in Table 7.6 the sequence 8-10-15 is expected. All other
numbers have no effect even though they happen to be in repeating order all the way.
This is an effect in all DFS simulations. After T2 no time period will have any
effectiveness. The Normal case uses almost the same drive orders as the computed
Standard GA, only in a slightly different order.

Table 7.7: DFS version for both worst cases

The results for Worst case one in Table 7.7 show excellent result with executed
sequence 8-7-13-12. Worst case two has the same drive orders as the computed Standard
GA, only in a different sequence order.

30

 DFS version Worst case 1 DFS version Worst case 2
E P1 P2 P3 P4 P5 Mf E P1 P2 P3 P4 P5 Mf

T0 8 7 13 5 12 4 193 T0 12 5 11 6 13 3 187
T1 7 13 5 12 5 11 238 T1 5 11 6 13 7 8 262
T2 13 12 5 12 5 11 164 T2 11 6 13 10 9 10 259
T3 12 5 12 5 11 0 126 T3 6 13 10 9 10 4 256
T4 12 5 12 5 11 0 0 T4 13 10 9 10 9 10 190
T5 12 5 12 5 11 0 0 T5 10 9 10 9 10 4 102
T6 12 5 12 5 11 0 0 T6 10 9 10 9 10 4 0
T7 12 5 12 5 11 0 0 T7 10 9 10 9 10 4 0
T8 12 5 12 5 11 0 0 T8 10 9 10 9 10 4 0
T9 12 5 12 5 11 0 0 T9 10 9 10 9 10 4 0

 DFS version Example case DFS version Normal case
E P1 P2 P3 P4 P5 Mf E P1 P2 P3 P4 P5 Mf

T0 8 10 9 10 9 10 63 T0 5 12 8 7 8 7 108
T1 10 9 10 9 10 4 78 T1 12 8 7 13 5 11 178
T2 15 5 12 5 11 0 38 T2 8 7 13 5 11 0 202
T3 15 5 12 5 11 0 0 T3 7 13 5 11 12 4 270
T4 15 5 12 5 11 0 0 T4 11 12 5 13 7 8 224
T5 15 5 12 5 11 0 0 T5 12 5 13 6 10 4 253
T6 15 5 12 5 11 0 0 T6 5 13 6 10 4 0 292
T7 15 5 12 5 11 0 0 T7 13 6 10 5 11 0 319
T8 15 5 12 5 11 0 0 T8 6 5 11 10 9 10 324
T9 15 5 12 5 11 0 0 T9 5 11 10 9 10 4 194

7.3 Simulation results

To come to a final conclusion, the results from all previous simulations with computed
Standard GA, microcontrolled Standard GA and DFS version need to be compared and
verified. The essential data to verify are the maximum fitness values, as this is the
measure of their performances in each simulation. The simulations from the Example
case and the Normal case are shown in Figure 7.8. And the simulations from Worst case
one and Worst case two in Figure 7.9.

The DFS version is used as guidance of assumed best result in each simulation case.
Thus, the ideal solution from both computed and microcontrolled Standard GA would
be an exact copy of the DFS version’s drive order sequence. No Standard GA is
expected to perform the same solutions as the DFS version under the same conditions.
To have in mind that both have the exact same simulation cases and evaluation function
to work with. The large amount of good solutions will enable the Standard GA to bring
up its own solutions, which differ from the DFS version. These solutions can present
different drive orders as early as in the first or second time period. This means the DFS
version and the Standard GA start working on different solutions, which are not directly
comparable. This means a strict comparison between the two versions is not possible.
The comparison will instead come to rely on indirect comparison or a general overview
from the maximum fitness values Mf. The key factor in assessing the results is
comparing the two version’s final maximum fitness values and not matching the drive
order sequences.

The best guideline to compare all simulations is to look for high fitness in the beginning
and lower fitness in the end. A higher fitness indicates that more requests are executed.
Consequently, opposite results indicates less good performance.

The graph in Figure 7.8 shows the simulation from Example case and Normal case. In
the Example case both computed simulations perform the exact same sequence. The
microcontroller on the other hand finds a less good solution and gets lower fitness in the
beginning.

In the Normal case something different occurs in the long run. On the first two time
periods the computed Standard GA gets sequence 5-13 and the DFS version has higher
fitness with 5-12. It has a small difference, although in T2 the Standard GA performs
much better than DFS version. Lower fitness values, following after higher ones, means
many requests have been executed and less requests remaining. All results from T3 to
T9 show that the computed Standard GA has less work to do. This is an interesting
result, demonstrating that the DFS version do not impress in the long run in this case.

In the Worst cases in Figure 7.9 there is ones again interesting results from the
computed Standard GA and the DFS version. In Worst case one the results gives a clear
view of good and less good performance between the three programs. They have almost
equal fitness in T0, then the computed Standard GA execute drive order 7 instead of the
best one 8, as this is a result from DFS version. In T1 the computed Standard GA has a
significant higher fitness than the DFS version, and then they become almost equals
again in T2 and T3. The microcontrolled Standard GA do not performing that well
which results in higher fitness value in T2 and T3.

31

Finally in Worst case two a very equal performance is shown with only slightly higher
fitness value in the DFS version. The microcontrolled Standard GA performs very well
through the entire simulation, even slightly better than the DFS version in the ending. In
T2 and T3 the fitness value of the computed Standard GA is slightly lower then the
others. These results in much higher fitness value in T4 and T5 compared to both the
microcontrolled Standard GA and the DFS version.

Both computed and microcontrolled Standard GA manage to avoid getting stuck in
“local optimum”. A local optimum is a “believed” good solution or result that is far
from the really good one. It is proven by the maximum fitness value, which will be
significant lower than the DFS version fitness value. If a search space could be
presented in a graph, it would appear as a mountain chain in the horizon with peaks and
valleys. Where the y-axle is the fitness, represented by the height of the mountains and
horizon is the x-axle. Although the highest peak holds the best solution, lower peaks can
mislead a GA to believe they actually are the highest peak. A GA is more likely to
continue climbing on the peek it believes is being the best one.

All simulations here do show what drive orders are best for this particular intersection.
It is possible to figure out good solutions directly from the rules. Drive orders 5, 6, 7, 8,
12, 13 and 15 are most usable and the best sequence to use in theory is 7-13-5-12-8
according to the sequence rules. Of all 16 drive orders some of them are rarely or almost
never used as 0, 1, 2, 3, 4 and 14. This is because their configuration easily can be
replaced by the others.

A brief conclusion of these simulations is summarised in Chapter 8.1.

32

Figure 7.8: Example case and Normal case with comparing both Standard GA and DFS
version

Figure 7.9: Worst case one and two with comparing both Standard GA and DFS version

33

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9
0

50

100

150

200

250

300

350

Example case and normal case
Standard GA Computer Standard GA

Microcontroller
DFS version

Time periods

M
ax

im
um

 fi
tn

es
s

va
lu

e

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9
0

50

100

150

200

250

300

Worst case one and two
Standard GA Computer Standard GA

Microcontroller
DFS version

Time periods

M
ax

im
um

 fi
tn

es
s

va
lu

e

34

8 Conclusion

The nature of this traffic intersection becomes rather simple due to safety reason.
Although, it turn out to gain enough complexity when a sequence of time periods are
considered. Important to point out that more work is required for further improvements,
the results from this thesis establishes that Standard GA do works as expected. The test
of implementing a microcontroller also turns out well.

8.1 Simulation conclusion

The outcome of the comparison, between results from the four different cases in
Chapter 7.3, is quite surprising. Despite the fact that only four cases were used,
performance differences between the cases could be detected. The results also
demonstrate that a solution that might be the best one in a particular moment in time
might not prove to be the best solution in the long run. A good example is the
microcontrolled Standard GA, with lower performance can perform quite well in some
circumstances. For both Standard GA programs, a good performance is achieved when
their fitness is very close to that of the DFS version. This applies both for each time
period comparison as well as for the general outcome in a long run simulation. To get a
better understanding of their performances more simulations will be required. Although
these simulations provide an indication of how good results they can perform.

A final conclusion of the simulation results is that a GA is capable of finding good
solutions with little effort. The question is not what simulation program is the best. In
fact that they do work at all matters. The aim of this work was to realise all three
simulation programs and prove their functionalities. In particular the microcontrolled
Standard GA implemented inside a simpler hardware system. The limitation of the
microcontrolled Standard GA was the over numbered amount of elitisms which in the
simulations resulted in lower performance and fitness values as compared to the
computed simulation programs.

8.2 Future improvements

They are room for more adjustments and there are still many possibilities for further
refinements and improvements. One example is to enhance the program to enable
control of multiple intersections. Testing how the random function differs between
computers and microcontrollers, is another potential area for improvements, as different
random functions might give different performances.

A few things which were considered to do from the outset of this work included FPGA
implementation, more self learning and robust functionality for direct control.

• A complete FPGA implementation would be considered as a final result for this
work. Due to time limits and no hardware access the microcontroller
implementation where realised instead. Microcontrollers are slower than
FPGAs, although the speed does not matter in the simulations.

35

• Self learning is somewhat used in a simplified way in this work by storing good
individuals for future use. This method makes it faster to look for better
solutions. It could be extended in this work. Otherwise it works well despite
being very simple.

• More robust functionality is needed for direct control in the reality. Things to
improve include rules settings in the evaluation function, and convert the
hardware version of this simulation program into a real controller program.

8.3 Summary

The result from this thesis may not contain a final solution, for example a hardware
implementation ready to use, its only stays on simulation programs. Otherwise, it could
be seen as a tool or an optional idea for further development into similar problems in the
future. By their nature, GAs has a somewhat unpredicted behaviour that may not fit in
safety critical environments. Thus, whether or not to recommend direct control for the
intersection is not straight forward. In guidance for developments GA are really good.

This is not a common area where not many attempts are done. Usages of GAs are
almost occurring in scientific area as research or optimization. About putting GA into a
microcontroller is not very common. The papers with scientific implementation of GAs
on FPGAs are today old. They where successful by then and should be even today. One
aim in this work is how to move out the GAs to the real outside world for different
needs. A conclusion so far is still not many reasons to do that. Traffic intersection is
better to be developed by GA rather than controlled from it after all. In other hand this
need of GA may grooving in the future. For example a hand held devices in car
navigator might need to solve Travelling Salesmen Problem (TSP), which is commonly
solved by GA.

The most interesting discovery is the constrained rules. It was hard to predict from the
beginning and a surprise when it was discovered. Otherwise the lesson from this is good
and important to have in mind when defining GA for certain problems.

Environmental benefits behind intersection control are better traffic flow and saving
time and pollution. Most scientific work with GA do traffic flow improvements through
several intersections, in some real cities around the world. Adjacent intersections where
not considered in this work.

Is not that much work on this area in general, and not many other works to reference.
Almost all scientific works referring to one single book [Goldberg, 1989], that is the
first real description about GAs. Most of these simulation programs and rules
developing is made from the beginning.

At last the work of this master's thesis has being very interesting to work with. Several
new ideas and improvements to this work have coming up along the way. Otherwise,
this work will be considered as good enough.

36

9 References

9.1 Books

[Goldberg, 1989]
Goldberg, D. E., 1989. Genetic algorithm in search, optimization and machine learning.
Publisher: Addison-Wesley.

[Stuart & Norvig, 2003]
Stuart, R. & Norvig, P., 2003. Artificial Intelligence A Modern Approach. 2nd ed.
Publisher: Prentice Hall.

[Wahde, 2008]
Wahde, M., 2008. Biologically inspired optimization methods an introduction.
Southampton: WIT Press.

9.2 Documents

[Aporntewan & Chongstitvatana, 2001]
Aporntewan, C. and Chongstitvatana, P., 2001. A hardware Implementation Of The
Compact Genetic Algorithm, 1, pp. 624–629

[Fissgus]
Fissgus, U., Scheduling Using Genetic Algorithms.

[Guan, et al., 2008]
Guan, Q., Yang, Z., Wang, Y., Hu, J., Qin, J., 2008. Research on the Coordination
Optimization Method between Traffic Control and Traffic Guidance based on Genetic
Algorithm, pp. 320-325.

[Ma, et al., 2004]
Ma, W., Cheu, R. L., Lee, D-H., 2004. Scheduling of Lane Closures Using Genetic
Algorithms with Traffic Assignments and Distributed Simulations, Journal of
Transportation Engineering, May 1, 130 (3), pp. 322-329.

[Shackleford, et al., 2001]
Shackleford, B., Snider, G., Carter, R., Okushi, E., Yasuda, M., Seo, K., Yasuura, H.,
2001. A High-Performance, Pipelined, FPGA-Based Genetic Algorithm Machine,
Genetic Programming And Evolvable Machines, 2, pp. 33-60

[Turky, et al., 2009]
Turky, A. M., Ahmad, M.S., Yusoff, M.Z.M., Hammad, B. T., 2009. Using Genetic
Algorithm for Traffic Light Control System with a Pedestrian Crossing, pp. 512–519.

37

[Yang, et al., 2006]
Yang, Z., Huang, X., Liu, H., Xiang, C., 2006. Multi-phase Traffic Signal Control for
Isolated Intersections Based on Genetic Fuzzy Logic, pp. 3391-3395.

[Yoon]
Yoon, J. P., Techniques for Data and Rule Validation in Knowledge Based Systems,
Department of Electrical Engineering University of Florida, Gainesville, FL 3261 I, pp.
62-70.

9.3 Internet

[Altera]
Available at: http://www.altera.com/
[Accessed 19 May 2010].

[Atmel]
Available at: http://www.atmel.com/
[Accessed 19 May 2010].

[Atmel ATmega16]
Atmel Corporation, 2009. 8-bit Microcontroller with 16K Bytes In-System
Programmable Flash, [internet] Atmel Corporation, Available at:
http://www.atmel.com/dyn/resources/prod_documents/doc2466.pdf
[Accessed 19 May 2010].

[Atmel STK500]
Available at: http://www.atmel.com/dyn/products/tools_card.asp?tool_id=2735
[Accessed 19 May 2010].

[VHDL]
Available at: http://www.eda.org/vasg/
[Accessed 20 June 2010].

[Xilinx]
Available at: http://www.xilinx.com/
[Accessed 19 May 2010].

38

10 Appendix

Appendix A. Traffic intersection drive orders chart

Appendix B. Mathematical fitness functions

Appendix C. Propositional logic for outputs

Appendix D. Propositional logic for drive order sequence

Appendix E. Program windows of Standard GA

Appendix F. Program windows of DFS version

Appendix G. Program code of Standard GA

Appendix H. Program code of DFS version

39

40

Appendix A Traffic intersection drive orders chart

Figure A: Chart contain all 16 prepared drive order outputs

41

42

Appendix B Mathematical fitness functions

List of fitness calculation for variable cnInputs each drive order.

Drive order 0:

cnInputs = ITNW + ITEN + ITSE + IPN1 + IPN2 + IPN3 + IPS1 + IPS3 + IRNW

Drive order 1:

cnInputs = ITNW + ITEN + ITWE + IPN3 + IPW1 + IPS1 + IPS2 + IPS3 + IRWSE

Drive order 2:

cnInputs = ITNS + ITEN + ITSE + IPW1 + IPW2 + IPW3 + IPN3 + IPS3 + IRNW + IRNS

Drive order 3:

cnInputs = ITNW + ITSN + IPW1 + IPW3 + IPE + IPS1 + IRNW + IRSNE

Drive order 4:

cnInputs = ITEW + ITSE + IPN1 + IPN2 + IPN3 + IPW3 + IPS1 + IPS3 + IRENW

Drive order 5:

cnInputs = ITNW + ITWN + ITES + ITSE + IPN3 + IPW1 + IPW3 + IPS1 + IPS3 + IRNW

Drive order 6:

cnInputs = ITNE + ITEN + IPN3 + IPW1 + IPW2 + IPW3 + IPS2 + IPS3 + IRNW + IRNS + IRNE

Drive order 7:

cnInputs = ITNS + ITSN + IPW1 + IPW2 + IPW3 + IPE + IRNW + IRNS + IRSNE

Drive order 8:

cnInputs = ITWE + ITEW + IPN1 + IPN2 + IPN3 + IPS1 + IPS2 + IPS3 + IRENW + IRWSE

Drive order 9:

cnInputs = ITNW + ITWN + IPN1 + IPN3 + IPW1 + IPS1 + IPS2 + IPS3 + 2IRWN + IRWSE

Drive order 10:

cnInputs = IPN2 + IPW1 + IPW2 + IPW3 + IPS2 + IPE + IRNW + IRNS + 2IRSNE

43

Drive order 11:

cnInputs = IPN1 + IPN2 + IPN3 + IPW2 + IPS1 + IPS2 + IPS3 + 2IRENW + 2IRWSE

Drive order 12:

cnInputs = IPN2 + IPN3 + IPW1 + IPW2 + IPW3 + IPE + IPS1 + IPS2 + 2IRNE + 2IRSW

Drive order 13:

cnInputs = IPN1 + IPN2 + IPN3 + IPW1 + IPW2 + IPS1 + IPS2 + IPS3 + 2IRWN + 2IRES

Drive order 14:

cnInputs = ITSE + ITES + IPN1 + IPN2 + IPN3 + IPW1 + IPW2 + IPW3 + IPS1 + IPS3 + IRES

Drive order 15:

cnInputs = ITNE + ITEN + IPN1 + IPN3 + IPW1 + IPW2 + IPS1 + IPS2 + IPS3 + 2IRWSE

44

Appendix C Propositional logic for outputs

List of logical outputs for each drive order that executes by En.

Drive order 0:

E0 → OTNW ˄ OTEN ˄ OTSE ˄ OPN1 ˄ OPN2 ˄ OPN3 ˄ OPS1 ˄ OPS3 ˄ ORNW

Drive order 1:

E1 → OTNW ˄ OTEN ˄ OTWE ˄ OPN3 ˄ OPW1 ˄ OPS1 ˄ OPS2 ˄ OPS3 ˄ ORWSE

Drive order 2:

E2→ OTNS ˄ OTEN ˄ OTSE ˄ OPW1 ˄ OPW2 ˄ OPW3 ˄ OPN3 ˄ OPS3 ˄ ORNW ˄ ORNS

Drive order 3:

E3 → OTNW ˄ OTSN ˄ OPW1 ˄ OPW3 ˄ OPE ˄ OPS1 ˄ ORNW ˄ ORSNE

Drive order 4:

E4 → OTEW ˄ OTSE ˄ OPN1 ˄ OPN2 ˄ OPN3 ˄ OPW3 ˄ OPS1 ˄ OPS3 ˄ ORENW

Drive order 5:

E5 → OTNW ˄ OTWN ˄ OTES ˄ OTSE ˄ OPN3 ˄ OPW1 ˄ OPW3 ˄ OPS1 ˄ OPS3 ˄ ORNW

Drive order 6:

E6 → OTNE ˄ OTEN ˄ OPN3 ˄ OPW1 ˄ OPW2 ˄ OPW3 ˄ OPS2 ˄ OPS3 ˄ ORNW ˄ ORNS ˄ ORNE

Drive order 7:

E7 → OTNS ˄ OTSN ˄ OPW1 ˄ OPW2 ˄ OPW3 ˄ OPE ˄ ORNW ˄ ORNS ˄ ORSNE

Drive order 8:

E8 → OTWE ˄ OTEW ˄ OPN1 ˄ OPN2 ˄ OPN3 ˄ OPS1 ˄ OPS2 ˄ OPS3 ˄ ORENW ˄ ORWSE

Drive order 9:

E9 → OTNW ˄ OTWN ˄ OPN1 ˄ OPN3 ˄ OPW1 ˄ OPS1 ˄ OPS2 ˄ OPS3 ˄ ORWN ˄ ORWSE

Drive order 10:

E10 → OPN2 ˄ OPW1 ˄ OPW2 ˄ OPW3 ˄ OPS2 ˄ OPE ˄ ORNW ˄ ORNS ˄ ORSNE

45

Drive order 11:

E11 → OPN1 ˄ OPN2 ˄ OPN3 ˄ OPW2 ˄ OPS1 ˄ OPS2 ˄ OPS3 ˄ ORENW ˄ ORWSE

Drive order 12:

E12 → OPN2 ˄ OPN3 ˄ OPW1 ˄ OPW2 ˄ OPW3 ˄ OPE ˄ OPS1 ˄ OPS2 ˄ ORNE ˄ ORSW

Drive order 13:

E13 → OPN1 ˄ OPN2 ˄ OPN3 ˄ OPW1 ˄ OPW2 ˄ OPS1 ˄ OPS2 ˄ OPS3 ˄ ORWN ˄ ORES

Drive order 14:

E14 → OTSE ˄ OTES ˄ OPN1 ˄ OPN2 ˄ OPN3 ˄ OPW1 ˄ OPW2 ˄ OPW3 ˄ OPS1 ˄ OPS3 ˄ ORES

Drive order 15:

E15 → OTNE ˄ OTEN ˄ OPN1 ˄ OPN3 ˄ OPW1 ˄ OPW2 ˄ OPS1 ˄ OPS2 ˄ OPS3 ˄ ORWSE

46

Appendix D Propositional logic for drive order sequence

Propositional logic describes what drive order sequence that gives addition of two
points to the fitness value calculation by variable sn. Example rule R1, if P1 and EP13 are
true, ATwoPoints will also be true and that is equal to variable sn = 2 in the evaluation
function.

Previous executed drive order = EPn

Present drive order = Pn

Addition of two points true or false = ATwoPoints

R1 P1 ˄ (EP11 ˅ EP13) → ATwoPoints

R2 P2 ˄ (EP11 ˅ EP13) → ATwoPoints

R3 P3 ˄ (EP11 ˅ EP13) → ATwoPoints

R4 P4 ˄ (EP10 ˅ EP12) → ATwoPoints

R5 P5 ˄ (EP12 ˅ EP13) → ATwoPoints

R6 P6 ˄ (EP11 ˅ EP13) → ATwoPoints

R7 P7 ˄ (EP8 ˅ EP13) → ATwoPoints

R8 P8 ˄ (EP7 ˅ EP12) → ATwoPoints

R9 P9 ˄ (EP10 ˅ EP14) → ATwoPoints

R10 P10 ˄ (EP8 ˅ EP9) → ATwoPoints

R11 P11 ˄ (EP5 ˅ EP7) → ATwoPoints

R12 P12 ˄ (EP5 ˅ EP8) → ATwoPoints

R13 P13 ˄ (EP5 ˅ EP7) → ATwoPoints

R14 P14 ˄ (EP9 ˅ EP12) → ATwoPoints

R15 P15 ˄ (EP10 ˅ EP13) → ATwoPoints

47

48

Appendix E Program windows of Standard GA

Two printout windows and the first window are Figure E.A and last window Figure E.B.

Figure E.A: Print out image one with Worst case one results

49

Figure Appendix E.B: Print out image two with Worst case one results

50

Appendix F Program windows of DFS version

Two printout windows and the first window are Figure F.A and last window Figure F.B.

Figure F.A: Print out image one with Normal case results

51

Figure F.B: Print out image two with Normal case results

52

Appendix G Program code of Standard GA

Source code for Standard GA with Worst case one inputs implemented.

/* Standard GA worst case one */

#include <stdio.h>
#include <conio.h>
#include <math.h>
#include <stdlib.h>

int DecodeChromosome(int population[30][24], int i, int numberOfGenes, int
chromosomeOrder, int numberOfChromosomes)
{

int x = 0;
int nCdiv = numberOfGenes/numberOfChromosomes;//Set lengh of genes

in one chromosome
chromosomeOrder--;

x = x + population[i][0 + nCdiv*chromosomeOrder]*1;
x = x + population[i][1 + nCdiv*chromosomeOrder]*2;
x = x + population[i][2 + nCdiv*chromosomeOrder]*4;
x = x + population[i][3 + nCdiv*chromosomeOrder]*8;

return x;
}

int EvaluateIndividual(int c1, int c2, int c3, int c4, int c5, int c6, int inputValue[29],
int previousExcecution)
{

int f = 0, i = 0, x = 0, p = 0, points = 0, previousOrder;

int iPN1 = inputValue[0];
int iPN2 = inputValue[1];
int iPN3 = inputValue[2];
int iPW1 = inputValue[3];
int iPW2 = inputValue[4];
int iPW3 = inputValue[5];
int iPE = inputValue[6];
int iPS1 = inputValue[7];
int iPS2 = inputValue[8];
int iPS3 = inputValue[9];
int iTNW = inputValue[10];
int iTNE = inputValue[11];
int iTNS = inputValue[12];
int iTWN = inputValue[13];
int iTWE = inputValue[14];
int iTEN = inputValue[15];
int iTEW = inputValue[16];
int iTES = inputValue[17];
int iTSN = inputValue[18];
int iTSE = inputValue[19];
int iRNW = inputValue[20];
int iRNE = inputValue[21];
int iRNS = inputValue[22];
int iRWN = inputValue[23];
int iRWSE = inputValue[24];
int iRENW = inputValue[25];
int iRES = inputValue[26];
int iRSW = inputValue[27];
int iRSNE = inputValue[28];

x = previousExcecution;
for(i = 0; i <= 6 - 1; i++)
{

previousOrder = x;
if(i == 0) {x = c1;}
if(i == 1) {x = c2;}
if(i == 2) {x = c3;}
if(i == 3) {x = c4;}
if(i == 4) {x = c5;}
if(i == 5) {x = c6;}
points = 0;

//Inputs functions calculations
switch(x)
{

case 0:
points = iTNW + iTEN + iTSE + iPN1 + iPN2 +

iPN3 + iPS1 + iPS3 + iRNW;
iTNW = 0; iTEN = 0; iTSE = 0; iPN1 = 0; iPN2 = 0;

iPN3 = 0; iPS1 = 0; iPS3 = 0; iRNW = 0;
break;

case 1:
points = iTNW + iTEN + iTWE + iPN3 + iPW1 +

iPS1 + iPS2 + iPS3 + iRWSE;
iTNW = 0; iTEN = 0; iTWE = 0; iPN3 = 0; iPW1 =

0; iPS1 = 0; iPS2 = 0; iPS3 = 0; iRWSE = 0;
break;

case 2:
points = iTNS + iTEN + iTSE + iPW1 + iPW2 +

iPW3 + iPN3 + iPS3 + iRNW + iRNS;
iTNS = 0; iTEN = 0; iTSE = 0; iPW1 = 0; iPW2 = 0;

iPW3 = 0; iPN3 = 0; iPS3 = 0; iRNW = 0; iRNS = 0;

break;
case 3:

points = iTNW + iTSN + iPW1 + iPW3 + iPE + iPS1
+ iRNW + iRSNE;

iTNW = 0; iTSN = 0; iPW1 = 0; iPW3 = 0; iPE = 0;
iPS1 = 0; iRNW = 0; iRSNE = 0;

break;
case 4:

points = iTEW + iTSE + iPN1 + iPN2 + iPN3 +
iPW3 + iPS1 + iPS3 + iRENW;

iTEW = 0; iTSE = 0; iPN1 = 0; iPN2 = 0; iPN3= 0;
iPW3 = 0; iPS1 = 0; iPS3 = 0; iRENW = 0;

break;
case 5:

points = 2*iTNW + 2*iTWN + 2*iTES + 3*iTSE +
iPN3 + iPW1 + iPW3 + iPS1 + iPS3 + iRNW;

iTNW = 0; iTWN = 0; iTES = 0; iTSE = 0; iPN3 = 0;
iPW1 = 0; iPW3 = 0; iPS1 = 0; iPS3 = 0; iRNW = 0;

break;
case 6:

points = 4*iTNE + 4*iTEN + iPN3 + iPW1 + iPW2
+ iPW3 + iPS2 + iPS3 + iRNW + iRNS + iRNE;

iTNE = 0; iTEN = 0; iPN3 = 0; iPW1 = 0; iPW2 = 0;
iPW3 = 0; iPS2 = 0; iPS3 = 0; iRNW = 0; iRNS = 0; iRNE = 0;

break;
case 7:

points = 2*iTNS + 2*iTSN + iPW1 + iPW2 + iPW3
+ iPE + iRNW + iRNS + iRSNE;

iTNS= 0; iTSN = 0; iPW1 = 0; iPW2 = 0; iPW3 = 0;
iPE = 0; iRNW = 0; iRNS = 0; iRSNE = 0;

break;
case 8:

points = 3*iTWE + 3*iTEW + iPN1 + iPN2 + iPN3
+ iPS1 + iPS2 + iPS3 + iRENW + iRWSE;

iTWE = 0; iTEW = 0; iPN1 = 0; iPN2 = 0; iPN3 = 0;
iPS1 = 0; iPS2 = 0; iPS3 = 0; iRENW = 0; iRWSE = 0;

break;
case 9:

points = iTNW + iTWN + iPN1 + iPN3 + iPW1 +
iPS1 + iPS2 + iPS3 + 2*iRWN + iRWSE;

iTNW = 0; iTWN = 0; iPN1 = 0; iPN3 = 0; iPW1 =
0; iPS1 = 0; iPS2 = 0; iPS3 = 0; iRWN = 0; iRWSE = 0;

break;
case 10:

points = iPN2 + iPW1 + iPW2 + iPW3 + iPS2 + iPE
+ iRNW + iRNS + 2*iRSNE;

iPN2 = 0; iPW1 = 0; iPW2 = 0; iPW3 = 0; iPS2 = 0;
iPE = 0; iRNW = 0; iRNS = 0; iRSNE = 0;

break;
case 11:

points = iPN1 + iPN2 + iPN3 + iPW2 + iPS1 +
iPS2 + iPS3 + 2*iRENW + 2*iRWSE;

iPN1 = 0; iPN2 = 0; iPN3 = 0; iPW2 = 0; iPS1 = 0;
iPS2 = 0; iPS3 = 0; iRENW = 0; iRWSE = 0;

break;
case 12:

points = iPN2 + iPN3 + iPW1 + iPW2 + iPW3 +
iPE + iPS1 + iPS2 + 2*iRNE + 2*iRSW;

iPN2 = 0; iPN3 = 0; iPW1 = 0; iPW2 = 0; iPW3 = 0;
iPE = 0; iPS1 = 0; iPS2 = 0; iRNE = 0; iRSW = 0;

break;
case 13:

points = iPN1 + iPN2 + iPN3 + iPW1 + iPW2 +
iPS1 + iPS2 + iPS3 + 2*iRWN + 2*iRES;

iPN1 = 0; iPN2 = 0; iPN3 = 0; iPW1 = 0; iPW2 = 0;
iPS1 = 0; iPS2 = 0; iPS3 = 0; iRWN = 0; iRES = 0;

break;
case 14:

points = iTSE + iTES + iPN1 + iPN2 + iPN3 + iPW1
+ iPW2 + iPW3 + iPS1 + iPS3 + iRES;

iTSE = 0; iTES = 0; iPN1 = 0; iPN2 = 0; iPN3 = 0;
iPW1 = 0; iPW2 = 0; iPW3 = 0; iPS1 = 0; iPS3 = 0; iRES = 0;

break;
case 15:

points = iTNE + iTEN + iPN1 + iPN3 + iPW1 +
iPW2 + iPS1 + iPS2 + iPS3 + 2*iRWSE;

iTNE = 0; iTEN = 0; iPN1 = 0; iPN3 = 0; iPW1 = 0;
iPW2 = 0; iPS1 = 0; iPS2 = 0; iPS3 = 0; iRWSE = 0;

break;
case 16:

points = 0;
break;

}
//Previous order calculations
switch(x)
{

case 0:
if((previousOrder == 11) || (previousOrder == 13))

{points = points + 2;}
if(previousOrder == 0) {points = points - 5;}

53

break;
case 1:

if((previousOrder == 11) || (previousOrder == 13))
{points = points + 2;}

if(previousOrder == 1) {points = points - 5;}
break;

case 2:
if((previousOrder == 11) || (previousOrder == 13))

{points = points + 2;}
if(previousOrder == 2) {points = points - 5;}
break;

case 3:
if((previousOrder == 11) || (previousOrder == 13))

{points = points + 2;}
if(previousOrder == 3) {points = points - 5;}
break;

case 4:
if((previousOrder == 10) || (previousOrder == 12))

{points = points + 2;}
if(previousOrder == 4) {points = points - 5;}
break;

case 5:
if((previousOrder == 12) || (previousOrder == 13))

{points = points + 2;}
if(previousOrder == 5) {points = points - 5;}
break;

case 6:
if((previousOrder == 11) || (previousOrder == 13))

{points = points + 2;}
if(previousOrder == 6) {points = points - 5;}
break;

case 7:
if((previousOrder == 8) || (previousOrder == 13))

{points = points + 2;}
if(previousOrder == 7) {points = points - 5;}
break;

case 8:
if((previousOrder == 7) || (previousOrder == 12))

{points = points + 2;}
if(previousOrder == 8) {points = points - 5;}
break;

case 9:
if((previousOrder == 10) || (previousOrder == 14))

{points = points + 2;}
if(previousOrder == 9) {points = points - 5;}
break;

case 10:
if((previousOrder == 8) || (previousOrder == 9))

{points = points + 2;}
if(previousOrder == 10) {points = points - 5;}
break;

case 11:
if((previousOrder == 5) || (previousOrder == 7))

{points = points + 2;}
if(previousOrder == 11) {points = points - 5;}
break;

case 12:
if((previousOrder == 5) || (previousOrder == 8))

{points = points + 2;}
if(previousOrder == 12) {points = points - 5;}
break;

case 13:
if((previousOrder == 5) || (previousOrder == 7))

{points = points + 2;}
if(previousOrder == 13) {points = points - 5;}
break;

case 14:
if((previousOrder == 9) || (previousOrder == 12))

{points = points + 2;}
if(previousOrder == 14) {points = points - 5;}
break;

case 15:
if((previousOrder == 10) || (previousOrder == 13))

{points = points + 2;}
if(previousOrder == 15) {points = points - 5;}
break;

}
if(i == 0) {f = 6*points;}
if(i == 1) {f = f + 5*points;}
if(i == 2) {f = f + 4*points;}
if(i == 3) {f = f + 3*points;}
if(i == 4) {f = f + 2*points;}
if(i == 5) {f = f + points;}
if(i == 0 && points <= 2) {p = 1;}

}
if(p == 1) {f = 0;}//if p1 = 0 -> f = 0
return f;

}

void ReturnResult(int bestParameterValue1, int bestParameterValue2, int
bestParameterValue3, int bestParameterValue4, int bestParameterValue5, int
bestParameterValue6, int inputValue[29], int maxFitness)
{

int f = 0, x = 0, points = 0, previousOrder;

int iPN1 = inputValue[0];
int iPN2 = inputValue[1];
int iPN3 = inputValue[2];
int iPW1 = inputValue[3];
int iPW2 = inputValue[4];
int iPW3 = inputValue[5];

int iPE = inputValue[6];
int iPS1 = inputValue[7];
int iPS2 = inputValue[8];
int iPS3 = inputValue[9];
int iTNW = inputValue[10];
int iTNE = inputValue[11];
int iTNS = inputValue[12];
int iTWN = inputValue[13];
int iTWE = inputValue[14];
int iTEN = inputValue[15];
int iTEW = inputValue[16];
int iTES = inputValue[17];
int iTSN = inputValue[18];
int iTSE = inputValue[19];
int iRNW = inputValue[20];
int iRNE = inputValue[21];
int iRNS = inputValue[22];
int iRWN = inputValue[23];
int iRWSE = inputValue[24];
int iRENW = inputValue[25];
int iRES = inputValue[26];
int iRSW = inputValue[27];
int iRSNE = inputValue[28];

printf("\n PPP PPP P PPP TTT TT TTT TT RRR RR RR RR\n");
printf(" NNN WWW E SSS NNN WW EEE SS NNN WW EE SS\n");
printf(" 123 123 123 WES NE NWS NE WES NS NS WN\n");
printf(" ||| ||| | ||| ||| || ||| || ||| |E W| |E\n");
printf("i %d%d%d.%d%d%d.%d.%d%d%d : %d%d%d.%d%d.%d%d%d.

%d%d : %d%d%d.%d%d.%d%d.%d%d Max fitness: %d\n", iPN1, iPN2, iPN3,
iPW1, iPW2, iPW3, iPE, iPS1, iPS2, iPS3, iTNW, iTNE, iTNS, iTWN, iTWE,
iTEN, iTEW, iTES, iTSN, iTSE, iRNW, iRNE, iRNS, iRWN, iRWSE, iRENW,
iRES, iRSW, iRSNE, maxFitness);

for(int i = 0; i <= 6 - 1; i++)
{

previousOrder = x;
if(i == 0) {x = bestParameterValue1;}
if(i == 1) {x = bestParameterValue2;}
if(i == 2) {x = bestParameterValue3;}
if(i == 3) {x = bestParameterValue4;}
if(i == 4) {x = bestParameterValue5;}
if(i == 5) {x = bestParameterValue6;}
points = 0;

//Inputs functions calculations
switch(x)
{

case 0:
points = iTNW + iTEN + iTSE + iPN1 + iPN2 +

iPN3 + iPS1 + iPS3 + iRNW;
iTNW = 0; iTEN = 0; iTSE = 0; iPN1 = 0; iPN2 = 0;

iPN3 = 0; iPS1 = 0; iPS3 = 0; iRNW = 0;
break;

case 1:
points = iTNW + iTEN + iTWE + iPN3 + iPW1 +

iPS1 + iPS2 + iPS3 + iRWSE;
iTNW = 0; iTEN = 0; iTWE = 0; iPN3 = 0; iPW1 =

0; iPS1 = 0; iPS2 = 0; iPS3 = 0; iRWSE = 0;
break;

case 2:
points = iTNS + iTEN + iTSE + iPW1 + iPW2 +

iPW3 + iPN3 + iPS3 + iRNW + iRNS;
iTNS = 0; iTEN = 0; iTSE = 0; iPW1 = 0; iPW2 = 0;

iPW3 = 0; iPN3 = 0; iPS3 = 0; iRNW = 0; iRNS = 0;
break;

case 3:
points = iTNW + iTSN + iPW1 + iPW3 + iPE + iPS1

+ iRNW + iRSNE;
iTNW = 0; iTSN = 0; iPW1 = 0; iPW3 = 0; iPE = 0;

iPS1 = 0; iRNW = 0; iRSNE = 0;
break;

case 4:
points = iTEW + iTSE + iPN1 + iPN2 + iPN3 +

iPW3 + iPS1 + iPS3 + iRENW;
iTEW = 0; iTSE = 0; iPN1 = 0; iPN2 = 0; iPN3= 0;

iPW3 = 0; iPS1 = 0; iPS3 = 0; iRENW = 0;
break;

case 5:
points = 2*iTNW + 2*iTWN + 2*iTES + 2*iTSE +

iPN3 + iPW1 + iPW3 + iPS1 + iPS3 + iRNW;
iTNW = 0; iTWN = 0; iTES = 0; iTSE = 0; iPN3 = 0;

iPW1 = 0; iPW3 = 0; iPS1 = 0; iPS3 = 0; iRNW = 0;
break;

case 6:
points = 2*iTNE + 4*iTEN + iPN3 + iPW1 + iPW2

+ iPW3 + iPS2 + iPS3 + iRNW + iRNS + iRNE;
iTNE = 0; iTEN = 0; iPN3 = 0; iPW1 = 0; iPW2 = 0;

iPW3 = 0; iPS2 = 0; iPS3 = 0; iRNW = 0; iRNS = 0; iRNE = 0;
break;

case 7:
points = 2*iTNS + 2*iTSN + iPW1 + iPW2 + iPW3

+ iPE + iRNW + iRNS + iRSNE;
iTNS= 0; iTSN = 0; iPW1 = 0; iPW2 = 0; iPW3 = 0;

iPE = 0; iRNW = 0; iRNS = 0; iRSNE = 0;
break;

case 8:
points = 2*iTWE + 2*iTEW + iPN1 + iPN2 + iPN3

+ iPS1 + iPS2 + iPS3 + iRENW + iRWSE;
iTWE = 0; iTEW = 0; iPN1 = 0; iPN2 = 0; iPN3 = 0;

iPS1 = 0; iPS2 = 0; iPS3 = 0; iRENW = 0; iRWSE = 0;

54

break;
case 9:

points = iTNW + iTWN + iPN1 + iPN3 + iPW1 +
iPS1 + iPS2 + iPS3 + 2*iRWN + iRWSE;

iTNW = 0; iTWN = 0; iPN1 = 0; iPN3 = 0; iPW1 =
0; iPS1 = 0; iPS2 = 0; iPS3 = 0; iRWN = 0; iRWSE = 0;

break;
case 10:

points = iPN2 + iPW1 + iPW2 + iPW3 + iPS2 + iPE
+ iRNW + iRNS + 2*iRSNE;

iPN2 = 0; iPW1 = 0; iPW2 = 0; iPW3 = 0; iPS2 = 0;
iPE = 0; iRNW = 0; iRNS = 0; iRSNE = 0;

break;
case 11:

points = iPN1 + iPN2 + iPN3 + iPW2 + iPS1 +
iPS2 + iPS3 + 2*iRENW + 2*iRWSE;

iPN1 = 0; iPN2 = 0; iPN3 = 0; iPW2 = 0; iPS1 = 0;
iPS2 = 0; iPS3 = 0; iRENW = 0; iRWSE = 0;

break;
case 12:

points = iPN2 + iPN3 + iPW1 + iPW2 + iPW3 +
iPE + iPS1 + iPS2 + 2*iRNE + 2*iRSW;

iPN2 = 0; iPN3 = 0; iPW1 = 0; iPW2 = 0; iPW3 = 0;
iPE = 0; iPS1 = 0; iPS2 = 0; iRNE = 0; iRSW = 0;

break;
case 13:

points = iPN1 + iPN2 + iPN3 + iPW1 + iPW2 +
iPS1 + iPS2 + iPS3 + 2*iRWN + 2*iRES;

iPN1 = 0; iPN2 = 0; iPN3 = 0; iPW1 = 0; iPW2 = 0;
iPS1 = 0; iPS2 = 0; iPS3 = 0; iRWN = 0; iRES = 0;

break;
case 14:

points = iTSE + iTES + iPN1 + iPN2 + iPN3 + iPW1
+ iPW2 + iPW3 + iPS1 + iPS3 + iRES;

iTSE = 0; iTES = 0; iPN1 = 0; iPN2 = 0; iPN3 = 0;
iPW1 = 0; iPW2 = 0; iPW3 = 0; iPS1 = 0; iPS3 = 0; iRES = 0;

break;
case 15:

points = iTNE + iTEN + iPN1 + iPN3 + iPW1 +
iPW2 + iPS1 + iPS2 + iPS3 + 2*iRWSE;

iTNE = 0; iTEN = 0; iPN1 = 0; iPN3 = 0; iPW1 = 0;
iPW2 = 0; iPS1 = 0; iPS2 = 0; iPS3 = 0; iRWSE = 0;

break;
case 16:

points = 0;
break;

}
//Previous order calculations
switch(x)
{

case 0:
if((previousOrder == 11) || (previousOrder == 13))

{points = points + 2;}
break;

case 1:
if((previousOrder == 11) || (previousOrder == 13))

{points = points + 2;}
break;

case 2:
if((previousOrder == 11) || (previousOrder == 13))

{points = points + 2;}
break;

case 3:
if((previousOrder == 11) || (previousOrder == 13))

{points = points + 2;}
break;

case 4:
if((previousOrder == 10) || (previousOrder == 12))

{points = points + 2;}
break;

case 5:
if((previousOrder == 12) || (previousOrder == 13))

{points = points + 2;}
break;

case 6:
if((previousOrder == 11) || (previousOrder == 13))

{points = points + 2;}
break;

case 7:
if((previousOrder == 8) || (previousOrder == 13))

{points = points + 2;}
break;

case 8:
if((previousOrder == 7) || (previousOrder == 12))

{points = points + 2;}
break;

case 9:
if((previousOrder == 10) || (previousOrder == 14))

{points = points + 2;}
break;

case 10:
if((previousOrder == 8) || (previousOrder == 9))

{points = points + 2;}
break;

case 11:
if((previousOrder == 5) || (previousOrder == 7))

{points = points + 2;}
break;

case 12:
if((previousOrder == 5) || (previousOrder == 8))

{points = points + 2;}

break;
case 13:

if((previousOrder == 5) || (previousOrder == 7))
{points = points + 2;}

break;
case 14:

if((previousOrder == 9) || (previousOrder == 12))
{points = points + 2;}

break;
case 15:

if((previousOrder == 10) || (previousOrder == 13))
{points = points + 2;}

break;
case 16:

//
break;

}
if(i == 0) {f = 6*points;}
if(i == 1) {f = f + 5*points;}
if(i == 2) {f = f + 4*points;}
if(i == 3) {f = f + 3*points;}
if(i == 4) {f = f + 2*points;}
if(i == 5) {f = f + points;}
printf("c%d %d%d%d.%d%d%d.%d.%d%d%d : %d%d%d.%d%d.

%d%d%d.%d%d : %d%d%d.%d%d.%d%d.%d%d Order = %2d Points =
%2d\n", i+1, iPN1, iPN2, iPN3, iPW1, iPW2, iPW3, iPE, iPS1, iPS2, iPS3, iTNW,
iTNE, iTNS, iTWN, iTWE, iTEN, iTEW, iTES, iTSN, iTSE, iRNW, iRNE, iRNS,
iRWN, iRWSE, iRENW, iRES, iRSW, iRSNE, x ,points);

}
printf("\n");
//Output print out
switch(bestParameterValue1)
{

case 0:
printf("Executing requests on drive order %d:\noTNW,

oTEN, oTSE, oPN1, oPN2, oPN3, oPS1, oPS3, oRNW\n", bestParameterValue1);
break;

case 1:
printf("Executing requests on drive order %d:\noTNW,

oTEN, oTWE, oPN3, oPW1, oPS1, oPS2, oPS3, oRWSE\n", bestParameterValue1);
break;

case 2:
printf("Executing requests on drive order %d:\noTNS,

oTEN, oTSE, oPW1, oPW2, oPW3, oPN3, oPS3, oRNW, oRNS\n",
bestParameterValue1);

break;
case 3:

printf("Executing requests on drive order %d:\noTNW,
oTSN, oPW1, oPW3, oPE, oPS1, oRNW, oRSNE\n", bestParameterValue1);

break;
case 4:

printf("Executing requests on drive order %d:\noTEW,
oTSE, oPN1, oPN2, oPN3, oPW3, oPS1, oPS3, oRENW\n", bestParameterValue1);

break;
case 5:

printf("Executing requests on drive order %d:\noTNW,
oTWN, oTES, oTSE, oPN3, oPW1, oPW3, oPS1, oPS3, oRNW\n",
bestParameterValue1);

break;
case 6:

printf("Executing requests on drive order %d:\noTNE,
oTEN, oPN3, oPW1, oPW2, oPW3, oPS2, oPS3, oRNW, oRNS, oRNE\n",
bestParameterValue1);

break;
case 7:

printf("Executing requests on drive order %d:\noTNS,
oTSN, oPW1, oPW2, oPW3, oPE, oRNW, oRNS, oRSNE\n",
bestParameterValue1);

break;
case 8:

printf("Executing requests on drive order %d:\noTWE,
oTEW, oPN1, oPN2, oPN3, oPS1, oPS2, oPS3, oRENW, oRWSE\n",
bestParameterValue1);

break;
case 9:

printf("Executing requests on drive order %d:\noTNW,
oTWN, oPN1, oPN3, oPW1, oPS1, oPS2, oPS3, oRWN, oRWSE\n",
bestParameterValue1);

break;
case 10:

printf("Executing requests on drive order %d:\noPN2,
oPW1, oPW2, oPW3, oPS2, oPE, oRNW, oRNS, oRSNE\n", bestParameterValue1);

break;
case 11:

printf("Executing requests on drive order %d:\noPN1, oPN2,
oPN3, oPW2, oPS1, oPS2, oPS3, oRENW, oRWSE\n", bestParameterValue1);

break;
case 12:

printf("Executing requests on drive order %d:\noPN2, oPN3,
oPW1, oPW2, oPW3, oPE, oPS1, oPS2, oRNE, oRSW\n", bestParameterValue1);

break;
case 13:

printf("Executing requests on drive order %d:\noPN1, oPN2,
oPN3, oPW1, oPW2, oPS1, oPS2, oPS3, oRWN, oRES\n", bestParameterValue1);

break;
case 14:

printf("Executing requests on drive order %d:\noTSE, oTES,
oPN1, oPN2, oPN3, oPW1, oPW2, oPW3, oPS1, oPS3, oRES\n",
bestParameterValue1);

break;
case 15:

55

printf("Executing requests on drive order %d:\noTNE,
oTEN, oPN1, oPN3, oPW1, oPW2, oPS1, oPS2, oPS3, oRWSE\n",
bestParameterValue1);

break;
case 16:

printf("Do not executing any drive order.\n");
break;

}
printf("\n");

}

int TournamentSelect(int fitness[30], int populationSize, float
tournamentProbability)
{

int indv;
int itemp1 = 1 + rand() %(populationSize - 1);
int itemp2 = 1 + rand() %(populationSize - 1);

float r = 0;
int ri = 0;
ri = rand() %99;
r = ((float)ri/100);

if(r <= tournamentProbability)
{

if(fitness[itemp1] >= fitness[itemp2])
{

indv = itemp1;
}
else
{

indv = itemp2;
}

}
else
{

if(fitness[itemp1] >= fitness[itemp2])
{

indv = itemp2;
}
else
{

indv = itemp1;
}

}
return indv;

}

float RandFunktion(void)
{

float r = 0;
int ri = rand() %99;
return r = ((float)ri/100);

}

void PrintOutFunktion(int msgOrder, int numberEvalutaionsPerformed, int
generationNbr, int maxFitness, int bestParameterValue1, int bestParameterValue2,
int bestParameterValue3, int bestParameterValue4, int bestParameterValue5, int
bestParameterValue6)
{
 if(msgOrder == 0)
 {
 printf("Start \n");
 }
 else if(msgOrder == 1)
 {
 printf("Generation: %3d Evaluation: %3d Max fitness: %3d \n",
generationNbr, numberEvalutaionsPerformed, maxFitness);
 }
 else if(msgOrder == 2)
 {
 printf("Result generation %3d: c1 = %d c2 = %d c3 = %d c4 = %d c5 =
%d c6 = %d Fitness = %d\n", generationNbr, bestParameterValue1,
bestParameterValue2, bestParameterValue3, bestParameterValue4,
bestParameterValue5, bestParameterValue6, maxFitness);
 }
 else if(msgOrder == 3)
 {
 printf("\nEnd or Termination Criterion is reached. \n\n");
 }
 else
 {
 printf("Error!\n\n");
 }
}

int main()
{

int populationSize = 30;
int numberOfGenes = 24;
int numberOfChromosomes = 6;
float crossoverProbability = 0.85;
float mutationProbability = 0.03;
float tournamentProbability = 0.90;
int inputValue[29];
int inputValues[10][29];// [=sim][29]
int maxGeneration = 100;
int numberEvalutaionsPerformed = 0;
int maxFitness = 0;
int totalMaxFitness = 0;
int fitness[populationSize];

int population[populationSize][numberOfGenes];
int tempPopulation[populationSize][numberOfGenes];
int goodIndividuals[populationSize][numberOfGenes];
int newIndividual1[numberOfGenes];
int newIndividual2[numberOfGenes];
int tempIndividual[numberOfGenes];
int parameterValue1 = 0;
int parameterValue2 = 0;
int parameterValue3 = 0;
int parameterValue4 = 0;
int parameterValue5 = 0;
int parameterValue6 = 0;
int bestInduvidual = 0;
int bestParameterValue1 = 0;
int bestParameterValue2 = 0;
int bestParameterValue3 = 0;
int bestParameterValue4 = 0;
int bestParameterValue5 = 0;
int bestParameterValue6 = 0;
int previousExcecution = 16;//Store c1 (E) from previous time period
int sim = 10;//Number of simulations
// Other variables
int generationNbr, i = 0, j = 0, h = 0, indv1, indv2; float r = 0; int msgOrder

= 0, mEInt = 0; float mEfloat = 0;

for(j = 0; j <= 28; j++)
{

inputValue[j] = 0;
}
for(i = 0; i <= sim - 1; i++)
{

for(j = 0; j <= 28; j++)
{

inputValues[i][j] = 0;
}

}
//Only 5 first is filled with inputs

//Init inputValue 0
inputValues[0][0] = 1; /* PN1 */ inputValues[0][10] = 0; /*

TNW */ inputValues[0][20] = 1; /* RNW */
inputValues[0][1] = 1; /* PN2 */ inputValues[0][11] = 0; /*

TNE */ inputValues[0][21] = 1; /* RNE */
inputValues[0][2] = 1; /* PN3 */ inputValues[0][12] = 1; /*

TNS */ inputValues[0][22] = 1; /* RNS */
inputValues[0][3] = 1; /* PW1 */ inputValues[0][13] = 0; /*

TWN */ inputValues[0][23] = 1; /* RWN */
inputValues[0][4] = 1; /* PW2 */ inputValues[0][14] = 1; /*

TWE */ inputValues[0][24] = 1; /* RWSE */
inputValues[0][5] = 1; /* PW3 */ inputValues[0][15] = 0; /*

TEN */ inputValues[0][25] = 1; /* RENW */
inputValues[0][6] = 1; /* PE */ inputValues[0][16] = 1; /*

TEW */ inputValues[0][26] = 1; /* RES */
inputValues[0][7] = 1; /* PS1 */ inputValues[0][17] = 0; /*

TES */ inputValues[0][27] = 1; /* RSW */
inputValues[0][8] = 1; /* PS2 */ inputValues[0][18] = 1; /*

TSN */ inputValues[0][28] = 1; /* RSNE */
inputValues[0][9] = 1; /* PS3 */ inputValues[0][19] = 0; /*

TSE */

//Init inputValue 1
inputValues[1][0] = 0; /* PN1 */ inputValues[1][10] = 0; /*

TNW */ inputValues[1][20] = 0; /* RNW */
inputValues[1][1] = 0; /* PN2 */ inputValues[1][11] = 0; /*

TNE */ inputValues[1][21] = 0; /* RNE */
inputValues[1][2] = 0; /* PN3 */ inputValues[1][12] = 0; /*

TNS */ inputValues[1][22] = 0; /* RNS */
inputValues[1][3] = 0; /* PW1 */ inputValues[1][13] = 0; /*

TWN */ inputValues[1][23] = 0; /* RWN */
inputValues[1][4] = 0; /* PW2 */ inputValues[1][14] = 0; /*

TWE */ inputValues[1][24] = 0; /* RWSE */
inputValues[1][5] = 0; /* PW3 */ inputValues[1][15] = 0; /*

TEN */ inputValues[1][25] = 0; /* RENW */
inputValues[1][6] = 0; /* PE */ inputValues[1][16] = 0; /*

TEW */ inputValues[1][26] = 0; /* RES */
inputValues[1][7] = 0; /* PS1 */ inputValues[1][17] = 0; /*

TES */ inputValues[1][27] = 0; /* RSW */
inputValues[1][8] = 0; /* PS2 */ inputValues[1][18] = 0; /*

TSN */ inputValues[1][28] = 0; /* RSNE */
inputValues[1][9] = 0; /* PS3 */ inputValues[1][19] = 0; /*

TSE */

//Init inputValue 2
inputValues[2][0] = 0; /* PN1 */ inputValues[2][10] = 0; /*

TNW */ inputValues[2][20] = 0; /* RNW */
inputValues[2][1] = 0; /* PN2 */ inputValues[2][11] = 0; /*

TNE */ inputValues[2][21] = 0; /* RNE */
inputValues[2][2] = 0; /* PN3 */ inputValues[2][12] = 0; /*

TNS */ inputValues[2][22] = 0; /* RNS */
inputValues[2][3] = 0; /* PW1 */ inputValues[2][13] = 0; /*

TWN */ inputValues[2][23] = 0; /* RWN */
inputValues[2][4] = 0; /* PW2 */ inputValues[2][14] = 0; /*

TWE */ inputValues[2][24] = 0; /* RWSE */
inputValues[2][5] = 0; /* PW3 */ inputValues[2][15] = 0; /*

TEN */ inputValues[2][25] = 0; /* RENW */
inputValues[2][6] = 0; /* PE */ inputValues[2][16] = 0; /*

TEW */ inputValues[2][26] = 0; /* RES */
inputValues[2][7] = 0; /* PS1 */ inputValues[2][17] = 0; /*

TES */ inputValues[2][27] = 0; /* RSW */
inputValues[2][8] = 0; /* PS2 */ inputValues[2][18] = 0; /*

TSN */ inputValues[2][28] = 0; /* RSNE */

56

inputValues[2][9] = 0; /* PS3 */ inputValues[2][19] = 0; /*
TSE */

//Init inputValue 3
inputValues[3][0] = 0; /* PN1 */ inputValues[3][10] = 0; /*

TNW */ inputValues[3][20] = 0; /* RNW */
inputValues[3][1] = 0; /* PN2 */ inputValues[3][11] = 0; /*

TNE */ inputValues[3][21] = 0; /* RNE */
inputValues[3][2] = 0; /* PN3 */ inputValues[3][12] = 0; /*

TNS */ inputValues[3][22] = 0; /* RNS */
inputValues[3][3] = 0; /* PW1 */ inputValues[3][13] = 0; /*

TWN */ inputValues[3][23] = 0; /* RWN */
inputValues[3][4] = 0; /* PW2 */ inputValues[3][14] = 0; /*

TWE */ inputValues[3][24] = 0; /* RWSE */
inputValues[3][5] = 0; /* PW3 */ inputValues[3][15] = 0; /*

TEN */ inputValues[3][25] = 0; /* RENW */
inputValues[3][6] = 0; /* PE */ inputValues[3][16] = 0; /*

TEW */ inputValues[3][26] = 0; /* RES */
inputValues[3][7] = 0; /* PS1 */ inputValues[3][17] = 0; /*

TES */ inputValues[3][27] = 0; /* RSW */
inputValues[3][8] = 0; /* PS2 */ inputValues[3][18] = 0; /*

TSN */ inputValues[3][28] = 0; /* RSNE */
inputValues[3][9] = 0; /* PS3 */ inputValues[3][19] = 0; /*

TSE */

//Init inputValue 4
inputValues[4][0] = 0; /* PN1 */ inputValues[4][10] = 0; /*

TNW */ inputValues[4][20] = 0; /* RNW */
inputValues[4][1] = 0; /* PN2 */ inputValues[4][11] = 0; /*

TNE */ inputValues[4][21] = 0; /* RNE */
inputValues[4][2] = 0; /* PN3 */ inputValues[4][12] = 0; /*

TNS */ inputValues[4][22] = 0; /* RNS */
inputValues[4][3] = 0; /* PW1 */ inputValues[4][13] = 0; /*

TWN */ inputValues[4][23] = 0; /* RWN */
inputValues[4][4] = 0; /* PW2 */ inputValues[4][14] = 0; /*

TWE */ inputValues[4][24] = 0; /* RWSE */
inputValues[4][5] = 0; /* PW3 */ inputValues[4][15] = 0; /*

TEN */ inputValues[4][25] = 0; /* RENW */
inputValues[4][6] = 0; /* PE */ inputValues[4][16] = 0; /*

TEW */ inputValues[4][26] = 0; /* RES */
inputValues[4][7] = 0; /* PS1 */ inputValues[4][17] = 0; /*

TES */ inputValues[4][27] = 0; /* RSW */
inputValues[4][8] = 0; /* PS2 */ inputValues[4][18] = 0; /*

TSN */ inputValues[4][28] = 0; /* RSNE */
inputValues[4][9] = 0; /* PS3 */ inputValues[4][19] = 0; /*

TSE */

//Set values to population
for(i = 0; i <= populationSize - 1; i++)
{

for(j = 0; j <= numberOfGenes - 1; j++)
{

if((rand() % 6) >= 3)
{

population[i][j] = 1;
}
else
{

population[i][j] = 0;
}

}
}
//Set values to tempPopulation
for(i = 0; i <= populationSize - 1; i++)
{

for(j = 0; j <= numberOfGenes - 1; j++)
{

tempPopulation[i][j] = 0;
}

}
for(j = 0; j <= 28; j++)
{

inputValue[j] = 0;
}

//Start main program
PrintOutFunktion(msgOrder, mEInt, mEInt, mEInt, mEInt, mEInt, mEInt,

mEInt, mEInt, mEInt);

for(h = 0; h <= sim - 1; h++)
{

printf("\n**** Standard GA ****\n");
printf("Previous executed drive order: %d, Simulation: T%d\n\n",

previousExcecution, h);

for(i = 0; i <= sim - 1; i++)
{

for(j = 0; j <= numberOfGenes - 1; j++)
{

population[i][j] = goodIndividuals[i][j];
}

}

//UpdateInputValue(inputValue, bestParameterValue1, h);
if(1)
{

int iPN1 = inputValue[0];
int iPN2 = inputValue[1];
int iPN3 = inputValue[2];
int iPW1 = inputValue[3];
int iPW2 = inputValue[4];

int iPW3 = inputValue[5];
int iPE = inputValue[6];
int iPS1 = inputValue[7];
int iPS2 = inputValue[8];
int iPS3 = inputValue[9];
int iTNW = inputValue[10];
int iTNE = inputValue[11];
int iTNS = inputValue[12];
int iTWN = inputValue[13];
int iTWE = inputValue[14];
int iTEN = inputValue[15];
int iTEW = inputValue[16];
int iTES = inputValue[17];
int iTSN = inputValue[18];
int iTSE = inputValue[19];
int iRNW = inputValue[20];
int iRNE = inputValue[21];
int iRNS = inputValue[22];
int iRWN = inputValue[23];
int iRWSE = inputValue[24];
int iRENW = inputValue[25];
int iRES = inputValue[26];
int iRSW = inputValue[27];
int iRSNE = inputValue[28];

switch(bestParameterValue1)
{

case 0:
iTNW = 0; iTEN = 0; iTSE = 0; iPN1 = 0;

iPN2 = 0; iPN3 = 0; iPS1 = 0; iPS3 = 0; iRNW = 0;
break;

case 1:
iTNW = 0; iTEN = 0; iTWE = 0; iPN3 = 0;

iPW1 = 0; iPS1 = 0; iPS2 = 0; iPS3 = 0; iRWSE = 0;
break;

case 2:
iTNS = 0; iTEN = 0; iTSE = 0; iPW1 = 0;

iPW2 = 0; iPW3 = 0; iPN3 = 0; iPS3 = 0; iRNW = 0; iRNS = 0;
break;

case 3:
iTNW = 0; iTSN = 0; iPW1 = 0; iPW3 = 0;

iPE = 0; iPS1 = 0; iRNW = 0; iRSNE = 0;
break;

case 4:
iTEW = 0; iTSE = 0; iPN1 = 0; iPN2 = 0;

iPN3= 0; iPW3 = 0; iPS1 = 0; iPS3 = 0; iRENW = 0;
break;

case 5:
iTNW = 0; iTWN = 0; iTES = 0; iTSE = 0;

iPN3 = 0; iPW1 = 0; iPW3 = 0; iPS1 = 0; iPS3 = 0; iRNW = 0;
break;

case 6:
iTNE = 0; iTEN = 0; iPN3 = 0; iPW1 = 0;

iPW2 = 0; iPW3 = 0; iPS2 = 0; iPS3 = 0; iRNW = 0; iRNS = 0; iRNE = 0;
break;

case 7:
iTNS= 0; iTSN = 0; iPW1 = 0; iPW2 = 0;

iPW3 = 0; iPE = 0; iRNW = 0; iRNS = 0; iRSNE = 0;
break;

case 8:
iTWE = 0; iTEW = 0; iPN1 = 0; iPN2 = 0;

iPN3 = 0; iPS1 = 0; iPS2 = 0; iPS3 = 0; iRENW = 0; iRWSE = 0;
break;

case 9:
iTNW = 0; iTWN = 0; iPN1 = 0; iPN3 = 0;

iPW1 = 0; iPS1 = 0; iPS2 = 0; iPS3 = 0; iRWN = 0; iRWSE = 0;
break;

case 10:
iPN2 = 0; iPW1 = 0; iPW2 = 0; iPW3 = 0;

iPS2 = 0; iPE = 0; iRNW = 0; iRNS = 0; iRSNE = 0;
break;

case 11:
iPN1 = 0; iPN2 = 0; iPN3 = 0; iPW2 = 0;

iPS1 = 0; iPS2 = 0; iPS3 = 0; iRENW = 0; iRWSE = 0;
break;

case 12:
iPN2 = 0; iPN3 = 0; iPW1 = 0; iPW2 = 0;

iPW3 = 0; iPE = 0; iPS1 = 0; iPS2 = 0; iRNE = 0; iRSW = 0;
break;

case 13:
iPN1 = 0; iPN2 = 0; iPN3 = 0; iPW1 = 0;

iPW2 = 0; iPS1 = 0; iPS2 = 0; iPS3 = 0; iRWN = 0; iRES = 0;
break;

case 14:
iTSE = 0; iTES = 0; iPN1 = 0; iPN2 = 0;

iPN3 = 0; iPW1 = 0; iPW2 = 0; iPW3 = 0; iPS1 = 0; iPS3 = 0; iRES = 0;
break;

case 15:
iTNE = 0; iTEN = 0; iPN1 = 0; iPN3 = 0;

iPW1 = 0; iPW2 = 0; iPS1 = 0; iPS2 = 0; iPS3 = 0; iRWSE = 0;
break;

case 16:
break;

}
// Rewrite inputValue
inputValue[0] = iPN1;
inputValue[1] = iPN2;
inputValue[2] = iPN3;
inputValue[3] = iPW1;
inputValue[4] = iPW2;
inputValue[5] = iPW3;

57

inputValue[6] = iPE;
inputValue[7] = iPS1;
inputValue[8] = iPS2;
inputValue[9] = iPS3;
inputValue[10] = iTNW;
inputValue[11] = iTNE;
inputValue[12] = iTNS;
inputValue[13] = iTWN;
inputValue[14] = iTWE;
inputValue[15] = iTEN;
inputValue[16] = iTEW;
inputValue[17] = iTES;
inputValue[18] = iTSN;
inputValue[19] = iTSE;
inputValue[20] = iRNW;
inputValue[21] = iRNE;
inputValue[22] = iRNS;
inputValue[23] = iRWN;
inputValue[24] = iRWSE;
inputValue[25] = iRENW;
inputValue[26] = iRES;
inputValue[27] = iRSW;
inputValue[28] = iRSNE;

for(j = 0; j <= 28; j++)
{

if(inputValue[j] != 0) {inputValue[j] = inputValue[j]
+ 1;}// Add priority to remaining inputs

else {inputValue[j] = inputValue[j] + inputValues[h]
[j];}// Add new inputs if there are any

}
}

//Start of standard GA loop
for (generationNbr = 0; generationNbr <= maxGeneration - 1;

generationNbr++)
{

for(i = 0; i <= populationSize - 1; i++)
{

parameterValue1 = DecodeChromosome(population,
i, numberOfGenes, 1, numberOfChromosomes);

 parameterValue2 = DecodeChromosome(population,
i, numberOfGenes, 2, numberOfChromosomes);

parameterValue3 = DecodeChromosome(population,
i, numberOfGenes, 3, numberOfChromosomes);

parameterValue4 = DecodeChromosome(population,
i, numberOfGenes, 4, numberOfChromosomes);

parameterValue5 = DecodeChromosome(population,
i, numberOfGenes, 5, numberOfChromosomes);

parameterValue6 = DecodeChromosome(population,
i, numberOfGenes, 6, numberOfChromosomes);

 fitness[i] = EvaluateIndividual(parameterValue1,
parameterValue2, parameterValue3, parameterValue4, parameterValue5,
parameterValue6, inputValue, previousExcecution);

 numberEvalutaionsPerformed =
numberEvalutaionsPerformed + 1;

if ((fitness[i] >= maxFitness) && (fitness[i] !=
maxFitness))//fitness > maxFitness

{
maxFitness = fitness[i];
bestInduvidual = i;
bestParameterValue1 = parameterValue1;
bestParameterValue2 = parameterValue2;
bestParameterValue3 = parameterValue3;
bestParameterValue4 = parameterValue4;
bestParameterValue5 = parameterValue5;
bestParameterValue6 = parameterValue6;
msgOrder = 1;
PrintOutFunktion(msgOrder,

numberEvalutaionsPerformed, generationNbr + 1, maxFitness,
bestParameterValue1, bestParameterValue2, bestParameterValue3,
bestParameterValue4, bestParameterValue5, bestParameterValue6);

}
}
numberEvalutaionsPerformed = 0;

for(i = 0; i <= populationSize - 1; i++)//copy array:
tempPopulation = population;

{
for(j = 0; j <= numberOfGenes - 1; j++)
{

tempPopulation[i][j] = population[i][j];
}

}

for(i = 0; i <= populationSize - 1; i = i + 2)
{

indv1 = TournamentSelect(fitness, populationSize,
tournamentProbability);

indv2 = TournamentSelect(fitness, populationSize,
tournamentProbability);

r = RandFunktion();
if(r <= crossoverProbability)
{

int j, cp = rand() %numberOfGenes - 1; //Get
crossover position.

for(j = 0; j <= numberOfGenes - 1; j++)
{

if(j <= cp)
{

newIndividual1[j] =
population[indv1][j];

newIndividual2[j] =
population[indv2][j];

}
else
{

newIndividual1[j] =
population[indv2][j];

newIndividual2[j] =
population[indv1][j];

}
}//end of crossover

for(j = 0; j <= numberOfGenes - 1; j++)
{

tempPopulation[i][j] =
newIndividual1[j];

tempPopulation[i + 1][j] =
newIndividual2[j];

}
}
else
{

for(j = 0; j <= numberOfGenes - 1; j++)
{

tempPopulation[i][j] =
population[indv1][j];

tempPopulation[i + 1][j] =
population[indv2][j];

}
}

}

//Set best individual first into tempPopulation
for(j = 0; j <= numberOfGenes - 1; j++)
{

tempPopulation[0][j] = population[bestInduvidual]
[j];

}

for(i = 1; i <= populationSize - 1; i++)
{

for(j = 0; j <= numberOfGenes - 1; j++)
{

tempIndividual[j] = tempPopulation[i][j];
r = RandFunktion();
if (r <= mutationProbability)
{

r = RandFunktion();
if(r >= 0.5)
{

tempIndividual[j] = 1;
}
else
{

tempIndividual[j] = 0;
}

}
tempPopulation[i][j] = tempIndividual[j];

}
}

for(i = 0; i <= populationSize - 1; i++)//copy array
population = tempPopulation

{
for(j = 0; j <= numberOfGenes - 1; j++)
{

population[i][j] = tempPopulation[i][j];
}

}
//New population is made for next generation

bestInduvidual = 0;// Resets until next generation
if ((maxFitness >= totalMaxFitness) && (maxFitness !=

totalMaxFitness))//maxFitness > totalMaxFitness
{

for(j = 0; j <= numberOfGenes - 1; j++)
{

goodIndividuals[h][j] = tempPopulation[0][j];
}
totalMaxFitness = maxFitness;

}
}

ReturnResult(bestParameterValue1, bestParameterValue2,
bestParameterValue3, bestParameterValue4, bestParameterValue5,
bestParameterValue6, inputValue, maxFitness);

printf("...\n");
previousExcecution = bestParameterValue1;
maxFitness = 0;// Resets until next generation

}

printf("\nGood individuals in binary form:\n\n");
for(int h = 0; h <= sim - 1; h++)
{

for(j = 0; j <= numberOfGenes - 1; j++)
{

printf("%d", goodIndividuals[h][j]);
}
bestParameterValue1 = DecodeChromosome(goodIndividuals, h,

58

numberOfGenes, 1, numberOfChromosomes);
 bestParameterValue2 = DecodeChromosome(goodIndividuals, h,
numberOfGenes, 2, numberOfChromosomes);

bestParameterValue3 = DecodeChromosome(goodIndividuals, h,
numberOfGenes, 3, numberOfChromosomes);

bestParameterValue4 = DecodeChromosome(goodIndividuals, h,
numberOfGenes, 4, numberOfChromosomes);

bestParameterValue5 = DecodeChromosome(goodIndividuals, h,
numberOfGenes, 5, numberOfChromosomes);

bestParameterValue6 = DecodeChromosome(goodIndividuals, h,
numberOfGenes, 6, numberOfChromosomes);

printf(" = %2d - %2d - %2d - %2d - %2d - %2d\n",

bestParameterValue1, bestParameterValue2, bestParameterValue3,
bestParameterValue4, bestParameterValue5, bestParameterValue6);

}

msgOrder = 3;
PrintOutFunktion(msgOrder, mEInt, mEInt, mEInt, mEInt, mEInt, mEInt,

mEInt, mEInt, mEInt);

printf("\n");
//getchar(); To stop command window.

}

59

60

Appendix H Program code of DFS version

Source code for DFS version with Normal case inputs implemented.

/* DFS version normal case */

#include <stdio.h>
#include <conio.h>

int EvaluateIndividual(int c1, int c2, int c3, int c4, int c5, int c6, int inputValue[29],
int previousExcecution)
{

int f = 0, i = 0, x = 0, p = 0, points = 0, previousOrder;

int iPN1 = inputValue[0];
int iPN2 = inputValue[1];
int iPN3 = inputValue[2];
int iPW1 = inputValue[3];
int iPW2 = inputValue[4];
int iPW3 = inputValue[5];
int iPE = inputValue[6];
int iPS1 = inputValue[7];
int iPS2 = inputValue[8];
int iPS3 = inputValue[9];
int iTNW = inputValue[10];
int iTNE = inputValue[11];
int iTNS = inputValue[12];
int iTWN = inputValue[13];
int iTWE = inputValue[14];
int iTEN = inputValue[15];
int iTEW = inputValue[16];
int iTES = inputValue[17];
int iTSN = inputValue[18];
int iTSE = inputValue[19];
int iRNW = inputValue[20];
int iRNE = inputValue[21];
int iRNS = inputValue[22];
int iRWN = inputValue[23];
int iRWSE = inputValue[24];
int iRENW = inputValue[25];
int iRES = inputValue[26];
int iRSW = inputValue[27];
int iRSNE = inputValue[28];

x = previousExcecution;
for(i = 0; i <= 6 - 1; i++)
{

previousOrder = x;
if(i == 0) {x = c1;}
if(i == 1) {x = c2;}
if(i == 2) {x = c3;}
if(i == 3) {x = c4;}
if(i == 4) {x = c5;}
if(i == 5) {x = c6;}
points = 0;

//Inputs functions calculations
switch(x)
{

case 0:
points = iTNW + iTEN + iTSE + iPN1 + iPN2 +

iPN3 + iPS1 + iPS3 + iRNW;
iTNW = 0; iTEN = 0; iTSE = 0; iPN1 = 0; iPN2 = 0;

iPN3 = 0; iPS1 = 0; iPS3 = 0; iRNW = 0;
break;

case 1:
points = iTNW + iTEN + iTWE + iPN3 + iPW1 +

iPS1 + iPS2 + iPS3 + iRWSE;
iTNW = 0; iTEN = 0; iTWE = 0; iPN3 = 0; iPW1 =

0; iPS1 = 0; iPS2 = 0; iPS3 = 0; iRWSE = 0;
break;

case 2:
points = iTNS + iTEN + iTSE + iPW1 + iPW2 +

iPW3 + iPN3 + iPS3 + iRNW + iRNS;
iTNS = 0; iTEN = 0; iTSE = 0; iPW1 = 0; iPW2 = 0;

iPW3 = 0; iPN3 = 0; iPS3 = 0; iRNW = 0; iRNS = 0;
break;

case 3:
points = iTNW + iTSN + iPW1 + iPW3 + iPE + iPS1

+ iRNW + iRSNE;
iTNW = 0; iTSN = 0; iPW1 = 0; iPW3 = 0; iPE = 0;

iPS1 = 0; iRNW = 0; iRSNE = 0;
break;

case 4:
points = iTEW + iTSE + iPN1 + iPN2 + iPN3 +

iPW3 + iPS1 + iPS3 + iRENW;
iTEW = 0; iTSE = 0; iPN1 = 0; iPN2 = 0; iPN3= 0;

iPW3 = 0; iPS1 = 0; iPS3 = 0; iRENW = 0;
break;

case 5:
points = 2*iTNW + 2*iTWN + 2*iTES + 3*iTSE +

iPN3 + iPW1 + iPW3 + iPS1 + iPS3 + iRNW;
iTNW = 0; iTWN = 0; iTES = 0; iTSE = 0; iPN3 = 0;

iPW1 = 0; iPW3 = 0; iPS1 = 0; iPS3 = 0; iRNW = 0;

break;
case 6:

points = 4*iTNE + 4*iTEN + iPN3 + iPW1 + iPW2
+ iPW3 + iPS2 + iPS3 + iRNW + iRNS + iRNE;

iTNE = 0; iTEN = 0; iPN3 = 0; iPW1 = 0; iPW2 = 0;
iPW3 = 0; iPS2 = 0; iPS3 = 0; iRNW = 0; iRNS = 0; iRNE = 0;

break;
case 7:

points = 2*iTNS + 2*iTSN + iPW1 + iPW2 + iPW3
+ iPE + iRNW + iRNS + iRSNE;

iTNS= 0; iTSN = 0; iPW1 = 0; iPW2 = 0; iPW3 = 0;
iPE = 0; iRNW = 0; iRNS = 0; iRSNE = 0;

break;
case 8:

points = 3*iTWE + 3*iTEW + iPN1 + iPN2 + iPN3
+ iPS1 + iPS2 + iPS3 + iRENW + iRWSE;

iTWE = 0; iTEW = 0; iPN1 = 0; iPN2 = 0; iPN3 = 0;
iPS1 = 0; iPS2 = 0; iPS3 = 0; iRENW = 0; iRWSE = 0;

break;
case 9:

points = iTNW + iTWN + iPN1 + iPN3 + iPW1 +
iPS1 + iPS2 + iPS3 + 2*iRWN + iRWSE;

iTNW = 0; iTWN = 0; iPN1 = 0; iPN3 = 0; iPW1 =
0; iPS1 = 0; iPS2 = 0; iPS3 = 0; iRWN = 0; iRWSE = 0;

break;
case 10:

points = iPN2 + iPW1 + iPW2 + iPW3 + iPS2 + iPE
+ iRNW + iRNS + 2*iRSNE;

iPN2 = 0; iPW1 = 0; iPW2 = 0; iPW3 = 0; iPS2 = 0;
iPE = 0; iRNW = 0; iRNS = 0; iRSNE = 0;

break;
case 11:

points = iPN1 + iPN2 + iPN3 + iPW2 + iPS1 +
iPS2 + iPS3 + 2*iRENW + 2*iRWSE;

iPN1 = 0; iPN2 = 0; iPN3 = 0; iPW2 = 0; iPS1 = 0;
iPS2 = 0; iPS3 = 0; iRENW = 0; iRWSE = 0;

break;
case 12:

points = iPN2 + iPN3 + iPW1 + iPW2 + iPW3 +
iPE + iPS1 + iPS2 + 2*iRNE + 2*iRSW;

iPN2 = 0; iPN3 = 0; iPW1 = 0; iPW2 = 0; iPW3 = 0;
iPE = 0; iPS1 = 0; iPS2 = 0; iRNE = 0; iRSW = 0;

break;
case 13:

points = iPN1 + iPN2 + iPN3 + iPW1 + iPW2 +
iPS1 + iPS2 + iPS3 + 2*iRWN + 2*iRES;

iPN1 = 0; iPN2 = 0; iPN3 = 0; iPW1 = 0; iPW2 = 0;
iPS1 = 0; iPS2 = 0; iPS3 = 0; iRWN = 0; iRES = 0;

break;
case 14:

points = iTSE + iTES + iPN1 + iPN2 + iPN3 + iPW1
+ iPW2 + iPW3 + iPS1 + iPS3 + iRES;

iTSE = 0; iTES = 0; iPN1 = 0; iPN2 = 0; iPN3 = 0;
iPW1 = 0; iPW2 = 0; iPW3 = 0; iPS1 = 0; iPS3 = 0; iRES = 0;

break;
case 15:

points = iTNE + iTEN + iPN1 + iPN3 + iPW1 +
iPW2 + iPS1 + iPS2 + iPS3 + 2*iRWSE;

iTNE = 0; iTEN = 0; iPN1 = 0; iPN3 = 0; iPW1 = 0;
iPW2 = 0; iPS1 = 0; iPS2 = 0; iPS3 = 0; iRWSE = 0;

break;
case 16:

points = 0;
break;

}
//Previous order calculations
switch(x)
{

case 0:
if((previousOrder == 11) || (previousOrder == 13))

{points = points + 2;}
if(previousOrder == 0) {points = points - 5;}
break;

case 1:
if((previousOrder == 11) || (previousOrder == 13))

{points = points + 2;}
if(previousOrder == 1) {points = points - 5;}
break;

case 2:
if((previousOrder == 11) || (previousOrder == 13))

{points = points + 2;}
if(previousOrder == 2) {points = points - 5;}
break;

case 3:
if((previousOrder == 11) || (previousOrder == 13))

{points = points + 2;}
if(previousOrder == 3) {points = points - 5;}
break;

case 4:
if((previousOrder == 10) || (previousOrder == 12))

61

{points = points + 2;}
if(previousOrder == 4) {points = points - 5;}
break;

case 5:
if((previousOrder == 12) || (previousOrder == 13))

{points = points + 2;}
if(previousOrder == 5) {points = points - 5;}
break;

case 6:
if((previousOrder == 11) || (previousOrder == 13))

{points = points + 2;}
if(previousOrder == 6) {points = points - 5;}
break;

case 7:
if((previousOrder == 8) || (previousOrder == 13))

{points = points + 2;}
if(previousOrder == 7) {points = points - 5;}
break;

case 8:
if((previousOrder == 7) || (previousOrder == 12))

{points = points + 2;}
if(previousOrder == 8) {points = points - 5;}
break;

case 9:
if((previousOrder == 10) || (previousOrder == 14))

{points = points + 2;}
if(previousOrder == 9) {points = points - 5;}
break;

case 10:
if((previousOrder == 8) || (previousOrder == 9))

{points = points + 2;}
if(previousOrder == 10) {points = points - 5;}
break;

case 11:
if((previousOrder == 5) || (previousOrder == 7))

{points = points + 2;}
if(previousOrder == 11) {points = points - 5;}
break;

case 12:
if((previousOrder == 5) || (previousOrder == 8))

{points = points + 2;}
if(previousOrder == 12) {points = points - 5;}
break;

case 13:
if((previousOrder == 5) || (previousOrder == 7))

{points = points + 2;}
if(previousOrder == 13) {points = points - 5;}
break;

case 14:
if((previousOrder == 9) || (previousOrder == 12))

{points = points + 2;}
if(previousOrder == 14) {points = points - 5;}
break;

case 15:
if((previousOrder == 10) || (previousOrder == 13))

{points = points + 2;}
if(previousOrder == 15) {points = points - 5;}
break;

}
if(i == 0) {f = 6*points;}
if(i == 1) {f = f + 5*points;}
if(i == 2) {f = f + 4*points;}
if(i == 3) {f = f + 3*points;}
if(i == 4) {f = f + 2*points;}
if(i == 5) {f = f + points;}
if(i == 0 && points <= 2) {p = 1;}

}
if(p == 1) {f = 0;}//if p1 = 0 -> f = 0
return f;

}

void ReturnResult(int bestParameterValue1, int bestParameterValue2, int
bestParameterValue3, int bestParameterValue4, int bestParameterValue5, int
bestParameterValue6, int inputValue[29], int maxFitness)
{

int f = 0, x = 0, points = 0, previousOrder;

int iPN1 = inputValue[0];
int iPN2 = inputValue[1];
int iPN3 = inputValue[2];
int iPW1 = inputValue[3];
int iPW2 = inputValue[4];
int iPW3 = inputValue[5];
int iPE = inputValue[6];
int iPS1 = inputValue[7];
int iPS2 = inputValue[8];
int iPS3 = inputValue[9];
int iTNW = inputValue[10];
int iTNE = inputValue[11];
int iTNS = inputValue[12];
int iTWN = inputValue[13];
int iTWE = inputValue[14];
int iTEN = inputValue[15];
int iTEW = inputValue[16];
int iTES = inputValue[17];
int iTSN = inputValue[18];
int iTSE = inputValue[19];
int iRNW = inputValue[20];
int iRNE = inputValue[21];
int iRNS = inputValue[22];
int iRWN = inputValue[23];

int iRWSE = inputValue[24];
int iRENW = inputValue[25];
int iRES = inputValue[26];
int iRSW = inputValue[27];
int iRSNE = inputValue[28];

printf("\n PPP PPP P PPP TTT TT TTT TT RRR RR RR RR\n");
printf(" NNN WWW E SSS NNN WW EEE SS NNN WW EE SS\n");
printf(" 123 123 123 WES NE NWS NE WES NS NS WN\n");
printf(" ||| ||| | ||| ||| || ||| || ||| |E W| |E\n");
printf("i %d%d%d.%d%d%d.%d.%d%d%d : %d%d%d.%d%d.%d%d%d.

%d%d : %d%d%d.%d%d.%d%d.%d%d Max fitness: %d\n", iPN1, iPN2, iPN3,
iPW1, iPW2, iPW3, iPE, iPS1, iPS2, iPS3, iTNW, iTNE, iTNS, iTWN, iTWE,
iTEN, iTEW, iTES, iTSN, iTSE, iRNW, iRNE, iRNS, iRWN, iRWSE, iRENW,
iRES, iRSW, iRSNE, maxFitness);

for(int i = 0; i <= 6 - 1; i++)
{

previousOrder = x;
if(i == 0) {x = bestParameterValue1;}
if(i == 1) {x = bestParameterValue2;}
if(i == 2) {x = bestParameterValue3;}
if(i == 3) {x = bestParameterValue4;}
if(i == 4) {x = bestParameterValue5;}
if(i == 5) {x = bestParameterValue6;}
points = 0;

//Inputs functions calculations
switch(x)
{

case 0:
points = iTNW + iTEN + iTSE + iPN1 + iPN2 +

iPN3 + iPS1 + iPS3 + iRNW;
iTNW = 0; iTEN = 0; iTSE = 0; iPN1 = 0; iPN2 = 0;

iPN3 = 0; iPS1 = 0; iPS3 = 0; iRNW = 0;
break;

case 1:
points = iTNW + iTEN + iTWE + iPN3 + iPW1 +

iPS1 + iPS2 + iPS3 + iRWSE;
iTNW = 0; iTEN = 0; iTWE = 0; iPN3 = 0; iPW1 =

0; iPS1 = 0; iPS2 = 0; iPS3 = 0; iRWSE = 0;
break;

case 2:
points = iTNS + iTEN + iTSE + iPW1 + iPW2 +

iPW3 + iPN3 + iPS3 + iRNW + iRNS;
iTNS = 0; iTEN = 0; iTSE = 0; iPW1 = 0; iPW2 = 0;

iPW3 = 0; iPN3 = 0; iPS3 = 0; iRNW = 0; iRNS = 0;
break;

case 3:
points = iTNW + iTSN + iPW1 + iPW3 + iPE + iPS1

+ iRNW + iRSNE;
iTNW = 0; iTSN = 0; iPW1 = 0; iPW3 = 0; iPE = 0;

iPS1 = 0; iRNW = 0; iRSNE = 0;
break;

case 4:
points = iTEW + iTSE + iPN1 + iPN2 + iPN3 +

iPW3 + iPS1 + iPS3 + iRENW;
iTEW = 0; iTSE = 0; iPN1 = 0; iPN2 = 0; iPN3= 0;

iPW3 = 0; iPS1 = 0; iPS3 = 0; iRENW = 0;
break;

case 5:
points = 2*iTNW + 2*iTWN + 2*iTES + 2*iTSE +

iPN3 + iPW1 + iPW3 + iPS1 + iPS3 + iRNW;
iTNW = 0; iTWN = 0; iTES = 0; iTSE = 0; iPN3 = 0;

iPW1 = 0; iPW3 = 0; iPS1 = 0; iPS3 = 0; iRNW = 0;
break;

case 6:
points = 2*iTNE + 4*iTEN + iPN3 + iPW1 + iPW2

+ iPW3 + iPS2 + iPS3 + iRNW + iRNS + iRNE;
iTNE = 0; iTEN = 0; iPN3 = 0; iPW1 = 0; iPW2 = 0;

iPW3 = 0; iPS2 = 0; iPS3 = 0; iRNW = 0; iRNS = 0; iRNE = 0;
break;

case 7:
points = 2*iTNS + 2*iTSN + iPW1 + iPW2 + iPW3

+ iPE + iRNW + iRNS + iRSNE;
iTNS= 0; iTSN = 0; iPW1 = 0; iPW2 = 0; iPW3 = 0;

iPE = 0; iRNW = 0; iRNS = 0; iRSNE = 0;
break;

case 8:
points = 2*iTWE + 2*iTEW + iPN1 + iPN2 + iPN3

+ iPS1 + iPS2 + iPS3 + iRENW + iRWSE;
iTWE = 0; iTEW = 0; iPN1 = 0; iPN2 = 0; iPN3 = 0;

iPS1 = 0; iPS2 = 0; iPS3 = 0; iRENW = 0; iRWSE = 0;
break;

case 9:
points = iTNW + iTWN + iPN1 + iPN3 + iPW1 +

iPS1 + iPS2 + iPS3 + 2*iRWN + iRWSE;
iTNW = 0; iTWN = 0; iPN1 = 0; iPN3 = 0; iPW1 =

0; iPS1 = 0; iPS2 = 0; iPS3 = 0; iRWN = 0; iRWSE = 0;
break;

case 10:
points = iPN2 + iPW1 + iPW2 + iPW3 + iPS2 + iPE

+ iRNW + iRNS + 2*iRSNE;
iPN2 = 0; iPW1 = 0; iPW2 = 0; iPW3 = 0; iPS2 = 0;

iPE = 0; iRNW = 0; iRNS = 0; iRSNE = 0;
break;

case 11:
points = iPN1 + iPN2 + iPN3 + iPW2 + iPS1 +

iPS2 + iPS3 + 2*iRENW + 2*iRWSE;
iPN1 = 0; iPN2 = 0; iPN3 = 0; iPW2 = 0; iPS1 = 0;

iPS2 = 0; iPS3 = 0; iRENW = 0; iRWSE = 0;

62

break;
case 12:

points = iPN2 + iPN3 + iPW1 + iPW2 + iPW3 +
iPE + iPS1 + iPS2 + 2*iRNE + 2*iRSW;

iPN2 = 0; iPN3 = 0; iPW1 = 0; iPW2 = 0; iPW3 = 0;
iPE = 0; iPS1 = 0; iPS2 = 0; iRNE = 0; iRSW = 0;

break;
case 13:

points = iPN1 + iPN2 + iPN3 + iPW1 + iPW2 +
iPS1 + iPS2 + iPS3 + 2*iRWN + 2*iRES;

iPN1 = 0; iPN2 = 0; iPN3 = 0; iPW1 = 0; iPW2 = 0;
iPS1 = 0; iPS2 = 0; iPS3 = 0; iRWN = 0; iRES = 0;

break;
case 14:

points = iTSE + iTES + iPN1 + iPN2 + iPN3 + iPW1
+ iPW2 + iPW3 + iPS1 + iPS3 + iRES;

iTSE = 0; iTES = 0; iPN1 = 0; iPN2 = 0; iPN3 = 0;
iPW1 = 0; iPW2 = 0; iPW3 = 0; iPS1 = 0; iPS3 = 0; iRES = 0;

break;
case 15:

points = iTNE + iTEN + iPN1 + iPN3 + iPW1 +
iPW2 + iPS1 + iPS2 + iPS3 + 2*iRWSE;

iTNE = 0; iTEN = 0; iPN1 = 0; iPN3 = 0; iPW1 = 0;
iPW2 = 0; iPS1 = 0; iPS2 = 0; iPS3 = 0; iRWSE = 0;

break;
case 16:

points = 0;
break;

}
//Previous order calculations
switch(x)
{

case 0:
if((previousOrder == 11) || (previousOrder == 13))

{points = points + 2;}
break;

case 1:
if((previousOrder == 11) || (previousOrder == 13))

{points = points + 2;}
break;

case 2:
if((previousOrder == 11) || (previousOrder == 13))

{points = points + 2;}
break;

case 3:
if((previousOrder == 11) || (previousOrder == 13))

{points = points + 2;}
break;

case 4:
if((previousOrder == 10) || (previousOrder == 12))

{points = points + 2;}
break;

case 5:
if((previousOrder == 12) || (previousOrder == 13))

{points = points + 2;}
break;

case 6:
if((previousOrder == 11) || (previousOrder == 13))

{points = points + 2;}
break;

case 7:
if((previousOrder == 8) || (previousOrder == 13))

{points = points + 2;}
break;

case 8:
if((previousOrder == 7) || (previousOrder == 12))

{points = points + 2;}
break;

case 9:
if((previousOrder == 10) || (previousOrder == 14))

{points = points + 2;}
break;

case 10:
if((previousOrder == 8) || (previousOrder == 9))

{points = points + 2;}
break;

case 11:
if((previousOrder == 5) || (previousOrder == 7))

{points = points + 2;}
break;

case 12:
if((previousOrder == 5) || (previousOrder == 8))

{points = points + 2;}
break;

case 13:
if((previousOrder == 5) || (previousOrder == 7))

{points = points + 2;}
break;

case 14:
if((previousOrder == 9) || (previousOrder == 12))

{points = points + 2;}
break;

case 15:
if((previousOrder == 10) || (previousOrder == 13))

{points = points + 2;}
break;

case 16:
//
break;

}
if(i == 0) {f = 6*points;}

if(i == 1) {f = f + 5*points;}
if(i == 2) {f = f + 4*points;}
if(i == 3) {f = f + 3*points;}
if(i == 4) {f = f + 2*points;}
if(i == 5) {f = f + points;}
printf("c%d %d%d%d.%d%d%d.%d.%d%d%d : %d%d%d.%d%d.

%d%d%d.%d%d : %d%d%d.%d%d.%d%d.%d%d Order = %2d Points =
%2d\n", i+1, iPN1, iPN2, iPN3, iPW1, iPW2, iPW3, iPE, iPS1, iPS2, iPS3, iTNW,
iTNE, iTNS, iTWN, iTWE, iTEN, iTEW, iTES, iTSN, iTSE, iRNW, iRNE, iRNS,
iRWN, iRWSE, iRENW, iRES, iRSW, iRSNE, x ,points);

}
printf("\n");
//Output print out
switch(bestParameterValue1)
{

case 0:
printf("Executing requests on drive order %d:\noTNW,

oTEN, oTSE, oPN1, oPN2, oPN3, oPS1, oPS3, oRNW\n", bestParameterValue1);
break;

case 1:
printf("Executing requests on drive order %d:\noTNW,

oTEN, oTWE, oPN3, oPW1, oPS1, oPS2, oPS3, oRWSE\n", bestParameterValue1);
break;

case 2:
printf("Executing requests on drive order %d:\noTNS,

oTEN, oTSE, oPW1, oPW2, oPW3, oPN3, oPS3, oRNW, oRNS\n",
bestParameterValue1);

break;
case 3:

printf("Executing requests on drive order %d:\noTNW,
oTSN, oPW1, oPW3, oPE, oPS1, oRNW, oRSNE\n", bestParameterValue1);

break;
case 4:

printf("Executing requests on drive order %d:\noTEW,
oTSE, oPN1, oPN2, oPN3, oPW3, oPS1, oPS3, oRENW\n", bestParameterValue1);

break;
case 5:

printf("Executing requests on drive order %d:\noTNW,
oTWN, oTES, oTSE, oPN3, oPW1, oPW3, oPS1, oPS3, oRNW\n",
bestParameterValue1);

break;
case 6:

printf("Executing requests on drive order %d:\noTNE,
oTEN, oPN3, oPW1, oPW2, oPW3, oPS2, oPS3, oRNW, oRNS, oRNE\n",
bestParameterValue1);

break;
case 7:

printf("Executing requests on drive order %d:\noTNS,
oTSN, oPW1, oPW2, oPW3, oPE, oRNW, oRNS, oRSNE\n",
bestParameterValue1);

break;
case 8:

printf("Executing requests on drive order %d:\noTWE,
oTEW, oPN1, oPN2, oPN3, oPS1, oPS2, oPS3, oRENW, oRWSE\n",
bestParameterValue1);

break;
case 9:

printf("Executing requests on drive order %d:\noTNW,
oTWN, oPN1, oPN3, oPW1, oPS1, oPS2, oPS3, oRWN, oRWSE\n",
bestParameterValue1);

break;
case 10:

printf("Executing requests on drive order %d:\noPN2,
oPW1, oPW2, oPW3, oPS2, oPE, oRNW, oRNS, oRSNE\n", bestParameterValue1);

break;
case 11:

printf("Executing requests on drive order %d:\noPN1, oPN2,
oPN3, oPW2, oPS1, oPS2, oPS3, oRENW, oRWSE\n", bestParameterValue1);

break;
case 12:

printf("Executing requests on drive order %d:\noPN2, oPN3,
oPW1, oPW2, oPW3, oPE, oPS1, oPS2, oRNE, oRSW\n", bestParameterValue1);

break;
case 13:

printf("Executing requests on drive order %d:\noPN1, oPN2,
oPN3, oPW1, oPW2, oPS1, oPS2, oPS3, oRWN, oRES\n", bestParameterValue1);

break;
case 14:

printf("Executing requests on drive order %d:\noTSE, oTES,
oPN1, oPN2, oPN3, oPW1, oPW2, oPW3, oPS1, oPS3, oRES\n",
bestParameterValue1);

break;
case 15:

printf("Executing requests on drive order %d:\noTNE,
oTEN, oPN1, oPN3, oPW1, oPW2, oPS1, oPS2, oPS3, oRWSE\n",
bestParameterValue1);

break;
case 16:

printf("Do not executing any drive order.\n");
break;

}
printf("\n");

}

int main()
{

int inputValue[29];//All inputs to work with
int inputValues[10][29];//List of all time periods inputs [=sim][29]
int maxFitness = 0;
int fitness;//Store fitness value for each individual in present generation
int parameterValue1 = 16;//Temporary parameter value (16 is for null result)

63

int parameterValue2 = 16;//Temporary parameter value
int parameterValue3 = 16;//Temporary parameter value
int parameterValue4 = 16;//Temporary parameter value
int parameterValue5 = 16;//Temporary parameter value
int parameterValue6 = 16;//Temporary parameter value
int bestParameterValue1 = 16;//Best chromosome value
int bestParameterValue2 = 16;//Best chromosome value
int bestParameterValue3 = 16;//Best chromosome value
int bestParameterValue4 = 16;//Best chromosome value
int bestParameterValue5 = 16;//Best chromosome value
int bestParameterValue6 = 16;//Best chromosome value
int previousExcecution = 16;//Store c1 (E) from previous time period
int sim = 10;//Number of simulations

int i, j, k, l, m, n, x = 0; int msgOrder = 0, mEInt = 0; float mEfloat = 0;//
Other variables

for(j = 0; j <= 28; j++)
{

inputValue[j] = 0;
}
for(i = 0; i <= sim - 1; i++)
{

for(j = 0; j <= 28; j++)
{

inputValues[i][j] = 0;
}

}
//Only 5 first is filled with inputs

//Init inputValue 0
inputValues[0][0] = 1; /* PN1 */ inputValues[0][10] = 1; /*

TNW */ inputValues[0][20] = 0; /* RNW */
inputValues[0][1] = 0; /* PN2 */ inputValues[0][11] = 0; /*

TNE */ inputValues[0][21] = 1; /* RNE */
inputValues[0][2] = 1; /* PN3 */ inputValues[0][12] = 0; /*

TNS */ inputValues[0][22] = 1; /* RNS */
inputValues[0][3] = 0; /* PW1 */ inputValues[0][13] = 1; /*

TWN */ inputValues[0][23] = 0; /* RWN */
inputValues[0][4] = 0; /* PW2 */ inputValues[0][14] = 0; /*

TWE */ inputValues[0][24] = 0; /* RWSE */
inputValues[0][5] = 1; /* PW3 */ inputValues[0][15] = 0; /*

TEN */ inputValues[0][25] = 0; /* RENW */
inputValues[0][6] = 0; /* PE */ inputValues[0][16] = 0; /*

TEW */ inputValues[0][26] = 0; /* RES */
inputValues[0][7] = 0; /* PS1 */ inputValues[0][17] = 0; /*

TES */ inputValues[0][27] = 1; /* RSW */
inputValues[0][8] = 0; /* PS2 */ inputValues[0][18] = 1; /*

TSN */ inputValues[0][28] = 1; /* RSNE */
inputValues[0][9] = 1; /* PS3 */ inputValues[0][19] = 0; /*

TSE */
//Init inputValue 1
inputValues[1][0] = 0; /* PN1 */ inputValues[1][10] = 0; /*

TNW */ inputValues[1][20] = 1; /* RNW */
inputValues[1][1] = 1; /* PN2 */ inputValues[1][11] = 0; /*

TNE */ inputValues[1][21] = 1; /* RNE */
inputValues[1][2] = 0; /* PN3 */ inputValues[1][12] = 0; /*

TNS */ inputValues[1][22] = 1; /* RNS */
inputValues[1][3] = 1; /* PW1 */ inputValues[1][13] = 0; /*

TWN */ inputValues[1][23] = 1; /* RWN */
inputValues[1][4] = 1; /* PW2 */ inputValues[1][14] = 0; /*

TWE */ inputValues[1][24] = 0; /* RWSE */
inputValues[1][5] = 0; /* PW3 */ inputValues[1][15] = 0; /*

TEN */ inputValues[1][25] = 0; /* RENW */
inputValues[1][6] = 1; /* PE */ inputValues[1][16] = 0; /*

TEW */ inputValues[1][26] = 0; /* RES */
inputValues[1][7] = 1; /* PS1 */ inputValues[1][17] = 0; /*

TES */ inputValues[1][27] = 1; /* RSW */
inputValues[1][8] = 1; /* PS2 */ inputValues[1][18] = 0; /*

TSN */ inputValues[1][28] = 1; /* RSNE */
inputValues[1][9] = 0; /* PS3 */ inputValues[1][19] = 0; /*

TSE */
//Init inputValue 2
inputValues[2][0] = 0; /* PN1 */ inputValues[2][10] = 0; /*

TNW */ inputValues[2][20] = 1; /* RNW */
inputValues[2][1] = 0; /* PN2 */ inputValues[2][11] = 0; /*

TNE */ inputValues[2][21] = 0; /* RNE */
inputValues[2][2] = 1; /* PN3 */ inputValues[2][12] = 1; /*

TNS */ inputValues[2][22] = 1; /* RNS */
inputValues[2][3] = 1; /* PW1 */ inputValues[2][13] = 0; /*

TWN */ inputValues[2][23] = 1; /* RWN */
inputValues[2][4] = 1; /* PW2 */ inputValues[2][14] = 1; /*

TWE */ inputValues[2][24] = 0; /* RWSE */
inputValues[2][5] = 0; /* PW3 */ inputValues[2][15] = 0; /*

TEN */ inputValues[2][25] = 0; /* RENW */
inputValues[2][6] = 0; /* PE */ inputValues[2][16] = 0; /*

TEW */ inputValues[2][26] = 0; /* RES */
inputValues[2][7] = 1; /* PS1 */ inputValues[2][17] = 0; /*

TES */ inputValues[2][27] = 0; /* RSW */
inputValues[2][8] = 1; /* PS2 */ inputValues[2][18] = 0; /*

TSN */ inputValues[2][28] = 1; /* RSNE */
inputValues[2][9] = 0; /* PS3 */ inputValues[2][19] = 0; /*

TSE */
//Init inputValue 3
inputValues[3][0] = 1; /* PN1 */ inputValues[3][10] = 0; /*

TNW */ inputValues[3][20] = 0; /* RNW */
inputValues[3][1] = 0; /* PN2 */ inputValues[3][11] = 0; /*

TNE */ inputValues[3][21] = 1; /* RNE */
inputValues[3][2] = 0; /* PN3 */ inputValues[3][12] = 0; /*

TNS */ inputValues[3][22] = 0; /* RNS */
inputValues[3][3] = 0; /* PW1 */ inputValues[3][13] = 0; /*

TWN */ inputValues[3][23] = 1; /* RWN */
inputValues[3][4] = 0; /* PW2 */ inputValues[3][14] = 0; /*

TWE */ inputValues[3][24] = 1; /* RWSE */
inputValues[3][5] = 0; /* PW3 */ inputValues[3][15] = 0; /*

TEN */ inputValues[3][25] = 1; /* RENW */
inputValues[3][6] = 0; /* PE */ inputValues[3][16] = 0; /*

TEW */ inputValues[3][26] = 0; /* RES */
inputValues[3][7] = 1; /* PS1 */ inputValues[3][17] = 0; /*

TES */ inputValues[3][27] = 1; /* RSW */
inputValues[3][8] = 1; /* PS2 */ inputValues[3][18] = 0; /*

TSN */ inputValues[3][28] = 0; /* RSNE */
inputValues[3][9] = 1; /* PS3 */ inputValues[3][19] = 0; /*

TSE */
//Init inputValue 4
inputValues[4][0] = 0; /* PN1 */ inputValues[4][10] = 0; /*

TNW */ inputValues[4][20] = 0; /* RNW */
inputValues[4][1] = 0; /* PN2 */ inputValues[4][11] = 0; /*

TNE */ inputValues[4][21] = 1; /* RNE */
inputValues[4][2] = 0; /* PN3 */ inputValues[4][12] = 0; /*

TNS */ inputValues[4][22] = 1; /* RNS */
inputValues[4][3] = 1; /* PW1 */ inputValues[4][13] = 0; /*

TWN */ inputValues[4][23] = 1; /* RWN */
inputValues[4][4] = 0; /* PW2 */ inputValues[4][14] = 0; /*

TWE */ inputValues[4][24] = 0; /* RWSE */
inputValues[4][5] = 0; /* PW3 */ inputValues[4][15] = 0; /*

TEN */ inputValues[4][25] = 0; /* RENW */
inputValues[4][6] = 1; /* PE */ inputValues[4][16] = 0; /*

TEW */ inputValues[4][26] = 0; /* RES */
inputValues[4][7] = 0; /* PS1 */ inputValues[4][17] = 1; /*

TES */ inputValues[4][27] = 1; /* RSW */
inputValues[4][8] = 0; /* PS2 */ inputValues[4][18] = 0; /*

TSN */ inputValues[4][28] = 0; /* RSNE */
inputValues[4][9] = 0; /* PS3 */ inputValues[4][19] = 1; /*

TSE */
//Init inputValue 5
inputValues[5][0] = 0; /* PN1 */ inputValues[5][10] = 0; /*

TNW */ inputValues[5][20] = 0; /* RNW */
inputValues[5][1] = 0; /* PN2 */ inputValues[5][11] = 1; /*

TNE */ inputValues[5][21] = 0; /* RNE */
inputValues[5][2] = 0; /* PN3 */ inputValues[5][12] = 0; /*

TNS */ inputValues[5][22] = 0; /* RNS */
inputValues[5][3] = 0; /* PW1 */ inputValues[5][13] = 0; /*

TWN */ inputValues[5][23] = 0; /* RWN */
inputValues[5][4] = 0; /* PW2 */ inputValues[5][14] = 0; /*

TWE */ inputValues[5][24] = 0; /* RWSE */
inputValues[5][5] = 1; /* PW3 */ inputValues[5][15] = 0; /*

TEN */ inputValues[5][25] = 0; /* RENW */
inputValues[5][6] = 0; /* PE */ inputValues[5][16] = 0; /*

TEW */ inputValues[5][26] = 1; /* RES */
inputValues[5][7] = 0; /* PS1 */ inputValues[5][17] = 0; /*

TES */ inputValues[5][27] = 0; /* RSW */
inputValues[5][8] = 0; /* PS2 */ inputValues[5][18] = 0; /*

TSN */ inputValues[5][28] = 1; /* RSNE */
inputValues[5][9] = 1; /* PS3 */ inputValues[5][19] = 0; /*

TSE */
//Init inputValue 6
inputValues[6][0] = 0; /* PN1 */ inputValues[6][10] = 0; /*

TNW */ inputValues[6][20] = 1; /* RNW */
inputValues[6][1] = 0; /* PN2 */ inputValues[6][11] = 0; /*

TNE */ inputValues[6][21] = 0; /* RNE */
inputValues[6][2] = 0; /* PN3 */ inputValues[6][12] = 0; /*

TNS */ inputValues[6][22] = 1; /* RNS */
inputValues[6][3] = 1; /* PW1 */ inputValues[6][13] = 0; /*

TWN */ inputValues[6][23] = 0; /* RWN */
inputValues[6][4] = 0; /* PW2 */ inputValues[6][14] = 0; /*

TWE */ inputValues[6][24] = 0; /* RWSE */
inputValues[6][5] = 0; /* PW3 */ inputValues[6][15] = 0; /*

TEN */ inputValues[6][25] = 1; /* RENW */
inputValues[6][6] = 0; /* PE */ inputValues[6][16] = 0; /*

TEW */ inputValues[6][26] = 0; /* RES */
inputValues[6][7] = 1; /* PS1 */ inputValues[6][17] = 0; /*

TES */ inputValues[6][27] = 0; /* RSW */
inputValues[6][8] = 0; /* PS2 */ inputValues[6][18] = 0; /*

TSN */ inputValues[6][28] = 1; /* RSNE */
inputValues[6][9] = 0; /* PS3 */ inputValues[6][19] = 0; /*

TSE */
//Init inputValue 7
inputValues[7][0] = 1; /* PN1 */ inputValues[7][10] = 0; /*

TNW */ inputValues[7][20] = 0; /* RNW */
inputValues[7][1] = 0; /* PN2 */ inputValues[7][11] = 0; /*

TNE */ inputValues[7][21] = 1; /* RNE */
inputValues[7][2] = 1; /* PN3 */ inputValues[7][12] = 0; /*

TNS */ inputValues[7][22] = 0; /* RNS */
inputValues[7][3] = 0; /* PW1 */ inputValues[7][13] = 0; /*

TWN */ inputValues[7][23] = 0; /* RWN */
inputValues[7][4] = 0; /* PW2 */ inputValues[7][14] = 0; /*

TWE */ inputValues[7][24] = 1; /* RWSE */
inputValues[7][5] = 1; /* PW3 */ inputValues[7][15] = 1; /*

TEN */ inputValues[7][25] = 0; /* RENW */
inputValues[7][6] = 1; /* PE */ inputValues[7][16] = 0; /*

TEW */ inputValues[7][26] = 0; /* RES */
inputValues[7][7] = 0; /* PS1 */ inputValues[7][17] = 0; /*

TES */ inputValues[7][27] = 0; /* RSW */
inputValues[7][8] = 0; /* PS2 */ inputValues[7][18] = 0; /*

TSN */ inputValues[7][28] = 0; /* RSNE */
inputValues[7][9] = 0; /* PS3 */ inputValues[7][19] = 1; /*

TSE */

//Start main program
printf("Start\n");
for(int h = 0; h <= sim - 1; h++)

64

{
if(1)
{

int iPN1 = inputValue[0];
int iPN2 = inputValue[1];
int iPN3 = inputValue[2];
int iPW1 = inputValue[3];
int iPW2 = inputValue[4];
int iPW3 = inputValue[5];
int iPE = inputValue[6];
int iPS1 = inputValue[7];
int iPS2 = inputValue[8];
int iPS3 = inputValue[9];
int iTNW = inputValue[10];
int iTNE = inputValue[11];
int iTNS = inputValue[12];
int iTWN = inputValue[13];
int iTWE = inputValue[14];
int iTEN = inputValue[15];
int iTEW = inputValue[16];
int iTES = inputValue[17];
int iTSN = inputValue[18];
int iTSE = inputValue[19];
int iRNW = inputValue[20];
int iRNE = inputValue[21];
int iRNS = inputValue[22];
int iRWN = inputValue[23];
int iRWSE = inputValue[24];
int iRENW = inputValue[25];
int iRES = inputValue[26];
int iRSW = inputValue[27];
int iRSNE = inputValue[28];
switch(bestParameterValue1)
{

case 0:
iTNW = 0; iTEN = 0; iTSE = 0; iPN1 = 0;

iPN2 = 0; iPN3 = 0; iPS1 = 0; iPS3 = 0; iRNW = 0;
break;

case 1:
iTNW = 0; iTEN = 0; iTWE = 0; iPN3 = 0;

iPW1 = 0; iPS1 = 0; iPS2 = 0; iPS3 = 0; iRWSE = 0;
break;

case 2:
iTNS = 0; iTEN = 0; iTSE = 0; iPW1 = 0;

iPW2 = 0; iPW3 = 0; iPN3 = 0; iPS3 = 0; iRNW = 0; iRNS = 0;
break;

case 3:
iTNW = 0; iTSN = 0; iPW1 = 0; iPW3 = 0;

iPE = 0; iPS1 = 0; iRNW = 0; iRSNE = 0;
break;

case 4:
iTEW = 0; iTSE = 0; iPN1 = 0; iPN2 = 0;

iPN3= 0; iPW3 = 0; iPS1 = 0; iPS3 = 0; iRENW = 0;
break;

case 5:
iTNW = 0; iTWN = 0; iTES = 0; iTSE = 0;

iPN3 = 0; iPW1 = 0; iPW3 = 0; iPS1 = 0; iPS3 = 0; iRNW = 0;
break;

case 6:
iTNE = 0; iTEN = 0; iPN3 = 0; iPW1 = 0;

iPW2 = 0; iPW3 = 0; iPS2 = 0; iPS3 = 0; iRNW = 0; iRNS = 0; iRNE = 0;
break;

case 7:
iTNS= 0; iTSN = 0; iPW1 = 0; iPW2 = 0;

iPW3 = 0; iPE = 0; iRNW = 0; iRNS = 0; iRSNE = 0;
break;

case 8:
iTWE = 0; iTEW = 0; iPN1 = 0; iPN2 = 0;

iPN3 = 0; iPS1 = 0; iPS2 = 0; iPS3 = 0; iRENW = 0; iRWSE = 0;
break;

case 9:
iTNW = 0; iTWN = 0; iPN1 = 0; iPN3 = 0;

iPW1 = 0; iPS1 = 0; iPS2 = 0; iPS3 = 0; iRWN = 0; iRWSE = 0;
break;

case 10:
iPN2 = 0; iPW1 = 0; iPW2 = 0; iPW3 = 0;

iPS2 = 0; iPE = 0; iRNW = 0; iRNS = 0; iRSNE = 0;
break;

case 11:
iPN1 = 0; iPN2 = 0; iPN3 = 0; iPW2 = 0;

iPS1 = 0; iPS2 = 0; iPS3 = 0; iRENW = 0; iRWSE = 0;
break;

case 12:
iPN2 = 0; iPN3 = 0; iPW1 = 0; iPW2 = 0;

iPW3 = 0; iPE = 0; iPS1 = 0; iPS2 = 0; iRNE = 0; iRSW = 0;
break;

case 13:
iPN1 = 0; iPN2 = 0; iPN3 = 0; iPW1 = 0;

iPW2 = 0; iPS1 = 0; iPS2 = 0; iPS3 = 0; iRWN = 0; iRES = 0;
break;

case 14:
iTSE = 0; iTES = 0; iPN1 = 0; iPN2 = 0;

iPN3 = 0; iPW1 = 0; iPW2 = 0; iPW3 = 0; iPS1 = 0; iPS3 = 0; iRES = 0;
break;

case 15:
iTNE = 0; iTEN = 0; iPN1 = 0; iPN3 = 0;

iPW1 = 0; iPW2 = 0; iPS1 = 0; iPS2 = 0; iPS3 = 0; iRWSE = 0;
break;

case 16:

break;
}
// Rewrite inputValue
inputValue[0] = iPN1;
inputValue[1] = iPN2;
inputValue[2] = iPN3;
inputValue[3] = iPW1;
inputValue[4] = iPW2;
inputValue[5] = iPW3;
inputValue[6] = iPE;
inputValue[7] = iPS1;
inputValue[8] = iPS2;
inputValue[9] = iPS3;
inputValue[10] = iTNW;
inputValue[11] = iTNE;
inputValue[12] = iTNS;
inputValue[13] = iTWN;
inputValue[14] = iTWE;
inputValue[15] = iTEN;
inputValue[16] = iTEW;
inputValue[17] = iTES;
inputValue[18] = iTSN;
inputValue[19] = iTSE;
inputValue[20] = iRNW;
inputValue[21] = iRNE;
inputValue[22] = iRNS;
inputValue[23] = iRWN;
inputValue[24] = iRWSE;
inputValue[25] = iRENW;
inputValue[26] = iRES;
inputValue[27] = iRSW;
inputValue[28] = iRSNE;
for(j = 0; j <= 28; j++)
{

if(inputValue[j] != 0) {inputValue[j] = inputValue[j]
+ 1;}// Add priority to remaining inputs

else {inputValue[j] = inputValue[j] + inputValues[h]
[j];}// Add new inputs if there are any

}
}

//Start loop
maxFitness = 0;
for(i = 0; i <= 16 - 1; i++)
{

for(j = 0; j <= 16 - 1; j++)
{

for(k = 0; k <= 16 - 1; k++)
{

for(l = 0; l <= 16 - 1; l++)
{

for(m = 0; m <= 16 - 1; m++)
{

for(n = 0; n <= 16 - 1; n++)
{

parameterValue1 = i,
parameterValue2 = j, parameterValue3 = k, parameterValue4 = l, parameterValue5 =
m, parameterValue6 = n;

 fitness =
EvaluateIndividual(parameterValue1, parameterValue2, parameterValue3,
parameterValue4, parameterValue5, parameterValue6, inputValue,
previousExcecution);

if ((fitness >=
maxFitness) && (fitness != maxFitness))//fitness > maxFitness

{
maxFitness =

fitness;

bestParameterValue1 = parameterValue1;

bestParameterValue2 = parameterValue2;

bestParameterValue3 = parameterValue3;

bestParameterValue4 = parameterValue4;

bestParameterValue5 = parameterValue5;

bestParameterValue6 = parameterValue6;
}

}
}

}
}

}
}
printf("**** DFS version ****\n");
printf("Previous executed drive order: %d, Simulation: T%d\n",

previousExcecution, h);
ReturnResult(bestParameterValue1, bestParameterValue2,

bestParameterValue3, bestParameterValue4, bestParameterValue5,
bestParameterValue6, inputValue, maxFitness);

printf("...\n\n");
previousExcecution = bestParameterValue1;

}
printf("\n");
//getchar(); To stop command window.

}

65

	Abstract
	Acknowledgement
	1 Introduction
	2 Description of Standard GA
	2.1 Standard GA description
	2.1.1 Initialization
	2.1.2 Decoding
	2.1.3 Evaluation
	2.1.4 Fitness function
	2.1.5 Elitism
	2.1.6 Tournament selection
	2.1.7 Crossover
	2.1.8 Mutation

	2.2 Program details for Standard GA
	2.3 Search space

	3 Traffic intersection
	3.1 Description of the intersection
	3.2 General functionality
	3.3 Easy working example
	3.4 Details and modifications

	4 Programs
	4.1 Standard GA versions
	4.2 DFS version

	5 Rule problems
	5.1 Example of rule problems
	5.2 Solutions for this problem

	6 Embedded solutions
	6.1 FPGA
	6.2 Microcontroller

	7 Simulations
	7.1 About the simulations
	7.2 Performed simulations
	7.2.1 Computed Standard GA simulations
	7.2.2 Microcontrolled Standard GA simulations
	7.2.3 DFS version simulations

	7.3 Simulation results

	8 Conclusion
	8.1 Simulation conclusion
	8.2 Future improvements
	8.3 Summary

	9 References
	9.1 Books
	9.2 Documents
	9.3 Internet

	10 Appendix
	Appendix A Traffic intersection drive orders chart
	Appendix B Mathematical fitness functions
	Appendix C Propositional logic for outputs
	Appendix D Propositional logic for drive order sequence
	Appendix E Program windows of Standard GA
	Appendix F Program windows of DFS version
	Appendix G Program code of Standard GA
	Appendix H Program code of DFS version

