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Abstract

Decreasing hardware prices enables increased performance in wireless networks
to a low cost. By adding an extra WLAN radio card to existing single radio
network platforms, the possibility to utilize additional frequencies arise and
opens the world of multi-channel, multi-radio (MCMR).

In this report, we investigate different approaches to make as good use of MCMR
as possible. A hybrid technique using two radios, one receiving data and the
other transmitting, is chosen and implemented. This requires a user-space ap-
plication, modifications to the wireless driver and the development of a Linux
kernel bonding module handling the communication between user-space and
drivers.

Test results shows that the chosen method increase performance substantially
compared to the standard single-channel, single-radio setup, which makes fur-
ther development interesting as new faster wireless techniques becomes stan-
dard.



Sammanfattning

Fallande hardvarupriser gor det mojligt att till ett lagt pris 6ka prestandan i
tradlosa natverk. Genom att utnyttja tva WLAN-kort istéllet for ett i befintliga
plattformar 6ppnar sig en virld av mdéjligheter inom multi-channel, multi-radio
(MCMR).

I rapporten undersoker vi olika metoder for att implementera MCMR. Metoden
som implementeras gar kortfattat ut pa att ett av de tva radiokorten tar emot
data och det andra skickar data. For att gora detta mdjlighet krévs en app-
likation, modifieringar av drivrutiner samt utvecklandet av en bondingmodul i
Linuxkirnan vars uppgift dr att skota kommunikationen mellan applikation och
drivrutiner.

Testresultaten visar att hastigheten under olika forhallanden Skar patagligt i
jamforelse med vanlig single-channel, single-radio, vilket gor fortsatt utveckling
intressant i takt med att nya snabbare tradlosa tekniker blir standard.
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1 Introduction

The ease of deploying wireless networks has resulted in widespread usage in all
areas. In everything from small personal networks to large city wide networks
there is an advantage to avoid the use of cables. With increased usage comes
increased demands on performance; both to support more users and to enable
services such as high quality streaming television and audio - these are services
which requires high data throughput as well as low end-to-end delays.

Developing new wireless technologies with higher throughput capabilities is time
and resource consuming and the deployment often requires replacement of cur-
rent hardware with new hardware. An alternative solution is to make use of
already existing cheap hardware and exploit the available frequency spectrum
by simultaneously utilizing multiple wireless network cards tuned to individual
channels. Normally the same channel is used throughout a network, if multiple
channels are used, it is often only done to separate the client part of the network
from the backbone.

The features of the wireless medium is such that only one source can use a
specified frequency spectrum to transfer information at a given moment. If a
second source tries to use the medium, it will cause a collision and corruption of
data. Nodes operating on separated frequencies can’t communicate with each
another, so by using multiple non cross interfering channels, also referred to as
orthogonal channels, it is possible for multiple nodes to concurrently send data
and thereby increase the networks overall throughput.

1.1 Design choices and issues

Implementing multi-channel is not trivial [1, 12]. There are numerous possible
executions to consider, each suitable for specific types of network layouts and
with its own advantages and problems. A few fundamental design choices are:

e Single radio or multiple radios
e Static or dynamic channel assignment

e At which layer in the OSI model to do the implementation

An early choice in the design phase is to choose whether to implement multi-
channel with a single radio or multiple radios. Both options have their advan-
tages and their problems. The first solution often requires rendezvous and time
synchronization between nodes in the network which can be problematic [16, 9].
A multi-radio approach on the other hand can be realized without complex time
synchronization but requires additional hardware. Another choice is between
static and dynamic channel assignment. A static precalculated-assignment can
be favorable in a static network but will not work well in a network where nodes
move arbitrarily.



At which OSI layer to implement the support for multi-channel affects for ex-
ample the support for current hardware and applications.

Some aspects that must be considered regardless of implementation are:

e Connectivity: Unwanted network segmentation should be avoided to en-
sure that nodes in range of each other can communicate.

e Broadcast messages: For instance, how to ensure that local broadcast
messages should be able to reach all nodes in the neighborhood even if
they are on different channels.

e Mobility: How does the network support arbitrary moving nodes?

e Delay: Tt takes time for the hardware to change between channels. Fre-
quent channel switching will introduce delays which impacts network per-
formance.

e Single card nodes: How will a solution with multiple radios support single
radio nodes?

e Synchronization: If nodes should rendezvous to a specific channel to nego-
tiate channel usage and /or deliver broadcasts how will the synchronization
between nodes work?

e Operating system support: Does the operating system support multiple
cards? How does the operating system choose which card to route the
traffic through?

e Routing: Should routing be aware of multi channel paths to improve per-
formance?

1.2 Purpose

The purpose of this thesis is to identify and implement a suitable multi-channel
multi-radio solution to be used in an ad-hoc network. The chosen solution should
increase the networks overall throughput without introducing unacceptable end-
to-end delays. The implementation should also be able to function in both a
static and a mobile network with arbitrary placed nodes and be able to handle
nodes leaving and entering the network.

The solution should run on GNU/Linux and support existing generic hardware.
E.g no modifications to the current IEEE 802.11-MAC layer. The development
and target platform is the Avila GW2348-2 Network Platform by Gateworks
Corporation! with support for two Mini-PCI wireless network cards. In software
there should be no hard upper limit on supported cards.

lhttp://vwww.gateworks.com



1.3 Scope

The solution will support GNU/Linux and no other operating system. To be
able to optimize network card drivers, the development will focus on Atheros?
based cards and the Open Source WLAN driver MadWifi3. It is not required
for the channel assignment to be optimal and routing optimizations will not be
implemented. Single radio solutions will be discussed but not considered for a
final solution. How to handle single radio nodes in a multi-radio network will
also be discussed but not implemented or solved. The solution should be suitable
for omni directional antennas. Specific solutions for directional antennas will
not be discussed.

The rest of the report is structured as follows. First the analysis present the
functions that must be available in the operating system and wireless drivers
to support multi-channel multi-radio and the problems that must be solved
to gain satisfactory performance. It will also provide a review of proposed
solutions published in scientific reports. Then the implementation of choice will
be described in detail in the method followed by a presentation of the results
gained while performing tests. In the discussion the chosen solution is evaluated
- advantages, drawbacks as well as the future of the technology is talked about.
The paper ends with a conclusion, followed by references and nomenclature.

2http://www.atheros.com
Shttp://madwifi-project.org



2 Analysis

This chapter will present the required functions needed in the operating system
to implement multi-channel multi-radio. It will also discuss difficulties with
handling multiple channels and evaluate proposed solutions to as effectively as
possible make use of the advantages given by multi-channel multi-radio.

2.1 Required support

Regardless of implementation strategy, some basic support is needed in both the
operating system and the wireless drivers. One such basic function is the ability
to choose on a per packet basis which interface and channel the packet should
leave on. Another example is the ability to force the hardware to change channel
on demand and to do this sufficiently fast. Furthermore it is important to
provide the possibility to configure settings for critical parts. The Linux kernel
and the WLAN driver MadWifi doesn’t provide all these functions natively.
However, the source code for both are provided under an Open Source license,
hence it is possible to add the needed support.

A specific requirement for the WLAN driver is that it can operate in so called
ad-hoc or IBSS (Independent Basic Service Set) mode. This mode allows nodes
in the vicinity of each other to communicate with each other without using a
common access point. This is desirable in a multi-channel multi-radio scenario
where the purpose is to have communicating neighboring nodes to use separated
frequency spectrums. Not all drivers provide this mode, however MadWifi does.

2.2 Handling multiple channels

When faced with the opportunity to choose among multiple channels a few
questions arise:

e How to assign each interface a channel?

e How much does the delay introduced by hardware and software during
channel switch affect performance?

e How to decide when to switch channel?

e Are concurrent transmissions on channels close to each other in frequency
interfering?

A network consisting of stationary nodes and clients that do not move around
- but may log off and on - is called a static network. The opposite is called a
dynamic or mobile network and requires the nodes to be aware of changes in
the network topology.



Depending on whether the wireless network is to be static or dynamic, different
methods can be used to assign each interface a channel. This can be done
statically by hand, by using an algorithm or letting the interfaces dynamically
choose between available channels. If the channels are assigned at start-up using
an algorithm to find the most optimal setup, the network is more or less static by
default since the algorithm has to be run all over again each time a node wants to
enter or leave the network. Leaving the network includes node failures, making
the network vulnerable to all sorts of hardware or software malfunction. On the
other hand, a static channel assignment requires no negotiation among the nodes
through messages, hence less CPU and bandwidth overhead. Thus, a dynamic
network where nodes may enter and leave unpredictably, cannot employ a static
channel assignment. Especially not in a wireless network where traffic may be
routed through clients that frequently enters and leaves the network. A static
channel assignment occur by default when the number of channels are equal
to the number of interfaces. Though, one extra channel is enough to enable a
dynamic channel assignment.

Low switching times is not a priority in regular wireless networks and therefor
hardware and wireless drivers aren’t developed with optimized switching times
in mind. Measurements have shown that switching channel on a interface takes
several milliseconds (see section 3.2.3) depending on drivers and hardware, which
adds up to a significant amount of time if for example a message has to be sent
over all available frequencies. This leads to the conclusion that improvements in
both hardware and the software are possible. The time it takes for the system to
switch channel is therefore not negligible and an important aspect when choosing
a dynamic channel assignment scheme. Due to this, a static approach can be
preferred in a hardware setup where the cost of switching between channels are
high in terms of time.

Another difficulty with switching channel is when to switch. The channel can’t
be switched as soon as a packet to be sent on a different channel arrives, as this
would lead to a frequent channel switching. Instead the packet has to be queued
and wait for it’s turn. Still, using queues won’t solve the problem. A queue
can’t always be emptied before changing channel either, since this could lead
to starvation of other queues if the current queue is filled continuously. Hence,
rules regarding when to switch channel and algorithms for how to service queues
has to be introduced.

The IEEE 802.11 [2] standard defines a series of channels divided into two
separated frequency ranges, 802.11a at 2.4 GHz and 802.11b/g at 5.0 GHz.
Depending on hardware limitations and country specific regulations, the user
is restricted to a set of channels. Swedish users can for example choose from
13 channels in the 2.4 GHz range and 19 channels in the 5.0 GHz range [25].
Unfortunately, adjacent channels may compete for the frequency spectra, hence
interfering and not optimal to use simultaneously in a multi-channel environ-
ment. This applies best to the 2.4 GHz range where tests have shown that only
3 of the 13 channels are completely non-interfering or so called orthogonal [1].
In addition to interfering channels, common hardware targeted to consumers -



such as routers used for residential broadband sharing - supports only 802.11b/g,
leaving this spectrum crowded. Because of this the 5.0 GHz range is the most
suitable spectrum to operate high performance backbones and perform tests in.

One might think that two WLAN cards would perform twice as good as one.
However, this is not possible due to the channel assignment issue.

channel 1 channel 2 channel 3

A \/B \/C

channel 1 channel 2
Figure 1: Channel assignment issue

The channels can’t be arranged to avoid interference even if both cards have the
ability to transmit, the intermediate node will create a bottleneck. The only
setup that in theory would double the throughput, using two WLAN cards,
would be a static approach where each node uses two separate channels. This
would have the same effect as deploying two identical paths of single-channel,
single-radio nodes in parallel. Hence, only applicable if creating a high speed
path from point A to point B.

The hidden terminal problem

In a multi-hop ad-hoc network, all nodes aren’t in range of each other and can
therefor not be aware of all ongoing transmissions. For example, node B is in
the range of both node A and C, but A and C can’t hear each other. That is,
node A is hidden from node C. If node A and B are communicating, node C
is unaware of this and might try to talk to node B, causing a collision. This
scenario is called the hidden terminal problem [18].

Figure 2: Hidden terminal in single channel networks



The 802.11 standard has a mechanism called DCF to avoid this problem. DCF
reserves a channel by exchanging RTC/CTS messages, meaning nodes only sends
data when the channel is free. In a multi-channel environment this problem is
however more complex due to the fact that nodes in range of each other can be
hidden when operating on separate channels [5].

As seen in Figure 3, node D is already transmitting data to node C on channel
2, when node A sends a request to send (RTS) to initiate data transmission
on channel 3. B answers with a clear to send (CTS) message and A starts
transmitting. However, node C couldn’t hear the CTS and is unaware of the
communication between A and B. Short after node C sends a request to transfer
data on channel 3, using channel 2, to node D that answers with a CTS. When
node starts transmitting a collision occurs on channel 3.

B

*
%&* Data
on channel 2

RTs
Data \
onchannel3 %

Collisiont

Data
on channel 3

Figure 3: Hidden Terminal in multi channel networks

2.3 Review of proposed solutions published in scientific
reports

The following section presents and evaluates already proposed modifications
and/or additions to standard protocols and mechanisms to support and/or bet-
ter utilize multi-channel multi-radio. To understand the basic difference between
solutions, the chapter starts of with explaining the Internet protocol stack.



2.3.1 The Internet protocol stack

The communication between software and hardware is divided into different
layers to standardize network communication and to abstract the different parts
of the communication chain. The most common model of the Internet protocol
stack is the seven layer OSI model [23]. The model defines clear rules on how
the layers communicate, making it easier to develop new functions at certain
layers without having to worry about what’s going on in the adjacent layers, as
long as the in- and output follows the standard.

Application data
Presentation data
Session data
Tranlsport segrlnent
Network packet
Datal Link frame
Physical bit

Figure 4: The OSI Model

Information that leaves the application layer, will be processed in turn by each
and every layer down to the Physical layer. Each layer performs its tasks and the
information leaves the Physical layer as a series of ones and zeros traveling over
the physical medium. Data reaching an intermediate node, won’t necessarily be
processed by each layer. A normal router will process the information at the
network layer and decide what to do with the data, for example decide which
interface the data must leave on to reach its destination. There are however
also more advanced routers which processes the data and makes decisions on
the application level.



Network Network Network

Application Data Link Data Link Data Link Application
Presentation Physical Physical Physical Presentation
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Figure 5: Routing

The following proposed solutions requires either modifications to the Network
layer or the Data Link layer, depending on which mechanism or protocol the
solution utilizes. The Internet Protocol (IP) that defines addressing is located
at the Network Layer, along with routing protocols to determine the optimal
route between source and destination in a network. The Data Link layer handles
most of the wireless LAN mechanisms, such as the IEEE 802.11 which defines
rules for wireless communication.

2.3.2 Data Link layer

The support for multi-channel multi-radio can be added on the Data Link layer.
This layer consists of the two sublayers Media Access Control (MAC) and Log-
ical Link Layer (LLC). The latter is sometimes referred to as layer “2.5”. The
MAC layer controls the access to the physical medium. It allows for multiple
users of the same medium by providing rules for how and when a user is allowed
to access the medium for transmissions. The LLC is an interface between the
MAC and the overlying network layer. LLC provides for example flow-control
and multiplexing [24]. Flow control means controlling the rate at which hosts
inject packets into the network to avoid traffic congestion and multiplexing is
the act of combining several different streams in such a way that they can be
separated later on. Due to the closeness to the physical layer it is beneficial
to modify the MAC to support multi-channel multi-radio, but there are also
disadvantages. One advantage is that it is possible to modify how the nodes ac-
cess the common medium and optimize it for a multi-channel multi-radio setup.



Solutions on higher layers must rely on existing MAC-protocols which might
not have been designed with this aspect in mind. Modifying the MAC can
also introduce problems, for example break compatibility with other common
hardware. Some other benefits and drawbacks are discussed in the solutions
presented below.

Extended Receiver Directed Transmission protocol Maheshwari et al.
[9] presents two new MAC protocols for multichannel operations. The extended
Receiver Directed Transmission protocol (xRDT) based on RDT and the Local
Coordination-based Multichannel MAC (LMC MAC). In RDT every node has
a “well known” channel which it tunes to when it doesn’t have any data left
to send. When a node has data to transmit, it tunes its interface to the well
known frequency of the next hop node and transfers the data. When done, it
switches back to its own idle-channel. To solve two problems that arise with
the original RDT, xRDT implements two new mechanisms; one mechanism to
eliminate the hidden terminal problem and one to resolve the deafness problem.
The first problem in solved by implementing a single frequency busy tone. This
is done by adding additional hardware, namely a tone interface. Each channel is
assigned a specific frequency and when two nodes communicate over a specific
channel the sender uses the tone generator to signal the channel is busy. This
allows other nodes to know which channels are currently occupied. Deafness
arise when a node wants to send data to an occupied node [9]. The node who
wants to transmit, but can’t, will try again after a specific time period. This
back-off time increases exponentially in 802.11 and might result in that the node
sleeps during the time the intended receiver rendezvous at the common channel.
Before the back-off times out, the receiver becomes busy again and the sender
misses its chance. This problem is addressed by using a “wake up” signal using
the regular interface. When a node is done transmitting and changes back to its
idle channel, it first sends out a “wake up signal” which enables nodes in back-off
mode to activate their transmitter and try to transmit data. The idle channel
for the nodes can either be static or the nodes can change channels dynamically
based on, for example, channel load. IL.e. the nodes continuously monitor which
channels that are being used by its neighbors and if the node’s current channel
is used by several nodes in the neighborhood the node choose a new channel
with fewer users.

Local Coordination-based Multichannel MAC While xRDT utilizes one
packet and one tone interface, LMC MAC is designed for a single interface. To
avoid network wide time synchronization, nodes in the network locally coordi-
nate transmission schedules. The schedules consist of two phases. In the first
phase the nodes exchange control data over a default channel with the goal to
negotiate what channels to use in the second phase. The second phase is a
data window where nodes concurrently transmit data over the previously ne-
gotiated channels. All nodes who doesn’t already know a schedule can propose
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one during the control window. The proposal is included in a RTS message
and consists of two proposed values; control window duration and data window
length. It also contains a list of all free channels at the node. To keep track
of which channels are being used, LMC MAC extends the normal 802.11 NAV
to handle multiple channels by making it a vector with one element for each
available channel. The receiving node chooses an available channel and replies
with a CTS and then the original initiator responds with a RES packet either
confirming the channel or denying. Other nodes overhearing the negotiation
mark the channel busy and then start to follow the proposed schedule and ne-
gotiate channels. When the control window comes to an end, nodes switch to
the negotiated channels and transmit data. Nodes overhearing the schedule but
for some reason couldn’t negotiate a channel will remain silent until the end of
the data window. It is possible to improve efficiency by letting nodes dynam-
ically negotiate the duration of the data window depending of how much data
each node have to send.

The paper [9] only briefly mentions how to solve broadcast with the two proto-
cols. LCM MAC can implement it during the control window, while the solution
for xRDT in its current form is to send it out on all channels. The authors ex-
pects xRDT to be more or less unaffected by mobility thanks to the busy tone
and that LCM MAC may have some problems because of its large data window
size. Hence, xRDT is heavily affected by the interface’s channel switching time
and LCM MAC nodes can suffer starvation when a node wants to send data to
a receiver ruled by another schedule.

Hybrid Multi-Channel Protocol Kyasanur et al. have proposed a data
link layer protocol for multi-channel multi-radio support called Hybrid Multi-
Channel Protocol (HMCP) [12]. In [4] the same group of researchers presents
”A Hybrid Interface Assignment Strategy”. This strategy is further developed
in [3] and used in the HMCP protocol. This scheme eliminates the rendezvous
problem and doesn’t need synchronization between nodes.

The HMCP protocol does not work with only a single interface, it requires at
least two radios. The radios are divided into two groups at each node, fixed
interfaces and switchable interfaces - hence the name hybrid. The first group is
fixed on specified channels permanently or ”for a longer period of time”, while
the second group can switch between channels frequently. A node must at least
have one fixed interface to ensure connectivity between neighboring nodes. The
channel used is either calculated for a specified node by using a known function
with a node specific input or chosen randomly and then advertised through
locally broadcasted HELLO-messages. The latter solution makes it possible for
a node to switch its used channel on the ”fixed interface” if it from a received
HELLO-message discovers that the current channel is used by other nodes in
the neighborhood. When a node has data to transmit to a neighboring node, it
switches one of its switchable interfaces to the channel used by the neighbor’s
fixed interface.

11



To ensure that broadcast messages are delivered to all neighbors, each message
is sent out over all available channels. Compared to a single channel solution,
HMCP requires more packets to be transmitted but the utilization per channel
is the same. Ome possible problem is that broadcasts arrive at the neighbor
nodes at different points in time.

In [8], Li et al. presents HMCMP, an improved version of HMCP. In HMCP,
the waiting time used to avoid the hidden terminal problem is static, while
HMCMP uses a dynamic waiting time to increase utilization. The waiting
time in HMCMP depends on the probability that a collision may occur. If the
probability is low, the waiting time is short and data can be sent over the channel
earlier, thus improving throughput. HMCMP also adapts the transmission time
for each channel based on traffic load.

Multi-channel MAC 1In [5] the authors J. So and N. H. Vaidya propose
a solution calledMulti-channel MAC (MMAC) . It is designed to work with
the existing 802.11 MAC and consists of nodes equipped with a single radio.
In MMAC, time is divided into beacon intervals. Every beacon starts with a
so called ATIM window, when all nodes in the network are forced to listen
(rendezvous) on a common channel. During this time slot, nodes negotiates
channel to use for data exchange. When the ATIM window is over, nodes
switch to the selected channel for data communication until the next beacon
interval starts. This calls for clock synchronization which has been shown [16]
to be non-trivial. Also all nodes must stay in the data window for a specific
time which means they cannot utilize channel diversity to its full potential [9].

2.3.3 Network Layer

The Network layer is in charge of supplying each packet with a route through
the network from its source to the destination. AODV [15], OLSR [10] and DSR
[11] are examples of routing protocols performing this task in wireless ad-hoc
networks. The routing protocol uses different metrics for choosing which route
that currently is the best for each packet to use to reach it’s destination. Some
protocols use shortest path, e.g. the fewer number of hops the better. Other
routing metrics rely on the link speed and quality. It is beneficial to have the
routing protocol aware of the different characteristics introduced by a multi-
channel multi-radio network [13]. For example using a metric based on current
channel utilization and link quality. Some proposed routing protocols are not
only modifying the metric for MCMR but are also responsible for assigning
channels.

Below is an overview of a few different routing protocols meant to be used in
an multi-channel multi-radio network.

Ad-hoc On-Demand Distance Vector Ad-hoc On-Demand Distance Vec-
tor (AODV) [15] is a reactive routing protocol, meaning it will only perform
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routing when needed. Although AODYV supports multi radio multi channel, it
is optimized for single-channel single-radio. AODV uses the shortest path met-
ric to find a route between sender and receiver. This metric does not perform
too well when deploying multi-channel multi-radio [13]. AODV-HM [6] and
AODV-MR [7] are however two extensions to the AODV protocol, created to
better suit a multi-radio environment.

AODV-Hybrid Mesh (AODV-HM) uses shortest path as metric but distinguishes
between mesh routers and mesh clients. Mesh routers are nodes used in the
networks infrastructure and are usually equipped with several wireless network
interfaces. All other nodes are classified as clients. A route involving nodes
classified as mesh routers are preferred over routes only involving clients. During
route discovery, nodes with several interfaces have the possibility to choose which
interface to be used by marking the route discovery packet before broadcasting
it to its neighbors. The decision can be based on for example current interface
load. The routing protocol itself does not handle channel assignment, it relies on
preassigned channels. According to the developer, AODV-HM performs better
then regular AODV in networks where mesh routers are equipped with more
than one interface. In networks where routers only have a single interface,
the preferential treatment of routes including mesh routers may degrade the
performance compared to AODV.

AODV-Multi Radio(AODV-MR) is a very simple extension to AODV which ba-
sically only barely enables multi radio support by adding a field in the routing
message header.Channel Assignment-AODV [17] is another solution to improve
AODV, but with a combined routing and channel assignment approach. This
protocol performs channel assignment during each route discovery by randomly
picking an available channel from all possible channels in the network. Each
node that receives the route discovery request chooses a free channel and ap-
pends it to the request. If there are several active transmissions in the network,
channel conflicts are resolved in the route reply. The solution has low overhead
due to using already existing messages for selecting channels and Gong and
Midkiff [17] proves the correctness of the channel assignment algorithm math-
ematically. However, they do not mention how to solve broadcasts or other
common channel switching problems. Therefore such functionality must be im-
plemented at lower layers.

Optimized Link State Routing Protocol OLSR [10] is a proactive rout-
ing protocol, i.e. regularly updates the topology information based on control
messages from neighboring nodes. Each node carefully selects a couple of neigh-
bors as its “multipoint relays” (MPR) such that it can reach two-hop neighbors
through these. By only letting the MPR forward control messages, the number
of transmissions are reduced when flooding the network.

The Link Quality Optimized Link State Routing Protocol (LQ-OLSR) [14] is a
table driven proactive protocol based on OLSR [10]. To preserve scalability it
uses a non-cumulative link quality metric which is locally calculated and only
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deliver broadcasts to neighbors. Due to its proactive nature the protocol is suit-
able for mesh backbones which seldom go through changes. LQ-OLSR extends
OLSR’s link quality metric and modifies the algorithm for MPR selection to
prefer nodes with high willingness to forward traffic - this can be based on for
example local value of power level or traffic. Another modification is to the
route selection process. It is modified to utilize the improved link quality met-
ric to chose the intermediate node for traffic destined for a node in the two-hop
neighborhood. For packets destined for nodes outside of this range, OLSR’s
original shortest path metric is used. Just like AODV-HM, LQ-OLSR currently
doesn’t handle channel assignment among neighbor nodes. The authors testbed
uses three interfaces with static channel assignment and the current proposed
implementation uses an attribute to indicate which interface to use. According
to the authors this attribute can be extended to implement channel assignment.

Dynamic Source Routing Dynamic Source Routing (DSR) [11] is like
AODV, a reactive routing protocol. It to, uses the shortest path metric, which
might result in reduced throughput in an multi-channel multi-radio setup [11].
Kyasanur et al. propose a Multi Channel Routing metric (MCR) [3] which is
similar to the DSR but does not use the shortest path metric. Instead, MCR
combines the WCETT [13] link cost metric with the switching cost that occurs
in multi-channel architectures. MCR is preferably used on top of the hybrid
Link Layer protocol described in chapter 2.3.2.
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3 Method

The chosen approach was based on Kyasanur’s hybrid solution [12] which divides
radios into two types: fixed and switched. A fixed interface is locked to a
specific channel during a long time-span while a switchable has the possibility
to frequently switch between channels. When a node has data to transmit it
performs a look-up to find which fix channel the next hop neighbor uses and
tunes one of its own switchable interfaces to that channel.

The implementation is versatile. It was implemented at the link layer with-
out modification to the existing 802.11 MAC protocol. The solution hides the
multiple interfaces to the higher layers and supports local broadcasts; hence
existing protocols, such as address resolution (ARP) and routing (e.g. OLSR
and AODV), functions without any modifications. It allows for predefined chan-
nels or dynamic channel assignments and there is no requirement for network
wide synchronization for channel negotiations. It is also possible to alleviate the
hidden terminal problem.

Some drawbacks with this solution are that it requires at least two interfaces and
that broadcasts must be sent out over all channels to reach all neighbors. Hence
a broadcast requires channel switches and more data to be transmitted compared
to if broadcast could be solved by leaving only on one channel. Broadcasts may
also arrive at the neighbor nodes at different points in time and this can cause
troubles for routing protocols.

The main function - choosing which interface to send a specific frame on and on
what channel - is implemented by adding a new mode to the existing bonding
module for the Linux kernel. This bonding module enables one or more network
interfaces to act as one with the purpose to provide for example redundancy or
increased bandwidth. To support the channel selection for the fixed interface
- which is based on channel usage in the two-hop neighborhood - a user space
application was created. This application is in charge of choosing the fixed
channel based on gathered neighborhood data and advertising its chosen channel
to neighbors. It is also responsible for initial setup and configuration. All
time critical operations are handled by the bonding driver while the user space
application is in charge of less time critical features. In addition, optimizations
were made to the open source WLAN driver MadWifi to minimize channel
switching time and additional functions to improve performance.
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Figure 6: User- & kernel space

The rest of this chapter will present an overview of the provided functions and
then describe the different parts in detail - starting with the Linux bonding
driver, then the user space application and finally the modifications made to
the WLAN driver.

3.1 Implementation overview

Each node has a minimum of two interfaces consisting of at least one fixed and
one switchable. A fixed interface is used to receive data and to ensure network
connectivity while a switchable is used to transmit data to the neighbors.

Each node keeps a neighbor-table which lists the fixed channels of its neigh-
bors. This is used to look-up what channel to use when transmitting data to
a specific neighbor. Information about neighbors is obtained through status
notifications called HELLO-messages. Each node periodically broadcast these
messages with information about its current fixed channels. Each message also
contains information about the nodes current neighbors and their fixed chan-
nels. This information enables the nodes to keep track of the channels currently
used in the two-hop neighborhood. With this knowledge it is possible for each
node to try to optimize the local channel usage by dynamically choose which
fix channels to use.

Each interface has a queue for each available channel. After a lookup in the
neighbor table, packets are placed in the corresponding queue. Data supposed
to be broadcasted is place in all queues. Queues are served in order. A queue
is inspected before an actual frequency switch, if the queue is empty the next
queue in turn will be inspected. If a queue has packets, the interface is switched
to the corresponding frequency and the data transmitted. Normal behavior is
to serve each queue until they are empty. It is however possible to define a
maximum and a minimum staying time for each channel. By enabling these
features, the switching overhead could be decreased and the end-to-end latency
optimized.
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To minimize the effect of the hidden terminal problem (see chapter 2.2) after
changing channel, an interface sleeps for a specified period of time before try-
ing to send data. This allows the Network Allocation Vector to be updated,
hence avoiding collisions[3]. The upper limit for this period is the time it takes
to transmit a maximum sized packet. It can be lowered by letting the node
dynamically calculate the sleep-duration on the number of neighbors currently
using the channel - if there are few users the sleep can be significantly lowered
without affecting performance negatively[20]. The current implementation only
allows a static duration.

3.2 Implementation details
3.2.1 Linux bonding module

The Linux kernel bonding driver makes it possible to aggregate multiple network
interfaces and have them appear as a single logical interface [19]. The bonding
driver operates at the link layer [23] above the interface device drivers. It offers
several modes of operation such as different types of load balancing and hot
standby. Multi-channel multi-radio support was implemented by the creation
of a new mode.

This new mode bonds physical wireless interfaces together and present them
as the logical interface “mcmr0”. The bonding module is in charge of all traffic
received and transmitted through this interface. Each physical interface is either
configured to be “fixed” or “switchable”. A fixed interface is only used to listen
to incoming traffic while all outgoing traffic is disabled. A switchable interface
has a reversed role, namely to send traffic, hence incoming traffic is disabled.

All incoming traffic to fixed interfaces is directly delivered without any modifi-
cations. The main function of the bonding mode is to handle outgoing traffic.
When a packet arrives from higher layers it is first checked if it is supposed to
be broadcasted. If so, the packet is copied and placed in all available queues. If
it is a unicast packet a look-up in the registry is done to check if the node knows
about the destination neighbor and what channel it is currently using. If the
destination is found the packet is queued in the corresponding channel queue.
If it is not found, the packet is dropped.

The registry consists of tuples with one-hop neighbor information. Each tuple is
composed of the neighbors Ethernet address (MAC address) and the channel to
use. The registry is maintained by the user space application via IOCTL-calls,
which obtains the information by receiving HELLO-messages from neighbors.
The registry maps each Ethernet address to one channel only. If one neighbor
has multiple fixed interfaces it is up to the user space application to choose which
specific channel to use. The decision was placed on the user space application
to minimize the work required for each outgoing packet.
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Servicing channel queues The channel queues are served by separate threads
responsible for each of the switchable network interfaces. The current imple-
mentation has support for a maximum of one switchable interface, but can easily
be extended to support multiple interfaces. The worker thread iterates over the
available channel queues and examines if there is data waiting to be transmit-
ted. If the current queue is empty it tries the next queue without doing an
actual channel change in hardware. If a queue has data to transmit, the thread
checks if the interface is currently tuned to the channel. If not, it request a
hardware channel change via a standard wireless extension* IOCTL. Directly
after a channel change the thread has the possibility to sleep for a specified
interval before starting data transmission. This is done to minimize the impact
of the hidden terminal problem, which can degrade network performance in a
dense network. This sleep duration is currently set at compile-time.

Then the thread starts to dequeue frames from the queue and hands the respon-
sibility for the frame over to the WLAN driver. If the driver reports an error,
the frame is dropped. However, a successful handover to the driver doesn’t nec-
essarily mean the frame will be delivered to the destination. The frame can be
dropped later on by for example the driver or by the hardware.

The normal behavior for the thread is to service the channel until it is empty.
This is a simple solution and can cause starvation if the current queue is con-
tinuously filled with new data faster than the hardware can send. Therefore
it is possible to set a maximum staying time on each channel. This feature is
enabled and configured at compile time. If activated, after each sent frame the
thread calculates the expected transmission time for the frame based on size.
If the total expected transmission time exceeds the maximum staying time the
thread is forced to stop dequeuing data from the current queue and check if an-
other queue has data to send. If no other queue has data to be transmitted, no
channel change will occur and the thread will continue to service the interrupted
channel.

It is also possible to set a minimum staying time on each channel. When the
hardware is changed to a specific frequency the thread is forced to stay on the
channel for the specified time and continuously check for new packets even if
the channel is empty. This can be enabled to minimize switching overhead by
tweaking the total (switch-time / time on channel) ratio.

4(http://wuw.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Linux.Wireless.
Extensions.html)
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Figure 7: Staying time

When a channel switch is performed all data in the data queues are flushed by
MadWifi. Therefore a function was added that enables the bonding module to
query the driver if there are data left to transmit. This enables the bonding
module to stall while the data is transmitted.

Throughput performance issues Problem with the performance arose when
testing an early build of the system. With the MCMR-module enabled and only
one channel activated to disable switching, the obtained throughput node-to-
node was about 4 Mbit using UDP traffic. This compared to 28 Mbit with the
MCMR-module disabled.

After extensive debugging the source of the throughput problem was identified to
be caused by the MCMR-module in combination with MadWifi and the features
of the 802.11 MAC. More specific, the acknowledgment-process of frames.

Normally after receiving a data frame, the receiver checks the frame for errors.
If no errors are found, it sends an ACK-frame to the receiver to signal that the
frame was successfully received. The ACK is addressed to the Ethernet address
found in the 802.11 frame headers source field.
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If the sending node does not receive an ACK addressed to its Ethernet address
before a timeout, it will resend the frame until it receives an ACK. This is done
up to the specified number of times denoted by the driver or hardware. In
Atheros case, the number of retries are permanently set in the hardware and
can not be controlled by software or the driver.

The problem had to do with how the bonding module in combination with
MadWifi handles Ethernet addresses. For each physical wireless card MadWifi
creates a wireless device named “wifiX”, where X denotes the number of the card
starting with zero. The first card will for example be named “wifi0”, the second
“wifil” and so on. It is then possible to create and bind virtual interfaces to
these devices. The default naming scheme is “athX”, where X is the number of
the device starting from zero. The first interface bound to each device clones the
Ethernet address from its parent device. After the bonding module is loaded
in MCMR-mode, interfaces that should belong to the “mcmr0" interface are
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enslaved. Enslaving is the process of associating sub interfaces with the bonding
interface, i.e. letting the bond interface know which interfaces it is responsible
for. The bonding module which needs an Ethernet address for the “mecmr(”
device, clones the address from the first enslaved interface. Consecutive enslaved
cards will then via wireless extension IOCTLs be assigned the same Ethernet
address.

enslave athO athl

a a
11:aa:22:bb:33:cc| |44:dd:55:ee:66:ff 11:aa:22:bb:33:cc| | 44:dd:55:ee:66:ff

mcmr0
11:aa:22:bb:33:cc

Figure 9: Enslaving

When a frame was sent out, the source address was automatically set by the
system to the ethernet address of “mcmr0” and all of its slaves, not the perma-
nent Ethernet address of the dynamic interface actually transmitting the frame.
However, an Ethernet address set manually does not propagate correctly to the
hardware and therefore the hardware does not listen to frame acknowledgments
addressed to this Ethernet address.

This caused each frame to be resent by the hardware until it gave up and pro-
ceeded to the next frame. This severely reduced throughput. The chosen solu-
tion to solve the problem consists of letting the bonding module thread, which
services the channels, set the source address of each frame to the switchable
interface’s permanent hardware address just before it handles over the respon-
sibility of the frame to the driver, see Figure 10.
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Figure 10: Faulty behavior to the left. Right shows a correct ACK-process.

3.2.2 User space application

The user space application is responsible for initiating and configuring the bond-
ing module. It is also the one managing channel selection for fixed interfaces
and handling neighbor information by sending and processing received HELLO-
messages. The application was implemented as a module in the existing Mesh-
framework created by CRL Sweden®. It is also possible to convert it to a stan-
dalone application.

Shttp://www.crlsweden.com/
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The implementation is capable of handling an arbitrary number of bonding
interfaces (viz. mcmr0, memrl and so on) each with an arbitrary number of
enslaved fixed and switchable interfaces.

During upstart the application reads a configuration file containing all the con-
figurable parameters needed to init the application and the bonding module.

Configuration file example:

#Virtual MCMR-interface

MCMRInterface = "mcmrQ"

#Enslaved fixed interface

FixedInterface = "athO"

#Enslaved switchable interface

DynamicInterface = "athl"

#Interval beween outgoing HELLOs

HelloInterval = 5000

#Port to listen for HELLOs on

ListenPort = 55000

#When to classify a neighbour as old
NeighbourEntryExpire = 11000

#Time between checks for stale entries in the neighbour table
NeighbourExpireCheck = 3000

# Channels not to use

ExcludedChannels = 36,44,48,52,56,64,104,108,112
#Frequency range: A or G

FrequencyRange = A

The application then activates each interface in the bonding module and sets
them to the correct mode. This is done by IOCTL calls to the module. It also
enables all channels for each card except the ones denoted by the parameter
“ExcludedChannels”. In a network with few nodes it is beneficiary to only use a
few channels, because this minimizes the number of channels broadcasts must
leave on, hence lowering the number of required channel switches. It is important
that all nodes in the network have the same set of active channels or network
partitions could occur.

Even if it would be possible for the nodes to use the frequencies defined by both
802.11a and 802.11g this is not allowed by the application due to the increased
switching cost involved.

A fixed channel is chosen by random from the by hardware supported channels
for each fixed interface and assigned via a regular wireless extension IOCTL.
After initiation the application starts to send and listen for HELLO-messages.

HELLO-messages
Once during the specified interval the node broadcasts a HELLO-message. The

message will in other words be transmitted on all allowed channels. The purpose
of this message is to inform neighbors about its presence and what channel or
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if it has multiple fixed interfaces - channels, the neighbors must use to transmit
data to the node. The data consists of each cards permanent Ethernet address
and its currently used channel. If the node itself has received HELLO-messages
from other nodes it includes data about these one-hop neighbors. This data is
comprised of the nodes IP address and Ethernet addresses of each of the fixed
interfaces plus the associated channels. With this information it is possible for
the receiver to correctly calculate the channel usage in the two-hop neighbor-
hood. The Ethernet address is needed by the receiver to identify if it already
knows about the other node as a one-hop or possibly two-hop neighbor.

The HELLO-message interval affects the networks mobility. In a static network
it can be sufficient to send out messages for example once every 30 seconds
or even less. In a mobile network with nodes moving around plus leaving and
entering the network frequently the interval must be decreased to not leave
invalid entries in the nodes’ neighbor tables.

Before each HELLO-message the node consult the channel usage list to check if
it is beneficiary to change one of its fix channels. If one of the current channels
is used by more nodes than the node itself, it checks if there are any unused
channels or a channel with a lower usage that would be beneficiary to change to.
If there is such a channel there is a 50% chance of the node actually changing
channel. This is to avoid a state where multiple nodes frequently switches
between channels.

Check ChannelUsagelList
@ Nodes using same channel as self >
(# neighbours / available channels)

No Channel change is benificial?
Yes Example: 7 nodes, 3 total channels

Yes

Locally broadcast HELLO
Includes: Current fixed channel + NeighbourTable
(Change channel if rand()%10 >= (D

Change to least used channel in ChannelUsageLisD

Figure 11: Send HELLO-message

Neighbor- and channel management

After receiving a HELLO-message the information is analyzed. The sending
node of the message is a one-hop neighbor to the receiver and can be reached
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directly by the node. The neighbors Ethernet addresses and each corresponding
channel is recorded in the nodes neighbor table along with a last-seen time
stamp. If the node already exists as a two-hop node, it is promoted to one-hop.
Each one-hop tuple is then added to the bonding module via IOCTL as an
unicast entry. The channels used is also added to the channel usage list. The
purpose of this list is to record all channels used and their usage count in the
two-hop neighborhood. If a node changes channel the usage of the old channel
is decreased by one and the new channel’s usage increased.

eighbour already present in NeighbourTab\eD

Add new neighbour to NeighbourTable)

Changed channel?

Gpdate NeighbourTable with new channeD

Calculate number of nodes using each channel in
the two-hop neighbourhood and update ChannelUsageList
Gpdate UnicastTable in KerneD

Figure 12: Receive HELLO-message

The nodes in the message data - containing the senders one-hop neighbors -
are all possible two-hop neighbors to the receiving node, but they can also be
one-hop neighbors. Each entry is compared to the entries in the neighbor table.
If the node exists and is already known of as a one-hop neighbor the data is
disregarded and the last-seen time stamp is not updated. If the time stamp was
updated, it could cause none existent nodes to be kept alive in the network as
two-hop. If the node exists as a two-hop neighbor the information is updated.
If it does not exist, and the channels is supported, it is added as a two-hop
neighbor. These neighbors are not added to the bonding module, they are only
used for channel usage statistics. The channel usage list is updated accordingly.

Regular checks are done for stale entries in the neighbor table. If a one-hop or a
two-hop neighbor has not been heard of for the specified time, it is classified as
stale and removed from the neighbor table. One-hop neighbors is also removed
from the bonding module. In a highly mobile network the value “NeighborEn-
tryExpire” must be low to not keep invalid nodes in the neighbor table.
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3.2.3 MadWifi WLAN driver optimizations

The bonding module and user space application works with all hardware drivers
with support for IBSS. However, due to the frequent channel switches the perfor-
mance can suffer due to hardware and driver taking long time to switch between
channels.

Measurements showed that a recent development SVN version of MadWifi had a
switching time of about 8-9 ms measured from the time the driver got the IOCTL
until the IOCTL returned. The stable 0.9.4 version showed better timings of
around 5 ms.

MadWifi version | Average switching time (seconds)
0.9.4 0.004959
SVN rev 3517 0.008580

The higher switching times for the newer SVN version is probably due to code
additions added to comply with the IEEE 802.11h-2003 standard [20]. This
standard provides Dynamic Frequency Selection (DFS) which mean an access
point should avoid channels which is used by satellites and radars. Because of
this and the fact that the version has proven to be stable on the Avila platform,
the 0.9.4 version was chosen to be optimized.

MadWifi was studied to identify what happened from the moment the driver got
the change channel IOCTL until the change was done. Each important function
was timed and functions going down to the hardware via HAL were identified.
HAL is short for “Hardware Abstraction Layer” and provides an interface which
MadWifi must use to control the actual hardware. This is to make sure MadWifi
does not change values in hardware registers which it is not supposed to change,
e.g. use illicit frequencies or too high transmission powers.

When a call is made to change channel, MadWifi does the following important
steps:

First it disables interrupts to avoid being interrupted by the device. Then it
stops all outgoing transmissions and drains the current pending transmission
queue by dropping all unsent queued packets by calling “ath _draintxq”. After
this “ath _stoprecv” is called. This function instructs the hardware to stop
packet reception and tells above layers to queue pending outgoing packets. Then
the hardware is reset, this is where the actual frequency change occurs. After
the reset a few things such as transmission power limits, channel flags and, if
it is a change between modes, hardware rate maps are updated. Then packet
transmissions and reception are enabled. A few of these functions was possible
to optimize or completely remove to lower the total switching time.

Some example functions and their approximated execution time:
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Function Exec (sec) | Comment

ath _hal intrset 0.000008 | Disable/enable interrupts

ath _draintxq 0.000063 Disables packet transmission
and drain pending out-queue

ath_stoprecv 0.003025 Disables packet reception by
disabling PCU and DMA engine

ath hal reset 0.000650 Hardware reset

ath update txpow | 0.000315 Update transmission power limits
after channel change
ath_startrecv 0.000195 Start reception of packets

Two important functions are “ath _hal reset” and “ath _startrecv”. The first
function is a call to HAL resetting the hardware and doing the actual chan-
nel change. All operations is out of MadWifi’s control. Hence, not possible to
optimize. The second function initiates reception buffers and the like to en-
able packet reception after a reset. It consists mostly of calls to the HAL and
therefore not either possible to optimize without having access to the HAL-code
and hardware. Based on this, a hard theoretical minimum value with current
hardware and HAL is around 0.000845 seconds (0.845 ms).

The function responsible for over 0.003 seconds during a change is “ath _stoprecv”.
This function disables packet reception by disabling Packet Control Unit (PCU)

and the Direct Memory Access (DMA engine). After disabling DMA it sleeps

for 0.003 seconds to let a possibly present DMA-operation finnish. This sleep

was removed during optimizations along with functions deemed unnecessary for

the operation of MCMR, for example all functions which updates channel flags,

transmission power limits and the hardware rate map when changing between

nodes. Also the state machine was eliminated. After optimizations the channel

change time was on average 0.000997 seconds.

A lot of the optimizations performed were MCMR-specific and broke normal
behavior of the driver. Therefore, it was made possible to turn on and off
optimizations when loading the MadWifi module.

Another optimization was to disable the 802.11 beacons on the interfaces. In
an ad-hoc network beacon frames are normally broadcasted to inform nodes
in the vicinity about the nodes service set identifier, supported rates and other
parameters. This information is needed to setup communication between nodes.
Due to the characteristics of the MCMR, setup, beacons are not needed and only
cause unnecessary overhead.

Pending out-queue

Any packets waiting to be transmitted in the drivers out-queue are dropped
when a channel change is ordered. To enable the bonding module to query
the driver for the queues state, the existing function in MadWifi which returns
wireless statistics was modified. This function is called by a wireless extension
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IOCTL and a variable - otherwise set by MadWifi to zero - was modified to
return the number of bytes left in the queue. This information makes it possible
for the bonding module to calculate an expected transmission time and stall
before issuing a channel change. Allowing packets left in the out-queue to be
transmitted instead of discarded.
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4 Results

This sections presents the results from the performance tests made with the
intention to compare the usual single-channel, single-radio setup to MCMR
under fair conditions.

When running MCMR, each node is equipped with two interfaces operating
in 802.11a mode. The single interface setup is using the same hardware and
the identical settings. Channel 64, 100 and 120 was mainly used when testing
to make sure the channels did not interfere with each other. The traffic was
generated and measured using Iperf® on standard desktop computers to not put
any more load than necessary on the Avila Network Platforms.

To test the advantage of using multiple channels compared to a single channel,
the first scenario consists of a total of four nodes. The four nodes are neighbors,
i.e they all hear each other. Two of the nodes are responsible for transmission
of data and two acting as receivers. The two sending nodes simultaneously
generate traffic to one receiving node each.

Simultaneously transmissions on the same frequency are bound to interfere, re-
sulting in a decreased throughput. Hence, utilizing two non-interfering channels
should increase throughput.

Figure 13: Scenario 1, one-hop, two channels scenario

The first test, Figure 13, confirmed that two separate channels can be used
simultaneously without any interference. Transferring data between two nodes,

6http://sourceforge.net/projects/iperf/
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four nodes in total, using MCMR resulted in doubling the throughput, as shown
in Figure 14.

Throughput UDP, Half duplex
Mbit/s
[ JatoB
30 Mbit/s 30 Mbit/s
30 Pctwp
20 15 Mbit/s 15 Mbit/s
10
Singel-channel, single-radio MCMR

Figure 14: Scenario 1, throughput

When only using one channel, all transmissions have to share the channel band-
width. In this case the bandwidth is 30 Mbit/s, resulting in 15 Mbit/s on
each transmission. When increasing the number of simultaneously transmissions
between nodes in a single-channel neighborhood, the bandwidth will decrease
according to a simple formula:

maximum channel bandwidth

throughput = —
number of transmissions
If instead using multiple channels, the throughput will be equal to the maximum
channel bandwidth as long as the number of available non-interfering channels
are equal or more than the number of simultaneously ongoing transmissions.
That is, each transmission will be able to use a unique channel:

maximum channel bandwidth
throughput =

— number of used channels
number of transmissions

The second scenario is a simple setup to test the end-to-end one way (half
duplex) throughput using one, two and three hops. Transmitting data between
sender and receiver using two nodes takes one hop, while four nodes enables a
three hop scenario. Since data will only be sent in one direction, no channel
switching will be required other than when broadcasts are sent.

Figure 15: Scenario 2, multi-hop
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This test showed that both single-channel, single-radio and MCMR reached the
practical limit of 33 Mbit /s over one hop. However, when sending data over two
hops, MCMR was able to increase the throughput by 60%.

Throughput UDP, Half duplex
Mbit/s
MCMR
33 Mbit/s l:l
30 Normal
24 Mbits .
20 15 Mbit/s : ‘
| I
10 i i Number of
3 ] hops
L -
1 2 3

Figure 16: Scenario 2, performance

Even though MCMR  uses different channels, the throughput will decrease due
to high processor load on the nodes both receiving and transmitting data. A
more powerful platform would probably be able to increase throughput.

In a perfect setup where each node only has two neighbors and the distance
is enough to avoid two-hop interference, the single-channel single-radio will be
able to keep the 15 Mbit/s over 3 hops and more. Performing fair tests on
more than two hops, however requires the ability to strictly control the range
of each node or a very large testing site, which was not possible within the
scope of this report. A few tests using a MCMR setup and the user space
application iptables” to block certain nodes from hearing each other was however
performed and showed that the throughput reached about 24 Mbit /s over 3 hops.
This shows that the MCMR solution is capable of improving the bandwidth
over multiple hops compared to a single-channel single-radio setup. Even if
the measured 24 Mbit/s is significantly higher than 15 Mbit/s obtained with
the single-channel single-radio setup, it is far from the 33 Mbit/s measured in
previous tests for MCMR over one-hop. The main reason for this is the increased
channel switching required in the three-hop setup.

Thttp://www.netfilter.org/

31



5 Discussion

5.1 Implementation

Implementing the multi-channel multi-radio solution in practice was not without
issues. Development of the user space application and the creation of the new
bonding module mode were quite straight forward. The problems encountered
were mostly quickly solved. A far greater problem was MadWifi and its numer-
ous issues already present in the driver. Issues such as memory leaks which may
not be notable in a normal environment, but certainly noticeable when brought
to the extreme by the frequent channel switching.

The choice to implement a solution without network wide synchronization or a
common shared channel resulted in a solution requiring frequent channel switch-
ing. An initial concern was that the switches would introduce an unacceptable
latency to the network. In early test builds without any modifications to the
WLAN driver this was also the case. However, with an optimized driver the
obtained test results show that it is possible to in practice yield an increase in
throughput while using a multi-channel multi-radio solution without introducing
unacceptable delays due to channel switching.

5.1.1 Bonding driver

The central part of the implementation is the bonding driver mode. It is re-
sponsible for the different channel queues and the operation of the switchable
interfaces. The choice to utilize much of the already present features of the
bonding driver was inspired by Kyasanur [4, 12] and has been successful. It
saved a lot of development resources and have created a versatile solution easy
to modify and extend. For example CRL Sweden has extended the MCMR
mode to handle a network consisting of nodes with directional antennas - a
network configuration the original mode was not intended to handle. The cur-
rent implementation only supports a total of two cards - one fixed and one
switchable. Support for more cards, fixed and switchable, is possible to imple-
ment without making extensive modifications. For example, to add support for
more switchable interfaces a thread for each interface must be created and rules
for how the threads are allowed to service the common packet-queues must be
added. By adding support for more cards it is possible to adjust the ratio of
fixed and switchable interfaces. A node must have at least one of each type,
but depending on the nodes role in the network it can be beneficial to have for
example three of four cards to be fixed. This particular setup could be used on
a gateway node which mostly receives incoming traffic and does not have much
outgoing.

One problem in multi channel networks is how to make sure local broadcasts
reach all neighbors. To fully utilize multi channel support all nodes should
use frequencies which do not overlap or interfere. This means nodes can only
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hear messages on the specific channel they are currently tuned to. To solve
this all broadcast messages are send out on all channels. This unfortunately
introduces both channel switching and data overhead. The switching overhead
grows with the number of channels available and it is therefore advantageous
to disable channels in a network with few nodes or in a network where the
nodes’ coverage do not overlap. The current implementation lets the user space
application enable the channels that should be used during start-up. Once
a channel is activated it is not possible to deactivate it during runtime. An
advanced solution could be to implement dynamic enabling and disabling based
on the number of nodes in the network. Because local broadcasts must reach
all nodes in the neighborhood to not introduce network partitions, all nodes
must have the same channels available. This means a dynamic configuration of
available channels must be done by a distributed vote among all the nodes in
the network.

The bonding module allows for a lot of performance fine-tuning. There are
a lot of different parameters that can be tuned to optimize general network
performance or to suit specific network- and traffic characteristics. The most
important part of the bonding driver is the thread or threads servicing the
packet queues. The current implementation services the queues in order. But
it is possible to modify this behavior and use a more advanced queue strategy.
For example is it possible to prioritize the queue with the oldest data or the
queue with the most data. Another parameter to optimize is how long a thread
services a specific queue. By modifying the minimum staying time for a thread
on a queue it is possible to lower the amounts of channel switches and let the
interface spend more time servicing queues. The higher the value is, the fewer
the channel switches. However, a too high value might affect the latency in the
network negatively because data in other queues will have to wait longer before
the thread can service them. A high minimum staying time is more beneficial
on a system where the time it takes to perform a channel switch is high. On a
system with low switching time it might not be beneficial to stay and wait for
more data and better to switch directly when the queue is empty.

Another parameter related to the minimum staying time is the maximum staying
time on a channel. If a thread is only allowed to switch channel when the
current queue is empty, it can cause starvation of the other queues. By adding
a maximum duration a thread can service a channel each time, the thread is
forced to check the other queues and service them if necessary. A low value
will increase the time spent switching but might also decrease the networks
latency. An advanced solution would be to dynamically modify the minimum-
and maximum staying time based on the networks current traffic characteristics.

Another implementation detail is how to handle the hidden terminal problem.
In a dense network with many nodes switching channels this could potentially
be a large problem degrading network throughput. The current implementation
makes it possible to statically assign a duration each node must wait after
a channel switch before trying to send data. In a dense network with many
active nodes trying to transfer data the optimal waiting time approaches the
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maximum transmission time of a maximum sized packet. In a not so dense
network it is beneficial to have a low waiting time due to the risk of multiple
nodes transmitting simultaneously is decreased. Once again, an optimal solution
would be a dynamic solution. For example it would be possible to calculate the
waiting time based on known one-hop neighbors. This calculation would not be
time critical and therefore beneficial to perform in the user space application.

During the process of solving the initial performance problems described in de-
tail in chapter 3.2.1 the bonding driver and user space application were tested
with Intel based cards and the Intel PRO/Wireless 2200BG driver for Linux®.
This driver behaves different when creating interfaces compared to MadWifi.
While MadWifi creates a “wifiX” card representing the physical device and then
bind virtual interfaces to these, e.g. “ath0”, the Intel driver directly creates an
“ath0” interface. After some initial problems getting the Intel drivers to run
correctly on the Avila platform they worked without complications in combina-
tion with the bonding driver. Although no measurements were performed on
channel switching time, throughput were as expected over one-hop and broad-
cast messages was correctly transmitted on all channels. This showed that the
implementation is compatible with different hardware and drivers. The Intel
driver unfortunately uses a proprietary firmware which makes it impossible to
optimize channel switching.

5.1.2 TUser space application

All non-time critical functions are placed at user space. Most of the features
could also be integrated in the bonding module. This is however not recom-
mended. Common programming practice is to place only the necessary features
in kernel space, e.g. time critical and features needing access to system resources
such as network interfaces. Developing code at user space is also more conve-
nient, e.g. memory management is easier and the program can crash without
bringing down the whole system. The latter is often the consequence if a module
crashes due to the module sharing the kernels code space [22].

The application keeps track of the neighboring nodes and updates the bonding
driver with information about which channels a one-hop neighbor can be reached
on. Each node spread information about its own channels and its known neigh-
bors by regularly broadcasting HELLO-messages. These messages introduce an
overhead which grows with the number of neighbors and the lower the interval is
set. The minimum size of a HELLO-message for a node with one fixed interface
and no neighbors are 17 bytes. Then the size grows 11 bytes for each neighbor
added with one fix channel. The size of the message header for each node is 6
bytes and each channel, i.e. each fixed interface at the node, takes an additional
5 bytes. This doesn’t take much of the available bandwidth even if HELLOs
are sent several times per second to suit a mobile network. The broadcast na-
ture of HELLOs requires that they must be delivered on all available channels.

8http://ipw2200.sourceforge.net/
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This means the total data that will have to be transmitted for each HELLO
is: (size of HELLO) * ( number of channels ). The channel switching overhead
must also be taken into account. However, we believe the lack of a demand
for a network wide synchronization, which has been proven difficult [16, 9] or
a common dedicated channel outweigh the overhead introduced. It is possible
to minimize size of the HELLO-messages. For example by implementing a new
message structure capable of compressing addresses. Another possibility is to
combine the messages with existing routing messages. This would lower the
total number of broadcast messages in the network and hence lower switching
cost.

The information received from neighbors’ HELLO-messages is not only used to
get information about how to reach the neighbors, but also to gather information
about the two-hop neighborhood. This information is used to calculate which
channels to use for the nodes fix interfaces. Each node strives to minimize the
total usage number for each channel. No investigation on algorithms choosing
the optimal channel was done. For example, if two channels shares the same
usage as well as has the lowest usage the node randomly choose which to use.
This choice could be modified and based for example on which neighbors that
are using the channels. Actual channel utilization could also be measured and
used as a basis for the channel choice, e.g. prefer the one with lowest usage. It
would also be possible to let the routing protocol choose channels. There are a
lot of proposed modifications to existing routing protocols, a few described in
the analysis. One benefits with letting the routing protocol choose channels is
that it has extended information about the network and can setup both routes
and channels.

There are measurements in place to avoid too frequent channel switches on fixed
interfaces and to avoid a state in the network where several nodes constantly
switches between channels. When a node decides it would be beneficial to
change channel, a random function decides if to change channel or not. This is
based on a percentage, the current implementation uses 50% chance of changing
channel and has worked well in the test setup. This value could however need
some modifications in a real network to avoid channel hysteresis.

5.1.3 WLAN driver

MadWifi was the open source driver of choice. It supports a range of Atheros
chip-sets often found on common and cheap wireless cards. It proved to be the
single area responsible for most troubles during development. The first problem
encountered had to do with frame acknowledgments when running in MCMR-
mode and is described in more detail in the method. This was an issue not
present in for example the Intel wireless driver. The current solution is working
and no bad side effects has been identified. The issue could probably be solved
in the driver if it had direct access to the hardware and wasn’t required to
communicate via the hardware abstraction layer.
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Later in the development and during testing other issues were encountered.
Channel switching is normally something done “once in a while”. In a standard
setup the only time channel switching is somewhat frequent is when the card
performs a scan. If not user triggered, scans are normally not performed very
often. A background scan in MadWifi with the purpose of finding a better
AP when in roaming mode will be done once every 5 minutes. WLAN drivers
and hardware are therefore normally not optimized to perform fast channel
switches. An unmodified version of MadWifi takes from 5 ms up to about 10
ms per channel switch. This duration is too long to perform well when channel
switches can occur up to a 100 times a second . Therefore MadWifi was modified
to better support frequent channel switches. By identifying and removing steps
in the channel change process that is not necessary during MCMR-operation,
it was possible to bring the delay down to about 1 ms. It is in theory possible
to lower this even further by removing more steps in the driver. However,
MadWifi’s only method of telling the hardware to change channel is to request
a reset. Measurements shows that this reset takes about 0.650 ms with current
hardware. After the reset there are a few calls steps to setup the hardware.
These add about 0.100-0.200 ms to the switch time. This shows that it would
be beneficial to create hardware with faster channel switching support.

Working with MadWifi has not been trouble free. The driver consists of a lot
of code, largely undocumented, which resulted in that the process of optimizing
were often trial-and-error. The first version optimized were the stable release
0.9.4. During testing this version had large amounts of memory leaks causing
nodes to crash or behave suboptimal. Changes made to the driver could not have
introduced such behavior. Instead it is more likely that the frequent channel
switching made an existing problem much worse. A study of existing bug tickets
for MadWifi showed that other users experienced problems. A lot of leaks
seemed to have to do with the management of Linux network buffers and the
drivers node references to neighbors being lost during different scenarios. By
testing different SVN versions of the driver the problem were alleviated but not
fully removed.

The current implementation is based on a SVN revision 3226 from early 2008.
Memory leaks still exists but mostly shows during high load on nodes which
perform frequent switching. Newer SVN versions were tested but these intro-
duced problems with channel switching, for example not being able to switch
while the card was in UP state.

The memory leaks has proved troublesome during testing and must be fixed if
the setup would be used outside of a test environment. It is possible that the
reversed engineered successor to MadWifi, ath5k might solve a lot of problems
when it is ready for deployment. It is at the moment not an option due to being
early in development and missing a key set of features.

All data queued by MadWifi but not yet transmitted on the current channel
is purged when a channel switch is ordered. This has the possibility to cause
unnecessary packet drops. The features added to let the bonding module stall
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if there are data left proved to be not all that successful. If there are data
left to be transmitted the bonding driver has the possibility to calculate an
expected transmission time and then stall before telling the driver to change
channel. However, due to these queues being in MadWifi, i.e. in software and
not the hardware, it is not possible for the bonding driver to do a blockable sleep
while waiting for the data to be processed. A blockable sleep means that no
other code, such as MadWifi, can be run on the processor. This would however
have been possible if the frames were queued in the hardware. Quite often the
calculated stall duration proved to be too small in relation to the minimum
sleep interval provided by methods to yield the processor to other processes and
therefore not beneficial. The minimum scheduling time for a process is 1 jiffie,
which in Linux 2.6.19 with default settings converts to 10 milliseconds. Due to
this the current implementation of the bonding driver has the feature disabled.

5.2 Limitations

The chosen approach requires at least two wireless cards. There are other multi
channel approaches which gain performance improvements by using one card,
see chapter 2.3. However these often require modified MAC protocol which was
not an option.

The chosen approach also requires low channel switching times to provide ac-
ceptable performance. If the driver has poor channel switch characteristics it
must be optimized. This is only possible with access to the drivers source code,
something which is seldom provided. This limits the choice of WLAN drivers
and hence available hardware.

The current implementation also has limitations. For example the bonding
driver does not allow more than two cards in total. This support is however
already present in the user space application. The current implementation also
lacks for support single card nodes in the network. In a typical network setup
MCMR nodes would form the high bandwidth backbone and single card nodes
would connect to a regular access point that in turn is connected to the MCMR
nodes. It would however be possible to connect single card nodes directly to the
MCMR network by modifying the user space application and bonding driver.
If the fixed interface is capable of both receiving and sending traffic and by
enabling the fixed interface to send out beacons to alert single card nodes of its
presence, then single card nodes could connect to the fixed interface just like a
regular access point.

5.3 Future

The solution/implementation was created to work on the Gateworks Avila 2348-
2 Network Platform® with support for only two WLAN cards and a 266MHz

9http://wwv.gateworks.com/products/avila/guw2348-2.php
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CPU. Hence, more powerful platforms with more support could result in a
different approach. Gateworks top of the line network platform, the Cambria
GW2358-4'0 supports four WLAN cards and runs a 667MHz CPU. If having
the possibility to utilize four WLAN cards, three of the cards could for example
adapt to the traffic load and help out where ever necessary. Hence, switching
between sending and receiving data. Only one of these three cards would have
to be responsible for handling control data like HELLO-messages. This would
allow the other cards to concentrate on processing data on one channel and not
frequently having to change each time the HELLO-messages are to be sent.

Besides the evolution in hardware, more wireless standards are developed. One
of the most ground breaking is the IEEE 802.11n [26] standard which improves
the wireless technology in both range and throughput. Improvements have
been made in the physical layer as well as in the MAC layer compared to IEEE
802.11a/b/g. These changes enable the theoretical throughput to increase from
54 Mbit/s in 802.11a/b/g to 600 Mbit /s when applying 802.11n. Equip a Cam-
bria Network Platform with four 802.11n WLAN cards and the possibilities - in
case of performance - are endless.

Most important is however further optimizations to the bonding driver and the
wireless drivers. Primarily a more dynamic queue handling with the ability to
service queues depending on different conditions and variables.

Ohttp://www.gateworks.com/products/cambria/gu2358-4.php
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6 Conclusion

In this report, we have investigated different approaches and the possibilities
to implement multi-channel, multi-radio to increase performance in wireless
multi-hop mesh networks. After reviewing a set of proposed solutions, a hybrid
method was chosen. This approach had the most advantages compared to its
competitors, but was still not trivial to put into effect. The implementation
in user-space was fairly straight forward as opposed to adding support in the
operating system and wireless drivers. Not only did it have to work, but opti-
mizations had to be done to get a substantial increase in performance compared
to a ordinary single-channel, single-radio setup.

When creating a chain of nodes, each node has to be in range of two neighboring
nodes - one on each side - for the chain to work. If the nodes uses only a
single channel, each intermediate node has to receive and transmit on the same
channel causing an interference that will halve the maximum throughput. When
applying MCMR, the intermediate node can make use of the advantages with
non interfering channels by using two different channels simultaneously.

Consider a wireless network consisting of several nodes - utilizing a single channel
- in for example a wide city network. To avoid too much interference in such an
environment, the nodes placement would have to be well planned. If the nodes
instead deployed MCMR, interference wouldn’t be such a big problem due to
the implemented intelligence. Furthermore, in a close environment where all
nodes are in range of each other, a single-channel, single-radio setup will only
be able to reach a total of 33 Mbit/s split between the nodes transmitting data
due to interference. The more nodes involved, the more useful MCMR is and
exactly by how much the performance would increase can only be answered by
performing more extensive testing.

Our implementation has shown to be suitable in different scenarios and with
hardware prices decreasing, also a cost effective solution to enhance performance
in wireless networks.

The next step would be to use more powerful hardware with support for more
WLAN cards and abandon the MadWifi driver in profit for the new and con-
stantly improved ath5k driver ''. Also switch to IEEE 802.11n which is sup-
ported by ath9k '2. Both ath5k and ath9k are included in the Linux kernel as
from version 2.6.25. Also, further investigate optimizations to the drivers.

Mhttp://linuxvireless.org/en/users/Drivers/athbk
2http://linuxvireless.org/en/users/Drivers/ath9k
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Nomenclature

802.11

ad-hoc
ARP

ATIM

CPU

DCF

IBSS

IEEE

IOCTLs

kernel

MAC layer

Mini-PCI

multi-channel

multi-radio

NAV

Open Source

0SI model

PCI

A set of standards for wireless local
area networks

See IBSS

Address Resolution Protocol - translates
an ip address to a hardware address

Announcement Traffic Indication Message -
announce that there are buffered frames
to be sent

Central Processing Unit
Distributed Coordination Function

Independent Basic Service Set - A
peer-to-peer wireless LAN configuration
part of the IEEE 802.11 standard.

Institute of Electrical and Electronics
Engineers - http://www.ieee.org

Input/output control - allows user-space
to communicate with drivers and kernel

Central component of the operating system

Media Access Control - A sublayer of the
Data Link layer (0SI model)

Small formfactor extension cards for the
PCI bus

Using more than one wireless channel
simultaneously

Utilizing multiple WLAN cards on a single
node

Network Allocation Vector - a mechanism
to avoid contention

Software under licenses which enables
users to modify the source code

Open Systems Interconnection Reference
Model

Peripheral Component Interconnect - A
cumputer bus for hardware devices
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rendezvous For example all nodes in the network

tunes to a predetermined channel at the
same time

WLAN Wireless Local Area Network
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Appendix A

User space daemon

/**
* Reads user config and sets up sub interfaces
* for fixed and dynamic interfaces.

*/

module_configure

{
READ user config
CONFIGURE_INTERFACE( interface, MCMR_FIXED )
CONFIGURE_INTERFACE( interface, MCMR_DYNAMIC )
SET Listen_Port
SET Hello_Interval
SET Neighbour_Entry_Expire
SET Neighbour_Expire_Check
SET Frequency_Range
SETUP Enabled channels

}

/**

* Initiates sockets and interfaces.
* Starts function mcmr_hello_send for transmitting hello messages
* and mcmr_input_poll_sockets for receiving.

* Also starts remove_expired_neighbour to check and remove old neighbour entries.
*

*/
module_start
{
IOCTL clear kernel registry for MCMR interface
IOCTL open socket to bonding module
READ module configure parameters
FOR EACH MCMR interface
SETUP MCMR interface specific data
INIT Listen_Port
INIT Hello_Interval
CONFIGURE Neighbour_Entry_Expire
CONFIGURE Neighbour_Expire_Check
FOR EACH slave interface
SETUP interface data
IOCTL enslave interface
IF fixed interface THEN
IOCTL enable fixed interface
SELECT fixed interface channel randomly
IOCTL set channel
ELSE IF dynamic interface THEN
IOCTL enable dynamic interface
END IF
END FOR
END FOR
TIMER_REGISTER( Hello_Interval, mcmr_hello_send )
TIMER_REGISTER( Interval, mcmr_input_poll_sockets )
FOR EACH MCMR interface
TIMER_REGISTER( Neighbuor_Expire_Check, remove_expired_neighbours )
END FOR
}
/**

* Prepare and broadcast HELLO messages
*

*/
mcmr_hello_send

{
INIT outgoing message

FOR each interface



IF fixed interface THEN
ADD (permanent hardware address, current channel) to message
END IF
END FOR

FOR EACH known neighbour
IF one-hop neighbour THEN
ADD (neighbour MAC address, neighbour channel) to message
END IF
END FOR

SETUP MCMR-header

SETUP UDP-header

CALL NET_WRITE_SOCKET( message, broadcast-addr )
CALL manage_fixed_channel

/**
* Reads socket and checks if the message is a valid HELLO message.
* Collects one- and two-hop neighbour information.

*/
mcmr_input_poll_sockets
{
CALL NET_READ_SOCKET
CHECK for valid ip- and udp-header in message
IF message is a HELLO message && is valid THEN
IF sender of the HELLO has at least one valid channel THEN
IF neighbour already exist in neighbour 1list THEN
UPDATE neighbour last seeen timestamp
ELSE
ADD neighbour to neighbour list, marked as one-hop neighbour
IOCTL add neighbour to kernel modules registry
END IF
END IF
FOR EACH neighbour node included in HELLO message
IF two-hop neighbour has at least one valid channel THEN
ADD neighbour to neighbour list, marked as two-hop neighbour
END IF
END FOR
END IF
}
/**
* Removes old entries in the neighbourtable
*
*/
remove_expired_neighbours
{
GET timestamp
FOR EACH interface
FOR EACH neighbour
IF time difference between timestamp and last received HELLO > max expiry time THEN
REMOVE neighbour from neighbour list
IOCTL remove neighbour from kernel module registry
END IF
END FOR
END FOR
}
/**

* Gets the number of neighbours using the channel the interface is currently tuned to.
* Checks if there is a channel with less usage.
*
*/
manage_fixed_channel

{

SET least_used_channel to current channel

FOR EACH enabled channel
IF neighbours using the channel < neighbours using the least_used_channel THEN



UPDATE least_used_channel
END IF
END FOR

GENERATE random number between © and 10
IF random number < 5 THEN

IOCTL set fixed channel to least_used_channel
END IF

Kernel module

/**
* Initiates the MCMR device.
* This must be done before any interface
* is enslaved.
**/
mcmr_init_bond_interface
{
SET device name
CREATE proc directory
CREATE sysfs
SETUP wireless handlers
SETUP ioctl handlers
INIT neighbour registry as empty
INIT packet queues
START MCMR worker
SETUP xmit function pointer
CALL register_netdevice

}

/**
* Binds an interface to the MCMR device and
* assigns default settings.

**/
mcmr_enslave_device
{
STORE device's current flags
STORE permanent MAC address
IF first device to be enslaved
COPY MAC address from slave to MCMR interface
ELSE
ASSIGN slave the same MAC as the MCMR interface
END IF
SET default MCMR flags
SET device inactive
}
/**

* Set the mode of a previously enslaved interface
* to fixed.

**/

mcmr_enable_fixed_interface

{
SET mode fixed
SET outgoing traffic disabled
SET device as active

}

/**

* Set the mode of a previously enslaved interface
* to dynamic.
**/
mcmr_enable_dynamic_interface
{
SET mode dynamic
SET outgoing traffic enabled

FOR each enabled channel
IF current frequency is supported by hardware THEN
INIT outgoing channel queue
ELSE
RETURN error
END IF



END FOR

SET device as active

}

/**
* Called by the userspace daemon to
* register neighbours received from HELLO
* messages. Input parameters is the
* neighbour's destination MAC and frequency.

**/

mcmr_io_add_unicast

{
IF frequency corresponds to a packet queue THEN

ADD neighbour tuple to registry [MAC, FREQ]

END IF

}

/**

* Called by the userspace daemon to
* remove neighbours.

**/

mcmr_io_remove_unicast

{
IF neighbour tuple exists THEN

REMOVE from registry

END IF

}

/**

Queueing of packages in the packet queues.
Broadcasts and unicasts are handled differently.

for unicasts a neighbour lookup is performed to

*
*
*
* Broadcasts are copied to all packet queues and
*
* find out which channel the packet should be

*

queued in.
**/
mcmr_enqueue_skb
{
IF outgoing packet is broadcast THEN
FOR each channel queue
IF packet not a HELLO message AND no known neighbour on channel
CONTINUE to next channel queue
END IF
IF queued bytes in queue + skb length > maximum queued bytes THEN
CONTINUE to next channel queue
END IF
COPY skb
CALL mcmr_worker_enqueue(skb)
END FOR
ELSE
Lookup neighbour information in the MCMR registry
IF neighbour not found THEN
RETURN NET_XMIT_DROP
END IF
IF queued bytes in queue + skb length > maximum queued bytes THEN
RETURN NET_XMIT_DROP
END IF
CALL mcmr_worker_xmit(skb)
END IF
UPDATE queue counters and statistics
RETURN NET_XMIT_SUCCESS;
}
/**

* Check if it is possible to transmit att packet directly.
* If not, it is queued and later sent by the worker thread.
**/

mcmr_worker_enqueue

{



IF hardware tuned to outgoing channel && all queues are empty THEN
SET source address in eth header to the cards permanent MAC address
CALL send function in the MadWiFi driver directly and handover the skb
ELSE
QUEUE skb in the given queue
WAKE UP worker if it's sleeping
END IF

UPDATE queue counters and statistics

}

/**

* Worker Thread:

* The thread is responsible for servicing

* each packet queue. If a queue has packets
* the hardware is tuned to the corresponding
* frequency and the packet is handed over to
* MadWiFi for transmission.

**/

mcmr_worker_thread

{

WHILE worker running

IF packets queued THEN
CALL SCHEDULE (interruptible timeout)
END IF

FOR each packet queue

IF queue is empty THEN
CONTINUE to the next queue
END IF

IF wireless card not tuned to the corresponding frequency THEN
REPEAT
IF hardware still have frames to send THEN
CALL SCHEDULE (interruptible timeout)
ELSE
CALL the hardware frequency tune function in MadWiFi
END IF
UNTIL hardware tuned to the frequency
END IF

IF avoid hidden terminal is enabled THEN
SLEEP (uninterruptible) for the configured duration
END IF

START timer tracking how long the specific queue has been serviced

WHILE queue contains packets
DEQUEUE SKB from queue
SET source address in eth header to the cards permanent MAC address
CALL send function in the MadWiFi driver and handover the SKB
UPDATE queue information

IF another queue has packets AND current queue serviced for atleast the
maximum specified duration THEN
BREAK to check the next channel
END IF

END WHILE
END FOR
END WHILE
clean up
KILL THREAD



Appendix B

Flow chart - MCMR worker thread
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