
Chalmers Publication Library

Secure and Self-stabilizing Clock Synchronization in Sensor Networks

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

Theoretical Computer Science (ISSN: 0304-3975)

Citation for the published paper:
Hoepman, J. ; Larsson, A. ; Schiller, E. (2010) "Secure and Self-stabilizing Clock
Synchronization in Sensor Networks". Theoretical Computer Science

http://dx.doi.org/10.1016/j.tcs.2010.04.012

Downloaded from: http://publications.lib.chalmers.se/publication/136678

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://dx.doi.org/10.1016/j.tcs.2010.04.012
http://publications.lib.chalmers.se/publication/136678

 Elsevier Editorial System(tm) for Theoretical Computer Science

 Manuscript Draft

Manuscript Number:

Title: Secure and Self-Stabilizing Clock Synchronization in Sensor Networks

Article Type: Special Issue: Self-Stabilization (Dolev

Section/Category: A - Algorithms, automata, complexity and games

Keywords: Secure and Resilient Computer Systems, Sensor-Network Systems,

Clock-synchronization, Self-Stabilization

Corresponding Author: Dr. Elad Michael Schiller,

Corresponding Author's Institution:

First Author: Jaap-Henk Hoepman

Order of Authors: Jaap-Henk Hoepman; Andreas Larsson; Elad Michael Schiller; Philippas

Tsigas

Secure and Self-Stabilizing Clock Synchronization in

Sensor Networks

Jaap-Henk Hoepman, † Andreas Larsson, ‡ Elad M. Schiller, ‡ and
Philippas Tsigas ‡

† TNO ICT, P.O. Box 1416, 9701 BK Groningen, The Netherlands and Radboud
University Nijmegen, P.O. BOX 9010, 6500 GL Nijmegen, The Netherlands.

jaap-henk.hoepman@tno.nl

‡ Department of Computer Science and Engineering, Chalmers University of Technology
and Göteborg University Rännvägen 6B SE-412 96 Göteborg Sweden Phone/Fax:

+46-31-772 1052/+46-31-772 3663. {larandr,elad,tsigas}@chalmers.se

Abstract

In sensor networks, correct clocks have arbitrary starting offsets and nonde-
terministic fluctuating skews. We consider an adversary that aims at tam-
pering with the clock synchronization by intercepting messages, replaying
intercepted messages (after the adversary’s choice of delay), and capturing
nodes (i.e., revealing their secret keys and impersonating them). We present
the first self-stabilizing algorithm for secure clock synchronization in sen-
sor networks that is resilient to such an adversary’s attacks. Our algorithm
tolerates random media noise, guarantees with high probability efficient com-
munication overheads, and facilitates a variety of masking techniques against
pulse-delay attacks in the presence of captured nodes.

Key words:
Secure and Resilient Computer Systems, Sensor-Network Systems,
Clock-synchronization, Self-Stabilization

Preprint submitted to Elsevier January 21, 2009

Manuscript

1. Introduction

Accurate clock synchronization is imperative for many applications in
sensor networks, such as mobile object tracking, detection of duplicates, and
TDMA radio scheduling. Broadly speaking, existing clock synchronization
protocols are too expensive for sensor networks because of the nature of the
hardware and the limited resources that sensor nodes have. The unattended
environment, in which sensor nodes typically reside, necessitates secure solu-
tions and autonomous system design criteria that are self-defensive against
a malicious adversary.

To illustrate an example of clock synchronization importance, consider a
mobile object tracking application that monitors objects that pass through
the network area (see [2]). Nodes detect the passing objects, record the time
of detection, and send the estimated trajectory. Inaccurate clock synchro-
nization would result in an estimated trajectory that could differ significantly
from the actual one.

We propose the first self-stabilizing algorithm for clock synchronization
in sensor networks with security concerns. We consider an adversary that in-
tercepts messages that it later replays. Our algorithm guarantees automatic
recovery after the occurrence of arbitrary failures. Moreover, the algorithm
tolerates message omission failures that might occur, say, due to the algo-
rithm’s message collisions or due to random media noise.

The short propagation delay of messages in close range wireless commu-
nications allows nodes to use broadcast transmissions to approximate pulses
that mark the time of real physical events (i.e., beacon messages). In the
pulse-delay attack, the adversary snoops messages, jams the synchronization
pulses, and replays them at the adversary’s choice of time (see [9, 10, 20]).

We are interested in fine-grained clock synchronization, where there are
no cryptographic counter measures for such pulse-delay attacks. For example,
the nonce techniques strive to verify the freshness of a message by issuing
pseudo-random numbers for ensuring that old communications could not be
reused in replay attacks (see [19]). Unfortunately, the lack of fine-grained
clock synchronization implies that the round-trip time of message exchange
cannot be efficiently estimated. Therefore, it is not clear how the nonce
technique can detect pulse-delay attacks.

The system strives to synchronize its clocks while forever monitoring
the adversary. We assume that the adversary cannot break existing cryp-
tographic primitives for sensor networks by eavesdropping (e.g., [19, 23]).

2

However, we assume that the adversary can capture nodes, reveal their en-
tire state (including private variables), stop their execution, and impersonate
them.

We assume that, at any time, the adversary has a distinct location in
space and a bounded influence radius, uses omnidirectional broadcasts from
that distinct location, and cannot intercept broadcasts for an arbitrarily long
period. (Namely, we consider system settings that are comparable to the
settings of Gilbert et al. [11], that consider the minimal requirements for
message delivery under broadcast interception attacks.) We explain how, by
following these realistic assumptions, we can sift out responses to delayed
beacons.

A secure synchronization protocol should mask attacks by an adversary
that aims to make the protocol give an erroneous output. Unfortunately,
due to the unattended environment and the limited resources, it is unlikely
that all the designer’s assumptions hold forever, e.g., over time the number
of captured nodes becomes sufficiently large for the adversary to tamper with
the clock.

We consider systems that have the capability of monitoring the adversary,
and then stopping it by external intervention. In this case, the nodes start
executing their program from an arbitrary state. From that point on, we
require rapid system recovery. Self-stabilizing algorithms [3, 4] cope with the
occurrence of transient faults in an elegant way. Self-stabilizing systems can
be started in any configuration, that might occur due to the occurrence of
an arbitrary combination of failures. From that arbitrary starting point, the
algorithm must ensure that it accomplishes its task if the system obeys the
designer’s assumptions for a sufficiently long period.

We focus on the fault-tolerance aspects of secure clock synchronization
protocols in sensor networks. Our objective is to design a distributed algo-
rithm for sampling n clocks in the presence of t incorrect nodes (i.e., faulty
or captured). The clock sampling algorithm facilitates clock synchroniza-
tion using a variety of existing masking techniques to overcome pulse-delay
attacks in the presence of captured nodes, e.g., [9, 10] use Byzantine agree-
ment (requires 3t+1 ≤ n), and [20] considers the statistical outliers (requires
2t+ ε ≤ n, where ε ∈ O(1)).

The execution of a clock synchronization protocol can be classified be-
tween two extremes: on-demand and continuous. Nodes that wish to syn-
chronize their clocks can invoke a distributed procedure for clock synchro-
nization on-demand. The procedure terminates as soon as the nodes reach

3

their target precision. An execution of a clock synchronization program is
classified as continuous if no node ever stops invoking the clock synchroniza-
tion procedure.

Our generic design facilitates a trade-off between energy conservation
(i.e., on-demand operation) and fine-grained clock synchronization (i.e., con-
tinuous operation). The trade-off allows budget policies to balance between
application requirements and energy constraints. (More details appear in [16]
Section 1.3.2.)

1.1. Our Contribution

We present the first design for secure and self-stabilizing clock synchro-
nization in sensor networks that is resilient to an adversary that can capture
nodes and launch pulse-delay attacks. Our design tolerates transient failures
that may occur due to temporary violation of the designer’s assumption,
e.g., the adversary captures more than t nodes and then stops. After the
system resumes operation according to designer assumption, the algorithm
secures with high probability clock precision that is O((log n)2) times the
optimum, which requires the communication of at least O(n2) timestamps,
where n is the number of sensor nodes. We assume that (before and after the
system’s recovery) there are message omission failures, say, due to random
media noise or the algorithm’s message collision. The correct node sends
beacons and responds to the other nodes’ beacons. We use a randomized
strategy for beacon scheduling that guarantees collision avoidance with high
probability.

1.2. Document structure

We start by describing the system settings (Section 2) and formally
present the algorithm (Section 3). A proof of the algorithm correctness (Sec-
tion 4) is followed by performance evaluation (Section 5). Then we review
the literature and draw our conclusions (Section 6).

2. System Settings

We model the system as one that consists of a set of communicating
entities, which we call processors (or nodes). We denote the set of processors
by P , where |P | ≤ N ; N is an upper bound on the number of processors and
is known by the processors themselves. In addition, we assume that every
processor pi ∈ P has a unique identifier, i.

4

2.1. Time, Clocks, and Their Notation

We follow settings that are compatible with that of Herman and Zhang
[12]. We consider three notations of time: real time is the usual physical
notion of continuous time, used for definition and analysis only; native time
is obtained from a native clock, implemented by the operating system from
hardware counters; local time builds on native time with an additive adjust-
ment factor in an effort to approximate a cluster-wise clock.

We consider applications that require the clock interface to include the
read operation, which returns a timestamp with T possible states.1 Let Ci

k

and cik denote the value pi ∈ P gets from the kth read of the native or local
clock, respectively. Moreover, let rik denote the real-time instant associated
with that kth read operation.

Clock counters do not increment at ideal rates, because the hardware
oscillators have manufacturing variations and the rates are affected by voltage
and temperature. The clock synchronization algorithm adjusts the local clock
in order to achieve synchronization, but never adjusts the native clock. We
define the native clocks offset δi,j(k, q) = Ci

k−Cj
q , where ∆i,j(k, q) = rik−rjq =

0. We assume that, throughout system execution, the native clock offset is
arbitrary. Moreover, the skew of pi’s clock ρi = lim∆i,i(k,q)→0 δi,i/∆i,i(k, q) is
in [ρmin, ρmax], where ρmin and ρmax are known constants. Thus, the clock
skew is the first derivative of the clock offset value with respect to real time.
Because clock skew is generally not constant, higher order derivatives of the
clock rate are nonzero. We define the relation between the native time of
processor pi and the real time. We assume that ρmin = 1− κ ≤ ρi ≤ 1 + κ =
ρmax, where 1 is the real time unit and κ ≥ 0. The second derivative of the
clock’s offset is called drift. We follow the approach of Herman and Zhang
[12] and allow non-zero drift (as long as ρi ∈ [ρmin, ρmax]).

2.2. Communications

Wireless transmissions are subject to collision and noise. The processors
communicate among themselves using local broadcast primitives, LBcast and
LBrecv , with a transmission radius of at most Rlb. We consider the potential
of any pair of processors to communicate directly, or to interfere with each
other’s communications.

1In footnote 5 on page 14 we show what the minimal size of T is.

5

We associate every processor, pi, with a fixed and unknown location in
space, Li. We denote the potential set of processors that processor pi ∈ P
can directly communicate with (with whose communications, processor pi
can interfere) by Gi ⊆ {pj ∈ P |Rlb ≥ |Li − Lj|} (respectively,

−→
Gi ⊆ {pj ∈

P |2Rlb ≥ |Li−Lj|}). Throughout the paper, when we talk about processors,
say pi and pj, we assume that pj ∈ Gi unless anything else is specifically
mentioned. We note that Gi is not something a processor pi needs to know
in advance, but something it discovers as it receives messages from other

nodes. We assume that n ≥ |
−→
Gi| is a known upper bound on any node’s

degree.

2.2.1. Communication Operations

We model the communication channel, queuei,j, from processor pi to pro-
cessor pj ∈ Gi as a FIFO queuing list of the messages that pi has sent to pj
and pj is about to receive. When pi broadcasts message m, the operation LB-
cast inserts a copy of m to every queuei,j, such that pj ∈ Gi. Every message
m ∈ queuei,j is associated with a particular time at which m arrives at pj.
Once m arrives, pj executes LBrecv . We require that the period between the
time at which m enters the communication channel and the time at which
m leaves it, is at most a constant, d. We assume that d is a known and
efficient upper bound on the communication delay between two neighboring
processors.

2.2.2. Accessing the Communication Media

We assume that processor pi uses the following optimization, which is
part of many existing implementations. Before accessing the communication
media, pi waits for a period d and broadcasts only if there was no message
transmitted during that period. Thus, processor pi does not intercept broad-
casts that it started receiving (and did not finish) before time t− d, where t
is the time of the broadcast by pi.

2.2.3. Security Primitives

The existing literature describes many elements of the secure implemen-
tation of the broadcast primitives LBcast and LBrecv using symmetric key
encryption and message authentication (e.g., [19, 23]). We assume that
neighboring processors store predefined pairwise secret keys. In other words,
pi, pj ∈ P : pj ∈ Gi store keys si,j : si,j = sj,i. The adversary cannot effi-
ciently guess si,j. Confidentiality and integrity are guaranteed by encrypting

6

the messages and adding a message authentication code. We can guarantee
messages’ freshness by adding a message counter (coupled with the beacon’s
timestamp) to the message before applying these cryptographic operations,
and by letting receivers reject old messages, say, from the clock’s previous
incarnation. Note that this requires maintaining, for each sender, the index
of the last properly received message. As explained above, the freshness cri-
terion is not a suitable alternative to fine-grained clock synchronization in
the presence of pulse-delay attacks.

2.3. The Interleaving Model

Every processor, pi, executes a program that is a sequence of (atomic)
steps. For ease of description, we assume the interleaving model where steps
are executed atomically, a single step at any given time. An input event,
which can be either the receipt of a message or a timer going off, triggers
each step of pi. Only steps that start from a timer going off may include (at
most once) an LBcast operation. We note that there could be steps that read
the clock and decide not to broadcast.

Since no self-stabilizing algorithm terminates (see [4]), the program of a
processor consists of a do-forever loop. An iteration is said to be complete if
it starts in the loop’s first line and ends at the last (regardless of whether it
enters conditional branches). A processor executes other parts of the program
(and other programs) and activates the loop upon a time-out. We assume
that every processor triggers the loop’s time-out within every period of u/2,
where u > w + d is the (operation) timeslot, where w < u/2 is the time it
takes to execute a complete iteration of the do-forever loop. Since processors
execute programs other than the clock synchronization, the actual time, t,
in which the timer goes off is hard to predict. Therefore, for the sake of
simplicity, we assume that time t is uniformly distributed.2

The state si of a processor pi consists of the value of all the variables
of the processor (including the set of all incoming communication channels,
{queuej,i|pj ∈ Gi}). The execution of a step in the algorithm can change
the state of a processor. The term system configuration is used for a tuple of
the form (s1, s2, · · · , sn), where each si is the state of processor pi (including
messages in transit for pi). We define an execution E = c[0], a[0], c[1], a[1], . . .

2We note that a simple random scheduler can be used for the case in which time t does
not follow a uniform distribution.

7

as an alternating sequence of system configurations c[x] and steps a[x], such
that each configuration c[x + 1] (except the initial configuration c[0]) is ob-
tained from the preceding configuration c[x] by the execution of the step
a[x]. We often associate the notation of a step with its executing processor
pi using a subscript, e.g., ai.

2.3.1. Tracing Timestamps and Communications

The communication operations that we use, LBcast and LBrecv , have
a time notation that we call timestamp. We assume that all timestamps
have T possible states. We assume the existence of an efficient algorithm for
timestamping the message in transfer (see [23]).

That is, the sent message includes the estimated value of the native clock
at sending time. The timestamp of an LBcast operation is the native time at
which message m is sent. When processor pi executes the LBrecv operation,
an event is triggered with the arguments j, t, and 〈m〉: pj is the sending
processor of message 〈m〉, which pi receives when pi’s native clock is t. We
note that every step can be associated with at most one communication
operation. Therefore it is sufficient to access the native clock counter only
once during or at the end of the operation. We denote by Ci(ai) the native
clock value associated with the communication operation in step ai, which
processor pi takes.

2.3.2. Adversarial Message Omission and Delay

We assume that at any time, the adversary and all processors have distinct
(unknown) locations in space. We assume that there is a single adversary and
that its radio transmitter sends omnidirectional broadcasts (using antennas
that radiate equally in space). Therefore, the adversary cannot arbitrarily
control the distribution in space of the set of recipients for which the beacon’s
broadcast is delayed or omitted. We assume that it chooses a sphere that
divides the set of processors in two: (1) The correct receivers are outside the
sphere and receive all beacons on time, and (2) The late receivers are inside
the sphere and each beacon can be received on time, after a delay that is
greater than a known constant, or not at all.

2.3.3. Concurrent vs. Independent Broadcasts

We say that processor pi ∈ P performs an independent broadcast in a step

ai ∈ E if there is no processor pj ∈
−→
Gi that broadcasts in a step aj ∈ E,

such that either (1) aj is performed after ai and before step ark that receives

8

the message that was sent in ai (where pk ∈ Gi), or (2) ai is performed after
aj and before step ark′ that receives the message that was sent in aj (where
pk′ ∈ Gj). We say that processor pi ∈ P performs a concurrent broadcast in
a step ai if ai is dependent (i.e., “not independent”). Concurrent broadcasts
can cause message collisions.

2.3.4. Fair Communications

The processors reside in the unattended environment and malicious ad-
versarial activity is not the only reason why communication links may fail.
Therefore, we consider message omission due to either random media noise
or message collisions that the algorithm causes.

Gilbert et al. [11] consider the minimal requirements for message de-
livery under broadcast interception attacks and assume that the adversary
intercepts no more than β broadcasts of the algorithm, where β is a known
constant. We note that the result of Gilbert et al. is applicable in a model in
which, in every period, the algorithm is able to broadcast at most α messages
and the adversary can intercept at most β of the algorithm’s messages. Our
system settings are comparable to the assumptions made by Gilbert et al. [11]
on the ratio of β/α. The parameter ξ ≥ 1 denotes the maximal number of
repeated transmissions required for at least one successful message transfer,
when failed transmissions due to collisions are not counted. Successful mes-
sage transfer is when the message is received by all other processors. We
assume that all processors know ξ.

We say that execution E has fair communications, if, whenever processor
pi independently broadcasts ξ successive messages (successive in terms of the
algorithm’s messages sent by pi) in steps aξi ∈ E, every processor receives at
least one of these messages. We note that fair communication does not imply
reliable communication even for ξ = 1, because processors might broadcast
concurrently when there is no agreed broadcast schedule or when the clock
synchrony is not tight.

2.3.5. The Environment

The environment that restricts the adversary’s ability to launch message
interception attacks guarantees fair communication. The environment can
execute the operation omissioni(m) (which is associated with a particular
message, m, sent by processor pi) immediately after LBcast i(m). The envi-
ronment selects a subset of pi’s neighbors (Ri ⊆ Gi) to remove any message

9

mi from their queues queuei,j (such that pj ∈ Ri). We assume that the envi-
ronment arbitrarily selects Ri when invoking omission due to the algorithm’s
message collision. The adversary, under the environment’s supervision, se-
lects messages to remove due to random media noise. The adversary launches
message interception attacks by selecting Ri. The environment supervises so
the adversary does not violate the fair communication requirements.

2.4. System Specifications

2.4.1. Fair Executions

An execution E is fair if the communications are fair and every correct
processor, pi, executes steps in a timely manner (by letting the loop’s timer
go off in the manner that we explain above).

2.4.2. The Task

We define the system’s task by a set of executions called legal executions
(LE) in which the task’s requirements hold. A configuration c is a safe con-
figuration for an algorithm and the task of LE provided that any execution
that starts in c is a legal execution (belongs to LE). An algorithm is self-
stabilizing with relation to the task of LE if every infinite execution of the
algorithm reaches a safe configuration with relation to the algorithm and the
task.

2.4.3. Clock Synchronization Requirements

Roughly speaking, without any attacks or failures, the native clocks fol-
low similar characteristics. Processors can synchronize their local clocks by
revealing these characteristics. The task’s output decodes the coefficient vec-
tor of a finite degree polynomial Pi,j(t) that closely approximates the native
clock value of processor pj at time t, where t is a value of pi’s native clock.
Römer et al. [17] explain how to calculate {Pi,j(t)}j 6=i.

Elson et al. [7, 6] explain how to calculate the global and the local clocks
using {Pi,j(t)}j 6=i. We note that the local ci could be agreed upon in different
manners, one of which is based on clustered networks. In each cluster, every
processor considers a predefined set of processors, call the cluster head, for
which it tries to estimate a common local time using a predefined determin-
istic function.

This paper presents an algorithm for sampling n neighboring clocks. We
measure the algorithm’s performance by looking at a bound on the length

10

of periods in which the random schedule is “nice” (useful). In a nice broad-
casting schedule, each of the n processors sends at least one beacon that all
other n− 1 processors respond to with high probability (see Definition 1 and
Theorem 1 in Section 4 and Section 5).

Let pi, pj, and pk be three correct nodes. Suppose that pj broadcasts
a message that pk receives (after a delay) and pk then sends a response
message that pi receives (possibly i = j). We require that pi detects that pk
has responded to a delayed message in the presence of at most t captured
nodes.

3. Secure and Self-Stabilizing Clock Synchronization

In order to explain better the scope of the algorithm, we present a generic
organization of secure clock synchronization protocols. The objectives of the
clock synchronization protocol are to: (1) periodically broadcast beacons,
(2) respond to beacons, and (3) aggregate beacons with their responses in
records and deliver them to the upper layer. Every node estimates the local
clock after sifting out responses to delayed beacons. Unlike objectives (1)
to (3), the clock estimation task is not a hard realtime task. Therefore,
the algorithm outputs records to the upper layer that synchronizes the local
clock after neutralizing the effect of pulse-delay attacks (see section 6 for
more details). The algorithm focuses on the following two tasks:
• Beacon Scheduling: The nodes sample clock values by broadcasting beacons
and waiting for their response. The task is to guarantee round-trip message
exchange.
• Beacon and Response Aggregation: Once a beacon completes the round-trip
exchange, the nodes deliver to the upper layer the records of a beacon and
its set of responses.

We present a design for an algorithm that samples clocks of neighboring
processors by continuously sending beacons and responses. Without syn-
chronized clocks, the nodes cannot efficiently follow a predefined schedule.
Moreover, assuring reliable communication becomes hard in the presence of
random media noise and message collision. The celebrated Aloha protocol
[1] (which does not consider nondeterministic fluctuating skews) inspires us
to take a randomized strategy for scheduling broadcasts and overcome the
above difficulties by showing that with high probability the neighboring pro-
cessors are able to exchange beacons and responses within a short period.
Our scheduling strategy is simple; the processors choose a random time to

11

broadcast from a predefined period D. We use a redundant number of broad-
casting timeslots in order to overcome the clocks’ asynchrony. Moreover, we
use a parameter, `, used to trade off between the minimal size of D and the
probability of having a collision-free schedule.

3.1. Beacon and Response Aggregation

The algorithm allows the use of clock synchronization techniques such
as round-trip synchronization [9, 10] and reference broadcasting [6]. For
example, in the round trip synchronization technique, the sender pj sends
a timestamped message 〈t1〉 to receivers, pk, which receive the message at
time t2. The receiver pk responds with the message 〈t1, t2, t3〉, which pk sends
at time t3 and pj receives at time t4. Thus, the output records are in the
form of 〈j, t1, {〈k, 〈t2, t3, t4〉〉}〉, where {〈k, 〈t2, t3, t4〉〉} is the set of all received
responses sent by nodes pk.

We piggyback beacon and response messages. For the sake of presen-
tation simplicity, let us start by assuming that all beacon schedules are in
a (deterministic) Round Robin fashion. Given a particular node pi and a
particular beacon that pi sends at time tis, we define tis’s round as the set
of responses, 〈tjs, tjr〉, that pi sends to node pj for pj’s previous beacon, tjs,
where tjr is the time in which pi received pi’s beacon tjs. Node pi piggybacks
its beacon with the responses to nodes, pj, and the beacon message, 〈vi〉, is
of the form: 〈〈t1s, t1r〉, . . . 〈ti−1

s , ti−1
r 〉, tis, 〈ti+1

s , ti+1
r 〉, . . . 〈tns , tnr 〉〉.

Now, suppose that the schedules are not done in a Round Robin fashion.
We denote pj’s sequence of up to BLog most recently sent beacons with
[tjs(k)]0≤k<BLog, among which tjs(k) is the k-th oldest and BLog is a predefined
constant.3 We assume that, in every schedule, pi receives at least one beacon
from pj before broadcasting BLog beacons. Therefore, pi’s beacon message,
〈vi〉, can include a response to pj’s most recently received beacon, tjs(k),
where 0 ≤ k < BLog.

Since not every round includes a response to the last beacon that pi
sends, then pi stores its last BLog beacon messages in a FIFO queue,
qi[k] = [tjs]0≤k<BLog. Moreover, every beacon message includes all re-
sponses to the BLog most recently received beacons from all nodes. Let
qj = q[k]0≤k<BLog be pi’s FIFO queue of the last BLog records of the form

3We note that BLog depends on the safety parameter, `, for assuring that all nodes
successfully broadcast and other parameters such as the number of processors, n, and the
bound on clock skews ρmin and ρmax (see Section 2).

12

〈tjs(k), tjr(k)〉, among which tjs(k) is pi’s k-th oldest beacon from pj, t
j
r(k) is

the time at which it was received and i 6= j. The new form of the beacon
message is: 〈q1, . . . qi−1, qi, qi+1, . . . qn〉. In the round trip synchronization,
the nodes take the role of a synchronizer that sends the beacon and waits
for responses from the other nodes. The program of node pi considers both
cases in which pi is, and is not, respectively, the synchronizer.

3.2. The Algorithm’s Pseudo-code

The pseudo-code, in Figure 2, includes two procedures: (1) a do-forever
loop that schedules and broadcasts beacon messages (lines 58 to 70) and (2)
an upon message arrival procedure (lines 72 to 76).

3.2.1. The Do-Forever Loop

The do-forever loop periodically tests whether the “timer” has expired (in
lines 59 to 64).4 In case the beacon’s next schedule is “too far in the past” or
“too far in the future”, then processor pi “forces” the “timer” to expire (line
61). The algorithm tests that all the stored beacon messages are ordered
correctly and refer to the last BLog beacons (line 62). In the case where
the recorded information about beacon messages is incorrect, the algorithm
flushes the queues (line 63).

When the timeslot arrives the processor outputs a synchronizer case
record for the beacon that processor pi has sent BLog rounds ago (line 66).
It contains for each of the other processors, pj, the receive time of that bea-
con. Moreover, it contains for processor pj, the send and receive times for
a message back from pj to pi. These data can be used for the round-trip
synchronization and delay detection in the upper layer. Then, pi enqueues
the timestamp of the beacon it is about to send during this schedule (line
67). The next schedule for processor pi is set (lines 68 and 69) just before it
broadcasts the beacon message (line 70).

3.2.2. The Message Arrival

When a beacon message arrives (line 72), processor pi outputs a record of
the non-synchronizer case (line 74). These data can be used for the reference

4Recall that by our assumptions on the system settings (Section 2), the do-forever
loop’s timer will go off within any period of u/2. Moreover, since the actual time cannot
be predicted, we assume that the actual schedule has a uniform distribution over the
period u. (A straightforward random scheduler can assist, if needed, to enforce the last
assumption.)

13

broadcast in the upper layer. Once pi receives a beacon from processor pj,
pi scans m[] for responses that refer to the oldest beacon from pj that pi
have received and messages back, from receiving nodes pk, to pj. Now that
the information connected to the oldest beacon from pj has been output,
processor pi can store the arrival time of newly received message (line 75)
and the message itself (line 76).

4. Correctness

In this section we demonstrate that the task of random broadcast schedul-
ing is achieved by the algorithm that is presented in Figure 2. Namely, with
high probability, the scheduler allows the exchange of beacons and responses
within a short time. The objectives of the task of random broadcast schedul-
ing are defined in Definition 1 and consider broadcasting rounds.

Definition 1 (Nice executions). Let us consider the executions of the al-
gorithm presented in Figure 2. Let Γ(n) be the set of all execution prefixes,
EΓ(n), such that within the first R broadcasting rounds of EΓ(n), each of the
n processors send at least one beacon that all other n− 1 processors respond
to. We say that execution E is nice if, with high probability, E has a prefix
in Γ(n).

The proof of Theorem 1 (Section 4.3, page 26) demonstrates that when
considering R = 2R, the algorithm reaches nice execution with proba-
bility of at least 1 − 2−`+1, where ` is a predefined constant and R =
dξ `+log2((dρmax/ρmine+1)n)

− log2 (1−1/e)
e is the expected time it takes all processors to each

broadcast at least one message that is received by all other processors.5

Once the system reaches a nice execution and the exchange of beacons
and responses occurs, the following holds. For every processor pi ∈ P , there
is a set, Si, of beacon records that are in the queues of mi and the records
that were delivered to the upper layer. The set Si includes a subset, S ′i ⊆
Si, of records for beacons that were sent during the last R (Definition 1)
broadcasting rounds. In S ′i, it holds that every processor pj ∈ Gi − {i} has
a beacon record, recj, such that every processor pk ∈ Gi ∩ Gj − {j} has a

5 To distinguish between timestamps that should be regarded as being in the past and
timestamps that should be regarded as being in the future, we require that T > 4R.
In other words, we want to be able to consider at least 2 round-trips in the past and 2
round-trips in the future.

14

Constants:
2 i = id of executing processor

n = total number of processors
4 w = compensation time between lines 59 and 70

d = upper bound on message propagation delay
6 u = size of a timeslot in time units (u > d + w)

` = a tuning parameter to the trade off between the

8 BLog = 2dξ `+log2((dρmax/ρmine+1)n)
− log2 (1−1/e)

e, backlog size

D = 3 n (dρmax/ρmine+ 1), the broadcast timeslots
10 T = number of possible states of a timestamp

ρmin = lower bound on clock skew
12 ρmax = upper bound on clock skew

14 Variables:
m[n] = all received messages and timestamp

16 each entry is an array v[n]
each entry is a queue q[BLog]

18 each entry is a pair 〈s, r〉

20 native clock : immutable storage of the native clock
cslot : [0, D-1] = current timeslot in use

22 next : [0, T -1] = schedule of next broadcast
cT = last do-forever loop′s timestamp

External functions:
26 output(R) : delivers record R to the upper layer

choose(S) : uniform selection of an item from the set S
28 enqueue(Q) : adds an element to the end of the queue Q

dequeue(Q) : removes the front element of the queue Q
30 size(Q) : size of the queue Q

30 size(Q) : size of the queue Q
first(Q) : least recently enqueued element in Q, number 0

32 last(Q) : most recently enqueued element in Q
full(Q) : whether queue Q is full

34 flush(Q) : empties the queue Q
get s(Q) : list elements of field s in Q

36 get r(Q) : list elements of field r in Q

38 Macros and inlines:
border(t) : (D-cslot)u + t mod T

40 schedule(t) : cslot·u + t mod T
leq(x, y) : (∃ b : 0 ≤ b ≤ 2 BLog D u ∧ y mod T = x + b mod T)

42 enq(q, m) : {while full(q) do dequeue(q); enqueue(m) }

44 checklist(q,t) : (∗ Checks that all elements of a list are chronologically ordered and not in the future ∗)
size(q) = 0 ∨ (leq(first(q),t) ∧ leq(last(q),t) ∧{∀ b1 < b2, {b1,b2} ⊆ [1,size(q)] : leq(q[b1],q[b2])}

46 check s(t) : checklist(get s(m[i].v[i].q),t) (∗ Coherency test for the send times of a processor′s own beacons ∗)
check r(t) : ∧{∀ j ∈ P-{i} : checklist(get r(m[i].v[j].q),t)} (∗ Coherency test for the received beacon times ∗)

48

(∗ Get response-record for pk , for pj as the synchronizer ∗)
50 ts(s, j, k) : {if (∃ bj1, bj2, bk1 , bk2 :

s = m[j].v[j].q[bj1].s = m[k].v[j].q[bk1].s ∧
52 m[k].v[k].q[bk2].s = m[j].v[k].q[bj2].s ∧

leq(m[j].v[j].q[bj1].s, m[j].v[k].q[bj2].r) ∧
54 leq(m[k].v[j].q[bk1].r, m[k].v[k].q[bk2].s)) then

return 〈m[k].v[j].q[bk1].r, m[k].v[k].q[bk2].s, m[j].v[k].q[bj2].r〉
56 else return ⊥}

Figure 1: Constants, variables, external functions, and macros for the secure and
self-stabilizing native clock sampling algorithm in Figure 2.

beacon record, reck, that includes a response to recj. In other words, R is a
bound on the length of periods for which processor pi needs to store beacon
records. Moreover, with high probability, within R broadcasting rounds, pi
gathers n beacons and their responses from all other n − 1 processors. For
this reason, we set BLog to be R.

15

58 Do forever, every u/2
let cT = read(native clock) + w

60 if ¬ (leq(next-2Du, cT) ∧ leq(cT, next+u)) then
next ← cT

62 if ¬ (check s(cT) ∧ check r(cT)) then
∀ j,k ∈ P : flush(m[j].v[k].q)

64 if leq(next, cT) ∧ leq(cT, next + u) then
let s = first(m[i].v[i].q).s

66 output 〈i, s, { 〈j, ts(s, i, j)〉 : j ∈ Gi -{i}} 〉
enq(m[i].v[i].q, 〈cT, ⊥〉)

68 (next, cslot) ← (border(next), choose([0, D-1]))
next ← schedule(next)

70 LBcast(m[i])

72 Upon LBrecv(j, r, v) (∗ i 6= j ∗)
let s = first(m[i].v[j].q).s

74 output 〈j, s, {〈k, ts(s, j, k)〉 : k ∈ Gi -{j}}〉
enq(m[i].v[j].q, 〈last(v[j].q).s, r〉)

76 m[j] ← v

Figure 2: Secure and self-stabilizing native clock sampling algorithm (code for pi ∈ P).

4.1. Scenarios in which balls are thrown into bins

We simplify the presentation of the analysis by depicting different sys-
tem settings in which the message transmissions are described by a set of
scenarios in which balls are thrown into bins. The sending of a message by
processor pi corresponds to a player p̂i throwing a ball. Time is discretized
into timeslots that are long enough for a message to be sent and received
within. The timeslots are represented by an unbounded sequence of bins,
[bk]k∈N. Transmitting a message during a timeslot corresponds to throwing
a ball towards and aiming a ball at the corresponding bin.

Before analyzing the general system settings, we demonstrate simpler
settings to acquaint the reader with the problem. Concretely, we look at the
settings in which the clocks of the processors are perfectly synchronized and
the communication channels have no noise. We ask the following question:
How many bins are needed for every player to get at least one ball, that
is not lost due to collisions, in a bin (Lemma 1 and 2)? We then relax
the assumptions on the system settings by considering different clock offsets
(Claim 2) and by considering different clock skews (Claim 3). We continue
by considering noisy communication channels (Claim 4) and conclude the
analysis by considering general system settings (Corollary 1).

4.1.1. Collisions

A message collision corresponds to two or more balls aimed at the same
bin. We take the pessimistic assumption that when balls are aimed at neigh-
boring bins, they collide as well. This is to take non-discrete time (and later
on, different clock offsets) into account. Broadcasts that “cross the borders”

16

between timeslots are assumed to collide with messages that are broadcasted
in either bordering timeslot. Therefore, in the scenario in which balls are
thrown into bins, two or more balls aimed at the same bin or bordering bins
will bounce out, i.e., not end up in the bin.

Definition 2. When aiming balls at bins in a sequence of bins, a successful
ball is a ball that is aimed at a bin b. Moreover, it is required that no other
ball is aimed at b or a neighboring bin of b. A neighboring bin of b is the bin
directly before or directly after b. An unsuccessful ball is a ball that is not
successful.

4.1.2. Synchronous timeslots and communication channels that have no noise

We prove a claim that is needed for the proof of Lemma 1.

Claim 1. For all n ≥ 2 it holds that(
1− 1

n

)n−1

>
1

e
. (1)

Proof: It is well known that(
1 +

1

n

)n
< e (2)

for any n ≥ 1. From this follow that(
1− 1

n

)n−1

=

(
n− 1

n

)n−1

=

(
n

n− 1

)−(n−1)

=

(
1 +

1

n− 1

)−(n−1)

=
1(

1 + 1
n−1

)n−1 >
1

e
(3)

for n ≥ 2.

Lemmas 1 and 2 consider an unbounded sequence of bins that are di-
vided into “circular” subsequences that we call partitions. We simplify the
presentation of the analysis by assuming that the partitions are independent.
Namely, a ball that is aimed at the last bin of one partition normally counts
as a collision with a ball in the first bin of the next partition. With this
assumption, a ball aimed at the last bin and a ball aimed at the first bin in

17

the same partition count as a collision instead. These assumptions do not
cause a loss of generality, because the probability for balls to collide does
not change. It does not change because the probability for having a certain
number of balls in a bin is symmetric for all bins.

We continue by proving properties of scenarios in which balls are thrown
into bins. Lemma 1 states the probability of a single ball being unsuccessful.

Lemma 1. Let n balls be, independently and uniformly at random, aimed
at partitions of 3n bins. For a specific ball, the probability that it is not
successful is smaller than 1− 1/e.

Proof: Let b be the bin that the specific ball is aimed at. For the ball to
be successful, there are 3 out of the 3n bins that no other ball should be
aimed at, b and the two neighboring bins of b. The probability that no other
(specific) ball is aimed at any of these three bins is

1− 3

3n
. (4)

The different balls are aimed independently, so the probability that none of
the other n− 1 balls are aimed at bin b or a neighboring bin of b is(

1− 3

3n

)n−1

=

(
1− 1

n

)n−1

. (5)

With the help of Claim 1, the probability that at least one other ball is aimed
at b or a neighboring bin of b is

1−
(

1− 1

n

)n−1

< 1− 1

e
. (6)

Lemma 2 states the probability of any player not having any successful
balls after a number of throws.

Lemma 2. Consider R independent partitions of D = 3n bins. For each
partition, let n players aim one ball each, uniformly and at random, at one
of the bins in the partition. Let R ≥ (`+log2 n)/(− log2 p), where p = 1−1/e
is an upper bound on the probability of a specific ball to be unsuccessful in a
partition. The probability that any player gets no successful ball is smaller
than 2−`.

18

Proof: By Lemma 1 the probability that a specific ball is unsuccessful is
upper bounded by p = 1−1/e. The probability that a player does not get any
successful ball in any of R independent partitions is therefore upper bounded
by pR.

Let Xi, i ∈ [1, n] be Bernoulli random variables with the probability of a
ball to be successful that is upper bounded by pR:

Xi =

{
1 if player i gets no successful ball in R partitions

0 if player i gets at least one successful ball in R partitions
(7)

Let X be the number of players that gets no successful ball in R partitions:

X =
n∑
i=1

Xi (8)

The different Xi are a finite collection of discrete random variables with
finite expectations. Therefore we can use the Theorem of Linearity of Ex-
pectations [15]:

E[X] = E

[
n∑
i=1

Xi

]
=

n∑
i=1

E[Xi] ≤
n∑
i=1

pR = npR (9)

The random variables assumes only non-negative values. Markov’s Inequal-
ity [15], Pr(X ≥ a) ≤ E[X]/a, therefore gives us:

Pr(X 6= 0) = Pr(X ≥ 1) ≤ E[X]

1
≤ npR (10)

For npR ≤ 2−` we get that Pr(X 6= 0) ≤ 2−`, which gives us

npR ≤ 2−` ⇒
log2(npR) ≤ −`⇒

log2(n) +R log2(p) ≤ −`⇒

R ≥ −`− log2 n

log2 p
=
`+ log2 n

− log2 p
. (11)

We now turn to relaxing the simplifying assumptions of synchronized
clocks and communication channels with no noise. We start by considering
clock offsets and skews. We then consider noisy communication channels.

19

4.1.3. Clock offsets

The clocks of the processors have different offsets and therefore the times-
lot boundaries are not aligned. We consider a scenario that is comparable to
system settings in which clocks have offsets. In the scenario of balls that are
thrown into bins, offsets are depicted as throwing a ball that hits the bound-
ary between bins and perhaps hitting the boundary between partitions.

Claim 2 considers players that have individual sequences of bins. Each
sequence has its own alignment of the bin boundaries. Namely, a bin of one
player may “overlap” with more than one bin of another player. Thus, the
different bin sequences that have different alignments correspond to system
settings in which clocks have different offsets.

The proof of Claim 2 describes a variation of the scenario in which balls
are thrown into bins. In the new variation, balls aimed at overlapping bins
will bounce out. For example, consider two balls aimed at bin bki and bk

′
j

respectively. If bins bki and bk
′
j overlap the balls will cause each other to

bounce out.

Claim 2. Consider the scenario in which balls might hit the bin boundaries
and take R and D as defined in Lemma 2. Then, we have that the probability
that any player gets no successful ball is smaller than 2−`.

Proof: The proof is demonstrated by the following two arguments.
Hitting the boundaries between bins From the point of view of
processor pi, a timeslot might be the time interval [t, t + u), whereas for
processor pj the timeslot interval might be different and partly belong to two
different timeslots of pi. When considering the scenario in which balls are
thrown into bins, we note that a bin of one player might be seen as parts of
two bins of another player.

In other words, every player, p̂i, has its own view, [bik]k∈N, of the bin
sequence [bk]k∈N. The sequence [bk]k∈N corresponds to an ideal discretization
of the real time into timeslots, whereas the sequence [bik]k∈N, corresponds to
a discretization of processor pi’s native time into timeslots. We say that the
bins [bik] and [bjk′] overlap when the corresponding real time periods of [bik]
and [bjk′] overlap.

Lemma 2 regards balls aimed at neighboring bins as collisions. We recall
the requirements that are made for ball collisions (see Section 4.1.1). These
requirements say that balls aimed at neighboring bins in [bk]k∈N, will bounce
out. The proof is completed by relaxing the requirements that are made

20

for ball collisions in [bk]k∈N. Let us consider the scenario in which players
p̂i and p̂j aim their balls at bins bik and bjk′ respectively, such that both bik
and bjk′ overlap. The bin bik can either overlap with the bins bjk′−1 and bjk′ or

(exclusively) overlap with the bins bjk′ and bjk′+1. Balls aimed at any of the

bins possibly overlapping with bik (namely bjk′−1, bjk′ and bjk′+1) are regarded
as colliding with the ball of player p̂j. The same argument applies to bin
bjk′ overlapping with bins bik−1, bik and bik+1. In other words, the scenario of
Lemma 2, without offset and neighboring bins leading to collision, is a su-
perset in terms of bin overlap to the scenario in which offsets are introduced.
Hitting the boundaries between partitions Even if timeslot bound-
aries are synchronized, processor pi might regard the time interval [t, t+Du)
as a partition, whereas processor pj might regard the interval [t, t + Du) as
partly belonging to two different partitions. When considering the scenario
in which balls are thrown into bins, it means that the players’ view on which
bins are part of a partition can differ.

For each bin, the probability that a specific player chooses to aim a ball
at that bin is 1/D, where D is the number of bins in the partition. Therefore
the probability for a ball to be successful does not depend on how other
players partition the bins.

4.1.4. Clock skews

The clocks of the processors have different skews. Therefore, we consider
a scenario that is comparable to system settings in which clocks have skews.

In Claim 3, we consider players that have individual sequences of bins.
Each sequence has its own bin size. The size of player p̂i’s bins is inversely
proportional to processor pi’s clock skew, say 1/ρi. We assume that the balls
that are thrown by any player can fit into the bins of any other player. (Say
the ball size is less than 1/ρmax.) Thus, the different bin sizes correspond to
system settings in which clocks have different skews.

Let us consider the number of balls that player p̂i may aim at bins that
overlap with bins in a partition of another player. Suppose that player p̂i has
bins of size 1/ρmax and that player p̂j has bins of size 1/ρmin. Then player p̂i
may aim up to ρ̂ = dρmax/ρmine+ 1 balls in one partition of player p̂j.

Claim 3. Consider the scenario with clock skews and take R and D as de-
fined in Lemma 2. Let p = 1 − 1/e be an upper bound on the probability
of a specific ball to be unsuccessful in a partition. By taking Rskew = R ≥

21

(` + log2 ρ̂n))/(− log2 p) ∈ O(` + log(n)), we have that the probability that
any player gets no successful ball is smaller than 2−`.

Proof: By taking the pessimistic assumption that all players see the others,
as well as themselves, as throwing ρ̂ balls each in every partition we have an
upper bound on how many balls can interfere with each other in a partition.
Thus by taking partitions of D = 3ρ̂n bins instead of the 3n bins of Lemma 2,
and substituting n for ρ̂n in the R of Lemma 2,

R ≥ `+ log2 ρ̂n)

− log2 p
∈ O(`+ log(n)), (12)

the guarantees of Lemma 2 hold.

4.1.5. Communication channels with noise

In our system settings, message loss occurs due to noise and not only
due to the algorithm’s message collisions. Recall that ξ defines the number
of broadcasts required in order to guarantee at least one broadcast that is
not lost due to noise in the channel (see Section 2.3.4). In the scenario in
which balls are thrown into bins, this correspondingly means that at most
ξ− 1 balls are lost to the player’s trembling hand for any of its ξ consecutive
throws.

Claim 4. Consider the communication channels with noise and take R and
D as defined in Lemma 2. By taking Rnoise ≥ ξR, we have that the probability
that any player gets no successful ball is smaller than 2−`.

Proof: By the system settings (Section 2), the noise in the communication
channels is independent of collisions. We take the pessimistic approach and
assume that when a ball is lost to noise, it can still cause other balls to be
unsuccessful (just as if it was not lost to noise).

In order to fulfill the requirements of Lemma 2, we can take ξR partitions
instead of R partitions. This will guarantee that each player gets at least
R balls that are not lost due to noise and will not change the asymptotic
number of bins.

4.1.6. General system settings

The results gained from studying the scenario in which balls are thrown
into bins are concluded by Corollary 1, which is demonstrated by Lemma 2
and claims 2, 3, and 4.

22

Corollary 1. Suppose that every processor broadcast once in every partition
of D timeslots. The probability that all processors successfully broadcast at
least one beacon within R partitions is at least 1− 2−`, when

D = 3ρ̂n ∈ O(n) (13)

R = dξ `+ log2(ρ̂n)

− log2 p
e ∈ O(`+ log n) (14)

ρ̂ = dρmax/ρmine+ 1. (15)

Corollary 1 shows that within a logarithmic number of broadcasting
rounds, all processors can successfully broadcast.

4.2. The task of random broadcast scheduling

So far, we have analyzed a general scenario in which balls are thrown into
bins. We now turn to show that the scenario indeed depicts the implemen-
tation of the algorithm (that is presented in Figure 2).

Hereafter, when we talk about the execution of, or complete iteration of,
lines 59 to 70, we do not imply that the branch in lines 65 to 70 are executed
in that step (although that can be the case).

Definition 3 (Safe configurations). Let E be a fair execution of the al-
gorithm presented in Figure 2 and c ∈ E a configuration in which αi =
(leq(nexti − 2Du, cTi) ∧ leq(cTi, nexti) holds for every processor pi. We say
that c is safe with respect to LE.

We show that cTi follows the native clock. Namely, the value of cTi − w
is in [Ci − u,Ci].

Lemma 3. Let E be a fair execution of the algorithm presented in Figure 2,
and c a configuration that is at least u after the starting configuration. Then,
it holds that (leq(Ci − u, cTi − w) ∧ leq(cTi − w,Ci)) in c.

Proof: Since E is fair, the do-forever loop’s timer goes off in every period of
u/2. Hence, within a period of u, processor pi performs a complete iteration
of the do-forever loop in an atomic step ai.

Suppose that c immediately follows ai. According to line 59, the value of
cTi − w is the value of Ci in c. Let t = cTi − w = Ci. It is easy to see that
leq(t− u, t) ∧ leq(t, t) in c.

23

Let ari be an atomic step that includes the execution of lines 73 to 76,
follows c, and immediately precedes c′ ∈ E. Let t′ = Ci in c′. Then, within
a period of at most u/2, processor pi executes step a′i ∈ E, which includes a
complete iteration of the do-forever loop. Since the period between ai and
a′i is at most u/2, we have that t′ − t < u/2. Therefore leq(Ci − u, cTi − w)
holds in c′ as leq(Ci, cTi−w) holds in c. It also follows that leq(cTi−w,Ci))
holds in c′ as Ci = cTi − w in c.

We show that when a processor pi executes lines 65 to 70 of the algorithm
presented in Figure 2 it reaches a configuration in which αi holds. This claim
is used in Lemma 4 and Lemma 5.

Claim 5. Let E be a fair execution of the algorithm presented in Figure 2.
Moreover, let ai ∈ E a step that includes a complete iteration of lines 59 to 70
and c the configuration that immediately follows ai. Suppose that processor
pi executes lines 65 to 70 in ai, then αi holds in c.

Proof: Among the lines 65 to 70, only lines 68 to 69 can change the values
of αi. Let t1 = nexti immediately after line 64 and let t2 = nexti immediately
after the execution of line 69. We denote by A = t2 − t1 the value that lines
68 to 69 add to nexti, i.e., A = (y +D− x)u, where 0 ≤ x, y ≤ D− 1. Note
that x is the value of csloti before line 68 and y is the value of csloti after
line 68. Therefore, A ∈ [u, (2D − 1)u].

By the claim’s assertion, we have that leq(cTi, t1 +u) holds before line 68.
Since u ≤ A, it holds that leq(cTi, t1 + A) and therefore leq(cTi, t2) holds.

Moreover, by the claim assertion we have that leq(t1, cTi) holds. Since
A ≤ (2D − 1)u, it holds that A − 2Du ≤ −u. This implies that leq(t1 −
2Du+ A, cTi). Therefore leq(t2 − 2Du, cTi) holds.

We show that starting from an arbitrary configuration, any fair execution
researches a safe configuration.

Lemma 4. Let E be a fair execution of the algorithm presented in Figure 2.
Then, within a period of u, a safe configuration is reached.

Proof: Let pi be a processor for which αi does not hold in the starting
configuration of E. We show that within the first complete iteration of lines
59 to 70, the predicate αi holds. According to Lemma 3, all processors, pi,
complete at least one iteration of lines 59 to 70, within a period of u.

24

Let ai ∈ E be the first step in which processor pi completes the first
iteration. If αi does not hold in the configuration that immediately precedes
ai, then either (1) the predicate in line 60 holds and processor pi executes
line 61 or (2) the predicate of line 64 holds at line 60.

For case (2), immediately after the execution of line 61, the predicate
¬(leq(nexti − 2Du, cTi) ∧ leq(cTi, nexti)) does not hold, because ¬(leq(t −
2Du, t)∧ leq(t, t)) is false for any t. Moreover, the predicate in line 64 holds,
since leq(t, t+ u) holds for any t.

In other words, the predicate in line 64 holds for both cases (1) and (2).
Therefore, pi executes lines 65 to 70 in ai. By Claim 5, αi holds for the
configuration that immediately follows ai. By repeating this argument for
all processors pi we show that a safe configuration is reached within a period
of u.

We demonstrate the closure property of safe configurations.

Lemma 5. Let E be a fair execution of the algorithm presented in Figure 2
that starts in a safe configuration c, i.e. a configuration in which αi holds
for every processor pi (Definition 3). Then, every configuration in E is safe
with respect to LE.

Proof: Let ti be the value of pi’s native clock in configuration c and ai ∈ E
is the first step of processor pi.

We show that αi holds in configuration c′ that immediately follows ai.
Lines 73 to 76 do not change the value of αi. By Claim 5, if ai executes lines
65 to 70 within one complete iteration, then αi holds in c′. Therefore, we
look at step ai that includes the execution of lines 59 to 64, but does not
include the execution of lines 65 to 70.

Let t1 = cTi in c and t2 = cTi in c′. According to Lemma 3 and by
the fairness of E, we have that t2 − ti mod T < u. Furthermore, let A =
nexti − Du and B = nexti in c. The values of nexti − Du and B = nexti
do not change in c′. Since αi is true in c, it holds that leq(A, t1)∧ leq(t1, B).
We claim that leq(A, t2) ∧ leq(t2, B). Since leq(t1, B) in c, we have that
leq(t2, B+ t2− t1) while pi executes line 64 in ai. As ai does not execute lines
65 to 70 the predicate in line 64 does not hold in ai. As leq(t1, B) and t2− t1
mod T < u the predicate in line 64 does not hold iff leq(t2, B). Furthermore
we have that leq(A, t1), leq(t1, B), and leq(t2, B). As 0 < t2 − t1 mod T < u
we have that leq(A, t2). Thus, c′ is safe as αi holds in c′.

25

4.3. Nice executions

We claim that the algorithm (that is presented in Figure 2) implements
nice executions. We show that every execution (for which the safe configu-
ration requirements hold) is a nice execution.

Theorem 1. Let E be a legal execution of the algorithm presented in Fig-
ure 2. Then, E is nice.

Proof: Recall that in a legal execution all configurations are safe (Sec-
tion 2). Let ai be a step in which processor pi broadcasts, a′i be the first step
after ai in which processor pi broadcasts, and a′′i be the first step after a′i in
which processor pi broadcasts.

Let r, r′, and r′′ be the values of nexti between lines 68 and 69 in ai, a
′
i,

and a′′i respectively. The only changes done to nexti from line 69 in ai to
lines 68 and 69 in a′i are those two lines, which taken together changes nexti
to nexti +Du mod T .

The period of length Du that begins at r and ends at r′ mod T is divided
in D timeslots of length u. A timeslot begins at time r + xu mod T and
ends at time r + (x + 1)u mod T for a unique integer x ∈ [0, D − 1]. The
timeslot in which a′i broadcasts is cslot in c. In other words, processor pi
broadcasts within a timeframe of r to r′, which is of length Du. By the same
arguments, we can show that processor pi broadcasts within a timeframe of
r′ to r′′, which is of length Du. These arguments can be used to show that
after ai, processor pi broadcasts once per period of length Du.

Corollary 1 considers a set of n processors that broadcast once in every
period of D timeslots. The timeslots are of length u, a period that each
processor estimates using its native clock. Let us consider R timeframes of
length Du. By Corollary 1, the probability that all processors successfully
broadcast at least one beacon is at least 1 − 2−`. Now, let us consider 2R
timeframes of length Du. By Corollary 1, the probability that each of the n
processors sends at least one beacon that all other n− 1 processors respond
to is at least (1− 2−`)2 = 1− 2−`+1 + 22` > 1− 2−`+1. By Definition 1, E is
nice.

5. Performances of the algorithm

Several elements determine the precision of the clock synchronization.
The clock sampling technique is one of them. Elson et al. [6] show that

26

the reference broadcast technique can be more precise than the round-trip
synchronization technique. We allow the use of both techniques. Another
important precision factor is the degree of the polynomial, Pi,j(t), that ap-
proximates the native clock values of the neighboring processors pi and pj (see
Römer et al. [17]). We consider any finite degree of the polynomial. More-
over, the clock synchronization precision improves as neighboring processors
are able to sample their clocks more frequently. However, due to the limited
energy reserves in sensor networks, careful considerations are required.

Let us consider the continuous operation mode. The clock precision im-
proves as the frequency of the beacons (and responses) that the correct pro-
cessors are able send increases. Thus, the precision of Pi,j(t) depends on
round(n), where round(n) is the time it takes n processors to send n bea-
cons and then to let n processors respond to all n beacons.

Let us consider ideal system settings in which broadcasts never collide.
Sending n beacons and then letting all n processors respond to each of these
beacons requires the communication of at least O(n2) timestamps. By Corol-
lary 1 and Theorem 1, we get that 2R timeframes of length Du are needed.
We also get that R ∈ O(log n) and D ∈ O(n). The timeslot size u is
needed to fit a message with BLog = 2R responses to n processors. Hence,
u ∈ O(n log n). Therefore round(n) ∈ O(n2(log n)2). Moreover, with prob-
ability that is at least 1 − 2−`+1, the algorithm can secure a clock precision
that is O((log n)2) times the optimum. We note that the required storage is
in O(n2 log n log T).

6. Discussion

Sensor networks are particularly vulnerable to interference, whether as a
result of hardware malfunction, environmental anomalies, or malicious inter-
vention. When dealing with message collisions, message delays and noise, it
is hard to separate malicious from non-malicious causes. For instance, it is
hard to distinguish between a pulse delay attack from a combination of fail-
ures, e.g., a node that suffers from a hidden terminal failure, but receives an
echo of a beacon. Recent studies consider more and more implementations
that take security, failures and interference into account when protecting
sensor networks (e.g., [11, 5]). We note that many of the existing implemen-
tations assume the existence of a fined grained synchronized clock, which we
implement.

27

Ganeriwal et al. [9, 10] overcome the challenge of delayed beacons us-
ing the round-trip synchronization technique, and the Byzantine agreement
protocol [13]. Thus, Ganeriwal et al. require 3t + 1 ≤ n. Song et al. [20]
consider a different approach that uses the reference broadcasting synchro-
nization technique. Existing statistics models refer to malicious time off-
sets as outliers. The statistical outlier approach is numerically stable for
2t + ε ≤ n ≤ 3t + 1, where ε is a safety constant (see [20]). We note that
both approaches are applicable to our work. However, based on our practical
assumptions, we are able to avoid the Byzantine agreement overheads and
follow the approach of Song et al. [20]. They assume the existence of a dis-
tributed algorithm for sending beacons and collecting their responses. This
work presents the first secure and self-stabilizing design of that algorithm.

The generalized extreme studentized deviate (GESD) algorithm [18] can
be used to detect outliers. We note that there exists a self-stabilizing version
of Song et al.’s [20] strategy. Let B be the set of delivered beacon records
within a period of R. The node removes older records from B. The GESD
algorithm tests set B for outliers.

Existing implementations of secure clock synchronization protocols [23,
22, 9, 8, 14, 10, 20] are not self-stabilizing. Thus, their specifications are
not compatible with security requirements for autonomous systems. In au-
tonomous systems, the self-stabilization design criteria are imperative for
secure clock synchronization. For example, many existing implementations
require initial clock synchronization prior to the first pulse-delay attack (dur-
ing the protocol set up). This assumption implies that the system uses global
restart for self-defense management, say, using an external intervention. We
note that the adversary is capable of intercepting messages continually. Thus,
the adversary can risk detection and intercept all pulses for a long period.
Assume that the system detects the adversary’s location and stops it. Nev-
ertheless, the system cannot synchronize its clocks without a global restart.

Sun et al. [21] describe a cluster-wise synchronization algorithm that
is based on synchronous broadcasting rounds. The authors assume that a
Byzantine agreement algorithm [13] synchronizes the clocks before the system
executes the algorithm. Our algorithm is comparable with the requirements
of autonomous systems and makes no assumptions on synchronous broad-
casting rounds or start.

Manzo et al. [14] describe several possible attacks on an (unsecured) clock
synchronization algorithm and suggest counter measures. For single hop
synchronization, the authors suggest using a randomly selected “core” of

28

nodes to minimize the effect of captured nodes. The authors do not consider
the cases in which the adversary captures nodes after the core selection. In
this work, we make no assumption regarding the distribution of the captured
nodes. Farrugia and Simon [8] consider a cross-network spanning tree in
which the clock values propagate for global clock synchronization. However,
no pulse-delay attacks are considered. Sun et al. [22] investigate how to use
multiple clocks from external source nodes (e.g., base stations) to increase
the resilience against an attack that compromises source nodes. In this work,
there are no source nodes.

In [23], the authors explain how to implement a secure clock synchroniza-
tion protocol. Although the protocol is not self-stabilizing, we believe that
some of their security primitives could be used in a self-stabilizing manner
when implementing our self-stabilizing algorithm.

Herman and Zhang [12] present a self-stabilizing clock synchronization
algorithm for sensor networks. The authors present a model for proving
the correctness of synchronization algorithms and show that the converge-
to-max approach is stabilizing. However, the converge-to-max approach is
prone to attacks with a single captured node that introduces the maximal
clock value whenever the adversary decides to attack. Thus, the adversary
can at once set the clock values “far into the future”, preventing the nodes
from implementing a continuous time approximation function. This work is
the first in the context of self-stabilization to provide security solutions for
clock synchronization in sensor networks.

6.1. Conclusions

Designing secure and self-stabilizing infrastructure for sensor networks
narrows the gap between traditional networks and sensor networks by sim-
plifying the design of future systems. In this work, we consider realistic
system settings and take a clean slate approach in designing a fundamental
component; a clock synchronization protocol.

The designers of sensor networks often implement clock synchronization
protocols that assume the system settings of traditional networks. However,
sensor networks often require fine-grained clock synchronization for which
the traditional protocols are inappropriate.

Alternatively, when the designers do not assume traditional system set-
tings, they turn to reinforce the protocols with masking techniques. Thus,
the designers assume that the adversary never violates the assumptions of
the masking techniques, e.g., there are at most t captured nodes at all times,

29

where 3t+1 ≤ n. Since sensor networks reside in an unattended environment,
the last assumption is unrealistic.

Our design promotes self-defense capabilities once the system returns
to following the original designer’s assumptions. Interestingly, the self-
stabilization design criteria provide an elegant way for designing secure au-
tonomous systems.

6.2. Acknowledgments

This work would not have been possible without the contribution of Ma-
rina Papatriantafilou in many helpful discussions, ideas, and analysis. We
wish to thank Ted Herman for many helpful discussions. Many thanks to
Edna Oxman for improving the presentation.

References

[1] N. Abramson et al. The Aloha System. Univ. of Hawaii, 1972.

[2] Murat Demirbas, Anish Arora, Tina Nolte, and Nancy A. Lynch. A
hierarchy-based fault-local stabilizing algorithm for tracking in sensor
networks. In Teruo Higashino, editor, OPODIS, volume 3544 of LNCS,
pages 299–315. Springer, 2004.

[3] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed con-
trol. Commun. ACM, 17(11):643–644, 1974.

[4] Shlomi Dolev. Self-Stabilization. MIT Press, March 2000.

[5] Shlomi Dolev, Seth Gilbert, Rachid Guerraoui, and Calvin C. Newport.
Gossiping in a multi-channel radio network. In Andrzej Pelc, editor,
DISC, volume 4731 of Lecture Notes in Computer Science, pages 208–
222. Springer, 2007.

[6] Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-grained network
time synchronization using reference broadcasts. Operating Systems Re-
view (ACM SIGOPS), 36(SI):147–163, 2002.

[7] Jeremy Elson, Richard M. Karp, Christos H. Papadimitriou, and Scott
Shenker. Global synchronization in sensornets. In Martin Farach-Colton,
editor, LATIN, volume 2976 of LNCS, pages 609–624. Springer, 2004.

30

[8] Emerson Farrugia and Robert Simon. An efficient and secure protocol
for sensor network time synchronization. J. Syst. Softw., 79(2):147–162,
2006.

[9] Saurabh Ganeriwal, Srdjan Capkun, Chih-Chieh Han, and Mani B. Sri-
vastava. Secure time synchronization service for sensor networks. In
Proceedings of the 4th ACM workshop on Wireless security (WiSe’05),
pages 97–106, NYC, NY, USA, 2005. ACM Press.

[10] Saurabh Ganeriwal, Srdjan Capkun, and Mani B. Srivastava. Secure
time synchronization in sensor networks. ACM Transactions on Infor-
mation and Systems Security, March 2006.

[11] Seth Gilbert, Rachid Guerraoui, and Calvin C. Newport. Of malicious
motes and suspicious sensors: On the efficiency of malicious interference
in wireless networks. In Alexander A. Shvartsman, editor, OPODIS,
volume 4305 of LNCS, pages 215–229. Springer, 2006.

[12] Ted Herman and Chen Zhang. Best paper: Stabilizing clock syn-
chronization for wireless sensor networks. In Ajoy Kumar Datta and
Maria Gradinariu, editors, SSS, volume 4280 of LNCS, pages 335–349.
Springer, 2006.

[13] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzan-
tine generals problem. ACM Trans. Program. Lang. Syst., 4(3):382–401,
1982.

[14] Michael Manzo, Tanya Roosta, and Shankar Sastry. Time synchroniza-
tion attacks in sensor networks. In Proceedings of the 3rd ACM workshop
on Security of ad hoc and sensor networks (SASN’05), pages 107–116,
NYC, NY, USA, 2005. ACM Press.

[15] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Ran-
domized Algorithms and Probabilistic Analysis. Cambridge University
Press, New York, NY, USA, 2005.

[16] Kay Romer. Time synchronization in ad hoc networks. In MobiHoc ’01:
Proceedings of the 2nd ACM international symposium on Mobile ad hoc
networking & computing, pages 173–182, NYC, NY, USA, 2001. ACM
Press.

31

[17] Kay Römer, Philipp Blum, and Lennart Meier. Time synchronization
and calibration in wireless sensor networks. In Ivan Stojmenovic, editor,
Handbook of Sensor Networks: Algorithms and Architectures, pages 199–
237. John Wiley and Sons, Sep. 2005.

[18] B. Rosner. Percentage points for a generalized esd many-outlier proce-
dure. Technometrics, 25:165–172, 1983.

[19] Bruce Schneier. Applied Cryptography. John Wiley & Sons, 2nd edition,
1996.

[20] Hui Song, Sencun Zhu, and Guohong Cao. Attack-resilient time synchro-
nization for wireless sensor networks. Ad Hoc Networks, 5(1):112–125,
2007.

[21] Kun Sun, Peng Ning, and Cliff Wang. Fault-tolerant cluster-wise clock
synchronization for wireless sensor networks. IEEE Transactions on
Dependable and Secure Computing, 2(3):177–189, 2005.

[22] Kun Sun, Peng Ning, and Cliff Wang. Secure and resilient clock synchro-
nization in wireless sensor networks. IEEE Journal on Selected Areas in
Communications, 24(2):395–408, Feb. 2006.

[23] Kun Sun, Peng Ning, and Cliff Wang. Tinysersync: secure and re-
silient time synchronization in wireless sensor networks. In Ari Juels,
Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors, ACM
Conference on Computer and Communications Security, pages 264–277.
ACM, 2006.

32

