Predictive Threat Assessment via Reachability Analysis and Set Invariance Theory

Paolo Falcone*, Mohammad Ali * † and Jonas Sjöberg*

Abstract—We propose two model based threat assessment methods for semi-autonomous vehicles, i.e., human driven vehicles with autonomous driving capabilities. Based on information about the surrounding environment, we introduce a set of constraints on the vehicle states, which are satisfied under “safe” driving conditions. Then we formulate the threat assessment problem as a constraint satisfaction problem. Vehicle and driver mathematical models are used in order to predict future constraints violation, indicating the possibility of accident or loss of vehicle control, hence the need of assisting the driver. The two proposed methods differ in the models used to predict the vehicle motion within the surrounding environment.

We demonstrate the proposed methods in a roadway departure application and validate it through experimental data.

Index Terms—Active Safety, Semi-Autonomous Vehicles, Threat Assessment, Decision Making, Reachability Analysis, Invariant Set Theory.

I. INTRODUCTION

Classical active safety systems like, e.g., yaw stability control, only affect the dynamical behavior of the vehicle while its motion control within the environment is left to the driver. Thanks to recent advances in sensing technologies [16, 6], modern Advanced Driver Assistance Systems (ADAS) can instead influence both the dynamical behavior of the vehicle and its motion within the surrounding environment to prevent accidents. In particular, sensors measurements can be fused to obtain information about the surrounding environment like, e.g., road geometry and relative position and velocity of moving objects. This is demonstrated in, e.g., [12] where a standard radar, typically used for adaptive cruise control, is used along with an off the shelf camera for joint road geometry estimation and vehicle tracking.

Motivated by the described state-of-the-art in sensing technologies, the current trend in the development of ADAS for passenger cars points towards systems with increased autonomous driving capabilities in complex environments [23], beyond what is currently available in production active safety systems. In particular, future ADAS are envisioned to assist the driver in negotiating curves or intersections and autonomously drive the vehicle in order to avoid accidents, if needed. Prototypes of autonomous vehicles have been shown to successfully accomplish different and complex driving tasks at both low speeds, in urban environments, [26, 24, 3] and in high speed maneuvers on low friction surfaces [13, 14]. The promising results obtained with these prototypes of autonomous vehicles clearly demonstrate the possibilities offered by the autonomous driving technologies for active safety applications. However, in active safety applications for passenger cars it is essential that an assisting autonomous driving intervention is initiated if and only if it is needed, i.e., if a risk of accident is detected that the driver is not able to avoid. The formulation of transition conditions between, e.g., a manual and a fully autonomous driving mode, is not trivial.

In this paper, we consider a threat assessment problem for semi-autonomous vehicles, i.e., human driven vehicles with autonomous driving capabilities. We assume that information about the surrounding environment is given with a certain amount of preview and focus on the problem of determining, based on the current vehicle state, whether the driver needs assistance in order to safely (i.e., without colliding with other objects in the surrounding environment or losing stability) accomplish a driving task. Although the method is general and can be used in a wide range of accident scenarios, for the sake of easy illustration, in this paper we consider a lane departure application. In particular, we consider lane guidance systems assisting the driver in maintaining the vehicle within the lane boundaries.

In several lane guidance algorithms, the transition conditions to an autonomous driving mode are formulated based on the “Time to Line Crossing” (TLC). An intervention or warning is issued once the TLC passes a predefined threshold. An overview and assessment of methods for calculating the TLC is provided in [21]. Artificial potential fields, instead, are used in the method presented in [29], where lane crossings are prevented by introducing cost functions whose value increase as the vehicle approaches the lane boundaries. An optimization-based approach is presented in [2]. Every time step, based on current vehicle state and information about the surrounding environment, a Model Predictive Controller is used to compute a vehicle trajectory over a future time horizon. An assisting intervention is issued if the computed trajectory is considered hazardous. We observe that in these approaches the transition criteria activating the autonomous driving interventions are based on the evaluation of a controller behavior and/or the limitations of the vehicle capability of remaining stable and within the lane, without accounting for the limitations of the driver’s ability to perform the same task. This might lead to the initiation of an autonomous driving intervention in situations where the driver does not need assistance. On the other hand, if the controller is outperforming the driver, no intervention might be issued at all. In this paper, instead, we propose two threat assessment methods

*Department of Signals and Systems, Chalmers University of Technology, SE-412 96 Göteborg, Sweden, E-mail: falcone@chalmers.se; jonas.sjoberg@chalmers.se
†Volvo Car Corporation, Active Safety & Chassis, 96410/PV4A, 405 31 Göteborg Sweden, E-mail: mali21@volvocars.com
explicitly accounting for the human driving behavior. The
idea underlying the proposed methods is to use vehicle and
driver mathematical prediction models, along with information
about the surrounding environment, to assess the risk of
accidents over a future, finite time horizon. We demonstrate
the proposed method in a lane guidance application and
validate it through experimental data. The paper is organized
as follows. In Section II, we provide basic definitions and
results on reachability analysis and set invariance theory. In
Section III, we present the vehicle and driver modeling used
next, in Section IV, where the threat assessment algorithms
are presented. In Section V, we discuss the validation results
obtained through the proposed algorithms, while Section VI
closes the paper with final remarks.

II. BACKGROUND ON SET INVARIANCE THEORY AND
REACHABILITY ANALYSIS

In this section we introduce a few definitions and recall
basic results on set invariance theory and reachability analysis
for constrained systems. A comprehensive survey of papers on
set invariance theory can be found in [9]. This section adopts
the notation used in [15].

We will denote the set of all real numbers and positive
integers by \mathbb{R} and \mathbb{N}^+, respectively.

Denote by f_a the state update function of an autonomous
discrete time system

$$x(t + 1) = f_a(x(t), w(t)), \quad (1)$$

where $x(t)$ and $w(t)$ denote the state and disturbance vectors,
respectively. System (1) is subject to the constraints

$$x(t) \in \mathcal{X} \subseteq \mathbb{R}^n, \ w(t) \in \mathcal{W} \subseteq \mathbb{R}^d, \quad (2)$$

where \mathcal{X} and \mathcal{W} are polyhedra that contain the origin in their
interiors. For the autonomous system (1)-(2),

Definition 1 (Reachable set (for autonomous systems)):

we define the one-step robust reachable set for initial states x
contained in the set \mathcal{S} as

$$\text{Reach}_{f_a}(\mathcal{S}, \mathcal{W}) \triangleq \{ x \in \mathbb{R}^n \ |
\exists x(0) \in \mathcal{S}, \exists w \in \mathcal{W} : x = f_a(x(0), w) \}. \quad (3)$$

For the nominal system, i.e., with $w(t) = 0, \forall t$, the one-
step reachable set is defined as

$$\text{Reach}_{f_a}(\mathcal{S}) \triangleq \{ x \in \mathbb{R}^n \ |
\exists x(0) \in \mathcal{S} : x = f_a(x(0)) \}. \quad (4)$$

For the autonomous system (1)-(2), we define the dual of
the reachable set as,

Definition 2 (Pre set (for autonomous systems)): the set of
states that evolves to \mathcal{S} in one step, as

$$\text{Pre}_{f_a}(\mathcal{S}, \mathcal{W}) \triangleq \{ x \in \mathbb{R}^n \ |
 f_a(x, w) \in \mathcal{S}, \forall w \in \mathcal{W} \}. \quad (5)$$

For the nominal system, the “Pre” set is defined as

$$\text{Pre}_{f_a}(\mathcal{S}) \triangleq \{ x \in \mathbb{R}^n \ |
 f_a(x) \in \mathcal{S} \}. \quad (6)$$

Equivalently, for the system with inputs

$$x(t + 1) = f(x(t), u(t), w(t)), \quad (7)$$

subject to the constraints

$$x(t) \in \mathcal{X}, \ u(t) \in \mathcal{U} \subseteq \mathbb{R}^m, \ w(t) \in \mathcal{W}, \quad (8)$$

Definition 3 (Reachable set (for systems with external inputs)):

the one-step robust reachable set for initial states x
contained in the set \mathcal{S} is defined as

$$\text{Reach}_{f}(\mathcal{S}, \mathcal{W}) \triangleq \{ x \in \mathbb{R}^n \ |
\exists x(0) \in \mathcal{S}, \exists u \in \mathcal{U}, \exists w \in \mathcal{W} : x = f(x(0), u, w) \}. \quad (9)$$

Moreover,

Definition 4 (Pre set (for systems with external inputs)):

we define the set of states which can be driven into the target
set \mathcal{S} in one time step as

$$\text{Pre}_{f}(\mathcal{S}, \mathcal{W}) \triangleq \{ x \in \mathbb{R}^n \ |
\exists u \in \mathcal{U} \text{ s.t. } f(x, u, w) \in \mathcal{S}, \forall w \in \mathcal{W} \}. \quad (10)$$

The sets $\text{Reach}_{f}(\mathcal{S})$ and $\text{Pre}_{f}(\mathcal{S})$, for the nominal system
with external inputs, are defined similarly as in (4) and (6),
respectively.

In this paper we will use robust invariant sets and robust
control invariant sets. The following definitions are derived from
[9, 8, 7].

Definition 5 (Robust positive Invariant Set): A set \mathcal{O}
is said to be a positive invariant set for the autonomous sys-
tem (1) subject to the constraints in (2), if

$$x(0) \in \mathcal{O} \Rightarrow x(t) \in \mathcal{O}, \ \forall t \in \mathbb{N}^+ \quad (11)$$

Definition 6 (Maximal Positive Invariant Set \mathcal{O}_∞): The
set \mathcal{O}_∞ is the maximal invariant set of the autonomous
system (1) subject to the constraints in (2), if $0 \in \mathcal{O}_\infty$. \mathcal{O}_∞
is positive invariant and \mathcal{O}_∞ contains all positive invariant
sets that contain the origin.

Control invariant sets are defined for systems subject to
external inputs. The following definitions are derived from
[9, 8, 7, 19].

Definition 7 (Control Invariant Set): A set $\mathcal{C} \subseteq \mathcal{X}$ is said
to be a control invariant set for the system in (7) subject to
the constraints in (8), if

$$x(t) \in \mathcal{C} \Rightarrow \exists u(t) \in \mathcal{U} \text{ such that } f(x(t), u(t)) \in \mathcal{C}, \forall t \in \mathbb{N}^+ \quad (12)$$

Definition 8 (Maximal Control Invariant Set \mathcal{C}_∞): The
set \mathcal{C}_∞ is said to be the maximal control invariant set for the
system in (7) subject to the constraints in (8), if it is control
invariant and contains all control invariant sets contained in
\mathcal{X}.

III. MODELING

In this section, we present the vehicle and driver’s steering
behavior mathematical models used in Section IV as basis of
the threat assessment algorithm.
Drivers usually operate at intervals that also correspond to a “normal driving” region where the tire contact patch and are, in general, nonlinear functions of the vehicle states. In this paper, we compute the lateral tire forces in (13a) and (13b) are generated at the tire contact patch and are, in general, nonlinear functions of the vehicle states. In this paper, we compute the lateral tire forces as

\[F_{yi} = -C_t \alpha_i, \quad i \in \{f, r\}, \tag{14} \]

where \(C_t \) are the tire cornering stiffness coefficients at the two axles and \(\alpha_i \) are the tire slip angles which, for small values, can be approximated as

\[\alpha_f = \frac{v_y + l_f \dot{\psi}}{v_x} - \delta, \quad \alpha_r = \frac{v_y - l_r \dot{\psi}}{v_x}, \tag{15} \]

where \(\delta \) denotes the front steering angle as depicted in Figure 1.

Remark 1: The simplified linear tire model (14) well approximates more complex nonlinear tire characteristics [4] for small tire slip angles, i.e., \(\alpha_i \in [\alpha_{i\text{min}}, \alpha_{i\text{max}}] \). However, this interval also corresponds to a “normal driving” region where drivers usually operate [27, 18].

For a given vehicle longitudinal speed \(v_x \), the model (13)-(15) can be compactly written as

\[\dot{x}(t) = Ax(t) + Bu(t) + Ew(t), \tag{16} \]

where \(x = [v_y, \dot{\psi}, e_\psi, e_y]^T \) and \(w = \dot{\psi}_d \) are the state and the disturbance vectors and \(u = \delta \) is the steering input command.

B. Driver model

In this section, we consider the vehicle model (16) and present a feedback control law resembling the human driver’s steering behavior while performing a lane following task. The driver model, combined with the vehicle model (16), is used next in Section IV as basis of the proposed threat assessment algorithm. The literature on the modeling of driver steering is rich, early studies on driver modeling date back to the sixties and demonstrated the importance of preview information for human drivers [28]. McRuer et al. were among the first proposing a human driver’s steering “preview control” algorithm consisting of a “pursuing” part and a closed loop correcting part [22]. The various preview control algorithms can be divided in two main groups, depending on whether the “preview signal” is provided as a reference or a disturbance [25]. In this paper, the driver’s steering behavior is described by a preview control law, where the “preview signal” enters as a disturbance.

Define the orientation error \(e^{lp}_\psi \), w.r.t. the look-ahead point in Figure 1, as

\[e^{lp}_\psi = \psi - \psi^{lp}_d = e_\psi + \Delta \psi_d, \tag{17} \]

where \(\psi^{lp}_d \) is the desired orientation at time \(t + t_{lp} \), with \(t \) the current time, \(\Delta \psi_d = \psi_d - \psi^{lp}_d \) and \(t_{lp} \) the preview time that can be mapped into the preview distance \(d_{lp} \) under the assumption of constant speed \(v_x \).

We consider the vehicle model (13) and compute the steering angle \(\delta \) as

\[\delta = K_y e_y + K_\psi e^{lp}_\psi, \tag{18} \]

with \(K_y, K_\psi \) gains that are, in general, time varying and might be updated online.

Clearly, \(\Delta \psi_d \) in (17) depends on the preview time \(t_{lp} \) that, in our modeling framework, is considered as a parameter of the driver’s model and can be identified from experimental data. Recursive least squares estimation results of the driver’s model parameters are demonstrated in Section V.

C. Driver controlled vehicle model

We consider the autonomous system, obtained by combining the vehicle and driver models (16) and (18), respectively, that can be compactly written as

\[\dot{x}_a(t) = A_a x_a(t) + E_a w_a(t), \tag{19} \]

where \(x_a = [v_y, \dot{\psi}, e_\psi, e_y]^T \) and \(w_a = [\dot{\psi}_d, \Delta \psi_d]^T \) are the state and the disturbance vectors, respectively. The definitions of the matrices \(A_a, E_a \) are straightforward.
D. System Constraints

Next we define a set of operating conditions, in the space of the states and inputs of systems (16) and (19), corresponding to stable driving within the lane boundaries.

We denote by e_{yi}, $i \in \{f, r\}$, $j \in \{l, r\}$, the distances of the four vehicle corners from the lane centerline. By assuming small orientation errors, e_{yi} can be written as

$$e_{yi} = e_y + \frac{c}{2} + ae_{\psi}, \quad e_{yj} = e_y - \frac{c}{2} + ae_{\psi},$$

$$e_{yi} = e_y + \frac{c}{2} - be_{\psi}, \quad e_{yj} = e_y - \frac{c}{2} - be_{\psi},$$

where c is the vehicle width, a and b are the distances of the center of gravity from the front and rear vehicle bumpers, respectively. Furthermore, in order to avoid possible vehicle instability due to the effects of the tire nonlinearities (see Remark 1), the vehicle can be forced to operate in a region of the state space by limiting the tire slip angles α_i, $i \in \{f, r\}$.

The constraints on the vehicle position and slip angles can then be compactly written as

$$-e_{y_{\text{max}}} \leq e_{yi} \leq e_{y_{\text{max}}},$$

$$\alpha_{i_{\text{min}}} \leq \alpha_i \leq \alpha_{i_{\text{max}}}, \quad i \in \{f, r\}, \quad j \in \{l, r\},$$

where $e_{y_{\text{max}}}$ is the maximum distance of the vehicle corners from the lane centerline. The model (13)-(15), subject to constraints (21), describes the stable vehicle motion within the lane. In such operating conditions assuming small orientation errors is deemed reasonable.

The constraints (21) can be compactly rewritten for the system (16) as

$$\begin{bmatrix} H_x & H_u \end{bmatrix} \begin{bmatrix} x \end{bmatrix} \leq h,$$

while for the system (19) we have

$$H_u x_a \leq h_a, \quad H_a = H_x + H_a K, \quad h_a = h - H_a K \Delta \psi_d.$$

IV. Threat Assessment via Reachability Analysis and Set Invariance Theory

In this section we propose two threat assessment methods based on the vehicle and driver modeling presented in Section III. The idea underlying the proposed methods is to first introduce a set of constraints on the vehicle state and input trajectories, describing a “safe” driving. For the specific lane guidance application considered in this paper, the constraints are set by the lane boundaries and the stability limits the vehicle should not exceed, i.e., the inequalities (21). Hence, constraints satisfaction implies that the vehicle is traveling within the lane boundaries in a stable operating region. The threat assessment problem is then reformulated as a constraints satisfaction problem over a future time horizon, solved through the predictive, model based methods described next.

Based on the vehicle and driver models, every time step we calculate a “safe set”. This is the set of vehicle states at current time t which, according to the considered vehicle and driver models, are guaranteed to evolve to a given final set in finite time while satisfying the constraints (21). The safe set is updated in receding horizon, as new information about the surrounding environment is available, e.g., the coming road curvature in our lane guidance application. Once the safe set is computed, a set membership test on the current vehicle state is performed to check whether the vehicle is in the safe set and decide whether the driver needs to be assisted.

We use the reachability analysis and set invariance theory definitions, given in Section II for linear systems, to calculate the safe sets. Similar ideas can be found in [1] and [5] in the automotive and aerospace fields, respectively. In [1], the authors propose a collision detection method in autonomous driving. In particular, a traffic scenario is considered where the path of an autonomous vehicle has to be planned in order to avoid collisions with other traffic participants, whose future trajectory is unknown. A safe planned path for the autonomous vehicle is required to not intersect the stochastic reachable sets computed for each traffic participant, i.e., the set of future positions possibly occupied by the other traffic participants. In [5], a safety analysis of an aircraft autoland system is developed based on the calculation of reachable sets.

In the landing phase, the set of the aircraft configurations, evolving within a safe envelope to the set of acceptable states at touchdown, is calculated as a backward reachable set.

In this paper we propose two predictive and model based threat assessment methods. In particular, in the first approach the vehicle motion within the lane is described by the vehicle model (16) only, while in the second we assume that the steering angle δ in (16) is generated by the state feedback control law (18) and consider the driver controlled vehicle model (19). Next in this section we will highlight how the difference in the used models reflects on the computational scheme used to compute the safe sets (Remark 4) and the results of the threat assessment (Remark 3).

In both approaches, the road curvature is assumed to be known over a future time horizon and to lie within a given set. In particular, we introduce the following assumptions on the disturbance signals w and w_a in (16) and (19), respectively.

Assumption 1: $w(t) \in W$, $w_a(t) \in W_a, \quad \forall \ t \geq 0,$

where $W \subseteq \mathbb{R}$, $W_a \subseteq \mathbb{R}^2$ are polyhedrons that contain the origin in their interiors.

We discretize the model (16) with a sampling time T_s, to obtain the following discrete time constrained system with disturbances

$$x(t + 1) = A^d x(t) + B^d w(t) + E^d w(t)$$

$$\text{subject to} \quad \begin{bmatrix} H_x & H_u \end{bmatrix} \begin{bmatrix} x(t) \\ u(t) \end{bmatrix} \leq h$$

where, for the sake of simple notation, we have denoted the state, the disturbance and the time index with the same symbols as in the continuous time model (16).

Assumption 2: Every time instant t, the disturbances $w(t)$, $w_a(t)$ are known over a finite time horizon of N steps.

We recall that, every time instant t, the second component of the disturbance vector w_a, i.e., $\Delta \psi_d$, is based on the desired orientation ψ_d^{a} at time $t + t_p/T_s$. This is the desired vehicle orientation at the look-ahead point. Hence, the Assumption 2
on the disturbance w_a requires the knowledge of the road geometry over a future time horizon $t_{ip}/T_a + N$. We define the set of admissible vehicle states as

$$\mathcal{X}_{feas} = \{ x \in \mathbb{R}^4 : [H_x \ H_u] \begin{bmatrix} x \\ u \end{bmatrix} \leq h \}. \quad (25)$$

Every time instant, we consider a terminal target set $T \subseteq \mathcal{X}_{feas}$. Further details about the choice of T are provided next, in Section IV-A. Moreover, denote by $W_t = \{ w_t, w_{t+1}, \ldots, w_{t+N-1} \}$, the sequence of disturbance samples over the time horizon $[t, t + N]$, and by $W_{t,i} = \{ w_{t,i}, \ldots, w_{t+N-1} \}$ any sequence extracted from W_t. We compute the sequence of states sets $X_t(W_t) = [X_t, X_{t+1}, \ldots, X_{t+N-1}]$ as:

$$X_{t+1}(W_{t,i}) = \mathcal{X}_{feas} \cap \text{Pref}(X_{t+1}, w_{t+1}), \quad (26a)$$

$$X_{t+N} = T, \quad (26b)$$

where, f denotes the right hand side of (24a). We call the set X_t the safe set at time t.

The calculation of the sequence $X_t(W_t)$ is performed every time step, based on the updated disturbance sequence W_t. In the set operator $\text{Pref}(\cdot, \cdot)$ in (26), with a slight abuse of notation, a vector is used as second argument instead of a set. This corresponds to the case of known disturbance.

In summary, the proposed threat assessment algorithm is made of three main steps performed every time instant

1) select the terminal target set T,

2) based on the future disturbance sequence W_t and the set T, perform the backward calculation of the sequence of safe sets X_{t+i} according to (26),

3) check whether the current state $x(t)$ belongs to the safe set X_t, in order to assess the driver’s ability of safely driving the vehicle from the current state to the target set T over the future horizon of N steps.

The steps of the method are detailed next in Algorithm 1. By construction, if the state of the system (24) at the current time t belongs to the safe set X_t (Step 10 of Algorithm 1), a steering controller exists such that the vehicle can be driven over the next N time steps, while operating within its stability limits and without leaving the lane. That is, over the future N time steps, the vehicle can be driven within the lane boundaries, while operating in a region of the system states and inputs space where the driver is deemed capable of driving without loosing vehicle stability (see Remark 1).

Algorithm 1 is based on the vehicle model (16). Next we propose a method based on the driver controlled vehicle model (19). In this case, the calculation of the safe sets is based on the reachable and invariant sets for autonomous systems, defined in Section II.

Algorithm 1: Input: Current state $x(t)$, target set T, sequence of disturbances W_t, state update mapping $f = (A^d, B^d, E^d)$, the constraints matrices (H_x, H_u, h)

Output: The safe set X_t at the current time t, safe flag Safe

1) let $X_{t+N} = T$,

2) for $i = N - 1$ to 0

3) let $X_{t+i+1} = \{ x \in \mathbb{R}^4 : H_{t+i+1} x \leq h_{t+i+1} \}$,

4) $\text{Pref}(X_{t+i+1}, w_{t+1}) = \{ x \in \mathbb{R}^4 : 3 \ u \in \mathbb{R} \text{ subj. to } [H_{t+i+1} A^d \ H_{t+i+1} B^d] \begin{bmatrix} x \\ u \end{bmatrix} \leq [h_{t+i+1} - H_{t+i+1} E^d w_{t+1}] \}$,

5) if $\text{Pref}(X_{t+i+1}, w_{t+1}) = \emptyset$ then $\text{Safe} = 0$, EXIT

6) else let $\text{Pref}(X_{t+i+1}, w_{t+1}) = \{ x \in \mathbb{R}^4 : H_{\text{Pre}x} \leq h_{\text{Pre}} \}$

7) $X_{t+i}(W_{t,i}) = \{ x \in \mathbb{R}^4 : [H_{\text{Pre}} \ 0 \] \begin{bmatrix} x \\ u \end{bmatrix} \leq [h_{\text{Pre}}] \}$, end

8) if $X_{t+i}(W_{t,i}) = \emptyset$ then $\text{Safe} = 0$, EXIT, end

9) end

10) if $x(t) \in X_t$ then $\text{Safe} = 1$,

11) else $\text{Safe} = 0$, end

12) EXIT.

We discretize the model (19) with a sampling time T_s, to obtain the following discrete time constrained autonomous system with disturbances

$$x_a(t+1) = A^d x_a(t) + E^d w_a(t) \quad (27a)$$

subject to $H_a x_a(t) \leq h_a$, \quad (27b)

where, for the sake of simple notation, we have again denoted the state, the disturbance and the time index with the same symbols as in (19). With a slight abuse of notation we let \mathcal{X}_{feas}, X_t and T denote the set of admissible states, the safe set at time t and the terminal set, respectively, also for the system (27). For the system (27), the set of admissible states is defined as

$$\mathcal{X}_{feas} = \{ x \in \mathbb{R}^4 : H_a x \leq h_a \}. \quad (28)$$

The sequence of safe sets for the constrained system (27) is then computed through (26), where the mapping f is replaced by the mapping f_a, denoting the right hand side of (27a) and the disturbance vectors w_i are replaced by w_a.

The steps of the threat assessment based on the vehicle and driver’s models presented in Sections III-A and III-B, respectively, are detailed in Algorithm 2.

Remark 2: If the safe set X_t is empty (Steps 5, 7 of Algorithm 2) or if the current state $x_a(t)$ does not belong to the safe set X_t (Steps 9, 10 of Algorithm 2), there exists no state trajectory of system (16) that, under the driver’s steering feedback control law (18), can evolve from the current state $x_a(t)$ to the target set T, while satisfying the constraints (21). On the other hand, a different, in general time varying, steering law might exist driving the vehicle from the current state $x_a(t)$ to the target set, while satisfying the constraints (21). The existence of such steering law can be verified through Algorithm 1.
Algorithm 2: Input: Current state $x_n(t)$, target set T, sequence of disturbances W_t, state update mapping $f_a = (A^d_a, E^d_a)$, the constraints matrices (H_a, h_a)
Output: The safe set \mathcal{X}_t at the current time t, safe flag $Safe$
1 let $\mathcal{X}_{t+N} = T$
2 for $i = N - 1$ to 0
3 let $\mathcal{X}_{t+i+1} = \{x_a \in \mathbb{R}^4 : H_{t+i}x_a \leq h_{t+i}\}$
4 $Pre_{f_a}(\mathcal{X}_{t+i+1}, w_{t+i}) = \{x_a \in \mathbb{R}^4 : H_{t+i}A^d_a x_a \leq h_{t+i} - H_{t+i}E^d_a w_{t+i}\}$
5 if $Pre_{f_a}(\mathcal{X}_{t+i+1}, w_{t+i}) = \emptyset$ then $Safe = 0$, EXIT
6 else $\mathcal{X}_{t+i}(W_{t,i}) = \{x_a \in \mathbb{R}^4 : [H_{t+i}A^d_a H_a] x_a \leq [h_{t+i} - H_{t+i}E^d_a h_{t+i}]\}$, end
7 if $\mathcal{X}_{t+i}(W_{t,i}) = \emptyset$ then $Safe = 0$, EXIT, end
8 end
9 if $x_n(t) \in \mathcal{X}_t$ then $Safe = 1$,
10 else $Safe = 0$, end
11 EXIT.

Remark 3: In Algorithm 2, the restriction of the steering law to the class of linear state feedback control laws (18) leads to smaller safe sets than in Algorithm 1.

The oversimplified driver model (18) might not be able to capture the driver’s steering behavior in hazardous scenarios like, e.g., when (i) he/she is required to drive beyond the vehicle stability limits or (ii) he/she is distracted or drowsy. Nevertheless, for the threat assessment problem formulation considered in this paper, we believe it is not necessary to exhaustively describe the driver’s behavior. In fact, if the vehicle is either beyond its stability limits or the lane boundaries, case-(i), a threat assessment problem is not meaningful any longer and an assisting intervention has to be issued. In case-(ii), since our threat assessment problem formulation is not depending on any driver monitoring system, driver’s distraction or drowsiness is not accounted for. Hence an assisting intervention would not be issued as long as the vehicle can be maintained within its stability limits and the lane boundaries by the considered “nominal” driver (i.e., behaving according to model (18)). However, the vehicle, driven by the drowsy or distracted driver, would very likely eventually exit the “safe set”, calculated based on the “nominal” driver behavior, thus enabling the activation of a lower level intervention.

Remark 4: We observe that Steps 4 and 7 of Algorithm 1 involve a projection operation, while Algorithm 2 does not. In general, the projection operation can be quite involving depending on the dimension of the state and input spaces. In the proposed approaches we formulate the threat assessment problem as a constraint satisfaction problem, for which efficient methods [10] exist. In particular, we calculate a polyhedral representations of the safe sets rather than just assessing the constraint satisfaction for the current vehicle state and the road curvature over the prediction horizon. A polyhedral representation of the safe set can be exploited for both control and verification purposes.

As last remark of this section, we observe that the Algorithm 2 assesses the capability of a driver, whose steering behavior is modeled by (18), of driving the vehicle, modeled by (16), from the current state $x_n(t)$ to the target set T.
the track, marked in Figure 2 with numbers from 1 to 6, where the vehicle either approaches or travel along a curve.

Data has been collected in order to calculate the state and the disturbances variables of the vehicle models (16) and (19). In particular the vehicle lateral velocity \(v_y \) and yaw rate \(\dot{\psi} \) have been measured through a high precision Inertial Measurement Unit (IMU). The vehicle position and orientation errors within the lane \(e_y \) and \(e_\psi \), respectively, and the desired orientation at the look-ahead point \(\psi_{lp} \) are calculated through dual antennas GPS measurements and a digital map including the road geometry.

Remark 5: The set of measurements used in the proposed threat assessment methods could also be obtained on-line by using the measurements setup and the sensor fusion algorithms used in [16, 6, 12] (see Section I). Nevertheless, depending on the combination of sensors set and sensors fusion algorithms, a lower accuracy set of measurements might be obtained compared to the data used in this paper for the validation of the proposed threat assessment algorithms.

We first present validation results of the driver model (18). The data used for parameters estimation have been collected in both normal and slightly rougher driving styles. Compared to the normal driving case, where the driver has been asked to drive according to the suggested road speed limits, in the rough driving case the driver was asked to drive as fast as possible. The problem of estimating the parameters \(K_y, K_\psi \) and \(t_{lp} \) in (18) has been formulated as a recursive nonlinear least squares problem since the driver model is linear only in the parameters \(K_y, K_\psi \). The recursive nonlinear least squares method described in [17] has been used.

Figure 3(a) shows the identification results in normal driving conditions. We observe high uncertainty in the estimated parameters at the beginning of the considered time interval. The uncertainty is however reduced as soon as the vehicle enters a curve and the system is excited. Moreover, we observe that the estimated value of the parameter \(K_y \) is very small and has a quite large variance. This indicates that the vehicle lateral deviation from the lane centerline \(e_y \) has a minor or no influence on the steering angle. The obtained results are in line with the conclusions of previous studies [28, 22] and show that the human steering behavior is preeminently based on a pursuit component, i.e., based on the preview of the desired path. Figure 3(b), instead, shows the driver’s model parameters estimation in rougher driving maneuvers. Due to higher excitation, the initial uncertainty in the estimated parameters is reduced quicker than in Figure 3(a). The estimated parameter \(K_y \) is in this case slightly negative. We also observe a higher magnitude of the estimated parameter \(K_\psi \) and a shorter look ahead time \(t_{lp} \), compared to the normal driving case. We conclude that the correcting part is more relevant in rough than in normal driving. The driver model (18) has been used to validate, through experimental data, Algorithm 2.

Algorithms 1 and 2 have been implemented by setting \(\mathcal{T} = \mathcal{X}_{feas} \) as terminal set and using the following parameters

\[
\alpha_{f, max} = \alpha_{r, max} = -\alpha_{f, min} = -\alpha_{r, min} = 4^\circ, \\
e_{y, max} = 1.56 \text{m}, \quad N = 35, \quad T_s = 0.01 \text{s}.
\]

The vehicle parameters are shown in Table I.

![Figure 3](image)

Remark 6: The calculation of the safe sets shown in this section has been implemented using the sets operations implemented in the Multiparametric Programming Toolbox (MPT) [20]. For the safe sets calculation, these operations require 1-2 minutes for Algorithm 1 and 0.3-0.4 seconds for Algorithm 2 on a laptop computer.

Consider the driving scenarios 1 and 2 shown in Figure 2 where the driver is negotiating a curve at a speed of 63 km/h, which can be considered a maneuver requiring normal driving skills. Denote by \(t_1 \) and \(t_2 \) the time instants, when the vehicle is in positions 1 and 2 on the track, respectively. Figure 4 shows cuts of the safe sets \(\mathcal{X}_t \) and \(\mathcal{X}_{t_2} \) calculated through both algorithms at times \(t_1 \) and \(t_2 \), respectively.

The following compact notation is introduced to denote sets cuts:

\[
\mathcal{X}_{t_{i,4}} = \mathcal{X}_t \bigcap \left\{ x \in \mathbb{R}^4 : \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} x = \begin{bmatrix} x_1^i(\tau) \\ x_2^i(\tau) \end{bmatrix} \right\},
\]

where the superscript \(i \) in \(x^i(\tau) \) denote the \(i \)-th component of the vector \(x(\tau) \). The symbol \(\mathcal{X}_{1,4}^3 \) will here denote a
set in the \(e_y - e_\psi \) space obtained by cutting \(\mathcal{X}_i \) at \(x^1(\tau) \) and \(x^2(\tau) \), i.e. \(v_y(\tau) \) and \(\psi(\tau) \). We observe that, as indicated in Remark 3, the feasibility and safe sets in Algorithm 2 are always enclosed by the corresponding sets in Algorithm 1. This can be explained by recalling that the feasibility and safe sets are derived from the constraints (21) which have been used in both algorithms. Moreover the inclusion of the driver model (18) in Algorithm 2 results in an additional set of equality constraints which further limits the set of admissible states.

We also note that in Figures 4(a), 4(c) the feasibility sets and the corresponding cuts of the safe sets \(\mathcal{X}_i \) calculated through Algorithms 1 and 2, respectively. The solid grey and white sets show cuts of the safe sets \(\mathcal{X}_i \) calculated through Algorithm 1 and 2, respectively.

The states \(x(t_1) \) and \(x(t_2) \) are marked with a circle in Figure 4. We observe that, for Algorithm 1, \(x(t_1) \in \mathcal{X}_i^{3,4}(t_1) \), \(x(t_1) \in \mathcal{X}_i^{1,2}(t_1) \) and \(x(t_2) \in \mathcal{X}_i^{3,4}(t_2) \), \(x(t_2) \in \mathcal{X}_i^{1,2}(t_2) \). Hence, from both the initial states \(x(t_1) \), \(x(t_2) \), the vehicle is predicted to safely travel over a horizon of \(N \) steps. This is confirmed by the vehicle state trajectories measured over the time intervals \([t, t + N \tau_i] \), \(t = \{t_1, t_2\} \) and reported in Figure 4 with solid lines. In particular, starting from the initial states \(x(t_1) \) and \(x(t_2) \), the measured vehicle state trajectories entirely evolve over the next \(N \) steps within the sets \(\mathcal{T}_1 \) and \(\mathcal{T}_2 \), respectively, where \(\mathcal{T}_1 = \bigcup_{t = t_1}^{t_1 + N - 1} \mathcal{T}^{3,4}(t) \), \(\mathcal{T}_2 \) is similarly defined and the sets \(\mathcal{T}^{3,4} \) are obtained by replacing \(\mathcal{X}_i \) with \(\mathcal{T} \) in (29), i.e., the vehicle “safely” travels over the time intervals \([t, t + N \tau_i] \), \(t = \{t_1, t_2\} \), as predicted through Algorithm 1. In Figure 4, we also observe that \(x_0(t_1) \in \mathcal{X}_i \) and \(x_0(t_2) \in \mathcal{X}_i \) when the safe sets are calculated using Algorithm 2. Recall that, for the sake of simple readability, we have adopted the same notation for the safe sets obtained with the two algorithms.

Figure 5 shows the safe sets \(\mathcal{X}_i \) and \(\mathcal{X}_i \) corresponding to the positions 3 and 4 of the track in Figure 2, when the driver is negotiating a curve at a speed of approximately 92 km/h, traveling close to the lane edge. We observe that, for Algorithm 1, \(x(t_3) \in \mathcal{X}_i \), while \(x(t_4) \notin \mathcal{X}_i \). That is, the vehicle is predicted to safely travel over the time interval \([t_3, t_3 + N \tau_i] \), while a constraint violation is predicted over the time interval \([t_4, t_4 + N \tau_i] \). This is confirmed by the actual vehicle trajectories shown by the solid lines. Similar results are obtained through Algorithm 2 and also shown in Figure 5. We observe that, starting from the position 4, the driver cuts the curve in order to quickly traverse the path. However, such driving behavior might not be considered unsafe and an intervention should be avoided. Methods for suppressing warnings or interventions have even been proposed in [11] for a lane departure warning system. We observe that, in the framework proposed in this paper, instead, warnings or interventions in such driving situations could be avoided by just increasing the bounds \(e_{\theta_{\text{max}}} \), \(e_{\theta_{\text{min}}} \), for the “inner curve” to allow the driver cutting a curve without causing an intervention.

We finally consider the vehicle positions 5 and 6 in Figure 2, where the driver approaches the curve, with a velocity of approximately 84 km/h, which is a very high speed for such a narrow curve. We start with the results obtained with Algorithm 1. In Figure 6 we observe that \(x(t_5) \in \mathcal{X}_i \) and \(x(t_6) \in \mathcal{X}_i \), which means that there exists a control law that is capable of steering the vehicle \(N \) time steps without violating constraints starting from both positions 5 and 6. The safe set obtained with Algorithm 2, instead, is smaller, compared to Algorithm 1, and do not enclose the state \(x_0(t_5) \). Hence both algorithms predict a safe driving when the vehicle starts from the position 5, while the results provided by the two algorithms significantly differ in position 6. In this case, Algorithm 2 correctly predicts a constraint violation. In this extreme driving scenario, according to Algorithm 2, the “nominal” driver is not capable of keeping the vehicle in a safe operating region. Depending on his or her driving skills, the actual driver, instead, might succeed in keeping the vehicle in such an operating region by deviating from the “nominal” behavior described by the model (18). Nevertheless, since a deviation from the nominal steering behavior is required, the situation can be considered critical and an intervention motivated.

Remark 7: As anticipated in Remark 2, Algorithm 1 showed that in position 6, even if the driver is expected to violate constraints, there exists a, in general time varying, control law that is capable of driving the vehicle over the future \(N \) time steps, without violating constraints. We conclude that a steering controller could in this case be used to assist the driver. The combination of the driver’s steering command and of such a low level steering controller could thus enlarge or move the safe set to enclose the state \(x(t_6) \).

VI. CONCLUSION AND FUTURE WORKS
We have presented two model based threat assessment methods for semi-autonomous vehicles and validated them in
a lane guidance application. The two approaches are based on reachability analysis tools and set invariance theory, and differ in the model used to predict the vehicle motion within the lane. In particular, in the second algorithm, the driver’s steering behavior is estimated based on the road geometry and the vehicle state and used to predict the vehicle motion within the lane. The two methods have been validated offline by using experimental data. The obtained results demonstrate that the proposed methods can effectively predict lane crossing and vehicle instability over a future, finite time horizon, thus allowing the activation of driver assistance systems.

Nevertheless, we point out that (i) lower accuracy data might be available in an online implementation where a different measurements setup is used (see Remark 5), (ii) the proposed algorithms have been tested in a small range of operating conditions (iii) the adopted driver models might not be able to describe the human driver’s driving behavior well, thus introducing a high level of uncertainty, (iv) the computational burden of the driver’s model parameters identification and the safe sets calculation might represent an obstacle to the real-time implementation of the proposed algorithms. The points (i)-(iii) address robustness issues with respect to measurements errors and models uncertainties, while the point (iv) addresses computational complexity issues. The preliminary results presented in this manuscript motivate further investigations aiming at analyzing the impact of measurements errors and model uncertainties on the performance of the proposed threat assessment methods and proposing approaches in order to compensate for them. Moreover, computational complexity issues will be addressed by adopting real-time oriented code (see Remark 6) and investigating the use of further simplified vehicle models involving simpler reachability analysis problems (see Remark 4).

We finally highlight that, as observed in Remark 7, the proposed threat assessment methods can be a convenient basis of decision making algorithms which blend driver’s commands and supporting lower level autonomous driving interventions.

VII. ACKNOWLEDGEMENTS

This work is partially supported by SAFER and VINNOVA, through the project “Systems for Roadway Departure Avoidance”.

REFERENCES

