

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Göteborg, Sweden, January 2011

Per-core Power Estimation and Power Aware
Scheduling Strategies for CMPs

Master of Science Thesis in Integrated Electronic System Design

BHAVISHYA GOEL

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Per-core Power Estimation and Power Aware Scheduling Strategies for CMPs

BHAVISHYA GOEL

© BHAVISHYA GOEL, January 2011.

Examiner: SALLY A. McKEE

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden January 2011

Contents

1 Introduction 1

1.1 Problem . 1

1.2 Previous Work and Contribution . 3

1.3 Report Outline . 4

2 Background Information 5

2.1 Performance Monitoring Counters . 5

2.1.1 Types of PMCs . 6

2.1.2 Reading mechanism . 6

2.1.3 Performance counter monitoring tools . 7

2.2 Statistical Modeling . 8

2.2.1 Rank correlation . 8

2.2.2 Multiple linear regression . 9

2.3 Test Benchmarks . 9

2.3.1 SPEC CPU2006 . 9

2.3.2 SPEC OMP2001 . 9

2.3.3 NAS . 10

3 Power Estimation Model 11

3.1 Overview . 11

3.2 Experimental Setup . 11

3.2.1 Empirical power measurement . 12

3.2.2 Reading performance counters and core temperature 12

3.2.3 Statistical analysis . 12

3.2.4 Test machines . 13

3.2.5 Hardware setup . 13

3.2.6 Microbenchmarks . 14

2

3.3 Counter Selection . 15

3.3.1 Counter categories . 16

3.3.2 Correlation . 16

3.3.3 Inter-Counter correlation . 17

3.4 Model Formation . 19

3.4.1 Piecewise modeling . 19

3.4.2 Nonlinear transformations . 19

3.4.3 Regression model . 20

3.4.4 Significance testing . 20

3.5 Temperature Effects . 21

3.6 Validation . 23

3.6.1 Estimation error . 24

3.6.2 Effects of Turbo Boost . 29

3.6.3 Effects of Hyper-Threading . 31

3.6.4 Model formation using eight counters . 31

3.6.5 Effects of SIMD operations . 32

3.6.6 Effects of DVFS . 32

4 Power-Aware Scheduling 34

4.1 Introduction . 34

4.2 Sample Policies . 35

4.2.1 Max instruction/watt policy . 35

4.2.2 Per-core fair policy . 35

4.2.3 Critical process running policy . 36

4.2.4 Round-robin policy . 36

4.3 Experimental Setup . 36

4.4 Results . 38

4.4.1 No DVFS . 38

4.4.2 DVFS + Process suspension . 38

5 Related Work 40

5.1 Run-time Power Estimation in High-Performance Microprocessors 40

5.2 Application-Aware Power Management . 40

5.3 Event-driven Energy Accounting for Dynamic Thermal Management 41

5.4 Accurate and Efficient Regression Modeling for Microarchitectural Performance and Power
Prediction . 41

3

5.5 Decomposable and Responsive Power Models for Multicore Processors using Performance
Counters . 41

5.6 Power Prediction for Intel XScale Processors Using Performance Monitoring Unit Events . 42

5.7 Full-System Power Analysis and Modeling for Server Environments 42

5.8 An Analysis of Efficient Multi-Core Global Power Management Policies: Maximizing Per-
formance for a Given Power Budget . 42

5.9 PAM: A Novel Performance/Power Aware Meta-scheduler for Multi-core Systems 43

6 Future Work 44

6.1 Current Measurement PCB . 44

6.2 Implementation on Tilera Processor . 44

7 Conclusion 45

A Alternate Power Model 47

B PARSEC Results on Core i7 51

C Custom Test Benchmark 53

D Core i7 Results with Hyper-Threading Enabled 55

4

List of Figures

1.1 Core i7 System Power Consumption for NAS, SPEC2006 & SPEC-OMP 2

1.2 Variations in Core i7 Processor Power Consumption when different processor components
are exercised . 3

2.1 Layout of IA32 PERFEVTSELx MSR as appears in [22] 7

3.1 Experimental Setup . 13

3.2 Microbenchmark Pseudo-Code . 14

3.3 Instruction Distribution During across Microbenchmarks 15

3.4 Piece-wise Relationship of Power and Memory . 19

3.5 Significance Test Results for Core i7 . 21

3.6 Significance Test Results(without idle training set) . 22

3.7 Temperature Effects on Power Consumption . 24

3.8 Median Estimation Error for Intel Core Duo . 26

3.9 Median Estimation Error for Intel Core i7 . 26

3.10 Median Estimation Error for the AMD Opteron 8212 . 27

3.11 Standard Deviation of Error for Intel Core Duo . 27

3.12 Standard Deviation of Error for the Intel Core i7 . 28

3.13 Standard Deviation of Error for the AMD Opteron 8212 28

3.14 Cumulative Distribution Function (CDF) Plots Showing Fraction of Space Predicted (y
axis) under a Given Error (x axis) for Each System . 29

3.15 Estimated vs. Measured Error for Intel Core Duo . 29

3.16 Estimated vs. Measured Error for Intel Core i7 . 30

3.17 Estimated vs. Measured Error for the AMD Opteron 8212 30

3.18 CDF Plots Comparison of 4- and 8-counter Model . 32

4.1 Flow diagram for Meta-scheduler . 35

4.2 Absolute Runtimes for Unconstrained Workloads on the Core i7 37

5

4.3 Runtimes for Workloads on the Core i7 (without DVFS) 38

4.4 Runtimes for Workloads on the Core i7 (with DVFS) . 39

A.1 Median Estimation Error for Intel Core i7 . 49

A.2 Estimated vs. Measured Error for Intel Core i7 . 50

B.1 PARSEC Estimation Results . 51

C.1 Tbench power estimation results . 54

D.1 Median Estimation Error for Intel Core i7 . 56

D.2 Estimated vs. Measured Error for Intel Core i7 . 56

6

List of Tables

3.1 Machine Configuration Parameters . 13

3.2 Core i7 Counter Correlation . 17

3.3 Counter-Counter Correlation . 18

3.4 PMCs Selected for Each Platform . 18

3.5 Estimation Error Summary . 25

3.6 Hyper-Threading Partitioning on Core i7 . 31

4.1 Workloads for Scheduler Evaluation . 37

A.1 Power components and related performance counters . 48

7

List of Abbreviations

APIC Advanced Programmable Interrupt Controller

ATX Advanced Technology Extended

BTB Branch Target Buffer

CDF Cumulative Distribution Function

CMP Chip Multiprocessor

DVFS Dynamic Voltage Frequency Scaling

HPC High-Performance Computing

MSR Model Specific Register

NAS NASA Advanced Supercomputing

OMP OpenMP

PCB Printed Circuit Board

PMC Performance Monitoring Counter

PMU Performance Monitoring Unit

ROB Re-order Buffer

RS Reservation Station

SIMD Single Instruction Multiple Data

SPEC Standard Performance Evaluation Corporation

SSE Streaming SIMD Extensions

TDP Thermal Design Power

UOPS Micro-operations

8

Abstract

The problem of accurately estimating the processor power consumption has generated significant
interest among computer architects in the last decade. With the focus on green computing in-
tensifying, increasing number of task management applications have become power aware in last
few years. Hence, the need for a fast and accurate power model is greater than ever. In addition,
today’s multi-core processors demand task schedulers to balance the performance requirements,
power budget and thermal constraints. This thesis addresses this requirement by presenting a per-
core power model based upon performance monitoring counters and temperature data. PMC based
power models provide a straightforward and fast way of analyzing the activity of processor’s un-
derlying microarchitecture. The advantage of our model is that it is general enough to be ported
and scaled across different platforms with ease, fast enough to be used online by task schedulers,
and it requires no knowledge of individual applications. During this thesis work, we validated
the model on three different (two- to eight-core) platforms. The model accurately estimates core
power consumption, exhibiting 1.8%-4.8% per-suite median error on the NAS , SPEC OMP , and
SPEC 2006 benchmarks (and 1.6%-4.4% overall).

Acknowledgements

First and foremost, I will like to thank my adviser Prof. Sally A. McKee. Her technical guidance
and project management skills helped me at every step of my thesis. I hope that some of her
skills had brushed off me during this period. I will also like to thank Karan A. Singh whose PhD
thesis was extended into this work. He was very helpful in getting me started and resolving my
queries about his work. I will like to thank Anders Widen, Chen Guancheng and Jacob Lidman
for giving me valuable inputs for my work. Their company made my thesis period enjoyable. I
also thank Major Bhadauria, Roberto Gioiosa and Marco Cesati for the extremely valuable work
that contributed to the completion of this thesis. Last, but not the least, I will like to thank Magnus
Själander for his insightful comments about my work.

Chapter 1

Introduction

This chapter provides a brief introduction to the problem addressed by this thesis, the previous
work and the outline of this report.

1.1 Problem

In today’s computing environment, power consumption is becoming an all-important metric that
decides the design and performance specifications of a system [31]. A balance between power
consumption and performance requirements is of highest importance to achieve the most judicious
use of available resources in a system. To make power aware decisions, system resource managers
require information about the power consumption and temperature in real time, for individual
resources if available.

In a chip multiprocessor, at any given point of time, different cores may be executing different
applications with a potentially wide range of power consumption figures. In the given scenario, an
estimate of per core power consumption can prove to be a useful metric for consideration by the
task scheduler to make power aware scheduling decisions. Such a power aware scheduler can be
used to achieve a desired balance between power consumption and performance.

But as things stand now, the support from the chip manufacturers for providing accurate power
consumption information for individual cores to the operating system is non-existent. Most current
hardware lack the on-die infrastructure for sensing current consumption because of hardware costs
and the intrusive nature of the current sensing techniques. And even when such hardware exists,
the information is not available to the operating system. For example, the Core i7 [11] processor
from Intel employs the power consumption monitoring hardware on-chip to enable it’s Turbo
Boost technology. But this information is available to and used only by the hardware for pushing
chip performance without ever passing it on to the software.

The hardware resources like a power meter can be employed to measure total system power. Other
current measuring equipments like ammeter and digital multimeter can be used for isolating the
CPU power consumption from the system power. But hardware infrastructure that enables the user

1

0 5000 10000 15000 20000

Time (sec)

80

100

120

140
P

o
w

e
r

(W
)

Figure 1.1: Core i7 System Power Consumption for NAS, SPEC2006 & SPEC-OMP

to measure per core power consumption is unavailable at present since the cores in current CMP
designs share the power plane.

System simulators [10] can be used to obtain detailed and decomposable information about the
power consumption of devices based on the processor activity for a given application. But the
downside of these simulators is that they can be very time consuming to use, and obtaining the
accurate power models for off-the-shelf commercial processors can be very difficult, if not impos-
sible. Also, the architectural power models used in these simulators are prone to error [21]. But
probably, the biggest disadvantage of these simulators is that they are of little use for online power
estimation, especially when the running application and/or the input dataset is unknown.

A viable alternative to core level power monitoring hardware and system simulators is to use the
core specific information available to the software dynamically and estimate the power consump-
tion using this information.

Some previous works [7] have proposed simplistic power models. These works assume that all
the instructions consume same amount of power. Hence, the power consumption can be estimated
by dividing the CPU time between idle/stalled and active and assigning a fixed power value to the
two sections of CPU time as in Equation 1.1.

CorePower = η ∗ Pactive + (1− η) ∗ Pidle (1.1)

But if we take a look at CPU power consumption on a Core i7 machine across a run constituting
different benchmark suites as shown in Figure 1.1, we can see that even when the processor is
active all the time, there can be huge variations in the power consumption.

A modern processor has a very complex microarchitecture. Different applications at different
times would exercise different sections of this microarchitecture. Hence a simplistic power model
of 1.1 will prove to be insufficient. This is further established by the Figure 1.1 that shows the
variations in the CPU power consumption when different microarchitectural sections are exercised
on Core i7. The variations would be even larger when these microarchitectural components are

2

R
EG

SIM
D

BPU
IN

T L2
FSB FP

Microarchitecture Components

100

105

110

115

120

C
o

re
 i
7

 P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n

Figure 1.2: Variations in Core i7 Processor Power Consumption when different processor components are
exercised

exercised in various combinations.

This enhances a case for a more detailed power model that can estimate the power consumption
with reasonable accuracy even when application exercises different components of the microar-
chitecture in different phases of it’s run.

This thesis presents a portable and scalable per-core power estimation model that enables the
power aware resource managers to make scheduling decisions based upon core level power con-
sumption information.

1.2 Previous Work and Contribution

This thesis builds upon the work done by Singh et al. [34, 35], which uses hardware performance
monitoring counters and core temperature data to create a per core statistical power estimation
model. They validated the model on three different platforms, namely Intel Q6600, AMD Phenom
and Intel E5430 with median accuracy of less than 7% across all platforms. They have also
demonstrated the usage of the power model in a live power management application to schedule
processes under the constraint of a given system power budget.

For this thesis, we have validated the existing model on three more platforms, namely Intel Core
Duo, AMD Opteron 8212 and Intel Core i7. We automated the data analysis process, analyzed
the error sources, explored an alternate model for power estimation, and created a custom test
benchmark to analyze the model performance in various corner conditions. We also augmented
the scheduler code for scalability and modularity, introduced two new scheduling policies and
implemented new scalable DVFS approach in the scheduler.

3

1.3 Report Outline

In chapter 2, we give a brief introduction to the theoretical aspects of our work. We explain the
types of performance counters available, their reading mechanism, and introduce the tools avail-
able for reading performance counters. This chapter also introduces the statistical techniques that
we use for this thesis work. We introduce the benchmark suites that we use for model evaluation
at the end of this chapter.

In chapter 3, we explain the methodology that we use for making the power estimation model
and present the evaluation results. We start with describing the setup of our experiments, our test
machines, the software tools that we use for statistical analysis, and the microbenchmarks that
we use as training set. We then explain procedure for counter selection, model formation and
validation. In this chapter, we also discuss the effect of temperature, and various power reduction
and performance boosting techniques on the accuracy of the model like DVFS, Turbo Boost, and
Hyper-Threading.

In chapter 4, we present a live power management application that we use as proof-of-concept for
exploring our model usage. We explain various scheduling policies that we use for power aware
scheduling and present the results.

In chapter 5, we discuss the significant contributions made by research work related to our thesis
work. We discuss the pros and cons of the research papers and compare them with our work.

In chapter 6, we discuss the research work that will be carried out related to thesis work in future.

In chapter 7, we conclude this thesis. We reiterate the contributions, discuss the results and state
the significance of our research work.

4

Chapter 2

Background Information

This chapter briefly introduces some of the basic concepts that are used in this thesis.

2.1 Performance Monitoring Counters

In this thesis work, we use performance monitoring counters to estimate power consumption. This
section gives a brief introduction to the performance monitoring counters for x86 architecture.

Most of the modern processors are equipped with a Performance Monitoring Unit that helps the
software programmers in analyzing the performance of the processor and the interaction between
the program and the microarchitecture. The PMUs provide a wide variety of performance events
that can be sampled and mapped to limited set of Performance Monitoring Counters. The PMCs
are accessible as Model Specific Registers by the operating system. The MSRs are control registers
that are supported on a finite range of processor implementations. Hence, PMCs act as ideal hooks
for peeking into the level of activity of certain microarchitectural components. The programmers
can use this information to identify the performance bottlenecks and opportunities to speed up
their applications. The PMCs can be used for sampling and investigating events like cache misses,
micro-ops retired, stalls at various stages of out-of-order pipeline, floating point/memory/branch
operations executed, and many more. Although, the PMC counts are not error-free [40, 41], if
used correctly, the errors are small enough to make PMCs suitable candidates for estimating the
power consumption. For the modern CMP systems, the PMCs are available individually for each
core and hence can be used for making core specific models.

The number and variety of PMCs available for modern processors is increasing with each new
architecture. For example, the number of PMCs available for use in Intel Core Duo processor was
34 while the Intel Core i7 processor has around 450 events [22] that can be counted using PMCs.
This comprehensive coverage of event information increases the chances that the PMCs available
for the performance and power analysis will be good representatives of overall microarchitectural
activity.

5

2.1.1 Types of PMCs

There are two basic types of PMCs, architectural and non-architectural PMCs.

• Architectural: This category of PMCs behave consistently across processor models that
belong to the same instruction set architecture. The architectural PMCs are usually small in
numbers. The examples of this category of PMCs include Unhalted Core cycles, Instructions
Retired, and Last Level Cache Misses.

• Non-Architectural: This category of PMCs are specific to a particular microarchitecture.
The availability and behavior of these PMCs may change between different processor mod-
els. A larger variety of events can be monitored using non-architectural PMCs compared
to architectural PMCs. Examples include Micro-operations Retired, Number of Loads Dis-
patched, and Resource Stalls.

Both these types of PMCs can be read through the same set of MSRs.

2.1.2 Reading mechanism

As mentioned above, PMCs are mapped to the MSRs of the processor for reading by the software.
MSRs mapping PMCs can be classified as general purpose PMCs and fixed PMCs. The general
purpose PMC registers are identified as IA32 PMCx, and they can be used for counting any of the
events available for monitoring. The fixed PMC registers are identified as IA32 FIXED CTRx and
they are mapped to fixed events. Most of the processors have either two or four MSRs mapped as
general-purpose PMCs. This limits the number of events that can be monitored using performance
counters simultaneously. The PMCs can be written or read using the instructions used for general
MSRs: WRMSR for writing MSR registers and RDMSR for reading. However these instructions
are executable only from privilege level 0 of the operating system. PMCs can also be read us-
ing an instruction RDPMC. This instruction is available from privilege levels other than 0 when
Performance Counter Enable (PCE) bit in Control Register 4 (CR4) is set.

The event selection and configuration of general purpose PMCs is done using PERFEVTSELx
(performance event select) MSRs. The bit structure of PERFEVTSELx on processors supporting
architectural performance monitoring version 3 is shown in figure 2.1.2.

The description of the fields shown in the layout for PERFEVTSELx register in figure 2.1.2 is as
follows:

• Event Select: These bits select the logic unit of PMU

• UMASK: These bits select the event within the logic unit

• CMASK: These bits select the threshold for counting the event. When CMASK is non-
zero, the counter is incremented by one during the cycles when the count of occurrences
of event being monitored was greater than or equal to value of CMASK. When CMASK is
zero, the counter is incremented each cycle by the count of event occurrences.

6

Figure 2.1: Layout of IA32 PERFEVTSELx MSR as appears in [22]

• EN: This is performance counter enable bit.

• INT: When set, the logical processor generates an exception through its local APIC on
counter overflow.

• PC: When set, the logical processor toggles the external PMi pin and increments the counter
on every occurrence of performance-monitoring events; when clear, the processor toggles
the pin only when the counter overflows.

• E: This bit enables (when set) edge detection of the selected microarchitectural condition.
The logical processor counts the number of deasserted to asserted transitions for any condi-
tion that can be expressed by the other fields. The mechanism does not permit back-to-back
assertions to be distinguished. This mechanism allows software to measure not only the
fraction of time spent in a particular state, but also the average length of time spent in such
a state (for example, the time spent waiting for an interrupt to be serviced).

For further reading, please refer to Intel’s System Programming Guide for Intel 64 and IA-32
architectures.

2.1.3 Performance counter monitoring tools

Various tools are available for reading performance counter values. Some of them are listed below:

• OProfile: OProfile is a system profiler for Linux systems. It leverages the hardware perfor-
mance counters for performance profiling of the applications. This tool calls perfmon library
to read the performance counter values. OProfile is part of all the major Linux distributions
and supports all major platforms.

• VTune: VTune is a commercial performance analyzer from Intel. It can do software per-
formance analysis on x86 and x64 machines. It includes a performance counter monitor for
identifying system level performance issues.

7

• Pfmon: Pfmon is a simple performance monitoring tool that can collect counter values for
a particular thread or system-wide. Pfmon uses perfmon2 library for accessing the perfor-
mance counters and exhibits low overhead. It requires a kernel patch.

We use Pfmon to access performance counters in our experiments because of its ease of use and
small footprint.

2.2 Statistical Modeling

In this thesis work, we use statistical modeling for creating our power estimation model. Statisti-
cal modeling techniques are desirable because compared to the analytical modeling, the time and
resources required to study and analyze the underlying processor microarchitecture is greatly re-
duced. Moreover, if the parameters used in the statistical model are generalized, like performance
counters, the methodology can prove to be easily portable across various processor models. Sta-
tistical modeling can be used in the cases where large number of empirical data can be collected
to study the relation between the predictor variables and the outcome, which is true in our case.
This section gives a brief introduction to the statistical techniques we use for forming the model.

2.2.1 Rank correlation

Correlation can be defined as the measure of statistical dependence between two random variables.
Correlations can be useful for selecting the best candidates among the available predictor variables
for defining a predictive relationship between predictors and outcome. In our work, we select
the performance counters that are most highly correlated with empirical power consumption. The
degree of correlation is defined by the correlation coefficient. There are various types of correlation
coefficients. The Pearson’s product-moment correlation coefficient is only sensitive to the linear
dependence among the random variables. On the other hand, the rank correlation coefficients is
sensitive to non-linear relationships of the variables. The rank correlation coefficients measure
the tendency of one variable to increase when the other variable increases. Unlike Pearson’s
correlation coefficient, the rank correlation coefficient’s value does not get adversely affected if
the relationship between the two variables is nonlinear. For example, consider the equations, 2.1
and 2.2. For the equation 2.1, the correlation coefficients would be perfect 1 for both Pearson’s
and rank correlation. But for the second equation, rank correlation coefficient would still be 1 but
not Pearson’s.

y = a ∗ x (2.1)

y = ax (2.2)

The rank correlation coefficient can be calculated by two methods: Spearman’s rank correlation
and Kendall Tau’s rank correlation.

8

The rank correlation is preferable for our methodology because the relationship between the per-
formance counter values and the power consumption is frequently nonlinear.

2.2.2 Multiple linear regression

In statistics, regression analysis is used to predict a continuous dependent variable from one or
more independent variables. As an example, in Equation 2.3, y is the dependent variable and
xi(iε[1, n]) are independent variables. The regression model relates y to a function of xi(iε[1, n]).
Before we go ahead with the regression analysis, we need to specify the form of function f . For
example, f can be linear, exponential, power, gaussian, or logarithmic. We chose linear regression
analysis for our work since previous research works [12, 26, 27, 29] have shown good results by
using linear models to relate architectural events to CPU power consumption and because of the
simplicity of linear regression model.

y = f(x1, x2, · · · , xn) (2.3)

In linear regression analysis, the dependent variable y is linear combination of independent vari-
ables xi. So, for example, the Equation 2.3 would take the form as in Equation 2.4. Here, ε is the
total residue collected for all xi that deviate from the linear regression path. The linear regression
analysis calculates the suitable weights for each independent variable such that the resulting ε is
minimum.

y = β0 + β1 ∗ x1 + β2 ∗ x2 + · · ·+ βn ∗ xn + ε (2.4)

2.3 Test Benchmarks

This section gives a brief introduction of the test benchmarks used in this thesis work for model
validation.

2.3.1 SPEC CPU2006

SPEC CPU2006 is CPU-intensive single-threaded benchmark suite. The applications included in
this benchmark suite stress system processor both memory subsystem. The suite includes both
floating point and integer applications. We use a total 26 applications from this suite, twelve of
which are integer arithmetic intensive and the rest are floating point computations intensive.

2.3.2 SPEC OMP2001

SPEC OMP2001 is a multi-threaded benchmark suite consisting of OpenMP based applications.
This benchmark suite is targeted towards measuring the performance of shared memory systems.

9

Like SPEC CPU2006, this suite also exercises the system processor and memory. We use a total
10 applications from this suite.

2.3.3 NAS

NAS Parallel Benchmarks are a set of applications designed to test the performance of parallel
supercomputers, provided by the NASA Advanced Supercomputing (NAS) division. The bench-
marks are derived from Computational Fluid Dynamics(CFD) applications. The applications come
with three different size of input data sets, Class A, Class B and Class C, with Class C involving
maximum amount of work. We use Class B flavor of benchmark applications for our work. We
use a total of 9 applications from this suite.

10

Chapter 3

Power Estimation Model

This chapter describes our experimental setup, the methodology we use to select the counters,
the process of model formation and presents the results from the validation of our power model
against various test benchmark suites.

3.1 Overview

In this thesis work, we leverage the event driven performance monitoring counters of the modern
processors to make a representative power estimation model. Since the performance monitor-
ing counters represent the activity factor of architectural components, we can assign appropri-
ate weights to appropriate counters using statistical analysis and estimate the processor power
consumption. During the training phase of statistical analysis, we run application independent
microbenchmarks on each core to exercise various microarchitectural components. During this
run, we sample all the significant performance counters available for that processor model and
the related empirical power consumption values for every core. We then select four counters
that are most highly correlated with empirical power values and provide comprehensive and non-
redundant information. We use the sampled data from these four counters along with the related
core temperature values as predictors and empirical power values as response variable in multiple
regression analysis to form a linear regression model. This model acts as our per-core power esti-
mation model. We evaluate the accuracy of our model against different single- and multi-threaded
benchmark suites.

3.2 Experimental Setup

This section describes our experimental setup, apparatus and software tools we use to successfully
perform the experiments. As described in the overview section above, we need a mechanism
to measure per-core empirical power measurement, read the performance counters and perform
correlation and multiple regression analysis.

11

3.2.1 Empirical power measurement

For our experiments, we used an external power meter from Wattsup Pro [17] to measure the
actual system power consumption. The idea behind using an external power meter is to be as non-
intrusive as possible. This meter is accurate to within ±1.5%, and has the maximum sampling
rate of one sample per second. We are thus limited to validating the estimated power values with
actual power consumption at the granularity of one second. Please note that this limitation is
only applicable for the validation stage. The model itself can be used for power calculation at
much higher granularity. The exploration of hardware apparatus that can sample actual power
consumption at higher granularity and accuracy is part of future work.

We approximate the empirical per core power consumption by subtracting the uncore power from
the CPU power and dividing the residual by number of cores. Since none of the benchmark
applications we use are I/O bound, we assume that the uncore power sans power consumed by
DRAM remains constant1. Hence, we can approximate the uncore power by subtracting the idle
CPU power from the idle system power. The idle CPU power values are frequently available from
tech sites such as Anandtech and Tom’s Hardware. But when these values are not available, to
calculate the value of idle CPU power, we first observe the idle system power and then remove
the hardware components like graphics card, Ethernet controller, hard disk and RAM sticks to get
an approximate value of CPU power. We ignore the fact that power value we get is the power
being sourced from the supply line. Taking into account the efficiency of power supply unit of the
motherboard and the on-board voltage regulators, the actual power being consumed by the CPU
would be much less. Hence, the sum of the absolute per core values presented in this work may
at times exceed the thermal limit of CPU. This however doesn’t affect the relative accuracy of
our model since the power values estimated target the supply power consumption values instead
of actual. If one is interested in actual CPU power consumption values, he/she can do that easily
if the efficiency figures of power supply unit of the system and on-board voltage regulators are
known. The power consumption values obtained from the power meter are used only during the
procedure of model formation and model validation. Once the model is formed, the power meter
is no longer required for core power estimation.

3.2.2 Reading performance counters and core temperature

We use perfmon2 library [18] and pfmon tool to read the performance counter values. We use
sensors utility provided by the lm-sensors driver to read the core temperature from on-die thermal
sensors.

3.2.3 Statistical analysis

We use R package [32] for calculating correlation of individual counters and STAT package [19]
for multiple regression analysis.

1Please note that any change in the DRAM power consumption is part of the model estimates

12

Intel Core Duo Intel Core i7 AMD Opteron 8212
Cores/Chips 2, dual-core 4, quad-core 8, quad dual-core
Frequency (GHz) 1.667 2.93 2.0
Process (nm) 65 45 90
L1 Instruction 32 KB 8-way 64 KB 2-way 64 KB 2-way
L1 Data 32 KB 8-way 64 KB 2-way 64 KB 2-way
L2 Cache 2 MB 8-way shared 2 MB 16-way shared 1024 KB 16-way exclusive
L3 Cache N/A 8 MB 32-way shared N/A
Memory Controller off-chip, 2 channel off-chip, 2 channel on-chip, 2 channel
Main Memory 3 GB DDR2-667 16 GB DDR3-1333 16 GB DDR2-667
Bus (MHz) 667 1333 1000
Max TDP (W) 31 95 95
Linux Kernel 2.6.23 2.6.29 2.6.31

Table 3.1: Machine Configuration Parameters

Figure 3.1: Experimental Setup

3.2.4 Test machines

For this master’s thesis, we validated the power estimation model on three different platforms. The
table 3.1 lists the platform used for this thesis work.

3.2.5 Hardware setup

As shown in the Figure 3.2.5, we use two machines for conducing the experiments. The target
machine is one for which power estimation model is supposed to be formed. This target machine
is connected to the supply line through the power meter. We sample the power values from the
wattsup meter on the second (test) machine using a CPAN perl module wattsup-daemon. This is
to make sure that this collection procedure doesn’t pollute the power consumption values on the
target machine. The two machines are time synchronized to make sure that correlation between
the counter and power values is correct.

13

f o r (i =0 ; i< i n t e r v a l ∗PHASE CNT ; i ++) {
phase = (i / i n t e r v a l) % PHASE CNT ;
sw i t ch (phase) {

case 0 :
/∗ do f l o a t i n g p o i n t o p e r a t i o n s ∗ /

case 1 :
/∗ do i n t e g e r a r i t h m e t i c o p e r a t i o n s ∗ /

case 2 :
/∗ do memory o p e r a t i o n s w i t h h igh l o c a l i t y ∗ /

case 3 :
/∗ do memory o p e r a t i o n s w i t h low l o c a l i t y ∗ /

case 4 :
/∗ do r e g i s t e r f i l e o p e r a t i o n s ∗ /

case 5 :
/∗ do n o t h i n g ∗ /

.

.

.
}
}

Figure 3.2: Microbenchmark Pseudo-Code

3.2.6 Microbenchmarks

We use the application independent microbenchmarks developed by Singh et al. [35] as training
set for establishing the correlation between the normalized performance counter values and the
measured power consumption value. These microbenchmarks exercise the performance counters
from various categories, in isolation wherever possible, to establish the correlation between the
counters and power consumption. The microbenchmarks consist of a mix of C and assembly
code. The microbenchmarks run in different phases exercising counters from different categories
in different phases. The Figure 3.2 shows the pseudo code for the microbenchmarks.

Apart from establishing the correlation with the power consumption, the microbenchmarks also
establish the correlation between the counters themselves. This helps us in finding out the coun-
ters that are highly correlated with each other and hence redundant. The Figure 3.3 shows the
instruction distribution for the three microbenchmarks used as training set in our work.

As shown in the instruction distribution, the microbenchmarks have large variations in instruction
mix with different phases exercising different architectural components. Moreover, microbench-
marks change computational intensity in terms of total instructions retired per cycle over the pe-
riod of run. Although, all the stated microbenchmarks exercise all the counter categories at various
phases, they differ in terms of how they mix their phases. For example, nonlinear benchmark in-

14

100 200 300 400 500

Time(sec)

	

0

20

40

60

80

	
In

s
tr

u
c
ti

o
n

 D
is

tr
ib

u
ti

o
n

MEM

FP

BRANCH

INT

(a) Nonlinear

100 200 300 400

Time(sec)

0

20

40

60

80

	
In

st
ru

c
ti

o
n

 D
is

tr
ib

u
ti

o
n

 (
%

)

MEM

FP

BRANCH

INT

(b) PhaseMEM

500 1000 1500

Time(sec)

0

20

40

60

80

	
In

st
ru

c
ti

o
n

 D
is

tr
ib

u
ti

o
n

 (
%

)

MEM

FP

BRANCH

INT

(c) PhaseNewMIX

Figure 3.3: Instruction Distribution During across Microbenchmarks

creases it’s memory accesses gradually, phaseMEM accesses memory in separate but continuous
phases while phaseNewMIX spreads out its memory accesses. These variations help in covering
the corner cases for regression analysis.

We compile the microbenchmarks with no optimization to prevent redundant code removal, and
run them simultaneously on each core. We assume that behavior of all programs falls within
the space defined by our categories, making the approach applicable to both current and future
applications.

Apart from the microbenchmarks, we also perform the training on the counter samples collected
when the processor is idle.

3.3 Counter Selection

The selection of appropriate performance counters to be used in the power model is an extremely
important step for the accuracy of the model. The methodology is aimed at choosing the counters
that are most highly correlated with actual power consumption. At the same time, the chosen
counters should preferably cover larger set of events to make sure that they are exercised by a
general set of applications. If the chosen counters do not meet these criteria, the model will be
error-prone.

The counter selection process involves collecting the activity factor of all the available counters on
the processor using microbenchmarks, categorizing the counters and calculating the correlation of

15

each counter with actual power consumption, and then evaluating the top few counters to pick the
ones best suited for the power estimation model.

3.3.1 Counter categories

To choose appropriate PMCs, divide the available counters into four categories and then choose
one counter from each category. We do this to make sure that the chosen counters are comprehen-
sive representations of entire microarchitecture and are not biased towards any particular section.
We chose four categories because most of the processors have only two or four MSRs to which
the performance counters can be mapped. As a result, we are limited in the number of counters
that we can use in an online model without sacrificing the accuracy of sampled counter values.
To chose the four categories, we take inspiration from the real estate usage of a typical modern
processor. The caches and floating point execution units form large part of chip real estate and
the performance counters which keep a tab on their activity factors would be very useful additions
to the total power consumption information. There are various counters available in both these
categories. For example, we can count the events that accessed all the different levels of cache
hierarchy, and the total number of cache references as well as the number of cache misses. For
the floating point operations, depending upon the processor model, one can count separately or
in combination, the number of multiply, addition, or division operations. Apart from these two
components, we expect out-of-order logic to consume a significant chunk of power consumption
because of deep pipelining of modern processors. The stalls caused by the pipeline front end
due to branch mispredictions or empty instruction decoder may reduce power. But the pipeline
stalls caused because of full reservation stations and reorder buffers will be positively correlated
with power. This is because full RS/ROB indicates that processor is working hard to extract
instruction-level parallelism and keeping the execution units busy. Hence, pipeline stalls indicate
not just the power usage of out-of-order logic but executions units as well. Therefore, we add the
number of pipeline stalls as the third category for our counter selection. For the fourth category,
we prefer choosing a generalized counter that can cover all the microarchitectural components that
are not covered by the above three categories. This includes for example integer execution units,
branch prediction unit, and SIMD units. Hence, we choose total instructions retired/executed as
our fourth category to get an overall picture of CPU usage. Thus we categorized the counters as:
FP Units, Memory, Stalls, and Instructions Retired.

3.3.2 Correlation

We collect the data for all the counters available for the particular platform by multiple runs of the
benchmark. While running the microbenchmarks, we also collect the actual power consumption
values from the power meter. Once we have collected all the data, we divide the counters in cate-
gories as described in 3.3.1. Then to select the counters for model formation, we use Spearman’s
rank correlation [36] to measure the relationship between each counter and power. We use the
rank correlation method because later on, while forming the model, we intend to apply nonlinear
transformations to the counter input values. Using the rank correlation, in comparison to correla-
tion methods like Pearson’s, makes sure that the non-linear relationship between the counter and

16

(a) FP Operations

Counters ρ

FP COMP OPS EXE:X87 0.65
FP COMP OPS EXE:SSE FP 0.04

(b) Total Instructions

Counters ρ

UOPS EXECUTED:PORT1 0.84
UOPS ISSUED:ANY 0.81
UOPS EXECUTED:PORT015 0.81
INSTRUCTIONS RETIRED 0.81
UOPS EXECUTED:PORT0 0.81
UOPS RETIRED:ANY 0.78

(c) Memory operations

Counters ρ

MEM INST RETIRED:LOADS 0.81
UOPS EXECUTED:PORT2 CORE 0.81
UOPS EXECUTED:PORT234 CORE 0.74
MEM INST RETIRED:STORES 0.74
LAST LEVEL CACHE MISSES 0.41
LAST LEVEL CACHE REFERENCES 0.36

(d) Stalls

Counters ρ

ILD STALL:ANY 0.45
RESOURCE STALLS:ANY 0.44
RAT STALLS:ANY 0.40
UOPS DECODED:STALL CYCLES 0.25

Table 3.2: Core i7 Counter Correlation

the power values does not affect the correlation coefficient.

Table 3.2 shows the top counters in each category as per the correlation coefficients obtained
on Core i7 platform. As per table 3.1(a), only FP COMP OPS EXE:X87 is a suitable candi-
date from the FP operations category. One thing to note here is that, ideally, to get total FP
operations executed on the processor, we should sample both FP COMP OPS EXE:X87 and
FP COMP OPS EXE:SSE FP. For our experiments on Core i7, we use binaries compiled ear-
lier on Intel Q6600 machine. The compiler used for compilation of these binaries didn’t use
SIMD floating point operations and hence we see high correlation for X87 counter but not for SSE
counter. Compiling binaries with gcc 4.4 on Core i7, makes the microbenchmarks SSE intensive
with minimal usage of X87. We stick with older binaries here because we were not able to compile
all the test benchmarks on Core i7. Ideally, we will like chip manufacturers to provide a counter
that counts the sum of X87 and SSE FP instructions so that we don’t have to choose one of the
two. As per table 3.1(b), the correlation values in total instructions category is too close to call and
will need further analysis for selection. Same is the case for top three counters in stalls category
as shown in 3.1(d), but we need to remember that we are looking for counters that provide us
insight about out-of-order logic usage and hence, RESOURCE STALLS:ANY counter is our best
bet. As for counters for memory operations, choosing one of MEM INST RETIRED:LOADS or
MEM INST RETIRED:STORES will bias the model towards load or store intensive applications.
Similarly, choosing one of UOPS EXECUTED:PORT1 or UOPS EXECUTED:PORT0 counter
from total instructions category will bias the counter towards add or multiply intensive applica-
tions. Hence we do not choose these counters for further analysis.

3.3.3 Inter-Counter correlation

As shown in the table 3.2, correlation analysis may throw up counters from the same category
with very similar correlation numbers. If the correlation coefficients are too close to call, further
analysis is required to choose an appropriate counter. Since, our aim is to make a comprehen-
sive power model using only four counters, we need to make sure that the counters chosen are

17

(a) MEM vs INSTR Correlation

UOPS EXECUTED:PORT234 LAST LEVEL CACHE MISSES

UOPS ISSUED:ANY 0.97 0.14
UOPS EXECUTED:PORT015 0.88 0.2
INSTRUCTIONS RETIRED 0.91 0.12
UOPS RETIRED:ANY 0.98 0.08

(b) FP vs INSTR Correlation

FP COMP OPS EXE:X87

UOPS ISSUED:ANY 0.44
UOPS EXECUTED:PORT015 0.41
INSTRUCTIONS RETIRED 0.49
UOPS RETIRED:ANY 0.43

(c) STALL vs INSTR Correlation

RESOURCE STALLS:ANY

UOPS ISSUED:ANY 0.25
UOPS EXECUTED:PORT015 0.30
INSTRUCTIONS RETIRED 0.23
UOPS RETIRED:ANY 0.21

Table 3.3: Counter-Counter Correlation

Category Intel Core Duo Intel Core i7 AMD Opteron 8212

Memory L2 LINES IN LAST LEVEL CACHE MISSES DATA CACHE ACCESSES
Instructions Executed BRANCH INSTRUCTIONS RETIRED UOPS ISSUED RETIRED INSTRUCTIONS
Floating Point FP COMP OPS EXE FP COMP OPS EXE:X87 DISPATCHED FPU:OPS MULTIPLY
Stalls DBUS BUSY:THIS CORE RESOURCE STALLS:ANY DECODER EMPTY

Table 3.4: PMCs Selected for Each Platform

not providing redundant information. We do this by analyzing the correlation of counters from
one category with the counters of other categories. To select one of the counters from mem-
ory operations category, we analyze the correlation of UOPS EXECUTED:PORT234 CORE and
LAST LEVEL CACHE MISSES with the counters from total instructions category as shown in
the table 3.2(a). From this table, it is evident that UOPS EXECUTED:PORT234 CORE is highly
correlated with instructions counter and hence providing redundant information. We thus choose
LAST LEVEL CACHE MISSES to represent memory operations. Now to choose one of the
counters from total instructions category, we analyze the correlation of these counters with FP and
Stalls counter as in 3.2(b) and 3.2(c) respectively. The results that we get are too close to select
one of the four options. In such a case, we can either choose one counter at random or choose a
counter intuitively. UOPS EXECUTED:PORT015 is not so preferable since it does not cover the
memory operations that were executed but were satisfied by L1/L2 cache instead of going to mem-
ory. The UOPS RETIRED:ANY and INSTRUCTIONS RETIRED cover only those instructions
that were retired but do not cover the instructions that were executed but not retired due to branch
misprediction (wasted work). A UOPS EXECUTED:ANY counter would have been good but
since we don’t have it, the next best thing we have is UOPS ISSUED:ANY. This counter covers
all the instructions issued, so it also cover the instructions that were issued but not executed (and
not retired obviously), because of flushing of RS/ROB after branch misprediction. To validate this
theory, we have tested our model with both UOPS ISSUED:ANY and UOPS RETIRED:ANY,
and the first one gives better results, albeit only marginally.

Table 3.4 shows the counters selected for each of the test machines that were used during this
thesis.

18

Figure 3.4: Piece-wise Relationship of Power and Memory

3.4 Model Formation

We use multiple regression analysis to form a linear regression model for predicting the power
consumption using sampled counter values and temperature readings. Once the desired counters
have been identified, we run the microbenchmarks and sample the chosen counters, temperature
sensor readings and the empirical power consumption. The sampled PMC values ei are normalized
to the elapsed cycle count to generate an event rate ri, so that it can be used in an equation involving
rise in core temperature T and the rise in power consumption Pcore, which are instantaneous
values. This makes sure that changing the sampling period of the readings doesn’t affect the
weight of the respective predictors.

3.4.1 Piecewise modeling

We get better fit, when we break the collected samples into two parts based upon the value of
either memory counter or FP counter. Breaking the data using memory counter value helps us in
separating the memory bound phases from the CPU bound phases. Using FP counter instead of
memory to break the data helps in separating the floating point intensive phases from non-floating
point intensive phases. The selection of candidate for breaking the counter is machine specific and
depends on what gives better fit. For Intel Core Duo we break the data using FP counter while on
AMD 8212 and Intel Core i7 we use memory counter. The value of the breakpoint is decided by
eyeballing the counter vs power data. We use the eureqa tool [28] to analyze this data and decide
the breakpoint value. The relation between memory and empirical power for Core i7 is shown in
the Figure 3.4.1. As shown, the power doesn’t show any correlation with memory for very low
values (< 1e− 6).

3.4.2 Nonlinear transformations

The relationship between the counters and the power consumption is not always linear. The em-
pirical observation suggests that many a times non-linear correlation exists between the two. To

19

accommodate such a behavior in the model, we can explore nonlinear regression analysis tech-
niques. But a simpler approach is to apply non-linear transformations on the suspected counters in
a linear regression model. This approach ensures that we get a better fit in the face of existing non-
linear relationships while at the same time retain the simplicity of linear regression techniques. In
most of the cases, we use logarithmic transformation to get a better fit.

3.4.3 Regression model

We formulate a piece-wise linear regression model using STAT Package’s regress tool based on
Kerlinger and Pedhazur’s algorithm [25], as depicted in Equation 3.1. We apply transformations
gi to the event rates as shown in Equation 3.2 to accommodate the non-linearity in the relationship
between ri and power, wherever applicable.

P̂core =
{

F1(g1(r1), · · · , gn(rn), T), if condition
F2(g1(r1), · · · , gn(rn), T), else (3.1)

where ri = ei/(cycle count), T = Tcurrent − Tidle

Fn = p0 + p1 ∗ g1(r1) + ...+ pn ∗ gn(rn) + pn+1 ∗ T (3.2)

The sample linear regression model for Core i7 is shown in Equation 3.3. For the first part of
the piece-wise model, the coefficient for memory counter is zero. This is expected as per the data
observed in Figure 3.4.1. Another thing to note is that some of the coefficients are negative even
though all the counters are positively correlated with power. This shows that some amount of
colinearity exists in our model. Although not desirable, this is acceptable as long as our model
exhibits low error rates.

P̂core =


10.9246 + 0 ∗ rMEM + 5.8097 ∗ rINSTR + 0.0529 ∗ rFP+

6.6041 ∗ rSTALL + 0.1580 ∗ T, if rMEM < 1e− 6
19.9097 + 556.6985 ∗ rMEM + 1.5040 ∗ rINSTR + 0.1089 ∗ rFP+

−2.9897 ∗ rSTALL + 0.2802 ∗ T, if rMEM ≥ 1e− 6

(3.3)

3.4.4 Significance testing

We need to check the results of the significance testing performed by regress tool during model
formation to verify the significance of chosen counters as predictors of power consumption. The
results of the significance test for the model formation on Core i7 are shown in the Figure 3.5.
The R-squared value in the regress output shows the overall significance of the regression. It
is a measure of the fraction of response variable (core power) that is predicted by the predictor
variables. As per the results obtained, we can see that our regression model shows very high
overall significance.

The significance test of the individual predictors tell us the importance of each counter chosen in
the model formation. The p values in the last column of significance test shows the probability of
null hypothesis for the chosen counter. In other words, it signifies the affect the chosen counter

20

Significance test for prediction of POW
 Mult-R R-Squared SEest F(5,245) prob (F)
 0.9994 0.9988 0.3416 41496.6729 0.0000

Significance test(s) for predictor(s) of POW
Predictor beta b Rsq se t(245) p
X1 -0.0219 0.0000 0.2279 0.0000 99.9950 0.0000
X2 0.5482 5.8097 0.9791 0.1610 36.0908 0.0000
X3 0.0147 0.0529 0.0630 0.0082 6.4814 0.0000
X4 0.1747 6.6042 0.8971 0.2586 25.5400 0.0000
X5 0.3277 0.1580 0.9875 0.0095 16.6771 0.0000

(a) regress output piece 1

Significance test for prediction of POW
 Mult-R R-Squared SEest F(5,2465) prob (F)
 0.9653 0.9318 0.9637 6733.9879 0.0000

Significance test(s) for predictor(s) of POW
Predictor beta b Rsq se t(2465) p
Y1 0.5285 556.6986 0.7668 11.4759 48.5104 0.0000
Y2 0.4510 1.5040 0.9112 0.0589 25.5480 0.0000
Y3 0.1215 0.1089 0.0303 0.0048 22.7455 0.0000
Y4 -0.1767 -2.9897 0.6157 0.1436 20.8172 0.0000
Y5 0.5557 0.2802 0.8973 0.0083 33.8460 0.0000

(b) regress output piece 2

Figure 3.5: Significance Test Results for Core i7

is having on the prediction of the power and lower is better. As can be seen in the results, all our
chosen counters show zero probability of being insignificant.

We mentioned in 3.2.6 that we use idle processor samples for training apart from microbench-
marks. We can see the change in significance tests when we remove these idle samples from our
training set in Figure 3.6. As seen, there is sharp decrease in values of R-squared when we remove
idle set.

3.5 Temperature Effects

The power consumption of processor is composed of dynamic and static power consumption el-
ements. Among these, the static power consumption is dependent on temperature of the core.
As shown in Equation 3.5, the static power consumption of processor is a function of leakage
current and supply voltage. The processor leakage current, is in turn, affected by process technol-
ogy, supply voltage and temperature. With the increase in the power consumption, the processor
temperature increases. This increase in temperature increases the leakage current which in turn

21

Regression Equation for POW:
POW = 0 X1 + 3.923 X2 + 0.0306 X3 + 3.359 X4 + 0.1881 X5 + 14.0756

Significance test for prediction of POW
 Mult-R R-Squared SEest F(5,150) prob (F)
 0.9497 0.9020 0.4321 275.9820 0.0000

Significance test(s) for predictor(s) of POW
Predictor beta b Rsq se t(150) p
X1 0.0525 0.0000 0.0907 0.0000 99.9950 0.0000
X2 1.0066 3.9228 0.8669 0.2731 14.3649 0.0000
X3 0.0781 0.0306 0.0761 0.0104 2.9375 0.0038
X4 0.4711 3.3595 0.8503 0.4712 7.1299 0.0000
X5 0.4918 0.1881 0.2799 0.0115 16.3237 0.0000

(a) regress output piece 1

Significance test for prediction of POW
 Mult-R R-Squared SEest F(5,2393) prob (F)
 0.8693 0.7558 0.8783 1480.9011 0.0000

Significance test(s) for predictor(s) of POW
Predictor beta b Rsq se t(2393) p
Y1 1.3698 692.9299 0.8200 12.0456 57.5256 0.0000
Y2 1.0108 2.7653 0.8933 0.0846 32.6866 0.0000
Y3 0.2846 0.1214 0.0409 0.0044 27.5892 0.0000
Y4 -0.2035 -1.8659 0.7921 0.2031 9.1851 0.0000
Y5 0.2929 0.1993 0.5357 0.0101 19.7582 0.0000

(b) regress output piece 2

Figure 3.6: Significance Test Results(without idle training set)

22

increases the processor static power consumption. This effect is shown in the Figure 3.7(a). To
study the affect of temperature on power consumption, we run a multi-threaded program that exe-
cutes MOV operations in an infinite while loop. Hence, the behavior of the program over its entire
run is almost constant. This should entail that the dynamic power consumption of the processor
doesn’t change over the run of the stated program as per Equation 3.6. Thus, the gradual increase
in power consumption during the run of the program can be attributed to the gradual increase in
temperature as shown in the graph. As we can see, the total power consumption increases by al-
most 10% due to change in static power consumption. To account for this increase in static power,
it is necessary to include temperature in the power model.

As per Equation 3.5, the static power consumption increases exponentially with temperature.
We can confirm this empirically by plotting the increase in power consumption once the program
starts execution with the increase in temperature as shown in the Figure 3.7(b). The exponential
regression gives us the curve as shown in the figure, which closely follows the empirical data points
with determination coefficient R2 = 0.995. Plotting this estimate of increment in static power
consumption as in 3.7(c) explains the gradual rise in total power consumption when the dynamic
behavior of program is constant. But this equation and curve fitting is valid only for Vcore =
1.09V . For estimating static power consumption accurately for benchmarks across different DVFS
points, we will need an equation that takes the core voltage into account. We will explore that
option as part of future work. We use the given equation for calculating static power consumption
in an alternate model mentioned in Appendix A.

PstaticInc = 1.4356× 1.034T , when Vcore = 1.09V (3.4)

3.6 Validation

We evaluate the accuracy of our model by estimating per-core power for the SPEC 2006 [38],
SPEC-OMP [2, 37], and NAS [4] benchmark suites. We sample the empirical core power con-
sumption as described in 3.2.1 and performance counters and core temperature during the run
of benchmark applications. We then compare the power value estimated by the regression model
against the empirical power values to calculate estimation error. We use gcc 4.2 to compile our
benchmarks for 64-bit architecture (Intel Core i7 and AMD 8212) and 32-bit architecture (Intel
Core Duo) with optimization flags enabled, and run all benchmarks to completion on top of Linux
kernel version 2.6.29 (Intel Core i7), 2.6.31 (AMD 8212) and 2.6.23 (Intel Core Duo).

Idle processor temperature is 33◦C for both the Intel Core i7 and AMD 8212 platforms. Idle
system power is 54.0W for the Intel Core i7, and 302.1W for the AMD 8212. We subtract 44.0W
idle processor power to obtain an uncore power of 10W for the Core i7, and subtract 212.1W idle
processor power to obtain an uncore power of 90.0W for the 8212. Idle processor temperature for
the Intel Core Duo system is 18◦C, and uncore power is 13.2W.

We test our models for both multi-threaded and single-threaded applications on our three plat-
forms. We assess model error at the granularity of one second (limitation of power meter).

23

200 400 600 800

Sample Index

60

80

100

P
o
w

e
r

(W
)

Power 40

50

60

70

T
e

m
p

e
ra

tu
re

 (C
)

Temp

(a) Temperature vs Power on Core i7

45 50 55 60 65 70

Temperature (C)

0

2

4

6

8

In
cr

ea
se

 i
n
 S

ta
ti

c
P

o
w

er
 (

W
)

Empirical

Exponential Curve Fit

(b) Static Power Curve

200 400 600 800

Sample Index

0

2

4

6

8

10

P
o
w

e
r

(W
)

Increase in Static Power 40

50

60

70

T
e

m
p

e
ra

tu
re

 (C
)

Temp

(c) Temperature vs Static Power on Core i7

Figure 3.7: Temperature Effects on Power Consumption

3.6.1 Estimation error

In our experiments, we run multi-threaded benchmarks with one thread per core, and single-
threaded benchmarks with an instance on each core. Data are calculated per core, and error is
reported across all cores. Figure 3.8, Figure 3.9, and Figure 3.10 show percentage median error
for the NAS, SPEC-OMP, and SPEC 2006 applications on all systems. Figure 3.11, Figure 3.12,
and Figure 3.13 show standard deviation of error for each benchmark suite on the Intel Core Duo,
Intel Core i7, and the AMD 8212 platforms. The occasional high standard deviations illustrate
one problem with our current infrastructure: instantaneous power measurements once per second
do not tell us what has been happening to the performance counters since the last meter reading.

Estimation error ranges from 0.3% (leslie3d) to 7.1% (bzip2) for the Intel Core Duo system, from
0.3% (ua) to 7.0% (hmmer) for the Intel Core i7 system, and from 1.0% (bt.B) to 10.7% (soplex)
for the AMD Opteron 8212 system. Our model exhibits median error of 4.36%, 4.01%, and 3.73%
for SPEC-OMP, SPEC 2006, and NAS, respectively, on the Core Duo. Median errors per suite are
4.14%, 1.61%, and 3.11% on the Core i7, and 3.4%, 4.8%, and 2.5% on the 8212. On the Intel
Core Duo, 17 (out of 45) applications exhibit median error exceeding 5%; and on the Intel Core
i7, only five exhibit error exceeding 5%. On the AMD Opteron 8212, thirteen exhibit error over
5%.

The table 3.5 summarizes the median estimation error observed on all the test machines.

The model estimation error can be attributed to following sources:

1. Even though the microbenchmarks try to cover all scenarios of power consumption, the

24

Benchmark AMD Opteron 8212 Intel Core i7 Intel Core Duo

SPEC 2006 4.80 2.22 4.01
NAS 2.55 3.11 3.45
SPEC OMP 3.35 2.02 4.36
Total 4.38 2.07 4.18

Table 3.5: Estimation Error Summary

resulting regression model will represent a generalized case. This is especially true for a
model like ours which tries to estimate power for a complex microarchitecture using only
four counters. For example, the floating point operations can consist of add, multiply or
divide operations which use different execution units and hence consume a different amount
of power. If the test benchmark is close the instruction mix used for microbenchmark,
estimation error will be low, and vice-versa.

2. The temperature components plays a large part in model formation. The lm-sensors driver
gets the temperature readings from the on-die thermal diodes. But these thermal diodes
are not so accurate for some processor models, like Opteron 8212 [1]. This inaccuracy of
thermal sensors adversely affects the model estimations.

3. Model accuracy also depends on the PMCs available on a given platform. If available PMCs
do not sufficiently represent the microarchitecture, model accuracy will suffer. For example,
the AMD Opteron 8212 supports no single counter giving total floating point operations.
Instead, separate PMCs track different types of floating point operations. We therefore
choose the one most highly correlated with power. Model accuracy would likely improve if
a single PMC reflecting all floating point operations were available. Same is true for stalls
counters available in Intel Core Duo.

4. Our model suffers with high error peaks because of limitation of the sampling rate of power
meter. A maximum sampling rate support of one sample per second entails that we need to
accumulate performance counter values for one second and normalize them using the cycles
elapsed during one second. This in effect averages the counter activity during the one second
accumulation period. As a result, whenever there is a rapid change in counter activity, the
power estimated for that sample is significantly lower (for a positive surge) or higher (for
a negative surge) compared to the actual value. This effect is more easily understood by
looking at the figure showing error peaks in Appendix C.

5. As stated earlier, some processor models support only two MSRs for mapping the perfor-
mance counters. For these processors, to capture the activity of four counters required for
model formation, the counting of performance counter related events needs to be multi-
plexed. In effect, the events are counted for only half the second (or half the total sampling
period), and are multiplied by two to estimate the value over the entire period. This approx-
imation can introduce inaccuracies when the program behavior is changing rapidly.

Figure 3.14 shows model coverage via CDF plots for the suites. On the Core Duo, 62% of esti-
mates have less than 5% error, and 96% have less than 10%. On the Core i7, 82% have less than

25

bt cg ep ft lu
lu
-h

p
m

g sp ua

0

2

4

6

8

10

%
 M

e
d

ia
n

 E
rr

o
r

(a) NAS

am
m

p

ap
pl
u

ap
si ar

t

fm
a3

d

m
gr

id

qu
ak

e

sw
im

w
up

w
is
e

0

2

4

6

8

10

%
 M

e
d

ia
n

 E
rr

o
r

(b) SPEC-OMP

as
ta

r

bw
av

es

bz
ip
2

ca
ct
us

AD
M

ca
lc
ul
ix

de
al
ll

ga
m

es
s

gc
c

G
em

sF
D
TD

go
bm

k

gr
om

ac
s

h2
64

re
f

hm
m

er
lb
m

le
sl
ie
3d

lib
qu

an
tu

m
m

cf
m

ilc

na
m

d

om
ne

tp
p

pe
rlb

en
ch

po
vr

ay

sj
en

g

so
pl
ex

xa
la
nc

bm
k

ze
us

m
p

0

2

4

6

8

10

%
 M

e
d
ia

n
 E

rr
o
r

(c) SPEC 2006

Figure 3.8: Median Estimation Error for Intel Core Duo

bt cg ep ft lu
lu
-h

p
m

g sp ua

0

2

4

6

8

10

%
 M

e
d

ia
n

 E
rr

o
r

(a) NAS

am
m

p

ap
pl
u

ap
si ar

t

fm
a3

d

m
gr

id

qu
ak

e

sw
im

w
up

w
is
e

0

2

4

6

8

10

%
 M

e
d

ia
n

 E
rr

o
r

(b) SPEC-OMP

as
ta

r

bw
av

es

bz
ip
2

ca
ct
us

AD
M

ca
lc
ul
ix

de
al
ll

ga
m

es
s

gc
c

G
em

sF
D
TD

go
bm

k

gr
om

ac
s

h2
64

re
f

hm
m

er
lb
m

le
sl
ie
3d

lib
qu

an
tu

m
m

cf
m

ilc

na
m

d

om
ne

tp
p

pe
rlb

en
ch

po
vr

ay

sj
en

g

so
pl
ex

xa
la
nc

bm
k

ze
us

m
p

0

2

4

6

8

10

%
 M

e
d
ia

n
 E

rr
o
r

(c) SPEC 2006

Figure 3.9: Median Estimation Error for Intel Core i7

26

bt cg ep ft lu
lu
-h

p
m

g sp ua

0

2

4

6

8

10

%
 M

e
d

ia
n

 E
rr

o
r

(a) NAS

am
m

p

ap
pl
u

ap
si ar

t

fm
a3

d

ga
fo

rt

m
gr

id

qu
ak

e

sw
im

w
up

w
is
e

0

2

4

6

8

10

%
 M

e
d

ia
n

 E
rr

o
r

(b) SPEC-OMP

as
ta

r

bw
av

es

bz
ip
2

ca
ct
us

AD
M

ca
lc
ul
ix

de
al
ll

ga
m

es
s

gc
c

G
em

sF
D
TD

go
bm

k

gr
om

ac
s

h2
64

re
f

hm
m

er
lb
m

le
sl
ie
3d

lib
qu

an
tu

m
m

cf
m

ilc

na
m

d

om
ne

tp
p

pe
rlb

en
ch

po
vr

ay

sj
en

g

so
pl
ex

xa
la
nc

bm
k

ze
us

m
p

0

2

4

6

8

10

%
 M

e
d
ia

n
 E

rr
o
r

(c) SPEC 2006

Figure 3.10: Median Estimation Error for the AMD Opteron 8212

bt cg ep ft lu
lu
-h

p
m

g sp ua
0

2

4

6

8

10

%
 S

D

(a) NAS

am
m

p

ap
pl
u

ap
si ar

t

fm
a3

d

ga
fo

rt

m
gr

id

qu
ak

e

sw
im

w
up

w
is
e

0

2

4

6

8

10

%
 S

D

(b) SPEC-OMP

as
ta

r

bw
av

es

bz
ip
2

ca
ct
us

AD
M

ca
lc
ul
ix

de
al
ll

ga
m

es
s

gc
c

G
em

sF
D
TD

go
bm

k

gr
om

ac
s

h2
64

re
f

hm
m

er
lb
m

le
sl
ie
3d

lib
qu

an
tu

m
m

cf
m

ilc

na
m

d

om
ne

tp
p

pe
rlb

en
ch

po
vr

ay

sj
en

g

so
pl
ex

xa
la
nc

bm
k

ze
us

m
p

0

2

4

6

8

10

%
 S

D

(c) SPEC 2006

Figure 3.11: Standard Deviation of Error for Intel Core Duo

27

bt cg ep ft lu
lu
-h

p
m

g sp ua
0

2

4

6

8

10

%
 S

D

(a) NAS

am
m

p

ap
pl
u

ap
si ar

t

fm
a3

d

ga
fo

rt

m
gr

id

qu
ak

e

sw
im

w
up

w
is
e

0

2

4

6

8

10

%
 S

D

(b) SPEC-OMP

as
ta

r

bw
av

es

bz
ip
2

ca
ct
us

AD
M

ca
lc
ul
ix

de
al
ll

ga
m

es
s

gc
c

G
em

sF
D
TD

go
bm

k

gr
om

ac
s

h2
64

re
f

hm
m

er
lb
m

le
sl
ie
3d

lib
qu

an
tu

m
m

cf
m

ilc

na
m

d

om
ne

tp
p

pe
rlb

en
ch

po
vr

ay

sj
en

g

so
pl
ex

xa
la
nc

bm
k

ze
us

m
p

0

2

4

6

8

10

%
 S

D

(c) SPEC 2006

Figure 3.12: Standard Deviation of Error for the Intel Core i7

bt cg ep ft lu
lu
-h

p
m

g sp ua
0

2

4

6

8

10

%
 S

D

(a) NAS

am
m

p

ap
pl
u

ap
si ar

t

fm
a3

d

ga
fo

rt

m
gr

id

qu
ak

e

sw
im

w
up

w
is
e

0

2

4

6

8

10

%
 S

D

(b) SPEC-OMP

as
ta

r

bw
av

es

bz
ip
2

ca
ct
us

AD
M

ca
lc
ul
ix

de
al
ll

ga
m

es
s

gc
c

G
em

sF
D
TD

go
bm

k

gr
om

ac
s

h2
64

re
f

hm
m

er
lb
m

le
sl
ie
3d

lib
qu

an
tu

m
m

cf
m

ilc

na
m

d

om
ne

tp
p

pe
rlb

en
ch

po
vr

ay

sj
en

g

so
pl
ex

xa
la
nc

bm
k

ze
us

m
p

0

2

4

6

8

10

%
 S

D

(c) SPEC 2006

Figure 3.13: Standard Deviation of Error for the AMD Opteron 8212

28

0 10 20 30

% Error

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

c
ti
o

n
 o

f
S

p
a

c
e

 C
o

v
e

re
d

(a) Intel Core Duo

0 10 20 30

% Error

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

c
ti
o

n
 o

f
S

p
a

c
e

 C
o

v
e

re
d

(b) Intel Core i7

0 10 20 30

% Error

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

c
ti
o

n
 o

f
S

p
a

c
e

 C
o

v
e

re
d

(c) AMD 8212

Figure 3.14: Cumulative Distribution Function (CDF) Plots Showing Fraction of Space Predicted (y axis)
under a Given Error (x axis) for Each System

bt cg ep ft lu
lu
-h

p
m

g sp ua

15

20

25

30

35

P
o

w
e

r
(W

)

actual

predicted

(a) NAS

am
m

p

ap
pl
u

ap
si ar

t

fm
a3

d

m
gr

id

qu
ak

e

sw
im

w
up

w
is
e

15

20

25

30

35

P
o

w
e

r
(W

)

actual

predicted

(b) SPEC-OMP

as
ta

r

bw
av

es

bz
ip
2

ca
ct
us

AD
M

ca
lc
ul
ix

de
al
ll

ga
m

es
s

gc
c

G
em

sF
D
TD

go
bm

k

gr
om

ac
s

h2
64

re
f

hm
m

er
lb
m

le
sl
ie
3d

lib
qu

an
tu

m
m

cf
m

ilc

na
m

d

om
ne

tp
p

pe
rlb

en
ch

po
vr

ay

sj
en

g

so
pl
ex

xa
la
nc

bm
k

ze
us

m
p

15

20

25

30

35

P
o
w

e
r

(W
)

actual

predicted

(c) SPEC 2006

Figure 3.15: Estimated vs. Measured Error for Intel Core Duo

5% error, and 97% less than 10%. On the 8212, 37% have less than 5% error, and 76% have less
than 10%. The vast majority of estimates exhibit very small error.

Figure 3.15, Figure 3.16, and Figure 3.17 compare measured to estimated power for our exper-
imental platforms. Values are calculated as the mean of power over an application’s execution.
These data show that our models do not consistently under- or over-estimate power, tracking it
well for each suite.

3.6.2 Effects of Turbo Boost

Intel Core i7 platform employs a performance boosting technique called Turbo Boost [11]. This
technique allows the active processor cores to run at a higher frequency than the base operating
frequency (2.93 GHz in our case) if there is headroom in the temperature, power and current

29

bt cg ep ft lu
lu
-h

p
m

g sp ua

15

20

25

30

35

P
o

w
e

r
(W

)

actual

predicted

(a) NAS

am
m

p

ap
pl
u

ap
si ar

t

fm
a3

d

m
gr

id

qu
ak

e

sw
im

w
up

w
is
e

15

20

25

30

35

P
o

w
e

r
(W

)

actual

predicted

(b) SPEC-OMP

as
ta

r

bw
av

es

bz
ip
2

ca
ct
us

AD
M

ca
lc
ul
ix

de
al
ll

ga
m

es
s

gc
c

G
em

sF
D
TD

go
bm

k

gr
om

ac
s

h2
64

re
f

hm
m

er
lb
m

le
sl
ie
3d

lib
qu

an
tu

m
m

cf
m

ilc

na
m

d

om
ne

tp
p

pe
rlb

en
ch

po
vr

ay

sj
en

g

so
pl
ex

xa
la
nc

bm
k

ze
us

m
p

15

20

25

30

35

P
o
w

e
r

(W
)

actual

predicted

(c) SPEC 2006

Figure 3.16: Estimated vs. Measured Error for Intel Core i7

bt cg ep ft lu
lu
-h

p
m

g sp ua

30

35

40

45

50

P
o

w
e

r
(W

)

actual

predicted

(a) NAS

am
m

p

ap
pl
u

ap
si ar

t

fm
a3

d

ga
fo

rt

m
gr

id

qu
ak

e

sw
im

w
up

w
is
e

30

35

40

45

50

P
o

w
e

r
(W

)

actual

predicted

(b) SPEC-OMP

as
ta

r

bw
av

es

bz
ip
2

ca
ct
us

AD
M

ca
lc
ul
ix

de
al
ll

ga
m

es
s

gc
c

G
em

sF
D
TD

go
bm

k

gr
om

ac
s

h2
64

re
f

hm
m

er
lb
m

le
sl
ie
3d

lib
qu

an
tu

m
m

cf
m

ilc

na
m

d

om
ne

tp
p

pe
rlb

en
ch

po
vr

ay

sj
en

g

so
pl
ex

xa
la
nc

bm
k

ze
us

m
p

30

35

40

45

50

P
o
w

e
r

(W
)

actual

predicted

(c) SPEC 2006

Figure 3.17: Estimated vs. Measured Error for the AMD Opteron 8212

30

Policy Description Affected Microarchitecture

Replicated Duplicate logic per thread
Register State
Renamed RSB
Large Page ITLB

Partitioned Statically allocated to threads

Load Buffer
Store Buffer
Reorder Buffer
Small Page ITLB

Competitively shared Dynamically allocated to threads

Reservation Station
Caches
Data TLB
2nd level TLB

Unaware No impact Execution Units

Table 3.6: Hyper-Threading Partitioning on Core i7

specification limits. The Turbo Boost upper limit is defined by the number of active cores. When
all the four cores are active and operating system demands the higher performance state (P0), the
core frequency can go up to 3.2 GHz. This change in frequency can adversely affect the accuracy
of our model since with change in frequency, the core voltage changes and hence the static and
dynamic power consumption of the core changes. This will render the model formed at 2.93 GHz
frequency error prone. But during our experiments, it is observed that since while running the test
suites, all four CPU cores are already stretched to limit and since all the four cores are running
identical loads, the Turbo Boost is never triggered. Nevertheless, we run our experiments with
Turbo Boost disabled to be sure.

3.6.3 Effects of Hyper-Threading

Intel Core i7 platform supports Hyper-Threading [11]. This technology allows the processor to
divide the physical core into two logical cores, effectively providing eight logical cores on Core
i7. The partitioning example of the physical core resources among two logical cores is shown in
the Figure 3.6. The results presented above are for case when Hyper-Threading is disabled in
the system BIOS. But our methodology can work in the case when Hyper-Threading is enabled.
The reason being that all performance counters, barring UOPS EXECUTED:PORT234 CORE,
are available separately for each core. We tried evaluating our methodology for the case when
Hyper-Threading is enabled with median errors of 3.48% for SPEC-OMP, 2.15% for NAS, 2.46%
for SPEC 2006 and 2.56% overall. The detailed results are presented in Appendix D.

3.6.4 Model formation using eight counters

During our tests, we have validated that for most of the processors, four performance counters
bring the predicted value within 5% of the actual power consumption. More performance counters
would definitely be beneficial to improve the accuracy, but only if they can be read accurately.
Unfortunately, most of the platforms allow simultaneous reading of only two or four counters.
Hence, to use more counters, the software would need to multiplex the counter reading and scale
up the sampled values to estimate the total count. This process would introduce errors to PMC
values. Moreover, as per collected data, the model accuracy does not improve significantly when

31

0 10 20 30

% Error

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

c
ti
o

n
 o

f
S

p
a

c
e

 C
o

v
e

re
d

(a) Intel Core i7 - 4 PMCs

0 10 20 30

% Error

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

 S
pa

ce
 C

ov
er

ed

(b) Intel Core i7 - 8 PMCs

Figure 3.18: CDF Plots Comparison of 4- and 8-counter Model

more than four counters are used.

For example, on Core i7, using eight counters gives us a median error for all benchmarks of 1.92%
while using four counters gives a median error of 2.06%. The Figure 3.18 compares the CDF plots
of the errors encountered during the entire run of test benchmark suites on Core i7 processor for
two models, one using four counters as before and the other using eight counters. As we can see,
the CDF plots are almost similar. This proves, that for most of the cases, four counters are enough
to bring the model accuracy within acceptable range.

3.6.5 Effects of SIMD operations

To capture all the floating point operations being executed on Core i7, ideally we would need to
sum up two performance counters: FP COMP OPS EXE:X87 and FP COMP OPS EXE:SSE FP.
But since we don’t have the privilege of using more than one counter for floating point operations,
we can use only one of the two. If the benchmark application has been compiled on an older
x86-64 architecture, chances are that it would be using the x87 coprocessor more heavily. But if
the application has been compiled locally on the Core i7 machine, it would be more SSE inten-
sive. Since we were not able to compile all the benchmark applications locally, we have used the
benchmark applications compiled on AMD phenom and used FP COMP OPS EXE:X87 in our
model.

3.6.6 Effects of DVFS

The Core i7-870 processor can operate at 14 different P(performance) states. The range of fre-
quency across the P states range from maximum of 2.93 GHz (without Turbo Boost enabled)
to minimum of 1.197 GHz. Although this wide range and fine control of the scaling frequency
proves to be an excellent knob for power consumption control, the enabling of DVFS increases
the complexity of experiments tremendously. This is because when the voltage-frequency opera-
tional point is shifted, apart from the change in dynamic power consumption, there is a significant
change in the static power consumption. The equation for the static and dynamic power consump-
tion is as per equations 3.5 and 3.6 [39]. To create a single power model that can correctly
estimate power consumption across all the P-states, we need to separate static power consumption
estimation from dynamic power consumption estimation and then scale the two power compo-
nents separately for different frequency and core supply voltage points. Hence, to estimate power

32

consumption across different frequencies, we have to generate individual power models for each
P-state. A generalized single power model that can calculate the power consumption values across
different frequency-voltage points is part of future work.

Pstatic =
∑

Ileakage ∗ Vcore

=
∑

Is(e
qVd/kT − 1) ∗ Vcore (3.5)

where Is = reverse saturation current

Vd = diode voltage

k = Boltzmann′s constant

q = electronic charge

T = Temperature

Vcore = Core supply voltage

Pdynamic = NSW ∗ Cpd ∗ V 2
CC ∗ fI (3.6)

where NSW = Number of bits switching

Cpd = dynamic power dissipation capacitance

VCC = supply voltage

fI = CPU frequency

33

Chapter 4

Power-Aware Scheduling

In this chapter, we present a live power management application as a proof-of-concept for the
power estimation model presented in chapter 3.

4.1 Introduction

The live power management application schedules the given tasks under the constraint of main-
taining a user-defined system power envelope. The application uses the power model to compute
the core power consumption in real time. The application works like a user-level meta sched-
uler that spawns one process on each core. The scheduler uses pfmon to sample performance
counter values and feeds the sampled PMC values to the power model for estimating core power
consumption.

The meta-scheduler binds the affinity of the processes to a particular core to make the task man-
agement and power estimation process simpler. The scheduler dynamically calculates the core
power consumption values at a set interval (one second in our case), and compares the sum of all
cores and the uncore power consumption for comparison with system power envelope. When the
breach in the envelope is detected by the scheduler, the scheduler takes steps to force the power
consumption down. The scheduler employs two knobs to control the system power consumption:
dynamic voltage-frequency scaling as a fine knob and process suspension as a coarse knob. When
the envelope is breached, the scheduler first tries to lower the power consumption by scaling down
the voltage-frequency. If the voltage-frequency has been scaled down to the maximum extent and
the target power consumption is still below the estimated value, the scheduler starts suspending
processes to meet the envelope demand. When the current power consumption is less than the
target power envelope, the scheduler first checks if any suspended process can be resumed. If the
gap between the current and target power budget is not enough to resume a suspended process,
and if the processor is operating at a frequency lower than maximum, the scheduler scales up the
frequency. The Figure 4.1 shows the flow diagram of the meta-scheduler.

34

Start

Assign one task

per processor

Check for power

envelope breach

Envelope

breached?

Suspend a running

process as per

scheduling policy

Apply DVFS to

lower frequency

one step

Lowest

Frequency?

Apply DVFS to

increase frequency

one step

Resume a suspended

process as per

scheduling policy

X ms Delay

Highest

Frequency?

Any process

suspended?

YesNo Yes

NoNo

NoYes

Yes

Figure 4.1: Flow diagram for Meta-scheduler

4.2 Sample Policies

When the scheduler suspends a process, it needs to choose the process for suspension that will
have the least impact on overall completion time of all the processes. We have explored four
sample policies for process suspension as described below.

4.2.1 Max instruction/watt policy

This policy targets maximum power efficiency under given power envelope. When the envelope is
breached, the scheduler calculates the ratio of instructions/UOPS retired to the power consumed
for each core and suspends the process which has committed least instructions per watt consumed.
When resuming a process, it selects the process (if there are more than one suspended processes)
which had committed maximum instructions/watt at the time of suspension. This policy favors the
processes which are stalled less often waiting for load operations to complete. Hence, this policy
favors the CPU bound applications

4.2.2 Per-core fair policy

This policy is aimed at dividing the available power budget fairly among all the processes. The
scheduler when applying this policy maintains a running average of the power consumed by each
core. At the time of process selection for suspension, the scheduler suspends the process which
has consumed maximum average power. For resumption, the scheduler resumes the process which
had consumed least average power at the time of suspension. This policy can be used to regulate
the core temperature since it makes sure that cores that are consuming maximum average power
are throttled. Since there is high correlation between the core power consumption and core tem-

35

perature, this makes sure that the core with highest temperature gets time to cool down while the
cores with lower temperature continue working. Since the memory bound applications are stalled
more often and hence consume less average power, this policy favors such applications.

4.2.3 Critical process running policy

This policy is useful when the scheduler has prior knowledge of the relative execution times of
the tasks. This policy attempts to achieve the best possible total execution time with given power
envelope. The scheduler selects the process with lowest execution time for suspension. This makes
sure that the process with longest execution time which is critical to the overall execution time of
the group of tasks is always running. This policy is preferable when there is enough difference
between the execution times of the given tasks. This policy is essentially a modification of the
user-based priority policy proposed by Singh et al. [34].

4.2.4 Round-robin policy

As the name suggests, this policy suspends the processes in round-robin fashion to be fair to all
the processes regardless of their computational intensity. The scheduler in this policy maintains
two lists: a list of running processes and a list of suspended processes. When the power envelope
is breached, the next process to be suspended is always taken the head of the running processes list
and added to the end of suspended processes list. When the system power is below the envelope,
the scheduler searches through the list of suspended processes, starting from the head of the list, to
find a process whose resumption will not breach the envelope. If none of the suspended processes
can be resumed without breaching the envelope, the scheduler suspends the process at the head of
list of running processes and resumes the process at the head of suspended processes list.

4.3 Experimental Setup

We have conducted all our scheduler experiments on Core i7 processor. We conduct the meta-
scheduler experiments by dividing the workloads into three sets based upon the CPU intensity.
We define CPU intensity as ratio of instructions retired to last level cache misses. The three sets
are called CPU-bound, Moderate and Memory-bound workloads in the decreasing order of CPU
intensity. Apart from these three sets, we also experiment with a mix set of workloads with focus
on similar execution times. The workloads categorized in these sets is listed in the table 4.1.

The benchmark applications used in the workload sets have very different execution times. The
execution times of different applications is shown in Figure 4.2. As we will see in the results
section 4.4, this affects the total execution times of different scheduling policies significantly.
This is the reason we included a fourth workload set ’Mix’ with emphasis on similar execution
times.

We conduct the experiments by setting the power envelope to 90%, 80% and 70% of the peak
power usage and calculating the total execution time to run all the applications in the workload

36

Benchmark Category Benchmark Applications Peak System Power (W)

CPU-Bound ep, gamess, namd, povray 130

Moderate art, lu, wupwise, xalancbmk 135

Memory-Bound astar, mcf, milc, soplex 130

Mix ua, sp, soplex, povray 145

Table 4.1: Workloads for Scheduler Evaluation

0 200 400 600

Time(sec)

ep
ga

m
es

s
po

vr
ay

na
m

d

(a) CPU-bound

0 200 400 600

Time(sec)

so
pl
ex

as
ta

r

m
cf

m
ilc

(b) Memory-bound

0 500 1000 1500

Time(sec)

luxa
la
nc

bm
k

ar
tw

up
w
is
e

(c) Moderate

0 100 200 300

Time(sec)

ua

sp
so

pl
ex

po
vr

ay

(d) Mix

Figure 4.2: Absolute Runtimes for Unconstrained Workloads on the Core i7

37

70% 80% 90% 100%
0

1

2

N
o

rm
a

li
z
e

d
 R

u
n

 T
im

e

maxInstr/Watt

Per-Core Fair

Critical Process Priority

Round-robin

(a) CPU-bound

70% 80% 90% 100%
0

1

2

N
o

rm
a

li
z
e

d
 R

u
n

 T
im

e

maxInstr/Watt

Per-Core Fair

Critical Process Priority

Round-robin

(b) Memory-bound

70% 80% 90% 100%
0

1

2

N
o

rm
a

li
z
e

d
 R

u
n

 T
im

e

maxInstr/Watt

Per-Core Fair

Critical Process Priority

Round-robin

(c) Moderate

70% 80% 90% 100%
0

1

2

N
o

rm
a

li
z
e

d
 R

u
n

 T
im

e

maxInstr/Watt

Per-Core Fair

Critical Process Priority

Round-robin

(d) Mix

Figure 4.3: Runtimes for Workloads on the Core i7 (without DVFS)

under a given scheduler policy. We chose the stated power envelope settings, because the differ-
ence in the performance was not significant for the power envelope settings at the difference of
5% (95%, 90% and 85%) and running the experiments was not feasible for the envelope settings
at the difference of 20% (80%, 60% and 40%).

4.4 Results

4.4.1 No DVFS

This section discusses the experimental results achieved for scheduling policies on Intel Core i7
when only process suspension knob is used by the scheduler to maintain power envelope. Figure
4.3 shows the normalized runtimes for all the sets of workloads on Core i7 for the first two policies,
max instruction/watt and per-core fair. As per the results obtained by Singh et al. [34], the
max instruction/watt policy should favor the CPU bound workloads while the per-core fair policy
should favor the memory bound workloads. But this distinction is not so clearly visible here.
This is because of the difference between the runtimes of various workloads. To achieve the
best possible runtime to complete all workloads, the scheduler should always select the shorter
workloads for suspension. This will ensure, the longest workload which is critical to the total
runtime is never throttled and hence the impact on the runtimes is minimal. This is clearly visible
for the execution times of CPU bound benchmarks when using Max Instruction/Watt policy. The
CPU bound applications ep and gamess have lowest computation intensity as well as execution
times. As a result, these two applications are suspended most frequently, which doesn’t affect the
total execution time even when power envelope is set to 80% of peak usage. As can be seen from
the results, the round-robin policy gives average performance while being fair to all the processes.

4.4.2 DVFS + Process suspension

This section discusses the results obtained on Core i7 when the scheduler uses both DVFS and
process suspension to maintain the power envelope. As mentioned earlier, the scheduler uses

38

70% 80% 90% 100%
0

1

2

N
o

rm
a

li
z
e

d
 R

u
n

 T
im

e

maxInstr/Watt

Per-Core Fair

Critical Process Priority

Round-robin

(a) CPU-bound

70% 80% 90% 100%
0

1

2

N
o

rm
a

li
z
e

d
 R

u
n

 T
im

e

maxInstr/Watt

Per-Core Fair

Critical Process Priority

Round-robin

(b) Memory-bound

70% 80% 90% 100%
0

1

2

N
o

rm
a

li
z
e

d
 R

u
n

 T
im

e

maxInstr/Watt

Per-Core Fair

Critical Process Priority

Round-robin

(c) Moderate

70% 80% 90% 100%
0

1

2

N
o

rm
a

li
z
e

d
 R

u
n

 T
im

e

maxInstr/Watt

Per-Core Fair

Critical Process Priority

Round-robin

(d) Mix

Figure 4.4: Runtimes for Workloads on the Core i7 (with DVFS)

DVFS as a fine knob and process suspension as a coarse knob to maintain the envelope. The Intel
Core i7 processor that we use for our experiments, Intel Core i7 - 870, supports fourteen different
voltage-frequency points, also called P-states. These frequency points range from 2.926 GHz to
1.197 GHz. Also, the said Intel processor supports only chip wide DVFS capability. Hence,
individual cores cannot be operated at different frequencies [11]. For our experiments, we have
made models for seven frequency points (2.926, 2.66, 2.394, 2.128, 1.862, 1.596 and 1.33 GHz)
and adjust the processor frequency across these points. The results of our experiments are shown
in Figure 4.4.

The experiment results show that for CPU bound and Moderate benchmarks, there is hardly any
difference in the execution times of different suspension policies. This result suggests that for
these applications, the scheduler hardly needs to suspend the processes and that regulating DVFS
points proves to be enough to maintain the power envelope. This is in contrast to the results
obtained by on AMD Phenom and Intel Q6600 by Singh et al. [20]. This is because Singh et
al. use only two frequency points for their experiments while we use seven frequency points and
across a wider range. Another result in contrast to Singh et al. is that the performance for DVFS
degrades compared to the case where no DVFS is used, except for the mix workload set. The
explanation for this result lies in the difference between runtimes of different applications within
the workoad sets. In the case when no DVFS is used, all the processes are running at full speed.
And even when one of the process is suspended, if that process is not critical, it still runs at full
speed later in parallel with the critical process. But in the case of DVFS given higher priority over
process suspension, when the envelope is breached, all the processes are slowed down and this
affects the total execution time. This is further proven by the results of mix workload set. Since
the difference in execution times among individual applications of this set is not so high, it shows
improvement in performance over non-DVFS case.

39

Chapter 5

Related Work

Many researchers have explored the usage of performance counters for power estimation in last
decade. This chapter discusses the significant contributions made by previous research work in
this area and compares them to our work.

5.1 Run-time Power Estimation in High-Performance Microproces-
sors

Joseph and Martonosi [24] use the performance counters to generate power estimates for individ-
ual components of microarchitecture. They perform the power estimation for a 600 MHz Alpha
21264 model in simulator (SimpleScalar [3]) and a 200 MHz Pentium Pro hardware. For the
power estimation on simulator, they rely on per usage power statistics from Wattch for each mi-
croarchitecture component and provide their own heuristic approximations for the usage of each
component. On the Pentium Pro hardware, they use a shunt resistor and a multimeter to measure
real power consumption of the processor chip. They use twelve performance events in their model,
which requires them to rotate the sampling of events, two at a time. Their model shows low aver-
age error rates on simulator but higher error on hardware. They attribute this to the lack of better
Pentium Pro power model, in the absence of which, they made conservative power consumption
estimates for certain resources. Their paper doesn’t detail the procedure to calculate weights for
individual resource usage for making the model for Pentium Pro.

5.2 Application-Aware Power Management

Rajamani et al. [33] develop online power and performance models on a Pentium M system. They
base their power model on the single event counter (Decoded Instructions per cycle). They don’t
mention the error rates obtained for their power model but as per our experience, such a simplistic
model will exhibit low accuracy. As we showed in Figure 1.1, different types of instructions with
similar CPI can exhibit widely varying power consumption figures. They develop their model

40

using small training set, which targets exercising memory hierarchy levels and stability across the
runs instead of covering all possible scenarios like ours. They present two power-management
solutions (PowerSave and PerformanceMaximizer) that dynamically controls the p-state of pro-
cessor. Their methodology shows good results for power and performance management.

5.3 Event-driven Energy Accounting for Dynamic Thermal Manage-
ment

Bellosa et al. [6] use the performance counters for online energy estimation. They use sense
resistors employed on the power supply lines and A/D converter to measure the actual power
consumption. They chose the performance events for the power model based on the empirical
correlation. They use the netlib FORTRAN routine dqed to calculate the weights of their perfor-
mance events from the set of linear equations relating the events to the power consumption. They
use nine events in their power model. Their model shows less than 1% error on 11 of the 25 test
programs but the outliers show error rates of up to 30%.

5.4 Accurate and Efficient Regression Modeling for Microarchitec-
tural Performance and Power Prediction

Lee and Brooks [26] propose performance and power prediction for large microarchitectural de-
sign space through statistical inference models formed using regression modeling. They obtain
a small set of sample observations drawn uniformly at random from a large design space on Tu-
randot processor simulator. They vary a total of twelve architectural parameters to cover large
microarchitectural design space. They use this subset of design space to formulate regression
model for performance and power prediction. They explore both application specific and regional
models. They use cubic splines for accommodating the nonlinear relationship of certain architec-
tural parameters with performance and power. They present their prediction results for the same
applications which they used as training set. Unlike our work, their model targets the simulation
frameworks and aims to reduce the simulation time required for performance and power predic-
tion. Their model shows median and CDF errors that are higher than our model.

5.5 Decomposable and Responsive Power Models for Multicore Pro-
cessors using Performance Counters

Bertran et al. [8] present a decomposable power model for Intel Core 2 Duo processor. They use
a total of thirteen counters for estimating the power consumption of different micro-architectural
components. They use microbenchmarks and incremental linear regression technique to come
up with individual power consumption figures for components like Front end, Integer execution
units, FP units, BPU, SIMD unit, etc. They do not use temperature in their model and hence fail

41

to account for the increase in static power consumption with temperature. Also, since their model
uses thirteen different PMCs, they have to multiplex the sampling of counters and hence the model
would be error prone in the face of highly transient applications. Their model shows low average
error like ours.

5.6 Power Prediction for Intel XScale Processors Using Performance
Monitoring Unit Events

Contreras and Martonosi [12] use five performance counters to implement their power model.
They perform power estimation experiments on an Xscale system at various frequencies.They
gather counter data from multiple benchmark runs assuming that the application behavior remains
consistent across various runs. This also renders their methodology unsuitable for online usage.
They derive power weights for frequency-voltage pairs, and form a parametrized linear model.
Their model exhibits high accuracy but their validation is limited to seven applications on a single
platform while we perform validation on 45 different applications spanning three benchmark sets
and six platforms.

5.7 Full-System Power Analysis and Modeling for Server Environ-
ments

Economou et al. [16] use PMCs to predict power on a blade and itanium server. Their work aims
to use the power estimation for dynamic control of server systems. Like us, they use application-
independent microbenchmarks to profile the system under test. They use data acquisition unit to
measure actual power consumption at the sample rate of one per second. Their model uses CPU
utilization rate, memory access count, hard disk I/O rate and network I/O rate to estimate power
for the CPU, memory, hard drive and network controller with 10% average error. Their model also
suffers with the simplistic assumption that CPU utilization rate alone is sufficient to reasonably
estimate processor power consumption.

5.8 An Analysis of Efficient Multi-Core Global Power Management
Policies: Maximizing Performance for a Given Power Budget

Isci et al. [23] analyze power management policies to enforce a given power budget and to min-
imize the power consumption for the given performance target. They conduct their experiments
on the Turandot [30] simulator. They get their power estimates from IBM PowerTimer instead of
developing their own power model. They have developed a global power manager that leverages
power-performance data available from locally available monitors per core to enforce the DVFS
policies individually for each core. Unlike us, they do not explore process suspension policies to
enforce power budget.

42

5.9 PAM: A Novel Performance/Power Aware Meta-scheduler for
Multi-core Systems

Banikazemi et al. [5] present a power-aware meta-scheduler (PAM). PAM monitors the perfor-
mance, power and energy of the system by using performance counters and in-built power mon-
itoring hardware. It then uses this information to dynamically remap the software threads on
multi-core servers for higher performance and lower energy usage. Like our scheduler, PAM runs
in user space and hence does not require kernel changes. Their framework is flexible enough to
substitute the hardware power monitor with performance counter based power model.

43

Chapter 6

Future Work

6.1 Current Measurement PCB

One of the major limitations of the current experimental setup is the max sampling frequency
of one sample per second of the power meter. Also, since the power meter is plugged between
the mains supply and the power supply unit of the test machine, we can only measure the power
consumption of entire machine instead of just the processor chip. To overcome this limitation in
the future work, we will make use of a custom made current measurement PCB that can be placed
between the ATX power supply and the ATX connections on the motherboard. This PCB will use
the current transducers ([13]) to sense the current consumed by processor and other components of
motherboard. The voltage output of the current transducers will be measured using multi-channel
USB based Data Acquisition device ([14]).

6.2 Implementation on Tilera Processor

For this thesis, we have tested our model only on Intel and AMD processors. For the future work,
we would like to extend the implementation of the model on 64-core Tilera processor TILEPro64
[15]. As per the currently available information, this processor has limited and very different set
of performance counters compared to Intel and AMD processors used in our thesis, and hence,
will stretch the implementation of our model.

44

Chapter 7

Conclusion

In this thesis, we have validated the power estimation model presented by Singh et al. [34, 35]
on three different microarchitectures (Intel Core Duo, AMD Opteron 8212 and Intel Core i7). We
have demonstrated the scalability and portability of the model by showing that it can estimate per
core power estimation with high accuracy (< 5% overall median error) on the processors ranging
from dual core to quad core. The model showed high accuracy across both single-threaded (SPEC
2006) and multi-threaded (SPEC-OMP and NAS) benchmarks, and for both integer arithmetic
and floating point arithmetic intensive applications. We extended our methodology to work with
Hyper-Threading enabled processor and created power estimation model for each logical core in-
stead of each physical core. The estimation accuracy for Hyper-Threading enabled processor was
within the range (2.63% overall error) of other results. We demonstrated that our methodology
is simple enough to work with both physical and logical cores. We showed the cumulative dis-
tribution of errors for each collected sample and showed that overwhelming majority of samples
showed low error rate.

We gained insights into the working and usage of performance counters and how to analyze the
correlation results to choose the best counters available for model formation. We concluded that
high correlation alone cannot be chosen as metric for individual counter selection. We analyzed
the correlation between the counters themselves to choose the counters that provide non-redundant
information.

We analyzed the performance of our model to study the sources of error. Even though, our model
shows low median error, we observed high intermittent error peaks. This is because of the limita-
tion of our power meter that can sample power values at the maximum sample rate of one second,
which is not enough to capture behavior of fast transient phases of benchmark applications. The
accuracy of our model is highly dependent on availability of counters that are relevant to power
consumption and cover more comprehensive events.

We use the live power management application written by Singh et al. [34, 35] to schedule tasks
on Core i7 machine maintaining a strict power envelope. We augmented the application to make
it scalable across various DVFS performance points, and introduced two new process suspension
policies. We showed that applications with unequal execution times can be scheduled under the

45

given power envelope without using DVFS and with minimal performance loss. We showed that
our scheduler can use both DVFS and process suspension judiciously to schedule tasks under
power budget.

46

Appendix A

Alternate Power Model

This appendix details the methodology and results of an alternate power estimation model that was
explored during this thesis.

A disadvantage of a statistical model based on multiple linear regression is that the model pro-
vides little insight into the power consumption of individual components of microarchitecture.
The weights associated with counters in the multiple regression power model don’t necessarily
represent the individual contribution of the corresponding component to the total power. This
is because a finite degree of colinearity exists between the counters as discussed in Chapter 3.
As a result, the model sometimes contain negative coefficients for the counter that should have
been positively correlated with the power consumption. This makes the model structure counter-
intuitive. To overcome this limitation, we explored making an alternate model based upon the
work published by Bertran et al. [8].

The idea behind making the alternate model is to identify individual microarchitectural compo-
nents that add significant contribution to the overall power consumption of core and calculate
weights for the activity factor of these components that correspond to their contribution. Also, we
separate the static and dynamic power usage of the core. As shown in Equation A.1, we calculate
the total power as the sum of idle power, and increment in static and dynamic power. The increase
in static power is calculated using the core temperature as per Equation 3.4 in Chapter 3. The
increase in dynamic power consumption is calculated by the linear sum of weighted activity factor
of relevant performance events as stated earlier and depicted in Equation A.2. Since, the activity
factor of various events is negligible during the processor idle state, we neglect event activity at
idle and use the absolute values to calculate the increment in dynamic power consumption.

Pcore = PIdle + P (Static)inc + P (Dynamic)inc (A.1)

where PIdle = Idle Power

P (Static)inc = Increase in static power consumption

P (Dynamic)inc = Increase in dynamic power consumption

47

P (Dynamic)inc =
∑
i

ri ∗Wi (A.2)

where P (Dynamic)inc = Increase in dynamic power consumption

ri = Event activity ratio of event i

Wi = Calculated weight of event i

We validated this power model only on Core i7 machine and the results shown here are very pre-
liminary. As suggested by Bertran et al., we target eight power components. These power com-
ponents and their related performance counters and calculated weights are listed in Table A.1.
As shown in the table, we were able to cover all the eight components using only eight counters.
To calculate the weights of power components individually, we used the modified version of our
existing microbenchmarks. We created one microbenchmark targeting each power component.
We designed the microbenchmarks such that we calculate the weights of the components incre-
mentally from the top of the table to the bottom. The first microbenchmark exercises only the
processor front end, the second microbenchmark exercises both front end and branch prediction
unit and so on. The weight obtained from the first microbenchmark is plugged in the results of
second microbenchmark to calculate the weight of branch prediction unit. Then the weights of
both front end and BPU are used to calculate weight of Integer execution units. We continue this
process until we calculate all the weights. The weights received using this procedure were used to
form the model and validated against few test benchmarks initially. During the initial validation, it
became evident that we were overestimating the weights of some of the components like front end
and x87 floating point units. This can be attributed to the insufficiency of diversity in our training
set. We calibrated our microbenchmarks to increase the accuracy of the model. We will develop
more diverse microbenchmarks as part of future work.

The estimation error for the model on Core i7 machine in shown in Figure A.1 for SPEC2K6,
SPEC OMP and NAS benchmark sets. The model exhibits median error of 4.59% on SPEC2K6,
8.09% on SPEC OMP and 3.78% on NAS, with an overall error of 4.87%. The comparison of
average actual and estimated values of core power consumption is shown in Figure A.2. Although

Power Component Related Performance Counters Calculated Weight
Front End UOPS RETIRED:ANY 0.823
Branch Prediction Unit BR INST EXEC:ANY 1.524
Integer Execution Units UOPS EXECUTED:PORT015-BR INST EXEC:ANY-FP COMP OPS EXE:X87-FP COMP OPS EXE:SSE FP 1.723
L1 Cache Accesses L1D ALL REF:ANY 2.403
L2 Cache Accesses L2 RQSTS:REFERENCES 34.184
DRAM Accesses MEM UNCORE RETIRED:LOCAL DRAM 1293.394
x87 Floating Point Units FP COMP OPS EXE:X87 2.261
SSE Floating Point Units FP COMP OPS EXE:SSE FP 27.532

Table A.1: Power components and related performance counters

48

the model accuracy is worse compared to the statistical model, the model shows potential and at
least part of the error can be attributed to lack of proper microbenchmarks. We will improve the
model implementation as part of future work.

bt cg ep ft lu
lu
-h

p
m

g sp ua

0

1

2

3

4

5

%
 M

e
d

ia
n

 E
rr

o
r

(a) NAS

am
m

p

ap
pl
u

ap
si ar

t

fm
a3

d

m
gr

id

qu
ak

e

sw
im

w
up

w
is
e

0

5

10

15

%
 M

e
d

ia
n

 E
rr

o
r

(b) SPEC-OMP

as
ta

r

bw
av

es

bz
ip
2

ca
ct
us

AD
M

ca
lc
ul
ix

de
al
ll

ga
m

es
s

gc
c

G
em

sF
D
TD

go
bm

k

gr
om

ac
s

h2
64

re
f

hm
m

er
lb
m

le
sl
ie
3d

lib
qu

an
tu

m
m

cf
m

ilc

na
m

d

om
ne

tp
p

pe
rlb

en
ch

po
vr

ay

sj
en

g

so
pl
ex

xa
la
nc

bm
k

ze
us

m
p

0

5

10

%
 M

e
d
ia

n
 E

rr
o
r

(c) SPEC 2006

Figure A.1: Median Estimation Error for Intel Core i7

49

bt cg ep ft lu
lu
-h

p
m

g sp ua

15

20

25

30

35

P
o

w
e

r
(W

)

actual

predicted

(a) NAS

am
m

p

ap
pl
u

ap
si ar

t

fm
a3

d

m
gr

id

qu
ak

e

sw
im

w
up

w
is
e

15

20

25

30

P
o

w
e

r
(W

)

actual

predicted

(b) SPEC-OMP

as
ta

r

bw
av

es

bz
ip
2

ca
ct
us

AD
M

ca
lc
ul
ix

de
al
ll

ga
m

es
s

gc
c

G
em

sF
D
TD

go
bm

k

gr
om

ac
s

h2
64

re
f

hm
m

er
lb
m

le
sl
ie
3d

lib
qu

an
tu

m
m

cf
m

ilc

na
m

d

om
ne

tp
p

pe
rlb

en
ch

po
vr

ay

sj
en

g

so
pl
ex

xa
la
nc

bm
k

ze
us

m
p

15

20

25

30

35

P
o
w

e
r

(W
)

actual

predicted

(c) SPEC 2006

Figure A.2: Estimated vs. Measured Error for Intel Core i7

50

Appendix B

PARSEC Results on Core i7

The Princeton Application Repository for Shared-Memory Computers (PARSEC) [9] is a multi-
threaded benchmark suite that focuses on emerging workloads. PARSEC aims to represent the
shared memory programs for future multi-core processors. PARSEC workloads differ from SPEC-
OMP in that unlike the later, they are not HPC focused. The PARSEC suite includes programs
from desktop and server domains. One of the major differences in the characteristic of PARSEC
applications to the multi-threaded benchmark suites that we have used (SPEC-OMP and NAS)
is that the former constitutes of applications that have significant portion of the program single-
threaded. Hence, evaluating our model against the PARSEC suite helped us in validating the
methodology in a scenario where the program behavior changes from single-threaded to multi-
threaded dynamically.

Figure B.1(a) details the median errors obtained on the various applications of PARSEC. As
shown, all the applications show less than 10% median error while most of the applications show
less than 5% median error. The median error across all the samples collected for the PARSEC
benchmark suite was 2.69%.

Figure B.1(b) compares the actual to estimated mean power consumption values across the run of

bl
ac

ks
ch

ol
es

bo
dy

tra
ck

fa
ce

si
m

fe
rre

t

flu
id
an

im
at

e

fre
qm

in
e

ra
yt
ra

ce

sw
ap

tio
ns

vi
ps

x2
64

0

2

4

6

8

10

%
 M

e
d

ia
n

 E
rr

o
r

(a) Median Estimation Error for PARSEC on Intel
Core i7

bl
ac

ks
ch

ol
es

bo
dy

tra
ck

fa
ce

si
m

fe
rre

t

flu
id
an

im
at

e

fre
qm

in
e

ra
yt
ra

ce

sw
ap

tio
ns

vi
ps

x2
64

15

20

25

30

35

P
o
w

e
r

(W
)

actual

predicted

(b) Estimated vs. Measured Error for PARSEC on In-
tel Core i7

Figure B.1: PARSEC Estimation Results

51

PARSEC applications. The figure verifies that our model’s estimated power values closely follow
the empirical values. These results further adds to our confidence that our model is application
independent.

52

Appendix C

Custom Test Benchmark

Tbench is a custom benchmark developed for following purposes:

• Analyze the performance of model when the benchmark is exercising, in isolation wherever
possible, different micro-architectural features of the core, namely: FP, ALU, register file,
external memory, branch predictor and BTB, and RS and ROB.

• Analyze the error peaks observed in other benchmarks when a sharp change in power con-
sumption occurs.

• Analyze the relationship between temperature and power consumption.

Tbench benchmark is a collection of small code snippets that have been written in assembly to
exercise the above mentioned micro-architectures. The benchmarks runs for 1200 seconds and is
distributed as follows:

• 0-60: Register file

• 61-120: FP + low stalls

• 121-180: FP + high stalls

• 181-240: Register file

• 241-300: Branch + high stalls

• 300-360: Sleep

• 360-480: External memory

• 480:540: Branch + high stalls

• 540-1200: External memory + FP + ALU + high stalls

53

200 400 600 800 1000

Sample Index

15

20

25

P
o
w

e
r

(W
)

Actual

Predicted

10

20

30

T
e
m

p
e

ra
tu

re
 (C

)

Temp

(a) Estimated vs. Measured Power vs Temperature
during the run of Tbench

200 400 600 800 1000

Sample Index

15

20

25

P
o
w

e
r

(W
)

Actual

0

20

40

60

%
 E

rro
r

Error

(b) Error peaks during the run of Tbench

Figure C.1: Tbench power estimation results

As the Figure C.1(a) shows, a capacitive relationship is observed between the temperature and
power. Including the temperature in the model helps the predicted curve follow the non-linear
growth of power consumption. The graph also shows that power consumption can be used to
approximate the temperature of the sensor dynamically, but it would be extremely difficult to
predict power consumption by observing just the core temperature since small approximation
error in temperature would lead to highly erroneous power consumption figures.

As the error graph C.1(b) for the Tbench depicts, our model suffers with high error peaks when-
ever there is a sharp change in power consumption of the core. This is because of the limitation
of our validation methodology and not because of limitation of the statistical linear model. Our
power meter can sample the power consumption only once every 1 second. Hence we accumu-
late the performance counters over one second and normalize them per cycle to compare with the
power consumption which is an instantaneous metric. This works well when the power consump-
tion curve is not sharp over the period of one second. But when the power consumption changes
significantly over the period of one second, the model tends to predict the power consumption
value averaged over the period of one second. Hence, we see error peaks with sharp changes in
power. We believe that when our model will be used at a higher sampling rate, every 10 ms or
less, the error peaks would be less severe.

54

Appendix D

Core i7 Results with Hyper-Threading
Enabled

This appendix gives the detailed estimation results when our methodology is used for estimating
power consumption for each logical core on Intel Core i7 when Hyper-Threading is enabled. For
this experiment, we estimate the power consumption for each logical core instead of physical core.
This is possible because Intel Core i7 provides individual set of performance counters for each
logical core. For the resources that are shared dynamically between the cores, or the resources
that are Hyper-Threading agnostic, the performance counters count only those events that are
associated with respective logical core.

55

bt cg ep ft lu
lu
-h

p
m

g sp ua

0

2

4

6

8

10

%
 M

e
d

ia
n

 E
rr

o
r

(a) NAS

am
m

p

ap
pl
u

ap
si ar

t

fm
a3

d

m
gr

id

qu
ak

e

sw
im

w
up

w
is
e

0

2

4

6

8

10

%
 M

e
d

ia
n

 E
rr

o
r

(b) SPEC-OMP

as
ta

r

bw
av

es

bz
ip
2

ca
ct
us

AD
M

ca
lc
ul
ix

de
al
ll

ga
m

es
s

gc
c

G
em

sF
D
TD

go
bm

k

gr
om

ac
s

h2
64

re
f

hm
m

er
lb
m

le
sl
ie
3d

lib
qu

an
tu

m
m

cf
m

ilc

na
m

d

om
ne

tp
p

pe
rlb

en
ch

po
vr

ay

sj
en

g

so
pl
ex

xa
la
nc

bm
k

ze
us

m
p

0

2

4

6

8

10

%
 M

e
d
ia

n
 E

rr
o
r

(c) SPEC 2006

Figure D.1: Median Estimation Error for Intel Core i7

bt cg ep ft lu
lu
-h

p
m

g sp ua

15

20

25

30

35

40

P
o

w
e

r
(W

)

actual

predicted

(a) NAS

am
m

p

ap
pl
u

ap
si ar

t

fm
a3

d

m
gr

id

qu
ak

e

sw
im

w
up

w
is
e

15

20

25

30

35

40

P
o

w
e

r
(W

)

actual

predicted

(b) SPEC-OMP

as
ta

r

bw
av

es

bz
ip
2

ca
ct
us

AD
M

ca
lc
ul
ix

de
al
ll

ga
m

es
s

gc
c

G
em

sF
D
TD

go
bm

k

gr
om

ac
s

h2
64

re
f

hm
m

er
lb
m

le
sl
ie
3d

lib
qu

an
tu

m
m

cf
m

ilc

na
m

d

om
ne

tp
p

pe
rlb

en
ch

po
vr

ay

sj
en

g

so
pl
ex

xa
la
nc

bm
k

ze
us

m
p

15

20

25

30

35

40

P
o
w

e
r

(W
)

actual

predicted

(c) SPEC 2006

Figure D.2: Estimated vs. Measured Error for Intel Core i7

56

Bibliography

[1] Advanced Micro Devices. AMD Athlon Processor Model 6 Revision Guide, 2003.

[2] V. Aslot and R. Eigenmann. Performance characteristics of the SPEC OMP2001 bench-
marks. In Proc. European Workshop on OpenMP, Sept. 2001.

[3] T. Austin. SimpleScalar 4.0 release note. http://www.simplescalar.com/.

[4] D. Bailey, T. Harris, W. Saphir, R. Van der Wijngaart, A. Woo, and M. Yarrow. The NAS
parallel benchmarks 2.0. Report NAS-95-020, NASA Ames Research Center, Dec. 1995.

[5] M. Banikazemi, D. Poff, and B. Abali. PAM: A novel performance/power aware meta-
scheduler for multi-core systems. In Proc. IEEE/ACM Supercomputing International Con-
ference on High Performance Computing, Networking, Storage and Analysis, number 39,
Nov. 2008.

[6] F. Bellosa, S. Kellner, M. Waitz, and A. Weissel. Event-driven energy accounting for dy-
namic thermal management. In Proceedings of the Workshop on Compilers and Operating
Systems for Low Power (COLP’03), Sept. 2003.

[7] Y. Ben-Itzhak, I. Cidon, and A. Kolodny. Performance and power aware cmp thread alloca-
tion modeling. In HiPEAC, pages 232–246, Jan. 2010.

[8] R. Bertran, M. Gonzalez, X. Martorell, N. Navarro, and E. Ayguade. Decomposable and
responsive powe models for multicore processors using performance counters. In Proc. 24th
ACM International Conference on Supercomputing, pages 147–158, June 2010.

[9] C. Bienia, S. Kumar, J. Singh, and K. Li. The PARSEC benchmark suite: Characterization
and architectural implications. In Proc. IEEE/ACM International Conference on Parallel
Architectures and Compilation Techniques, pages 72–81, Oct. 2008.

[10] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for architectural-level power
analysis and optimizations. In Proc. 27th IEEE/ACM International Symposium on Computer
Architecture, pages 83–94, June 2000.

[11] J. Casazza. Intel core i7-800 processor series and the intel core i5-700 processor series.
White Paper, Intel Corporation, 2009.

57

[12] G. Contreras and M. Martonosi. Power prediction for Intel XScale processors using perfor-
mance monitoring unit events. In Proc. IEEE/ACM International Symposium on Low Power
Electronics and Design, pages 221–226, Aug. 2005.

[13] L. Corporation. Intel current transducer lts 25-np. Datasheet, LEM, Nov. 2009.

[14] N. Corporation. NI bus-powered m series multifunction daq for usb.
http://sine.ni.com/ds/app/doc/p/id/ds-9/lang/en, 2009.

[15] T. Corporation. Tilera tilepro64 processor product brief.
http://www.tilera.com/sites/default/files/productbriefs/PB019 TILEPro64 Processor A v3.pdf.

[16] D. Economou, S. Rivoire, C. Kozyrakis, and P. Ranganathan. Full-system power analysis
and modeling for server environments. In Proc. Workshop on Modeling, Benchmarking, and
Simulation, June 2006.

[17] Electronic Educational Devices. Watts Up PRO.
http://www.wattsupmeters.com/, May 2009.

[18] S. Eranian. Perfmon2: a flexible performance monitoring interface for Linux. In Proc. 2006
Ottawa Linux Symposium, pages 269–288, July 2006.

[19] Gary Perlman. STAT Statistical Data Analysis: Free Data Analysis Programs for UNIX and
DOS, 2001.

[20] B. Goel, S. A. McKee, R. Gioiosa, K. Singh, M. Bhadauria, and M. Cesati. Portable, scalable,
per-core power estimation for intelligent resource management. pages 135 –146, aug. 2010.

[21] M. Govindan, S. Keckler, and D. Burger. End-to-end validation of architectural power mod-
els. In Proceedings of the 14th ACM/IEEE international symposium on Low power electron-
ics and design, pages 383–388, July 2009.

[22] Intel. Intel Architecture Software Developer’s Manual: System Programming Guide, Mar.
2010.

[23] C. Isci, A. Buyuktosunoglu, C. Cher, P. Bose, and M. Martonosi. An analysis of efficient
multi-core global power management policies: Maximizing performance for a given power
budget. In Proc. IEEE/ACM 40th Annual International Symposium on Microarchitecture,
pages 347–358, Dec. 2006.

[24] R. Joseph and M. Martonosi. Run-time power estimation in high-performance microproces-
sors. In Proc. IEEE/ACM International Symposium on Low Power Electronics and Design,
pages 135–140, Aug. 2001.

[25] F. Kerlinger and E. Pedhazur. Multiple regression in behavioral research. Holt, Rinehart and
Winston (New York), 1973.

[26] B. Lee and D. Brooks. Accurate and efficient regression modeling for microarchitectural
performance and power prediction. In Proc. 12th ACM Symposium on Architectural Support
for Programming Languages and Operating Systems, pages 185–194, Oct. 2006.

58

[27] T. Li and L. K. John. Run-time modeling and estimation of operating system power con-
sumption. SIGMETRICS Perform. Eval. Rev., 31(1):160–171, 2003.

[28] S. M. and L. H. Distilling free-form natural laws from experimental data. Science,
324(5923):81–85, 2009.

[29] A. Merkel and F. Bellosa. Balancing power consumption in multicore processors. In Proc.
ACM SIGOPS/EuroSys European Conference on Computer Systems, pages 403–414, Apr.
2006.

[30] M. Moudgill, P. Bose, and J. Moreno. Validation of Turandot, a fast processor model for
microarchitecture exploration. In Proc. International Performance, Computing, and Com-
munications Conference, pages 452–457, Feb. 1999.

[31] T. Mudge. Power: A first-class architectural design constraint. IEEE Computer, 34:52–57,
2001.

[32] R Development Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2008. ISBN 3-900051-07-0.

[33] K. Rajamani, H. Hanson, J. Rubio, S. Ghiasi, and F. Rawson. Application-aware power
management. In Proc. IEEE International Symposium on Performance Analysis of Systems
and Software, pages 39–48, Oct. 2006.

[34] K. Singh. Prediction Strategies for Power-Aware Computing on Multicore Processors. PhD
thesis, Cornell University, 2009.

[35] K. Singh, M. Bhadauria, and S. McKee. Real time power estimation and thread scheduling
via performance counters. Proc. Workshop on Design, Architecture and Simulation of Chip
Multi-Processors, Nov. 2008.

[36] C. Spearman. The proof and measurement of association between two things. The American
Journal of Psychology, 15(1):72–101, jan 1904.

[37] Standard Performance Evaluation Corporation. SPEC OMP benchmark suite.
http://www.specbench.org/hpg/omp2001/, 2001.

[38] Standard Performance Evaluation Corporation. SPEC CPU benchmark suite.
http://www.specbench.org/osg/cpu2006/, 2006.

[39] Texas Instruments. Cmos power consumption and cpd calculation.
http://focus.ti.com/lit/an/scaa035b/scaa035b.pdf, June 1997.

[40] V. Weaver and S. McKee. Can hardware performance counters be trusted? Technical Report
CSL-TR-2008-1051, Cornell University, Aug. 2008.

[41] D. Zaparanuks, M. Jovic, and M. Hauswirth. Accuracy of performance counter measure-
ments. Technical Report USI-TR-2008-05, UniversitÃ della Svizzera italiana, Sept. 2008.

59

